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Abstract

Derivative-free Riemannian optimization (DFRO) aims to minimize an objective function us-
ing only function evaluations, under the constraint that the decision variables lie on a Riemannian
manifold. The rapid increase in problem dimensions over the years calls for computationally cheap
DFRO algorithms, that is, algorithms requiring as few function evaluations and retractions as pos-
sible. We propose a novel DFRO method based on finite-difference gradient approximations that
relies on an adaptive selection of the finite-difference accuracy and stepsize that is novel even in
the Euclidean setting. When endowed with an intrinsic finite-difference scheme, that measures
variations of the objective in tangent directions using retractions, our proposed method requires
O(dϵ−2) function evaluations and retractions to find an ϵ-critical point, where d is the manifold
dimension. We then propose a variant of our method when the search space is a Riemannian sub-
manifold of an n-dimensional Euclidean space. This variant relies on an extrinsic finite-difference
scheme, approximating the Riemannian gradient directly in the embedding space, assuming that
the objective function can be evaluated outside of the manifold. This approach leads to worst-
case complexity bounds of O(dϵ−2) function evaluations and O(ϵ−2) retractions. We also present
numerical results showing that the proposed methods achieve superior performance over existing
derivative-free methods on various problems in both Euclidean and Riemannian settings.

1 Introduction

In this work, we consider the problem of minimizing a continuously differentiable function over a d-
dimensional Riemannian manifold M. Riemannian optimization, which has expanded considerably
in the last two decades, is the standard approach for addressing this problem [3, 8, 39]. In this
work, we assume that the derivatives of the objective function are not available, preventing the use
of gradient-based Riemannian optimization methods. The lack of derivative information typically
arises when the objective involves a black-box component, as in the design of adversarial attacks
for neural network classifiers. These attacks seek an input perturbation that leads to a failure of
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the classifier, without having access to its architecture, and are naturally formulated as a derivative-
free Euclidean optimization problems [32, 42]. The advent of geometric deep learning and the
design of neural networks with manifold-valued inputs [12, 27] calls for derivative-free Riemannian
optimization (DFRO) algorithms for adversarial attacks design and robustness quantification. Other
applications of DFRO arise, e.g., in the control of robotic systems [28], and in blind source separation
[41].

While in the Euclidean setting, derivative-free optimization is a rather mature topic ([6, 13,
31]), considerably fewer works address DFRO. Several works extended direct search methods to
Riemannian manifolds [11, 17, 18, 19, 30, 41]. These methods search for a new candidate by evaluating
the objective on a mesh of trial points around the current iterate. When the objective function is
sufficiently smooth, an alternative strategy extends classical derivative-based optimization algorithms
by replacing derivatives by their finite-difference approximations. The local linear structure of the
manifold is then used to define local sets of coordinates, allowing for the generalization of finite-
differences schemes to Riemannian manifolds. Since this approximation is based on local variations
along curves on the manifold, we refer to it as an intrinsic finite-difference gradient. It has been
used in several DFRO algorithms [26, 34, 35] and generalized to simplex gradients, in which the
reference directions form a spanning set of the tangent space at the reference point [37]. Other works
addressed Gaussian smoothing, which estimates the gradient from a two-point function evaluation
scheme [32], and finite-difference Hessian approximations [7].

As the problem dimension increases, ensuring the computational efficiency of DFRO algorithms
becomes a major challenge. Their computational cost is governed by their total number of func-
tion evaluations and retractions. Computationally expensive function evaluations are common in
derivative-free optimization; they may for example require solving a set of partial differential equa-
tions [29]. As for retractions, note that, while the design of numerically cheap retractions has been
the focus of dedicated research [4, 5, 38, 40], their computational cost remains typically high for
several manifolds of interest, which motivated the design of retraction-free Riemannian optimization
methods, see, e.g., [1, 2, 20, 22, 33, 43]. As a whole, it is therefore crucial to derive DFRO algo-
rithms with a worst-case complexity in terms of function evaluations and retractions that is as low
as possible.

Unfortunately, the above-cited finite-difference DFRO methods are either not equipped with
complexity results, or are equipped with results derived under stronger problem assumptions, such
as the knowledge of some smoothness constants of the objective [26, 32], an assumption that is
too strong for many problems of interest. In derivative-free Euclidean optimization, a strategy to
avoid the use of smoothness constants is to rely on adaptive finite-difference accuracy and stepsize
parameters [23, 24]. Under the assumption that f( · ) is lower bounded and has Lipschitz continuous
gradient, these methods need at most O(dϵ−2) function evaluations, with d the dimension of the
search space, to find an ϵ-critical point, i.e. a point x̄ such that ∥∇f(x̄)∥ ≤ ϵ, with no information
on the smoothness constants of the objective. Note that, for direct-search methods, a quadratic
complexity in problem dimension was shown to be unavoidable [15]. To our knowledge, the design
of DFRO algorithms with adaptive parameter selection (i.e., that do not relying on the knowledge
of parameter constants), with associated complexity analysis, is still an open question.

