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Abstract We analyze the problem of identifying large cliques in graphs that are
affected by adversarial uncertainty. More specifically, we consider a new formula-
tion, namely the adversarial maximum clique problem, which extends the classical
maximum-clique problem to graphs with edges strategically perturbed by an ad-
versary. The proposed mathematical model is thus formulated as a two-player
zero-sum game between a clique seeker and an opposing agent. Inspired by reg-
ularized continuous reformulations of the maximum-clique problem, we derive a
penalized continuous formulation leading to a nonconvex and nonsmooth optimiza-
tion problem. We further introduce the notion of stable global solutions, namely
points remaining optimal under small perturbations of the penalty parameters,
and prove an equivalence between stable global solutions of the continuous refor-
mulation and largest cliques that are common to all the adversarially perturbed
graphs. In order to solve the given nonsmooth problem, we develop a first-order
and projection-free algorithm based on generalized subdifferential calculus in the
sense of Clarke and Goldstein, and establish global sublinear convergence rates for
it. Finally, we report numerical experiments on benchmark instances showing that
the proposed method efficiently detects large common cliques.
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Fővám tér 8, 1093 Budapest, Hungary
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1 Introduction

Denote by [a : b] the set of all integers in the interval [a, b]. Let G = (V,E) be an
undirected, loopless graph on vertices V = [1 :n] with edge set E ⊂

(
V
2

)
, and AG

be the adjacency matrix of G, defined as

[AG ]i,j =

{
1 if {i, j} ∈ EG ,

0 else.
(1)

Given any nonempty subset S of V , we denote with x(S) its associated charac-
teristic vector, defined as x(S) = 1

|S|
∑
i∈S

ei, where ei ∈ Rn is the i-th column of

the n×n identity matrix In. A clique in G is a subset of nodes C ⊆ V that are all
mutually connected. It is maximal if there does not exist any larger clique D such
that C is strictly contained in D. The classical maximum clique problem consists
in finding a maximal clique in G such that its cardinality (number of vertices)
is maximum. Given the graph G, the maximum clique cardinality is indicated by
ω(G).

The maximum clique problem has practical applications in a wide range of
fields including social network analysis, scheduling, financial networks and telecom-
munications. Therefore, despite being an NP-hard problem [12], several solution
methods have been explored (see, e.g., [3,24]) due to its practical significance.

In [16], Motzkin and Straus provided a connection between the maximum clique
problem and the solutions of the nonconvex quadratic (so, continuous) optimiza-
tion problem

z∗ := max
x∈∆V

x⊤AGx (2)

where ∆V = {x ∈ Rn
+ : e⊤x = 1} and e is the all-ones vector. In particular, they

proved that given C ⊆ V a maximum clique in G, the characteristic vector x(C)
is a global maximizer of (2), with the clique number ω(G) encoded in its optimal
value: z∗ = 1− 1

ω(G) . A drawback linked to the Motzkin-Straus formulation is the

existence of spurious solutions [17,18], i.e., local (global) solutions of (2) that are
not characteristic vectors and have no connection to a clique in the graph.

In order to deal with this issue, a regularized approach was hence proposed by
Bomze in [2]:

max
x∈∆V

x⊤[12 In + AG ]x (3)

where In denotes the n×n identity matrix. This encoding guarantees that any local
(global) solution x∗ to problem (3) corresponds to a maximal (maximum) clique
C = supp(x∗) = {i ∈ V : xi > 0} and vice versa. This one-to-one correspondence
is ensured by the regularization term ∥x∥22 = x⊤Inx.

The role of the regularization term was further generalized in [11], where the
authors analyzed different variants of the regularized continuous formulation (3),
and established conditions that guarantee the equivalence between the regularized
formulation and the maximum clique problem, both in terms of local and global
solutions. In [20], the Motzkin-Straus formulation was extended to two clique re-
laxation models, s-defective clique and s-plex, in terms of maximizing a continuous
cubic function over a polyhedral set described by two variables x and y. In [6],
the authors provided a regularized version of the cubic continuous formulation for
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the maximum s-defective clique problem and applied some tailored variants of the
Frank-Wolfe algorithm to their formulation.

In scenarios where the exact structure of G cannot be precisely determined, the
problem data, that is AG , can be considered given subject to some uncertainty.
To model this, one viable approach is to account for continuous perturbations in
the entries of AG within a predefined uncertainty set (e.g., a ball, an ellipsoid, a
spectrahedron, or a box). This model makes sense if the link strengths on edges
vary, as explored in the literature, e.g., by [4], where the authors focus on relevant
applications in social network analysis.

In this paper, we consider an unweighted graph G and analyze the scenario
where the perturbation is discrete, meaning that some edges may be added to or
removed from G, i.e., some entries of AG may switch from zero to one. In many
modern applications, such uncertainty is adversarial in nature, as different agents
have conflicting goals regarding the detection or obscuration of the underlying
graph structure. This dynamics can be hence naturally modeled as a two-player
game between a clique seeker and a network adversary. Formally, we have a family
of possible graph structures G1, . . . ,Gm, each representing a possible configuration
of edges that may occur due to adversarial intervention. The seeker’s goal is thus
to maximize the connectivity of the selected nodes, while the adversary chooses a
graph configuration Gi that minimizes this objective by removing/masking critical
edges or by including fake ones. We thus define the backbone network, as the
set of edges that are stable, i.e., included in all the graph configurations and
the adversarial maximum common clique problem as the seeker’s task of finding
the largest subset of vertices forming a clique in the backbone network (i.e., a
clique with edges in every configuration), without explicitly knowing all the graph
structures. We hence have an adversarial interaction between the two players,
and, whenever the seeker selects a subset of vertices, the adversary responds by
revealing the worst possible graph configuration Gi among the available ones, that
is, the one in which the induced subgraph on the selected subset of vertices is least
connected. This problem formulation may appear in several real-world settings:

– Communication Networks [7,13]: The backbone network consists of key
routers that have stable connections, while additional links are available de-
pending on congestion or failures. Users hence attempt to identify the most
connected subset of nodes, while the network owner dynamically modifies link
availability to obscure this information.

– Cybersecurity and Privacy [19]: A hidden clique represents a group of
critical servers or key actors in a communication network. Attackers attempt to
reveal the structure by probing connections, while defenders limit information
leakage through controlled link availability.

– Social Network Analysis [22,25,26]: Influential subgroups in a social net-
work form hidden cliques, and malicious users try to identify these commu-
nities to feed them with fake news and rumors to manipulate public opinion
or generate revenue on their sites (e.g., clickbait). The platform provider may
hence intentionally obfuscate certain relationships to prevent manipulation or
unwanted discoveries.

As we will see in the next subsection, a natural way to extend the Motzkin –
Straus formulation to this case would lead to an adversarial max-min optimiza-
tion problem. However, unlike the classical maximum-clique case, the solutions
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of this max-min problem do not, in general, correspond to characteristic vectors
of common cliques and even non-feasible patterns may appear. Thus, in order
to guarantee the discrete-continuous equivalence, we need to introduce a suitable
continuous reformulation that generalizes the above described regularization to
the adversarial case.

1.1 Preliminary formulation

We denote the finite universe of all regularized adjacency matrices of graphs of
order n by

U := {1
2 In + AG : G is a graph of order n} ;

In other words, U is composed of all U = U⊤ such that U − 1
2 In ∈ {0, 1}n×n is a

symmetric binary matrix with zero diagonal. Reverting the dependence on G, we
may write G = GU = (V,EU) if and only if U = 1

2 In + AG .
For the theoretical analysis to follow, we may hence consider a general (finite)

uncertainty set U ⊆ U . We consider the following robust optimization problem:

max
x∈∆V

min
U∈U

x⊤Ux , (4)

a continuous, generally nonsmooth, nonconvex, piecewise quadratic optimization
problem over the simplex polytope. Finiteness of U and compactness of ∆V ensure
the existence of all extrema considered. It is important to highlight that the seeker
does not have direct access to the set of all configurations U = {U1, . . . , Um}.
If this were the case, the seeker might easily calculate the backbone network ad-
jacency matrix AGbb

(considering the Hadamard product of all the available adja-
cency matrices) and then solve the classic max-clique problem given in (3).

Since U will be indefinite for all U ∈ U , Sion’s theorem cannot be applied, and
there is only a general min-max inequality. Indeed, the min-max problem

min
U∈U

max
x∈∆V

x⊤Ux

corresponds to selecting the lowest ω(GU) across all graphs GU generated by U ∈
U , which is obviously a different problem. The solution to this problem may be
complicated by the fact that there is more than one minimal U ∈ U , but if solved,
it amounts to selecting those edges for removal such that the resulting graph has
the smallest possible clique number.

As an illustrative case, let us consider the following example. Let G = K4 be
a complete graph with four nodes and choose U = {U1,U2,U3,U4} as shown in
Figure 1. It is easy to prove that minU∈U maxx∈∆V x⊤Ux = 3

4 . In this example,

the largest common cliques are the single vertices and, in this case, x⊤Uix = 1
2

for all i ∈ [1 : 4] and for each x = ei, the characteristic vector associated with a
single vertex i ∈ V . However, if x⊤ = 1

4 [1, 1, 1, 1], we have x⊤Uix = 5
8 > 1

2 for
all i ∈ [1 : 4]. Hence, in general, the characteristic vector 1

|C|
∑
i∈C

ei of the largest

common clique C is not an optimal solution to the problem (4).
In the previous example, we observed that for an optimal solution x to the

problem (4), its support supp(x) need not be a common clique for all the modifi-
cations of G. This motivates the following strategy: adding (in fact, subtracting, as
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Fig. 1 original graph G, and edge configurations G(U1), G(U2), G(U3), G(U4) that may occur
due to adversarial intervention.

we are maximizing in x) a term penalizing deviations from the complete graph Kn.
This will enable a complete characterization of (even) global solutions in terms of
maximum common cliques across U . Our proof strategy for obtaining this result
is inspired by [11]. However, major changes are necessary due to nonsmoothness.

1.2 Contributions

The contributions of this paper are therefore twofold:

– First, we introduce a novel penalized game-theoretical program that extends
the regularized continuous maximum-clique reformulation to adversarial set-
tings. This nonsmooth and nonconvex mathematical model introduces a penal-
ty-based mechanism and a semicontinuous relaxation that together enforce the
combinatorial structure of the maximum common clique across all available
graph realizations. Within this framework, we further define the new concept
of stable global solution, i.e., a solution that persists when the parameters of
the penalized model are slightly perturbed. We establish a rigorous equivalence
result showing that stable global solutions of the penalized continuous program
correspond exactly to the maximum common cliques in the discrete model and
vice versa. This result provides the first exact continuous characterization of
the maximum clique problem under adversarial uncertainty, thus extending the
meanwhile classical correspondence to an adversarial context.