The contributions of this paper are twofold. First, assuming that we have no access to the
smoothness constants of the objective, we propose a finite-difference DFRO algorithm that relies
on an adaptive selection scheme for the stepsize and finite-difference accuracy, which is novel even
in the Euclidean setting. This scheme is motivated by the observation that the method proposed
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in [24] (in the Euclidean setting) tunes the stepsize and finite-difference accuracy based on one
single parameter that approximates the Lipschitz constant of the gradient of the objective. However,
the level of accuracy required in this estimation differs depending on the goal considered: while
more conservative estimates should be used in the finite-difference computations, the use of sharper
estimates in the stepsize selection may result in larger steps and speed up convergence. Inspired by
[14], we propose a novel DFRO algorithm, based on intrinsic finite-difference gradients, that relies on
two adaptive estimates of the Lipschitz constant of the gradient of the objective, used respectively
in the finite-difference accuracy and stepsize computation. We prove that our algorithm finds an ϵ-
critical point (i.e., a point at which the norm of the Riemannian gradient is no greater than ϵ) after at
most O(dϵ−2) function evaluations and O(dϵ−2) retractions, and show numerically an improvement
over the method proposed in [24] in the Euclidean setting.

As a second contribution, we decrease the retraction complexity of our DFRO algorithm by
proposing a variant that relies on an alternative extrinsic finite-difference scheme, for optimization
over Riemannian submanifolds of a Euclidean space. This scheme approximates the gradient from
local variations along tangent directions in the embedding space, allowing the saving of d retractions
per finite-difference gradient estimation. We prove that the worst-case complexities of this variant
of our DFRO algorithm are O(dϵ−2) functions evaluations and O(ϵ−2) retractions, with the latter
being independent of the problem dimension. Numerical results are provided that show a substantial
computational cost reduction compared to the intrinsic scheme.

The structure of the paper is as follows. In Section 2, we provide a short reminder of key concepts
in Riemannian optimization, specify the problem assumptions and give preliminary lemmas that we
will need in the convergence analysis of our methods. We present in Section 3 our DFRO method
based on the intrinsic finite-difference gradients, with associated worst-case complexity bounds, and
in Section 4 our variant that relies on an extrinsic finite-difference scheme for optimization on Rie-
mannian submanifolds of a Euclidean space. Finally, Section 5 contains numerical experiments that
compare our proposed methods with state-of-the-art methods regarding both function evaluations
and running time on benchmark problems.

Notation: We write TxM the tangent space to the manifold M at x ∈ M, ⟨·, ·⟩x the Riemannian
metric at x, and ∥ · ∥x the associated Riemannian norm. The tangent bundle of M is written TM.
Let R : TM → M be a retraction on M. For each x ∈ M, the mapping Rx : TxM → M is defined
by Rx(η) := R(x, η). The Riemannian gradient of f : M → R is written grad f(x) ∈ TxM. When
the manifold is a Riemannian submanifold of a Euclidean space E with respect to the canonical
metric ⟨ · , · ⟩, we denote ProjTxM : E → TxM the orthogonal projection of any vector η ∈ E onto
TxM.

2 Preliminary material

We start this section with a short reminder of the key concepts from Riemannian optimization used
in this work, and describe next our problem assumptions and a couple of lemmas required for the
convergence analyses.
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2.1 Basic tools and definitions in Riemannian Optimization

A Riemannian manifold is a (smooth) manifold whose tangent space (i.e., local linear approximation)
at any x ∈ M (written TxM) is endowed with an inner product ⟨·, ·⟩x that varies smoothly with
x, see, e.g., [3, 8]. This Riemannian metric allows to define the Riemannian gradient of f at x, as
the unique vector grad f(x) ∈ TxM that satisfies Df(x)[η] = ⟨grad f(x), η⟩x for all η ∈ TxM, where
Df(x)[η] is the directional derivative of f in the direction η. When the Riemannian gradient is not
available, it can be approximated by the intrinsic finite-difference gradient

gh(x) =

d∑
i=1

f(Rx(hei(x)))− f(x)

h
ei(x), (1)