– Second, we develop a first-order and projection-free algorithm tailored to the
nonsmooth and nonconvex structure of the proposed formulation, which is par-
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ticularly well suited to the underlying adversarial setting 1. Furthermore, this
kind of methods can be easily embedded into a global optimization algorith-
mic framework based on multistart or local search/basin hopping strategies
(see, e.g., [10,14,15] for further details on these classes of algorithms). Since
the proposed formulation is nonsmooth, the general theory of differentiation
for Lipschitz-continuous functions plays a crucial role in the algorithmic de-
velopment. Contributions in this area were made by Clarke and Goldstein,
as presented in [1]. In particular, Goldstein’s foundational work [9] on nons-
mooth unconstrained optimization problems inspired some of the theoretical
tools needed to analyze our approach. Thanks to those tools, we thus establish
global convergence sublinear rates for the proposed method. Specifically, we
demonstrate that employing a Goldstein-like subdifferential with fixed accu-
racy leads to an approximate Goldstein stationary point, whereas increasing
accuracy guarantees convergence to a Clarke stationary point. Extensive nu-
merical experiments further demonstrate that our projection-free algorithm,
even when embedded into a quite basic multistart framework, consistently
identifies large common cliques of adversarially perturbed networks.

The paper is organized as follows. In Section 2, we develop a continuous, non-
smooth formulation of the maximum common clique problem, and we provide an
equivalence between the stable global minimizers of the proposed formulation and
the maximum common cliques. In Section 3, a new projection-free algorithm is
introduced to compute local solutions to the nonsmooth formulation. Section 4
reports some experimental results, and in Section 5, we delineate the conclusions
of the paper.

An implementation of the code presented in this paper, along with the tested in-
stances, can be found at the following link: github.com/Maximum Clique Problem.

2 Exact penalization leads to the maximum common clique

2.1 Adding two penalty terms; epigraphic QCQP formulation

Denote by E := ee⊤ the n × n all-ones matrix. Then Kn has adjacency matrix
AKn

= E− In and is generated by the densest E := E− 1
2 In = AKn

+ 1
2 In ∈ U , in

that Kn = G(E). Now for a positive parameter β > 0, we consider the quadratic
form

x⊤Ux− βx⊤(E− U)x (5)

= x⊤
[
(1 + β)U− βE

]
x , (6)

an affine combination of the quadratic forms generated by realized U and the
densest E. Rewritten, we have

x⊤Ux− β
∑
i,j
i̸=j

(1− Uij)xixj . (7)

1 as we will see, the seeker, in the considered framework, interacts with the adversary only
through an oracle that returns information related to suitably defined worst-case graph real-
izations for a given node selection.

https://github.com/GiovanniSpisso/MCP_under_Adversarial_Uncertainty
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We also add another set of variables, another penalty term and a new set of
constraints:

fU(x,y) := x⊤Ux− βx⊤(E− U)x+
1

2γ
∥y∥2 . (8)

such that

εyi ≤ xi ≤ yi , i ∈ V ,

yi ∈ {0, 1} , i ∈ V ,

where γ > 0, 0 < ε ≤ 1/n and n is the order of the graph G. We observe that, in
this way,

yi = 0 ⇐⇒ xi = 0 ;

yi = 1 ⇐⇒ xi ≥ ε .

In other words, we look at the xi as semicontinuous variables [21]. We define

F (x,y) := min
U∈U

fU(x,y) ,

to introduce the penalized problem

max F (x,y)

s.t. x ∈ ∆V

εyi ≤ xi ≤ yi , i ∈ V ,

yi ∈ {0, 1} , i ∈ V .

(9)

By relaxing the integrality in the previous problem, we have

max F (x,y)

s.t. x ∈ ∆V

εyi ≤ xi ≤ yi , i ∈ V ,

0 ≤ yi ≤ 1 , i ∈ V .

(10)

We observe that, in this case,

yi = 0 ⇐⇒ xi = 0 ;

yi = 1 =⇒ xi ≥ ε .

So we change the original feasible set ∆V into the set

∆V
ε := {(x,y) ∈ R2n : x ∈ ∆V , εyi ≤ xi ≤ yi for all i ∈ V

and 0 ≤ yi ≤ 1 for all i ∈ V } .

We also rewrite the original problem in the following way:

max
(x,y)∈∆V

ε

min
U∈U

fU(x,y) = − min
(x,y)∈∆V

ε

max
U∈U

gU(x,y)
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with gU(x,y) := −fU(x,y). Denoting by G(x,y) = max
U∈U

gU(x,y), problem (10) is

rewritten as (the negative of) a potentially nonsmooth, nonconvex, constrained
min-max problem

−min G(x,y)

s.t. (x,y) ∈ ∆V
ε .

(11)

Now all component functions gU of G are quadratic forms separable in x and y,
with

∇xgU(x,y) = HUx ,

where HU = ∇2
xxgU = 2

[
−U+ β(E− U)

]
and

∇ygU(x,y) = − 1

γ
y .

It follows for any (x,y) ∈ ∆V
ε by definition of E = E − 1

2 In that the gradients
w.r.t. x equal

∇xgU(x,y) = HUx = β(2e− x)− 2(1 + β)Ux , (12)

an identity we will use later. For instance, we get

(eh − ek)
⊤∇xgU(x,y) = β(xk − xh)− 2(1 + β)

∑
j

[Uhj − Ukj ]xj .

Next consider a smooth epigraphic QCQP reformulation of the negative of
problem (11), namely of the nonsmooth problem

min
(x,y)∈∆V

ε

max
U∈U

gU(x,y) . (13)

This epigraphic equivalent of problem (13) has one more variable, a linear objective
and (nonconvex) quadratic, as well as linear, constraints:

min
(x,y,ν)∈∆V

ε ×R
{ν : gU(x,y) ≤ ν for all U ∈ U} . (14)

Next we will describe and simplify the KKT (first-order) conditions related to
optimality of a point (x,y, ν) for problem (14).

Lemma 1 The Karush/Kuhn/Tucker (KKT) conditions for problem (14) are

– stationarity conditions

∇νL(x,y, ν;λ,µ,ψ, θ,ϕ, δ, σ) = 1−
∑
U∈U

λU = 0 ,

∇xL(x,y, ν;λ,µ,ψ, θ,ϕ, δ, σ) =
∑
U∈U

λU∇xgU(x,y)− µ− ϕ+ δ − σe = 0 ,

∇yL(x,y, ν;λ,µ,ψ, θ,ϕ, δ, σ) =
∑
U∈U

λU∇ygU(x,y)− ψ + θ + εϕ− δ = 0 ,

(15)
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– primal and dual feasibility conditions

gU(x,y) ≤ ν for all U ∈ U ,

x ∈ ∆V ,

εy ≤ x ≤ y ,

0 ≤ y ≤ e ,

λU ≥ 0 for all U ∈ U ,
µi.ϕi, δi, ψi, θi ≥ 0 for all i ∈ V ,

(16)

– complementarity conditions

λU(gU(x,y)− ν) = 0 for all U ∈ U ,

µ⊤x = 0 ,

ψ⊤y = 0 ,

θ⊤(y − e) = 0 ,

ϕ⊤(x− εy) = 0 ,

δ⊤(x− y) = 0 ,

(17)

Therefore, under Equations (15) to (17) we have

λ ∈ ∆U := {λ ∈ Rn
+ :

∑
U∈U

λU = 1},

for the λ-weighted average hx(x|λ) of the gradients ∇xgU(x,y)

hx(x|λ) :=
∑
U∈U

λU∇xgU(x,y) ∈ Rn

it holds hx(x|λ)− σe+ δ = µ+ ϕ ∈ Rn
+ and for the λ-weighted average hy(y|λ)

of the gradients ∇ygU(x,y)

hy(y|λ) :=
∑
U∈U

λU∇ygU(x,y) ∈ Rn

it holds hy(y|λ) + θ + εϕ = ψ + δ ∈ Rn
+. In particular,

σ = x⊤hx(x|λ) + y⊤hy(y|λ) + e⊤θ = 2ν + e⊤θ = 2G(x,y) + e⊤θ .

Proof The Lagrangian function of the problem (14) is

L(x,y, ν;λ,µ,ψ, θ,ϕ, δ, σ)

= ν +
∑
U∈U

λU[gU(x,y)− ν]− µ⊤x− ψ⊤y + θ⊤(y − e)

− ϕ⊤(x− εy) + δ⊤(x− y)− σ(e⊤x− 1) .

Therefore the KKT conditions have the form specified. Moreover, the first condi-
tion in (15) and dual feasibility of λ together give λ ∈ ∆U . Further, hx(x|λ) −
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σe + δ = µ + ϕ and hy(y|λ) + θ + εϕ = ψ + δ are exactly the conditions on λ
in (15), which in turn implies via x ∈ ∆V and (17)

σ = σ x⊤e = x⊤hx(x|λ) + x⊤δ − x⊤µ− x⊤ϕ

= x⊤hx(x|λ) + x⊤δ − x⊤ϕ

= x⊤hx(x|λ) + y⊤δ − εy⊤ϕ

= x⊤hx(x|λ) + y⊤hy(y|λ) + y⊤θ − y⊤ψ

= x⊤hx(x|λ) + y⊤hy(y|λ) + e⊤θ .

(18)

Moreover, since gU are quadratic forms (homogeneous of degree 2), we have by
Euler’s theorem x⊤∇xgU(x,y)+y⊤∇ygU(x,y) = 2gU(x,y), which in conjunction
with the other complementarity constraint of (17), and the fact that λ ∈ ∆U ,
entails

ν =
∑
U∈U

λUgU(x,y) =
1
2

∑
U∈U

λUx
⊤∇xgU(x,y) +

1
2

∑
U∈U

λUy
⊤∇ygU(x,y)

= 1
2 [x

⊤hx(x|λ) + y⊤hy(y|λ)] = 1
2 (σ − e⊤θ) ,

the last equation coming from (18). Finally, feasibility of (x,y, ν) means G(x,y) ≤
ν but on the other hand, for all λU > 0 we have gU(x,y) = ν by (17), and at least
one such λU > 0 exists since λ ∈ ∆U . So G(x,y) ≥ gU(x,y) = ν, which establishes
G(x,y) = ν under the KKT conditions.

2.2 The role of common cliques and their characteristic vectors

Let S ⊆ V be a nonempty subset of nodes, and let ∆V
ε (S) defined by

∆V
ε (S) := {(x,y) ∈ ∆V

ε : supp(x) = supp(y) ⊆ S} .

We consider the system of all common cliques across U ,

CU := {C ⊆ V : C is a clique in G(U) for all U ∈ U} ,

and put

∆0
ε :=

⋃
C∈CU

∆V
ε (C)

= {(x,y) ∈ ∆V
ε : supp(x) = supp(y) is a common clique across U} .

(19)

As usual, we will call an element C ∈ CU a maximal common clique if it is
maximal w.r.t. set inclusion, i.e., there is no other C̃ ∈ CU containing C as a
subset.

Proposition 1 Let x(C) be a characteristic vector of a maximal common clique
C ∈ CU and define ν := G(x(C),y), where (x(C),y) ∈ ∆V

ε and y ∈ {0, 1}n.
Then (x(C),y, ν) satisfies the first-order necessary conditions for local optimality

to problem (14), namely (15), (16), and (17), if β ≥ |U|
2 − 1.
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Proof The identities in Lemma 1 suggest already the choice of dual variables
(λ,µ,ψ, θ,ϕ, δ, σ) ∈ ∆U × Rn

+ × Rn
+ × Rn

+ × Rn
+ × Rn

+ × R; but first observe
that for all (i,U) ∈ C × U we have

[∇xgU(x(C),y)]i = [HUx(C)]i = 2e⊤i [β(E− U)− U]x(C)

= −2[Ux(C)]i = xi(C)− 2 =
1

|C| − 2

and

[∇ygU(x(C),y)]i = −
[
1

γ
y

]
i

= − 1

γ
e⊤i y = − 1

γ
yi .

Since (x(C),y) ∈ ∆V
ε , then supp(x(C)) = supp(y) and since y ∈ {0, 1}n, yi = 1

∀i ∈ C. Therefore hxi (x(C)|λ) = 1
|C| − 2 and hyi (y|λ) = − 1

γ for any λ ∈ ∆U and
for all i ∈ C. Moreover, observe that

ν = G(x(C),y) = gU(x(C),y) = 1
2x(C)⊤HUx(C)− 1

2γ
∥y∥2

=
1

2|C| − 1− 1

2γ
|C| for all U ∈ U ,

so that defining σ := 1
|C| − 2 ∈ R and θ := 1

γy ∈ Rn
+, it results ν = 1

2 (σ − e⊤θ).

We also define ϕ = δ = ψ := o ∈ Rn, with o the all-zeros vector, and µ :=
h(x(C)) − σe ∈ Rn, so that supp(µ) ∩ C = ∅, where h(x(C)) := ∇xgU(x(C),y).
Indeed, for any i ∈ C, by above reasoning, hi(x(C)) = σ. In this way, it remains
to show that µi ≥ 0 for all i ∈ V \ C. Define

degU(i|C) := |C|[Ux(C)]i ≤ |C| ,

which counts the edges in G(U) linking C to an outside vertex i ∈ V \C. Then for
all U ∈ U we have

[∇xgU(x(C),y)]i = 2

[
β(1− degU(i|C)

|C| )− degU(i|C)

|C|

]
,

which for large enough β > 0 can be negative only if degU(i|C) = |C|, i.e., if
C ∪ {i} is a clique in G(U) as well, in which case [∇xgU(x(C),y)]i = −2 and
[∇xgU(x(C),y)]i − σ = − 1

|C| . But since C is a maximal common clique, for all

i ∈ V \ C there must be at least one U ∈ U such that C ∪ {i} is not a clique in
G(U). In other words, if we decompose

U = U+
i ∪ U−

i with U+
i := {U ∈ U : degU(i|C) < |C|} and U−

i := U \ U+
i ,

then U+
i ̸= ∅ for all i ∈ V \ C, and hence there must be λ ∈ ∆U such that

µi :=
∑

U∈U+
i

2λU

[
β(1− degU(i|C)

|C| )− degU(i|C)

|C| − ν − 1

2γ
|C|
]
− 1

|C|
∑

U∈U−
i

λU ≥ 0 ,

if β is chosen large enough, which will establish the claim by Lemma 1. Let us
now provide the quantitative estimate for large enough β, and a suitable choice for
λ ∈ ∆U . Beforehand note that (17) is satisfied for any λ ∈ ∆U (and above defined
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µ), if supp(λ) ⊆ C. For any U ∈ U+
i , we have 1− degU(i|C)

|C| ≥ 1
|C| and thus, since

ν = 1
2|C| − 1− 1

2γ |C|, we have

β(1− degU(i|C)

|C| )− degU(i|C)

|C| − ν − 1

2γ
|C| = (1 + β)(1− degU(i|C)

|C| )− 1

2|C|

≥ 1

|C| (
1
2 + β)

and therefore∑
U∈U+

i

2λU

[
β(1− degU(i|C)

|C| )− degU(i|C)

|C| − ν

]
≥ 1

|C| (1 + 2β)
∑

U∈U+
i

λU .

On the other hand,

1

|C|
∑

U∈U−
i

λU =
1

|C| −
1

|C|
∑

U∈U+
i

λU ,

so that

1

|C| (1 + 2β)
∑

U∈U+
i

λU − 1

|C|
∑

U∈U−
i

λU =
2

|C| (1 + β)
∑

U∈U+
i

λU − 1

|C| .

Multiplying by |C| we arrive at the condition

2(1 + β)
∑

U∈U+
i

λU ≥ 1 .

As we know U+
i ̸= ∅ for all i ∈ V \ C, we may try with all λU = 1

|U| > 0, so that∑
U∈U+

i
λU ≥ 1

|U| . Therefore this condition can be satisfied if 2(1 + β) ≥ |U| or
β ≥ |U|

2 − 1. Other choices of λ ∈ ∆U with smaller ρ = min
i

min
U∈U+

i

λU > 0 may

refine this estimate, replacing |U| with 1/ρ.

As is well known, the KKT conditions do, in general, not imply local optimality
in nonconvex problems like (14). In the sequel we will show that in contrast to
this general situation, here they are indeed sufficient even for local optimality in
the restricted problem min(x,y)∈∆0

ε
G(x,y).

Next, given any common clique C ∈ CU , we first consider the restricted problem

min G(x,y)

s.t. (x,y) ∈ ∆V
ε (C) .

(20)

and will show that the unique optimal solution to problem (20) is the characteristic
vector of C, and this is the only local minimizer over ∆V

ε (C). This follows from the
following proposition which is an extension of [11, Proposition 1] to our problem.
We also address the KKT condition without invoking constraint qualifications for
Equation (14). But before we introduce the (nonempty and finite) set of matrices
active at a point (x,y) ∈ ∆V

ε :

U(x,y) := {U ∈ U : gU(x,y) = G(x,y)}
= {U ∈ U : gU(x,y)− gU′(x,y) ≥ 0 for all U′ ∈ U} ,

(21)

and let us observe the following useful result:
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Lemma 2 Let (x,y) ∈ ∆0
ε. Then for all U ∈ U we have

gU(x,y) = −x⊤Ux− 1

2γ
∥y∥2 = 1

2∥x∥
2
2 − 1− 1

2γ
∥y∥2 = G(x,y) .

Proof Since S = supp(x) = supp(y) is a clique in G(U), the principal submatrix
US×S = ES×S . Thus we have x⊤Ux = (e⊤x)2 − 1

2x
⊤x = 1 − 1

2x
⊤x. Moreover,

(12) implies

gU(x) =
1
2x

⊤HUx− 1

2γ
∥y∥2

= x⊤[β(E− U)− U]x− 1

2γ
∥y∥2

= 0− x⊤Ux− 1

2γ
∥y∥2

= 1
2x

⊤x− 1− 1

2γ
∥y∥2 .

Hence the result.

Proposition 2 (a) Let C ∈ CU be a common clique. Then there is a unique local
minimizer (hence strict and global) of (20), namely (x(C),y) with y ∈ {0, 1}n.
(b) Moreover, any KKT-point (x,y, ν) of the QCQP reformulation (14) with
supp(x) = supp(y) = C ∈ CU satisfies x = x(C), y ∈ {0, 1}n and
ν = G(x(C),y) = 1

2|C| − 1− 1
2γ |C|, and C is a maximal common clique.

Proof Since C is a common clique across U , we see by Lemma 2 that

gU(x,y) = G(x,y) = 1
2x

⊤x− (e⊤x)2 − 1

2γ
y⊤y = 1

2x
⊤x− 1− 1

2γ
y⊤y ,

for all (x,y) ∈ ∆V
ε (C) and across all U ∈ U . Thus G(x,y) is strictly convex with

respect to x and strictly concave with respect to y and additively separable with
respect to x and y, that is we have G(x,y) = Gx(x) + Gy(y), with Gx(x) =
1
2x

⊤x − 1 and Gy(y) = − 1
2γy

⊤y . Considering that supp(x) = supp(y) ⊆ C,
we have that the vector y such that yi = 1 for all i ∈ C and zero otherwise
is the unique global minimizer for the function Gy(y) when considering points
y ∈ YC = {y ∈ Rn

+ : supp(y) ⊆ C, maxj yj ≤ 1}, and x(C) is the unique global
minimizer for the function Gx(x) when considering points x ∈ XC = {x ∈ ∆V :
supp(x) ⊆ C}. If we hence consider the point (x(C),y) it is easy to see that this
is a strict global minimizer for G(x,y), when considering points (x,y) ∈ XC ×YC .
Since (x(C),y) ∈ ∆V

ε (C) and ∆V
ε (C) ⊂ XC × YC , assertion (a) is proved. Next

we establish claim (b); note that for all (x,y,dx,dy) ∈ ∆V
ε (C) × Rn × Rn with

supp(dx) ⊆ C and supp(dy) ⊆ C, also the first-order expression

(dx,dy)
⊤∇x,ygU(x,y) = lim

t↘0

1

t
[gU(x+ tdx,y + tdy)− gU(x,y)] = d⊤

x x− 1

γ
d⊤
y y

is the same across all U. We now will directly show that for any (x,y) ∈ ∆V
ε (C) \

{(x(C),y)}, where y ∈ {0, 1}n with supp(y) = C, there is, at the point (x,y, ν)
with ν = 1

2x
⊤x − 1 − 1

2γy
⊤y = G(x,y), a direction (dx,dy, ζ) ∈ Rn × Rn × R
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with supp(dx) ⊆ C and supp(dy) ⊆ C which is (first-order) strictly improving,
i.e., ζ < 0, and first-order strictly feasible, i.e.,

(d⊤
x ,d

⊤
y , ζ)

⊤∇x,y,ν(gU(x,y)− ν) = d⊤
x x− 1

γ
d⊤
y y − ζ < 0 for all U ∈ U(x,y) ,

as well as supp(x+dx) = C and supp(y+dy) = C. Indeed, consider dx = x(C)−x
and dy = y − y. Not both of them can equal the zero vector simultaneously, and

d⊤
x x = x(C)⊤x− x⊤x =

1

|C| − x⊤x = x(C)⊤x(C)− x⊤x ≤ 0

as well as
d⊤
y y = y⊤y − y⊤y ≥ 0 ,

so that ζ := 1
2 [d

⊤
x x − 1

γd
⊤
y y] < 0 as x ̸= x(C) or y ̸= ȳ (or both). Hence

d⊤
x x− 1

γd
⊤
y y− ζ < 0. Therefore x ̸= x(C) or y ̸= y implies existence of a solution

(dx,dy, ζ) ∈ Rn ×Rn ×R to the system of strict linear inequalities and equations

ζ < 0

(d⊤
x ,d

⊤
y , ζ)

⊤∇x,y,ν(gU(x,y)− ν) < 0 for all U ∈ U(x,y)
e⊤i dx > 0 for all i ∈ V \ supp(x)
e⊤dx = 0

e⊤i dy > 0 for all i ∈ V \ supp(y) .