where {e1(x), . . . , ed(x)} is a basis of TxM, h > 0 controls the finite-difference accuracy, and Rx( · )
is defined by a retraction. Retractions allow to make a step on the manifold from an arbitrary
point x ∈ M along an arbitrary tangent vector η ∈ TxM. More precisely, a retraction is a smooth
mapping R : TM → M, with (x, η) 7→ Rx(η), where TM is the tangent bundle of M, satisfying
Rx(0) = x and DRx(0)[·] is the identity operator (the so-called local rigidity condition), see, e.g.,
[3, §3.5.3 and Def. 4.1.1]. In this work, we assume that M is endowed with a retraction R such
that, for all x ∈ M, Rx : TxM → M is defined over the entire TxM. This assumption holds for
several important examples of retraction, it fails for example for some projection-based retractions
[4] where the projection is only defined on a neighborhood of 0x ∈ TxM; we refer, e.g., to [9] for a
complexity analysis of classical Riemannian optimization algorithms that accounts for locally defined
retractions, by restricting the stepsize to the domain of definition of the retraction at each iteration.
While similar ideas could be used in this work, we relied on our above-mentioned assumption on the
retraction to simplify the presentation of our methods and their convergence analyses.

2.2 Problem assumptions and auxiliary results

We consider the optimization problem
min
x∈M

f(x), (P)

where we make the two following assumptions on the objective function f . The first one is a gen-
eralization to manifolds of the classical Lipschitz-smoothness assumption (see [9]), while the second
simply requires the objective to be lower-bounded.

A1. f( · ) is (LM, R)-smooth, that is for all x ∈ M,

|f(Rx(η))− f(x)− ⟨grad f(x), η⟩x| ≤
LM
2

∥η∥2x , ∀η ∈ TxM.

A2. There exists flow ∈ R such that f(x) ≥ flow, for all x ∈ M.

Since we will consider different finite-difference gradient schemes in Section 3 and Section 4, we
encompass here these two schemes in a broader notion of approximate Riemannian gradient, namely,
tangent vectors parametrized by some parameter h allowing to control their accuracy with respect
to the exact Riemannian gradient.
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Definition 2.1. An approximate Riemannian gradient of a function f : M → R is a mapping
g : [0,+∞)×M → TM, (h, x) 7→ gh(x), such that

∥grad f(x)− gh(x)∥x ≤ Cfh, (2)

for some constant Cf > 0 that does not depend on x.

Thereafter, we present two auxiliary lemmas that will be key in the convergence analysis of the
methods proposed in this paper. The first lemma shows that the relative error of the approximate
Riemannian gradient is bounded by some constant as soon as h is small enough and we have not yet
reached ϵ-criticality.

Lemma 2.2 (Adapted from Lemma 2 in [24]). Given ϵ > 0 and x ∈ M such that ∥grad f(x)∥x > ϵ,
let gh(x) be an approximate Riemannian gradient at x, satisfying Definition 2.1 for some constant
Cf > 0. If h ≤ ϵ

5Cf
, then

∥gh(x)∥x ≥ 4ϵ

5
,

and

∥grad f(x)− gh(x)∥x ≤ 1

4
∥gh(x)∥x .

Proof. Definition 2.1 with h ≤ ϵ
5Cf

implies that

∥grad f(x)− gh(x)∥x ≤ Cfh ≤ ϵ

5
.

By the triangle inequality,

ϵ < ∥grad f(x)∥x ≤ ∥grad f(x)− gh(x)∥x + ∥gh(x)∥x ≤ ϵ

5
+ ∥gh(x)∥x ,

hence

∥gh(x)∥x ≥ 4ϵ

5

and

∥grad f(x)− gh(x)∥x ≤ ϵ

5
≤ 1

4
∥gh(x)∥x .

The next lemma uses this bound on the relative error of the gradient approximation to provide
a derivative-free Armijo-like decrease of the objective under Lipschitz-smoothness of the objective
(i.e., A1).