(22)

The constraints dxi > 0 and dyi > 0 are obvious for i ∈ C \ supp(x) = C \
supp(y); a continuity argument also validates it for i ∈ V \C. Anyhow, solvability
of (22) implies by Gordan’s theorem of the alternative that (x,y, ν) cannot satisfy
the Fritz-John conditions and therefore cannot be a KKT point. Note that KKT
conditions imply the Fritz-John conditions without any constraint qualifications,
they are needed only for the reverse implication. Therefore (x(C),y) with C ∈ CU
is the only possible KKT point of (14). If C ∈ CU is a common clique but not
maximal, then there is an i ∈ V \ C such that C′ = C ∪ {i} is also a common
clique. While (x(C),y) is a KKT point for (14), it cannot be one for the QCQP
equivalent to min

{
G(x,y) : (x,y) ∈ ∆V

ε (C′)
}
, as (x(C′),y′) is the only one KKT

point for the latter problem (with y′ ∈ {0, 1}n chosen such that supp(y) = C′).
We calculate the first-order improvement for the feasible directions

dx = x(C′)− x(C) = 1
|C|+1 ei −

∑
j∈C

(
1

|C| −
1

|C|+1

)
ej

= 1
|C|+1ei −

∑
j∈C

(
1

|C|(|C|+1)

)
ej ,

dy = y′ − y = ei .

The first-order improvement d⊤
x x(C) along this dx at x(C) equals, as above,

d⊤
x x(C) = 0−

∑
j∈C

(
1

|C|2(|C|+1)

)
< 0 ,

and the first-order improvement d⊤
y y along this dy at y equals

d⊤
y y = 0 .
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Hence (x(C),y) cannot be a local solution to min
{
G(x,y) : (x,y) ∈ ∆V

ε (C′)
}
.

Neither can it satisfy the KKT conditions for the larger problem as well. Note
that again, we did not need constraint qualifications as we used a direct first-order
descent argument.

On the other hand, any characteristic vector x(C) and any vector y ∈ {0, 1}n
such that supp(y) = C based upon a maximal common clique for U , is indeed
satisfying the KKT conditions, as shown in Proposition 1. Extending the result [11,
Proposition 2], we now will show that it even is a local minimizer of G(x,y) over
∆0

ε in the smooth epigraphic formulation, i.e., problem (14) restricted to ∆0
ε:

min
(x,y,ν)∈∆0

ε×R
{ν : gU(x,y) ≤ ν for all U ∈ U} . (23)

The proof of Proposition (3) is a verbatim repetition of the one given in the paper
[11], we reported it here for completeness.

Proposition 3 A point (x,y) ∈ ∆0
ε is a local minimizer of (23) if and only

if x = x(C) and y = y ∈ {0, 1}n for some maximal common clique C ∈ CU .
Moreover, every local minimizer is strict.

Proof Let (x,y) be a local minimizer of (23), then, since (x,y) ∈ ∆0
ε, there exists

some maximal common clique C ∈ CU such that (x,y) ∈ ∆V
ε (C). (x,y) is a local

minimizer of (23), it is also a local minimizer of (20), which implies x = x(C) and
y = y ∈ {0, 1}n by Proposition (2)(a).

On the other hand, let C be a maximal common clique C ∈ CU and suppose,
by way of contradiction, that (x(C),y) is not a local minimizer of (23). Then,
for every k ∈ N+, there exists some (xk,yk) ∈ ∆0

ε with 0 < ||(xk,yk) − (x(C) −
y)||2 < 1/k such that G(xk,yk) ≤ G(x(C),y). Because there are only finitely
many sets in the unions in (19), there must exist some common clique C′ and
some subsequence (xkl ,ykl)∞l=1 ⊆ (xk,yk)∞k=1 such that (xkl ,ykl) ∈ ∆V

ε (C′) for

l ≥ 1, with (xkl ,ykl) → (x(C),y). Hence, (x(C),y) ∈ ∆V
ε (C′) = ∆V

ε (C′), which
implies C = supp(x(C)) ⊆ C′. Because C is maximal, we must have C = C′, and
thus (xkl ,ykl) ∈ ∆V

ε (C′) = ∆V
ε (C) for each l ≥ 1. Thus, (x(C),y) is not a strict

local minimizer of (20), contradicting Proposition (2)(a).

2.3 Going global: exact penalty parameter values

The following results are, to some extent, related to [11, Proposition 3, Corollary
1].

Proposition 4 If {C1, C2} ∈ CU are common cliques, then

|C1| ≤ |C2| ⇐⇒ G(x(C1),y1) ≥ G(x(C2),y2) ,

where y1 ∈ {0, 1}n with supp(y1) = C1 and y2 ∈ {0, 1}n with supp(y2) = C2.
Furthermore, a point (x,y) ∈ ∆0

ε is a global minimizer of (23) if and only if
x = x(C) and y ∈ {0, 1}n for some maximum common clique C ∈ CU .
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Proof First of all we observe that for all C ∈ CU , the characteristic vector x(C)
and the vector y ∈ {0, 1}n with supp(y) = C such that (x(C),y) ∈ ∆0

ε satisfy by
Lemma (2)

G(x(C),y) = 1
2x(C)⊤x(C)− 1− 1

2γ
y⊤y =

1

2|C| − 1− 1

2γ
|C| .

The first claim follows. To show the second, let (x,y) ∈ ∆0
ε be a global min-

imizer of (23). Then (x,y) is also a local minimizer of (23), hence x = x(C)
and y ∈ {0, 1}n with supp(y) = C for some maximal common clique C ∈ CU
by Proposition (3). Further, by global optimality of (x,y), we have G(x,y) ≤
G(x̃, ỹ) for every local minimizer (x̃, ỹ) ̸= (x,y), hence, again by Proposition (3),
G(x(C),y) ≤ G(x(C), ȳ) with ȳ ∈ {0, 1}n with supp(ȳ) = C for every maximal
common clique C ̸= C. The first claim establishes the result.

Before we dive into the analysis of the problem (11), we consider a restricted
version of it with y ∈ {0, 1}n, that is

−min G(x,y)

s.t. (x,y) ∈ ∆V
ε

y ∈ {0, 1}n ,
(24)

and give a first equivalence result that connects global minima of the restricted
problem and maximum common cliques over our family of graphs. So we have

Theorem 1 For any given ε ∈
(
0, 1

n

]
and γ > 0, a point (x,y) is a global mini-

mizer of (24) with

β >

(
1− 1

2(n− 1)
+

1

2γ
n

)
1

2ε2
,

and n the order of the graphs G(U), if and only if x = x(C) for some maximum
common clique C ∈ CU .

Proof We will show that if, for any given ε ∈
(
0, 1

n

]
, (x,y) is a global minimizer of

(24) then (x,y) is in ∆0
ε. We hence assume, by contradiction, that (x,y) ∈ ∆V

ε is
a global minimizer for (24), but (x,y) /∈ ∆0

ε. In this case, C := supp(x) = supp(y)
is not a common clique. In particular, there exists Ũ ∈ U such that C is not a
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clique in G(Ũ), hence [Ũ]hk = 0 for some {h, k} ∈
(
C
2

)
. We have

G(x,y) ≥ gŨ(x,y) = βx⊤(E− Ũ)x− x⊤Ũx− 1

2γ
y⊤y

= −x⊤Ũx+ β
∑

{i,j}∈(C2)

(1− [Ũ]ij)xixj −
1

2γ
y⊤y

≥ −x⊤Ũx+ 2β(1− [Ũ]hk)xhxk − 1

2γ
y⊤y = −x⊤Ũx+ 2βxhxk − 1

2γ
y⊤y

≥ −max
x∈∆

x⊤Ũx+ 2βxhxk − 1

2γ
y⊤y

=
1

2ω(G̃)
− 1 + 2βxhxk − 1

2γ
y⊤y

≥ 1

2(n− 1)
− 1 + 2βxhxk − 1

2γ
y⊤y

≥ 1

2(n− 1)
− 1 + 2βε2yhyk − 1

2γ
|C| ,

where ω(G̃) ≤ n−1 is the clique number of G(Ũ), which cannot be complete as the
edge {h, k} is missing for sure. In the last row, we used the fact that (x,y) ∈ ∆V

ε ,
then xi ≥ εyi for all i ∈ V and y⊤y = |C|. In particular, yh = yk = 1, hence

G(x,y) >
1

2(n− 1)
− 1 + 2βε2 − 1

2γ
|C| ,

and since

β >

(
1− 1

2(n− 1)
+

1

2γ
n

)
1

2ε2
≥
(
1− 1

2(n− 1)
+

1

2γ
|C|
)

1

2ε2
,

we obtain G(x,y) > 0. Let (x0,y0) ∈ ∆0
ε; such a point always exists (indeed in

the worst scenario supp(x0) = supp(y0) is a singleton, which is always a common
clique). Then for all U ∈ U we have from Lemma (2) and the fact that (x0,y0) ∈
∆V

ε implies x⊤
0 x0 ≤ 1,

G(x0,y0) = gU(x0,y0) = −x⊤
0 Ux0 −

1

2γ
y⊤
0 y0

=
1

2
x⊤
0 x0 − 1− 1

2γ
∥y0∥2 < 0 for all U ∈ U .

We thus arrive at the absurd relation G(x0,y0) < 0 < G(x,y), contradicting
global optimality of (x,y) for the problem (24). Hence the result.

We now define the concept of stable global minimum, which will be useful
when analyzing the theoretical properties of our problem (11). Note that stability
in this sense is not related to the notion of stable sets in graph theory, but rather
has connotation with parametric (continuous) optimization.

Definition 1 A point (x,y) is a stable global minimizer of problem (11) if for any
fixed ε ∈

(
0, 1

n

]
there exists a δ̄ > 0 such that εδ̄ = ε− δ̄ > 0 and (x,y) is a global

minimum of problem (11) for all pairs (εδ, βεδ ), with βεδ suitably chosen penalty
parameter, γ > 0 and δ ∈ [0, δ̄].
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We thus can finally state an equivalence result between the stable global minima
of the continuous problem (11) and the maximum common cliques.

Theorem 2 For any given ε ∈
(
0, 1

n

]
and γ > 0, a point (x,y) is a stable global

minimizer of (11) with

βεδ >

(
1− 1

2(n− 1)
+

1

2γ
n

)
1

2ε2δ
,

and n the order of the graphs G(U), if and only if x = x(C) for some maximum
common clique C ∈ CU and y ∈ {0, 1}n.

Proof For any given ε ∈
(
0, 1

n

]
, we need to show that there exists a δ̄ > 0 such that

ϵδ̄ > 0 and (x,y) ∈ ∆0
εδ

for all choices of δ ∈ [0, δ̄]. The proof will then follow from
Proposition (4). Suppose by way of contradiction that (x,y) /∈ ∆0

εδ
for all δ < δ̄

sufficiently small. So that C := supp(x) = supp(y) is not a common clique. Before
we establish the claim on C, we show integrality of y, again by contradiction, so
suppose some yi are fractional (then i ∈ C). For this y we consider the following
scenario: if for some sufficiently small δ, we have xi > εδyi with fractional yi, then
d = (o, ei) is a feasible direction at (x,y) which is strictly improving. Indeed, let
Ut ∈ U(x,y + td), i.e., gUt

(x,y + td) = G(x,y + td). We have

G(x,y) ≥ gUt
(x,y) = −x⊤Utx+ βx⊤(E− Ut)x− 1

2γ
y⊤y

> −x⊤Utx+ βx⊤(E− Ut)x− 1

2γ
y⊤y − 1

2γ
(t2 + 2tyi)

= −x⊤Utx+ βx⊤(E− Ut)x− 1

2γ
(y⊤y + t2 + 2tyi)

= −x⊤Utx+ βx⊤(E− Ut)x− 1

2γ
(y + td)⊤(y + td)

= gUt
(x,y + td) = G(x,y + td) .

Since (x,y) is a stable global minimizer of (11), we obtain a contradiction.
Now that we have proved y ∈ {0, 1}n, we turn to the claim that C is a common

clique, and again argue by contradiction: if this were not true, then there exists
Ũ ∈ U such that C := supp(x) is not a clique in G(Ũ), hence [Ũ]hk = 0 for some
{h, k} ∈

(
C
2

)
. The proof is a verbatim repetition of the proof given in Theorem 1,

where we consider again a δ < δ̄ sufficiently small. Hence the result.

3 A projection-free algorithm for the continuous min-max
reformulation

In this section, we present a first-order, projection-free algorithm specifically de-
signed for our problem. In particular, we develop a new subdifferential notion based
on the classical Clarke and Goldstein subdifferentials discussed in [1] and study
its theoretical properties. Afterwards, we implement a Frank-Wolfe algorithm that
takes advantage of this new subdifferential, proving sublinear convergence rates
for it. To the best of our knowledge, this is the first attempt in the literature to
prove convergence rates for the non-convex case. In the convex (or concave max-
min) case, a Frank-Wolfe method was introduced and analyzed in [23], but without
giving any convergence rate.
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3.1 Preliminaries

Before introducing the algorithm, we clarify how first-order information of the
nonsmooth function G is exploited. Since G is the pointwise maximum of a finite
set of locally Lipschitz continuous functions gU, it is itself Lipschitz continuous in
the domain ∆V

ε , with Lipschitz constant L equal to:

L := max
U∈U,

(x,y)∈∆V
ε

∥∥∥∥(2 (−(1 + β)U+ βE
)
x, − 1

γ
y

)∥∥∥∥ > 0 . (25)

This property allows us to apply the generalized subdifferential framework for
Lipschitz functions introduced in [1]. In the present context, the constant L domi-
nates the Lipschitz constants of the gradients related to the quadratic functions gU
defining G. As a result, even though L is defined as a function Lipschitz constant,
it can be safely substituted for the gradient Lipschitz constant of the functions gU
throughout the analysis.

To understand the subdifferential notion adopted in the algorithm, it is neces-
sary to clarify which set of matrices is supposed to be available at each iteration.
In particular, knowing the set of active matrices would allow us to calculate the
Clarke subdifferential, a standard tool in convex analysis.

Definition 2 (Clarke subdifferential) The Clarke subdifferential of G at a
point (x,y), denoted by ∂G(x,y), can be expressed as:

∂G(x,y) := conv {∇gU(x,y) : U ∈ U(x,y)} .

This expression follows directly from the standard characterization of the
Clarke subdifferential of a pointwise maximum of finitely many continuously differ-
entiable functions (see, e.g., [1, Theorem 3.23 and Corollary 3.5]). In fact, ∂G(x,y)
is a (nonempty) polytope, because U(x,y) is finite.

However, an algorithm that relies only on the Clarke subdifferential to solve
problem (11) cannot provide meaningful theoretical convergence results due to
the non-differentiability of the function G. Therefore, we assume that for any
point (x,y), the algorithm has access to the set Uδ(x,y) approximating the active
set with a tolerance δ, in a sense to be defined below, rather than the exact
active set U(x,y). This assumption reflects realistic scenarios where exact function
evaluations or full knowledge of the underlying structure are unavailable. From
a computational perspective, this relaxation is also justified because the exact
maximizers of G(x,y) may not be numerically distinguishable when multiple gU
yield similar values.

Definition 3 (Approximately active matrices) Let δ > 0 be a small param-
eter and (x,y) ∈ ∆V

ϵ .
Recall the (nonempty and finite) set of active matrices at a point U(x,y) defined
in (21). Now define the set of approximately active matrices (again nonempty and
finite) at the same point as

Uδ(x,y) := {U ∈ U : gU(x,y) ≥ G(x,y)− δ} .
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Approximating the active set with a tolerance δ therefore provides a stable and
implementable mechanism; to this end, we will now construct a new approximate
set of active matrices Uη(x,y) ⊆ Uδ(x,y) which will contain only matrices in
Uδ(x,y) that become active within a certain neighborhood of (x,y).

To be precise, the process to obtain Uη(x,y) is the following. Given a point
(x,y), use as neighborhood the Euclidean ball Bη(x,y) of radius η ≥ 0 around
(x,y) and take η ≤ δ

2L , then the only functions that may become active in Bη(x,y)

are those in Uδ(x,y) (the result is straightforward due to the Lipschitz continuity
of the functions gU and G). Finding exactly which δ-active functions become active
for at least one point (s, t) within Bη(x,y) would require solving a non-linear opti-
mization problem, with a high computational cost. For this reason, as proposed in
[9], we decide to approximate each function gU using its first-order Taylor expan-
sion around (x,y), which produces a reliable estimate as long as η is sufficiently
small. To this end, let us consider the following system of linear inequalities in
(s, t), focussing on a certain fixed Ū ∈ Uδ(x,y):


⟨∇gU(x,y)−∇gŪ(x,y), (s, t)− (x,y)⟩ ≤gŪ(x,y)− gU(x,y) + Lη2,

∀U ∈ Uδ(x,y) ,

∥(s, t)− (x,y)∥∞ ≤ η√
n
,

(s, t) ∈ ∆V
ϵ .

(26)

The first constraint tests whether gŪ becomes approximately active under the
linearized model, while the remaining constraints ensure that the perturbed point
(s, t) remains within Bη(x,y) ∩∆V

ϵ .

Definition 4 (approximate local active set) Given parameters δ > 0 and
η ≤ δ

2L , and a point (x,y) ∈ ∆V
ϵ , we define the approximate local active set at

(x,y) as
Uη(x,y) :=

{
Ū ∈ Uδ(x,y) : ∃ (s, t) ∈ ∆V

ϵ satisfying system (26)
}
.

As in [9], we infer that U(x,y) ⊆ Uη(x,y) for any η ≥ 0: indeed, taking
(s, t) = (x,y) in system (26), it is immediate to see that all matrices active in
(x,y) satisfy the system. In particular we have Uη(x,y) ̸= ∅.

We can finally define the exact subdifferential used in the algorithm.

Definition 5 (η-subdifferential)

∂ηG(x,y) = conv
{
∇gŪ(x,y) : Ū ∈ Uη(x,y)

}
In fact, this set is again a (nonempty) polytope as also Uη(x,y) is finite. In

Proposition 5 we summarize some relevant properties regarding the set given in
Definition 5, showing that in fact it has the characteristics of a subdifferential. This
result establishes the link between the approximate subdifferential and the Clarke
subdifferential, and is key for interpreting both the theoretical analysis given in
this section and the numerical results given in the next one.

Proposition 5 We list below a set of useful properties of the η-subdifferential:

1. The mapping ∂ηG is upper semicontinuous.
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2. Let ∂G(x,y) denote the Clarke subdifferential of G. Then:⋂
η>0

∂ηG(x,y) = ∂0G(x,y) = ∂G(x,y) .

Proof 1. Let (xk,yk) → (x,y) and let hk ∈ ∂ηG(xk,yk) be such that hk → h.
We must show that h ∈ ∂ηG(x,y). The relation Ū ∈ Uη(xk,yk) means that
there exists (sk, tk) ∈ Bη(xk,yk) ∩ ∆V

ϵ satisfying system (26) at (xk,yk).
Because∆V

ϵ is compact and η is fixed, the sequence (sk, tk) admits a convergent
subsequence with limit (s, t) ∈ Bη(x,y)∩∆V

ϵ . By continuity of all gU and their
gradients, the inequalities in (26) remain valid in the limit for all U ∈ Uδ(x,y),
which implies Ū ∈ Uη(x,y).
Finally, since ∇gŪ(xk,yk) → ∇gŪ(x,y) for all Ū ∈ U , and convex combinations
are preserved under limits, we obtain h ∈ conv{∇gŪ(x,y) : Ū ∈ Uη(x,y)} =
∂ηG(x,y). Therefore, ∂ηG is upper semicontinuous.

2. First, it is easy to see that ∂0G(x,y) = ∂G(x,y). Indeed, imposing η = 0 in
system (26) forces (s, t) = (x,y) by the second inequality. Consequently, the
first inequality becomes

0 ≤ gŪ(x,y)− gU(x,y) ∀ U ∈ Uδ(x,y).