Lemma 2.3 (Adapted from Lemma 1 in [24]). Suppose that A1 holds. Let x ∈ M and gh(x) ∈ TxM
be such that

∥grad f(x)− gh(x)∥x ≤ 1

4
∥gh(x)∥x , (3)

and let x+ = Rx

(
− 1

σgh(x)
)
for σ ≥ LM, then

f(x)− f(x+) ≥ 1

4σ
∥gh(x)∥2x .
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Proof. By A1, there holds

f(x+) = f

(
Rx

(
− 1

σ
gh(x)

))
(4)

≤ f(x)− 1

σ
⟨grad f(x), gh(x)⟩x +

LM
2σ2

∥gh(x)∥2x

= f(x) +
1

σ
⟨gh(x)− grad f(x), gh(x)⟩x +

LM − 2σ

2σ2
∥gh(x)∥2x

≤ f(x) +
1

σ
∥gh(x)− grad f(x)∥x ∥gh(x)∥x +

LM − 2σ

2σ2
∥gh(x)∥2x . (5)

Combining this with (3) gives

f(x)− f(x+) ≥
(
2σ − LM

2σ2
− 1

4σ

)
∥gh(x)∥2x =

3σ − 2LM
4σ2

∥gh(x)∥2x ≥ 1

4σ
∥gh(x)∥2x .

3 A novel finite-difference DFRO method

We are now ready to present our main DFRO method, which is novel even in the Euclidean setting.
The main specificity of this method is an adaptive scheme for the finite-difference accuracy and
stepsize, that exploits information gathered on the objective over past iterations. In particular, our
method does not require knowing the smoothness constant LM in A1, in contrast with existing
DFRO methods that use smoothness constants in the stepsize computation [26, 32].

Algorithm 1: Intrinsic Riemannian finite-difference method (Int-RFD)

Step 0. Let x0 ∈ M, σ0 > 0, τ0 ≥ σ0, ϵ > 0, set k := 0. Let d be the dimension of M.
Step 1.1. Let hk = 2ϵ

5
√
dτk

, compute the intrinsic finite-difference gradient

ghk
(xk) =

d∑
l=1

f(Rxk
(hkel(xk)))− f(xk)

hk
el(xk), (6)

where {e1(xk), . . . , ed(xk)} is an orthonormal basis of Txk
M.

Step 1.2. If

∥ghk
(xk)∥xk

<
4ϵ

5
, (7)

set xk+1 = xk, σk+1 = σk, τk+1 = 2τk and k := k + 1, go back to Step 1.1.
Step 1.3. If

f(xk)− f

(
Rxk

(
− 1

σk
ghk

(xk)

))
≥ 1

4σk
∥ghk

(xk)∥2xk
, (8)

set xk+1 = Rxk

(
− 1

σk
ghk

(xk)
)
, σk+1 =

σk
2 , τk+1 = τk and k := k + 1, go back to Step 1.1.

Step 1.4 Set xk+1 = xk and σk+1 = 2σk. If σk+1 > τk set τk+1 = 2τk and k := k+ 1, go back
to Step 1.1. Otherwise set τk+1 = τk and k := k + 1, go back to Step 1.3.
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Our intrinsic Riemannian finite-difference method, relying on the intrinsic finite-difference scheme
(1), is presented in Algorithm 1. The computation of a finite-difference approximation to the Rie-
mannian gradient is done at Step 1.1, and the search for a stepsize that ensures a derivative-free
Armijo-type sufficient decrease condition is in Step 1.3. The approximate gradient accuracy hk and
stepsize used in these two steps are determined by two parameters τk and σk that estimate the con-
stant LM in A1 during optimization. These two parameters (whose update strategy is described in
the next paragraph) differ in their roles: the first estimate τk is conservative and ensures sufficiently
accurate finite-difference approximations whereas the second estimate σk is an optimistic estimate
used for the stepsize. When it is strictly smaller than τk, it allows the method to perform larger
steps. The use of two distinct estimates is the key modification with respect to [24] and was inspired
by a similar idea proposed for trust-region derivative-free methods [14].

The two sequences of parameters σk and τk are updated as follows. When the norm of the
estimated gradient is too small at Step 1.2, the parameter τk is increased in order to refine the
accuracy of the gradient approximation. Indeed, by Lemma 2.2, (7) either implies that xk is an
ϵ-critical point of f (in which case the algorithm succeeded), or that the finite-difference gradient
has insufficient accuracy to ensure a guaranteed decrease of the objective by Lemma 2.3, we then
increase τk. Conversely, when (7) does not hold, we enter Step 1.3, where the sufficient decrease
condition (8) is checked for a stepsize 1/σk. If the decrease condition is satisfied, we accept the step
and decrease σk to allow for larger steps in future iterations. If not, the stepsize is decreased (by
increasing σk) and the condition is checked again with this smaller stepsize. Note that, according to
Lemma 2.3 and provided τk is large enough, (8) will be satisfied as soon as σk ≥ LM. If the updated
value σk+1 becomes larger than τk, the failure of the decrease condition is likely due to an inaccurate
finite-difference gradient which prevents Lemma 2.3 to hold, and we increase τk and recompute an
approximate gradient of higher accuracy in Step 1.1.