The only matrices Ū ∈ U satisfying this condition are those that are active at
(x,y), which shows that U0(x,y) = U(x,y) and hence ∂0G(x,y) = ∂G(x,y).
We now show that ⋂

η>0

∂ηG(x,y) = ∂0G(x,y).

It is sufficient to prove that there exists η̄ > 0 such that ∂ηG(x,y) = ∂0G(x,y)

for all η ≤ η̄. Let δ̄ > 0 be such that U δ̄(x,y) = U(x,y). Such a value exists
since each U is either active or strictly inactive, in which case gU(x,y) <
G(x,y), and the difference G(x,y) − gU(x,y) is strictly positive. Setting η̄ =
δ̄
2L , the Lipschitz continuity of the functions gU implies that, for all η ≤ η̄, the
only functions that can become active within Bη(x,y) are those already active
at (x,y). Hence, Uη(x,y) = U0(x,y) for all η ≤ η̄, and therefore ∂ηG(x,y) =
∂0G(x,y).

3.2 Algorithmic scheme

Having introduced the theoretical tools required to handle the non-smoothness
of G, we now turn to the design of the optimization algorithm. We propose
a projection-free first-order method that extends the classical Frank–Wolfe al-
gorithm to the nonsmooth and adversarial setting by incorporating the subdif-
ferential ∂ηG. The proposed algorithm is proved to converge to first-order sta-
tionary points of G, and in our experiments it empirically converges to maximal
common cliques in the underlying backbone networks.

Given that our feasible domain is a polytope, a projection-free optimization
strategy, such as the Frank-Wolfe method, is especially suited to this setting [8].
One of the main advantages of the Frank-Wolfe method is that it avoids costly
projections: instead of computing a projection onto the feasible set at each itera-
tion, it indeed solves a linear minimization problem over the same set. This feature
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makes the method particularly attractive in high-dimensional scenarios. Addition-
ally, the Frank-Wolfe method tends to produce sparse iterates, as each point is a
convex combination of a small number of extreme points of the feasible region.
The main steps of the algorithm are reported in Algorithm 1. In our context, we
assume that the seeker, at each iteration, can query a first-order adversary oracle
with a feasible point. The oracle then returns either the matrices or the function
gradients that belong to the approximate local active set at that point, and these
are then used to construct the corresponding η-subdifferential employed by the
algorithm.

Algorithm 1 Frank-Wolfe for the adversarial min-max problem

1: Set parameters ε, kmax, δ, η, ξ and choose an initial point (x0,y0) ∈ ∆V
ε .

2: for k = 0, . . . , kmax do
3: Compute ∂ηG(xk,yk) using the first-order adversary oracle

4: Compute ((x̂k, ŷk), ĥk) ∈ LMO∆V
ε
(∂ηG(xk,yk))

5: Set dk = (x̂k, ŷk)− (xk,yk)

6: if ĥ⊤
k dk ≥ −ξ then STOP

7: end if
8: Update (xk+1,yk+1) = (xk,yk) + αkdk, with αk ∈ (0, 1] chosen via an Armijo line

search
9: end for

The algorithm starts from a feasible initial point (x0,y0) ∈ ∆V
ε and iteratively

refines it. At step 3, the first-order adversary oracle is thus queried with the point
(xk,yk) and computes the set Uη(xk,yk) following the framework presented in the
previous subsection, that is by suitably solving system (26) for the δ-active matri-
ces in the point (xk,yk). The set Uη(xk,yk) is then used to define ∂ηG(xk,yk).
Step 4 invokes a Linear Minimization Oracle (LMO), defined by:

min
(x,y)∈∆V

ε

max
h∈∂ηG(xk,yk)

h⊤(x− xk,y − yk). (27)

The LMO is modeled after the classical Frank-Wolfe algorithm: in the standard
setting, the oracle indeed minimizes a linear approximation of the objective func-
tion over the original feasible set. Here, we follow the same reasoning, but we
replace the gradient with the η-subdifferential ∂ηG(xk,yk) in the approximation.
This generalization preserves the central intuition of Frank–Wolfe (that is, moving
toward a feasible point that minimizes a linear approximation of the objective),
so the structure and purpose of the LMO remain fully aligned with the classical
step.

Since min-max problems are difficult to solve directly, we reformulate (27) as
a minimization problem. In particular, recalling the definition of ∂ηG as a convex
combination of gradients, it is possible to write h by baricentric coordinates with
respect to the gradients of the active functions in Uη(xk,yk):

h = (hxk ,hyk)

=

 ∑
U∈Uη(xk,yk)

λU · 2
(
−(1 + β)U+ βE

)
xk, −

1

γ
yk

 ,
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where r = |Uη(xk,yk)|, and λ ∈ Rr
+ satisfies

∑
U λU = 1.

Therefore, the inner maximization problem reduces to a linear program over
the standard simplex, whose optimal value is necessarily attained at one of the
simplex’s vertices. The LMO can thus be written as the following LP:

min
x,y,µ

µ− 1

γ
y⊤
k y +

1

γ
∥yk∥2

s.t. (x,y) ∈ ∆V
ε

µ ≥ ∇xgU(xk,yk)
⊤(x− xk) ∀U ∈ Uη(xk,yk)

In order to quantify progress, we define the LMO gap as follows.

Definition 6 (η gap function) Given a point (x,y) ∈ ∆V
ε , the η gap in ∆V

ε is
defined as:

cη(x,y) := − min
(s,t)∈∆V

ε

max
h∈∂ηG(x,y)

h⊤(s− x, t− y).

It holds that cη(x,y) ≥ 0 for all (x,y) ∈ ∆V
ε .

Finally, we compute the step size using an Armijo line search; to this end, given
parameters ω ∈ (0, 1) and σ ∈ (0, 12 ), and starting from a base step size ω0 = 1,
we test the condition

G((xk,yk) + αdk) ≤ G(xk,yk)− σαcη(xk,yk) (28)

for α = ωm by increasing the integer m ≥ 0. We then set αk = ωm for the smallest
m for which (28) is satisfied.

3.3 Theoretical convergence guarantees

Note: In the remainder of this section, the explicit notation (x,y) is no longer
necessary for the scope of the proofs. To simplify the presentation, we will instead
use a single variable z ∈ R2n to denote the concatenated coordinates.

The next result provides a convergence rate for Algorithm 1. In particular, we
show that, choosing η ≤ δ

2L , for any small enough δ, the algorithm will give an
(η, ξ)-Goldstein stationary point, which we define as follows.

Definition 7 ((η, ξ)-Goldstein stationary point) A point z⋆ ∈ ∆V
ε is called

an (η, ξ)-Goldstein stationary point for the minimization of G over∆V
ε if it satisfies

the following condition:

cη(z
⋆) ≤ ξ.

In other words, z⋆ is (η, ξ)-Goldstein stationary whenever the LMO certificate
cη(z

⋆) does not exceed ξ. This notion matches the stopping criterion of Algo-
rithm 1, which terminates as soon as cη(zk) ≤ ξ.

More specifically, the algorithm will satisfy the stopping condition and give an
(η, ξ)-Goldstein stationary point after a finite number of iterations, which can be
estimated as follows.
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Theorem 3 Let G(z∗) = min
z∈∆V

ϵ

G(z) and let {zk} be a sequence generated by

Algorithm 1. Fix η ≤ δ
2L , where L is the Lipschitz constant of G defined in (25)

and let c∗k = min
i∈[0:k]

cη(zi). Assume that the step size in the algorithm is determined

using an Armijo line search with fixed parameter σ as in (28). Finally, observe that

D := diam
(
∆V

ϵ

)2
= n+ 1 > 1, and let ρ = D([G(z0)−G(z∗)]

σ . Then,

c∗k ≤


ρ

(k + 1)η
. if k < ρ(1−σ)

η − 1 ,√
ρ

(k + 1)(1− σ)η
otherwise.

In particular,

lim
k→∞

c∗k = 0 at a rate of O
(

1√
kη

)
,

that is, Algorithm 1 reaches an (η, ξ)-Goldstein stationary point in O(1/(ηξ2))
iterations.

Proof First, recall that the quantity cη(zk) corresponds to:

cη(zk) = −∇gU(zk)⊤dk, (29)

where dk is the chosen descent direction and U ∈ Uη(zk) is the approximate active
matrix that provides the steepest descent.

As mentioned before, our LMO selects a direction dk by solving a min-max
problem. Since the inner problem maximizes a linear function over the convex hull
of gradients ∇gU(zk), such a maximum is hence attained at an extreme point of
this convex set. Therefore, there must exist a matrix U ∈ Uη(zk) such that equality
(29) holds, by the fundamental theorem of linear programming.

Adopting an Armijo line search, we can write for every k:

G(z∗)−G(z0) ≤ G(zk+1)−G(z0) =
k∑

i=0

[G(zi+1)−G(zi)] ≤ −σ
k∑

i=0

αicη(zi) .

(30)
At each iteration k, there are two possibilities:

Case 1: There is a matrix U common to both Uη(zk) and U(zk+1). Then, the
following descent condition holds:

G(zk+1) = gU(zk+1) (31)

≤ gU(zk) + αk∇gU(zk)⊤dk +
α2
kL

2
∥dk∥2 (32)

≤ G(zk)− αkcη(zk) +
α2
kL

2
∥dk∥2 , (33)

where (31) follows from the fact that U ∈ U(zk+1), while (33) derives from gU ≤ G.
We can combine the descent condition with the Armijo line search, as done in

[5]: let αk be the accepted Armijo step and α̃ = αk

ω the previous (rejected) trial.
Since α̃ was rejected, it must hold:

G(zk + α̃dk) > G(zk)− σα̃cη(zk).
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Combined with the descent bound at α̃, the following relation can be obtained:

G(zk)− α̃cη(zk) +
L

2
α̃2∥dk∥2 ≥ G(zk + α̃dk) > G(zk)− σα̃cη(zk) ,

which after simple rearrangements yields

α̃ >
2(1− σ)cη(zk)

L∥dk∥2
.

Since α̃ = αk

ω , accounting for the upper bound at 1, we get:

αk ≥ min
{
1,

2ω(1− σ) cη(zk)

L∥dk∥2
}
.

Case 2: The active set U(zk+1) does not contain any matrix from Uη(zk).
We now show that in this case αk∥dk∥ = ∥zk+1 − zk∥ > η, therefore obtaining
αk >

η
∥dk∥ .

Suppose by contradiction that ∥zk+1−zk∥ ≤ η. The hypothesis η ≤ δ
2L implies

that ∥zk+1 − zk∥ ≤ δ
2L , and byLipschitz continuity of the functions gU, only the

functions in Uδ(zk) can be active functions in zk+1, so U(zk+1) ⊆ Uδ(zk). Let us
choose a matrix Ū ∈ U(zk+1). We will now show that for every U ∈ Uδ(zk) the
inequality

⟨∇gU(x,y)−∇gŪ(x,y), (s, t)− (x,y)⟩ ≤ gŪ(x,y)− gU(x,y) + Lη2 (34)

holds. This would automatically imply that Ū satisfies system (26), so
Ū ∈ U(zk+1) ∩ Uη(zk), providing a contradiction.

Fix Ū ∈ U(zk+1) and U ∈ Uδ(zk). By definition of activity at zk+1,

gŪ(zk+1)− gU(zk+1) ≥ 0. (35)

Apply the first-order Taylor expansion of each gU around zk with the remainder
bounded by the Lipschitz continuity of the gradients: for any U there exists a
remainder rU with

gU(zk+1) = gU(zk) + αk⟨∇gU(zk),dk⟩+ rU, |rU| ≤ L
2 α

2
k∥dk∥2.

Subtract the expansions for Ū and U and use (35):

0 ≤
(
gŪ(zk)− gU(zk)

)
+ αk⟨∇gŪ(zk)−∇gU(zk),dk⟩+ (rŪ − rU).

Rearranging gives

αk⟨∇gU(zk)−∇gŪ(zk),dk⟩ ≤ gŪ(zk)− gU(zk) + (rŪ − rU). (36)

Using the remainder bounds |rŪ|, |rU| ≤ L
2 αk∥dk∥2 we get

rŪ − rU ≤ |rŪ|+ |rU| ≤ Lα2
k∥dk∥2 ≤ Lη2.

Substitute into (36) to obtain:

αk⟨∇gU(zk)−∇gŪ(zk),dk⟩ ≤ gŪ(zk)− gU(zk) + Lη2. (37)
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The last inequality coincides with (34) for (x,y) = zk and (s, t) = zk + αkdk,
providing the required contradiction and therefore the lower bound αk >

η
∥dk∥ .

Combining the two cases and noting that for small enough δ it holds ω > δ,
we obtain a general lower bound for αk:

αk ≥ min

{
1,

η

∥dk∥
,
η(1− σ)cη(zk)

∥dk∥2

}
. (38)

We note that max{∥dk∥, ∥dk∥2} is bounded by the constant D > 1 due to its
definition in Theorem 3, then combining this with the previous inequality (38),
reversing the inequality (30) and recalling the definition of c∗k in the statement of
Theorem 3, we obtain:

G(z0)−G(z∗) ≥ (k + 1)σc∗k min

{
1,
η

D
,
η(1− σ)c∗k

D

}
. (39)

Now, assuming η ≤ δ
2L < D (reasonable for small δ), we obtain:

– If η
D <

η(1−σ)c∗k
D (and thus (1− σ)c∗k > 1), then (39) implies

c∗k ≤ D[G(z0)−G(z∗)]

(k + 1)ση
.

Observe that setting ρ = D[G(z0)−G(z∗)]
σ , we necessarily have

1 < (1− σ)
D[G(z0)−G(z∗)]

(k + 1)ση
and thus k <

ρ(1− σ)

η
− 1 .

– Otherwise, (1− σ)c∗k ≤ 1 and (39) yields

c∗k ≤
(
D[G(z0)−G(z∗)]

(k + 1)σ(1− σ)η

)1/2

=

√
ρ

(k + 1)(1− σ)η
.

This proves the assertion.

This result yields a convergence rate for the stopping criterion of Algorithm 1.
We now show that, if the algorithm is run with decreasing values of η, there exists
at least one sequence converging to a Clarke stationary point.

Definition 8 (Clarke dual gap) Given a point z ∈ ∆V
ϵ , the Clarke dual gap on

∆V
ϵ is defined as:

c(z) := − min
w∈∆V

ϵ

max
h∈∂G(z)

h⊤(w − z).

First, it is necessary to recall the definition of Clarke stationary points for
minimization of Lipschitz continuous functions over a compact set, which is linked
to the Clarke subdifferential.

Definition 9 (First-order stationary point) A point z∗ is called a Clarke
stationary point for a locally Lipschitz function G to be minimized over the set
∆V

ϵ if

max
h∈∂G(z∗)

h⊤(w − z∗) ≥ 0 ∀ w ∈ ∆V
ϵ .
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Theorem 4 Let G(z∗) = min
z∈∆V

ϵ

G(z) and let {zk} be a sequence generated by

Algorithm 1. Assume that the algorithm is run with a sequence ηk = η0

(1+k)τ , with

0 < η0 <
δ
2L and 0 < τ < 1. As in Theorem 3, L is the Lipschitz constant (25)

of G, the step size is determined using an Armijo line search with fixed parameter

σ and D := diam
(
∆V

ϵ

)2
= n + 1 > 1. Fixing ρ = D[G(z0)−G(z∗)]

ση0
, let c∗k =

min
i∈[0:k]

cηi(zi). Then,

c∗k ≤


ρ∑k

i=0
1

(i+1)τ

. if k < 1−τ
√
ρ(1− σ)(1− τ) + 1− 1 ,√

ρ

(1− σ)
∑k

i=0
1

(i+1)τ

otherwise.
(40)

In particular,

lim
k→∞

c∗k = 0 at a rate of O
(
k

1−τ
2

)
.

Moreover, there exists a limit point of the sequence {zk} that is a Clarke sta-
tionary point of the problem min

z∈∆V
ϵ

G(z).

Proof Following the exact same reasoning as in Theorem 3, we derive a slight
modification of (39):

G(z0)−G(z∗) ≥ σc∗k

k∑
i=0

min

{
1,
ηi
D
,
ηi(1− σ)c∗k

D

}
. (41)

Assuming, as in Theorem 3, that η0 ≤ δ
2L < D, we can simplify the minimum

term, obtaining:

G(z0)−G(z∗) ≥ σc∗k min

{
η0
D
,
η0(1− σ)c∗k

D

} k∑
i=0

1

(i+ 1)τ
.

We finally obtain the two cases as in Theorem 3:

– If (1− σ)c∗k > 1, then

c∗k ≤ D[G(z0)−G(z∗)]

ση0
∑k

i=0
1

(i+1)τ

.

– Otherwise,

c∗k ≤

(
D[G(z0)−G(z∗)]

σ(1− σ)η0
∑k

i=0
1

(i+1)τ

)1/2

.

Putting ρ = D[G(z0)−G(z∗)]
ση0

gives (40).

Note that, for τ = 0, we would retrieve (39), while for 0 < τ < 1, we have

(k + 1)1−τ − 1

1− τ
≤

k∑
i=0

1

(i+ 1)τ
≤ (k + 1)1−τ

1− τ

for k sufficiently large, which guarantees the rate of convergence for c∗k.
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To conclude, we prove that there exists a limit point z∗ of the the sequence
{zk} generated by the algorithm such that c(z∗) = 0. By Definition 9, this implies
that z∗ is a Clarke stationary point. 3

Since c∗k → 0, we can extract from the sequence generated by the algorithm a
subsequence {zh} converging to z∗ such that cηh(zh) → 0.

Because any matrix U is either active or inactive in z∗, there exists δ∗ > 0 such
that Uδ∗

(z∗) = U(z∗). All functions gU are Lipschitz continuous with a common
constant L, hence we may choose a radius r∗ < δ∗

2L such that for every z ∈ Br∗(z∗):

U δ̄(z) = U(z), where δ̄ = δ∗ − 2Lr∗ > 0.

In particular, no function inactive at z∗ can become active inside Br∗(z∗):

U(z) ⊂ U(z∗) ∀ z ∈ Br∗(z∗).

We now restrict the subsequence {zh} to the indices for which zh ∈ Br∗(z∗) and
we prove that for such zh,

Uη(zh) = U(zh).

Fix such an index h. Since U δ̄(zh) = U(zh), any function gŪ that is not active at
zh satisfies

gŪ(zh)− gU(zh) < −δ̄, ∀U ∈ U(zh)

From system (26), a matrix Ū belongs to Uη(zh) only if

⟨∇gU(zh)−∇gŪ(zh), z− zh⟩ ≤ gŪ(zh)− gU(zh) + Lη2 ≤ −δ̄ + Lη2 ∀U ∈ Uδ(zh)

Since z is restricted by ∥z− zh∥ ≤ η, we can bound the left-hand side as

|⟨∇gU(zh)−∇gŪ(zh), z− zh⟩| ≤ ∥∇gU(zh)−∇gŪ(zh)∥∥z− zh∥ ≤ 2Lη .

Hence,
⟨∇gU(zh)−∇gŪ(zh), z− zh⟩ ≥ −2Lη .

If η is chosen such that
2Lη < δ̄ − Lη2 ,

no inactive U satisfies the inequality defining Uη(zh). Therefore, for all η ≤ η∗ =√
1 + δ̄

L − 1, we have

Uη(zh) = U(zh) for all such zh.

We thus obtain the chain of inclusions:

Uη(zh) = U(zh) ⊂ U(z∗), ∀ zh ∈ Br∗(z∗), ∀ η ≤ η∗ .

Consequently, whenever ηh ≤ η∗,

cηh(zh) = c(zh) ≥ c(z∗).

Since the left-hand side converges to 0, we conclude that c(z∗) = 0, as claimed.
This proves that z∗ satisfies the first-order stationarity condition in the Clarke

sense (Definition 9), therefore there exists an accumulation point of the iterates
produced by the algorithm that is a Clarke stationary points.
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This result shows that, if Algorithm 1 is executed with progressively smaller
values of η, there exists at least a subsequence converging to a Clarke stationary
point. It should be noted that this theoretical result does not guarantee convergence
to a global or even a local minimum. However, as will be shown in the next
chapter, the algorithm empirically converges to local minima in practice. This
observation suggests that coupling the method with a multistart or similar global-
search strategy may yield solutions related to large common cliques.

4 Experimental results

In this section, we provide an in-depth analysis of the results for the instances
derived by modifying a selection of the DIMACS graphs, as summarized in Ta-
bles 1-3. Each experiment was conducted as follows. Given a graph, we randomly
selected a fixed proportion of edges to form a backbone network. We then generated
50 different graphs by independently adding edges according to a specified prob-
ability, forming the set of adjacency matrices U . The algorithm parameters were
fixed, and for each configuration we ran 10 independent experiments, reporting the
averaged results. The ground-truth maximum common clique size was computed
using a standard discrete optimization method, which becomes computationally
expensive for larger graphs (instances for which the ground-truth computation was
computationally infeasible within a reasonable time limit were not included in the
experiments).

Specifically, as shown in Tables 1-3, for each DIMACS graph we tested nine
configurations obtained by varying two parameters: (i) the backbone fraction
b ∈ {0.25, 0.5, 0.75}, representing the proportion of edges forming the common
submatrix shared across all matrices in U ; and (ii) the edge addition probability
p ∈ {0.25, 0.5, 0.75}, defining the probability of adding additional edges outside
the backbone to each matrix U. For each configuration, we report the parameter
values b and p, the largest common clique size found (max), the average com-
mon clique size over multiple runs (mean), the standard deviation (std), and
the ground-truth maximum common clique size (real max). Values in the max
column are highlighted in bold when they match the real max.

Each experiment included 10 test points and 50 matrices U. The initial points
were randomly chosen in the domain ∆V

ϵ . The maximum number of iterations was
set to kmax = 1000. The stepsize α was computed using the Armijo rule with
parameters ω = 0.8 and σ = 0.4. The stopping threshold ξ was set to 0.001. For
the function G, we used γ = 1, while the parameter β was computed according to
Theorem 1, with ϵ = 0.001 when n < 1000, and ϵ = 0.0001 otherwise. Finally, we
set δ = 0.01 while η was updated accordingly to Theorem 4, with η0 = δ

2L , where
L is the Lipschitz constant computed as in (25). We note that with the graphs
and parameters used, the algorithm converged to a maximal common clique in all
experiments.

We further highlight that the adversary oracle requires solving system (26)
multiple times, which is the most computationally demanding part of the algo-
rithm. In order to mitigate this cost, one may include a control condition that
allows this step to be skipped when appropriate. In particular, if at a given itera-
tion the algorithm reaches a feasible point zk for which all matrices gU are active,
then U(zk) = Uη(zk) = U . In this case, the computation becomes significantly
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Table 1 Results obtained by Algorithm 1 on instances from DIMACS dataset (part I).

Graph b p max mean std real max

C125.9

0.25 0.25 5 4.00 0.45 5
0.25 0.5 5 3.90 0.70 6
0.25 0.75 5 4.00 0.63 6
0.5 0.25 7 6.10 0.70 9
0.5 0.5 8 6.60 0.66 9
0.5 0.75 7 6.20 0.75 9
0.75 0.25 12 10.40 1.02 14
0.75 0.5 11 10.10 1.14 14
0.75 0.75 12 10.50 0.81 15

C250.9

0.25 0.25 5 4.10 0.30 6
0.25 0.5 5 4.40 0.49 6
0.25 0.75 5 4.40 0.49 6
0.5 0.25 7 6.50 0.50 11
0.5 0.5 8 7.00 0.63 10
0.5 0.75 8 6.40 0.80 11
0.75 0.25 15 12.60 1.11 18
0.75 0.5 16 12.20 1.47 18
0.75 0.75 16 12.80 1.38 18

DSJC500 5

0.25 0.25 4 3.60 0.52 6
0.25 0.5 4 3.90 0.30 6
0.25 0.75 5 3.60 0.52 6
0.5 0.25 6 5.00 0.63 8
0.5 0.5 6 5.30 0.48 8
0.5 0.75 6 5.20 0.40 8
0.75 0.25 8 6.60 0.70 10
0.75 0.5 8 6.80 0.63 10
0.75 0.75 8 6.70 0.67 10

brock200 2

0.25 0.25 4 3.20 0.63 4
0.25 0.5 4 3.20 0.92 5
0.25 0.75 4 3.40 0.52 5
0.5 0.25 6 4.60 0.92 6
0.5 0.5 5 4.50 0.50 7
0.5 0.75 6 4.90 0.70 7
0.75 0.25 7 5.50 0.85 8
0.75 0.5 7 5.20 0.63 8
0.75 0.75 7 6.00 0.63 8

brock200 4

0.25 0.25 4 3.70 0.46 5
0.25 0.5 5 3.90 0.70 5
0.25 0.75 5 3.80 0.67 5
0.5 0.25 6 5.10 0.70 8
0.5 0.5 7 5.80 0.84 8
0.5 0.75 6 5.20 0.63 8
0.75 0.25 8 7.30 0.67 11
0.75 0.5 8 6.80 0.63 11
0.75 0.75 9 7.80 0.60 11
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Table 2 Results obtained by Algorithm 1 on instances from DIMACS dataset (part II).

Graph b p max mean std real max

brock400 2

0.25 0.25 6 4.40 0.70 7
0.25 0.5 5 4.10 0.57 6
0.25 0.75 5 4.70 0.48 6
0.5 0.25 7 6.20 0.70 9
0.5 0.5 8 6.60 0.84 10
0.5 0.75 7 6.30 0.48 9
0.75 0.25 10 9.60 0.52 14
0.75 0.5 11 9.40 0.92 15
0.75 0.75 11 9.70 0.80 15

gen200 p0.9 44

0.25 0.25 5 4.50 0.53 6
0.25 0.5 5 4.00 0.67 6
0.25 0.75 5 4.20 0.42 6
0.5 0.25 8 6.70 0.48 10
0.5 0.5 7 6.60 0.52 11
0.5 0.75 7 6.20 0.75 10
0.75 0.25 13 11.30 1.03 17
0.75 0.5 13 11.60 0.70 17
0.75 0.75 15 11.70 1.37 17

gen200 p0.9 55

0.25 0.25 5 4.20 0.40 6
0.25 0.5 4 3.80 0.63 7
0.25 0.75 4 4.00 0.00 6
0.5 0.25 8 7.00 0.63 10
0.5 0.5 8 6.90 0.88 10
0.5 0.75 8 7.00 0.89 10
0.75 0.25 13 12.20 0.79 17
0.75 0.5 15 12.10 1.52 17
0.75 0.75 13 10.70 1.52 18

hamming8-4

0.25 0.25 4 3.60 0.52 5
0.25 0.5 5 3.80 0.60 5
0.25 0.75 4 3.80 0.42 5
0.5 0.25 6 4.90 0.57 7
0.5 0.5 6 5.00 0.47 7
0.5 0.75 6 5.20 0.60 7
0.75 0.25 8 6.80 0.63 10
0.75 0.5 8 6.50 0.62 10
0.75 0.75 8 6.40 0.80 10

keller4

0.25 0.25 4 3.60 0.52 5
0.25 0.5 4 3.50 0.53 5
0.25 0.75 4 3.20 0.40 5
0.5 0.25 6 5.20 0.79 7
0.5 0.5 6 5.20 0.63 7
0.5 0.75 6 4.70 0.64 7
0.75 0.25 7 6.60 0.70 9
0.75 0.5 7 6.30 0.67 9
0.75 0.75 7 6.10 0.30 9
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Table 3 Results obtained by Algorithm 1 on instances from DIMACS dataset (part III).

Graph b p max mean std real max

p hat300-1

0.25 0.25 4 3.50 0.52 4
0.25 0.5 4 3.70 0.46 4
0.25 0.75 4 3.20 0.63 4
0.5 0.25 5 3.80 0.63 5
0.5 0.5 4 3.80 0.40 6
0.5 0.75 4 3.40 0.52 5
0.75 0.25 5 4.30 0.48 7
0.75 0.5 5 4.40 0.52 7
0.75 0.75 5 4.30 0.48 7

p hat300-1

0.25 0.25 4 3.50 0.52 4
0.25 0.5 4 3.70 0.46 4
0.25 0.75 4 3.20 0.63 4
0.5 0.25 5 3.80 0.63 5
0.5 0.5 4 3.80 0.40 6
0.5 0.75 4 3.40 0.52 5
0.75 0.25 5 4.30 0.48 7
0.75 0.5 5 4.40 0.52 7
0.75 0.75 5 4.30 0.48 7

p hat300-2

0.25 0.25 5 3.50 0.85 6
0.25 0.5 5 4.00 0.47 5
0.25 0.75 6 4.70 1.27 6
0.5 0.25 7 5.40 0.70 8
0.5 0.5 7 5.70 0.67 8
0.5 0.75 7 5.50 1.00 9
0.75 0.25 10 8.20 0.79 12
0.75 0.5 10 8.80 0.92 13
0.75 0.75 9 8.10 0.30 12

p hat300-3

0.25 0.25 5 4.10 0.74 7
0.25 0.5 5 4.70 0.48 6
0.25 0.75 4 3.80 0.42 6
0.5 0.25 7 6.20 0.63 9
0.5 0.5 8 6.40 0.70 9
0.5 0.75 7 6.00 0.67 10
0.75 0.25 12 10.50 1.08 15
0.75 0.5 11 10.50 0.50 16
0.75 0.75 11 9.60 0.70 15

simpler: system (26) no longer needs to be solved, since ∂ηG(zk) coincides with
∂G(zk), and the LMO reduces to computing the Clarke dual gap c(zk) directly.

Empirically, we have observed that this scenario arises very often, and it ap-
pears to be influenced by the choice of the problem parameters (in particular this
is the case for large values of β). As a result, after a few iterations the algorithm
tends to give an iterate with all gU active, and keeps generating points that pre-
serve this property. A more refined analysis of this phenomenon could provide
sharper theoretical guarantees and is left for future investigation.

The results hence highlight that the proposed approach consistently delivers
strong overall performance. Variability across runs remains modest, and although
the algorithm falls short of the maximum common clique by a bunch of vertices, it
reliably converges to large and meaningful solutions. In summary, the results con-
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firm that the approach effectively captures the structure imposed by the backbone
and shows stable behavior across different perturbation levels.

5 Conclusion

Apparently for the first time in literature, we generalize the continuous formula-
tion of the Maximum-Clique problem to a game theoretic setting with adversarial
uncertainty. Considering stable global solutions, we establish a one-to-one corre-
spondence with maximum common cliques under this discrete uncertainty on the
underlying graph structure. The two main tools for our continuous formulation are
a penalty term and semi-continuity constraints, along with a min-max approach
for dealing with the discrete uncertainty, even in presence of (exponentially) many
components.

As we are facing a difficult NP-complete problem, this is a hard global opti-
mization task. We thus develop a first-order and projection-free algorithm, tai-
lored to our nonsmooth and nonconvex formulation, that can be easily embedded
into a global optimization algorithmic framework based on multistart or local
search/basin hopping strategies. To this end we use a seemingly novel concept for
approximate subdifferentials. While we provide a complete convergence theory,
our numerical experience shows promising results.

Future lines of research may include to establish an equivalence between local
solutions to our or a related model and common maximal cliques; from an algo-
rithmic point of view, one can employ other variants of projection-free procedures,
improving further the efficiency of the search direction determination.
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