We next provide a theoretical analysis of the convergence of Algorithm 1. For this, we organize
the iterations in Algorithm 1 in four categories, depending on whether they provide a decrease of
the objective or not, and if they do not, the reason of failure. We thus define four disjoint sets U (1),
U (2), U (3) and S as follows.

• Unsuccessful iterations of type I (k ∈ U (1)): these iterations do not provide an objective
decrease, and the failure comes from an approximate gradient ghk

(xk) whose norm is too small,
satisfying (7). As discussed above, in this case we increase τk.

• Unsuccessful iterations of type II (k ∈ U (2)): the norm of the approximate gradient is
large enough to enter Step 1.3, but the sufficient decrease (8) does not hold. We then increase
σk, and get σk+1 > τk. We thus suspect a lack of accuracy of the finite-difference gradient
explaining the failure of the decrease condition, and increase τk.

• Unsuccessful iterations of type III (k ∈ U (3)): In Step 1.3, the sufficient decrease (8) does
not hold. We then increase σk and get σk+1 ≤ τk. In this case, we keep τk constant and avoid
the computation of a new approximate gradient.

• Successful iterations (k ∈ S): The sufficient decrease condition (8) in Step 1.3 is satisfied
and the step is accepted. The stepsize parameter σk is decreased.

Let us write the number of iterations to reach ϵ-criticality as

T (ϵ) = inf{k ∈ N | ∥grad f(xk)∥xk
≤ ϵ}.
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The subsets of successful and unsuccessful iterations before reaching ϵ-criticality are thus:

ST (ϵ) = S ∩ {0, 1, . . . , T (ϵ)− 1}, and U (i)
T (ϵ) = U (i) ∩ {0, 1, . . . , T (ϵ)− 1}, i = 1, 2, 3.

We are now ready to derive a worst-case complexity analysis of Algorithm 1 in terms of function
evaluations and retractions. It turns out that Algorithm 1 is guaranteed to converge to an ϵ-critical
point, assuming that τk is bounded from above, as stated by the following result.

Theorem 3.1. Suppose that A2 holds. Let us assume that there exists τmax > 0 such that

τk ≤ τmax, ∀k = 0, 1, . . . , T (ϵ)− 1,

then the number of function and retraction evaluations performed by Algorithm 1 to reach an ϵ-critical
point of f (i.e., a point x∗ ∈ M such that ∥ grad f(x∗)∥x∗ ≤ ϵ), written FE(ϵ) and RE(ϵ), satisfy

FE(ϵ) ≤ (FEg + 2)

[
2 log2

(
τmax

τ0

)
+

25

2
τmax(f(x0)− flow)ϵ

−2

]
, (9)

RE(ϵ) ≤ (REg + 1)

[
2 log2

(
τmax

τ0

)
+

25

2
τmax(f(x0)− flow)ϵ

−2

]
, (10)

where FEg and REg are respectively the number of new function evaluations and retractions to com-
pute one finite-difference gradient gh(x).

Proof. Let (xk)
T (ϵ)−1
k=0 be a sequence of iterates generated by Algorithm 1. We start by finding upper

bounds on the cardinality of the sets ST (ϵ), U
(1)
T (ϵ), U

(2)
T (ϵ) and U (3)

T (ϵ). Note that, by A2,

f(x0)− flow ≥
T (ϵ)−1∑
k=0

(f(xk)− f(xk+1)) =
∑

k∈ST (ϵ)

(f(xk)− f(xk+1)).

Moreover, each successful iteration k ∈ ST (ϵ) satisfies

f(xk)− f(xk+1) ≥
1

4σk
∥ghk

(xk)∥2xk
≥ 1

4σk

(
4ϵ

5

)2

.

Since σk ≤ τk for all k, it follows from our assumption that

f(x0)− flow ≥ 4ϵ2

25τmax
|ST (ϵ)|

or equivalently,

|ST (ϵ)| ≤
25

4
τmax(f(x0)− flow)ϵ

−2.

On the other hand, note that the update rules of τk and σk imply

τT (ϵ)−1 = 2
|U(1)

T (ϵ)
|+|U(2)

T (ϵ)
|
τ0 ≤ τmax and σT (ϵ)−1 ≤ 2

|U(2)
T (ϵ)

|+|U(3)
T (ϵ)

|−|ST (ϵ)|τ0 ≤ τmax.

We deduce that

|U (1)
T (ϵ)|+ |U (2)

T (ϵ)| ≤ log2

(
τmax

τ0

)
and |U (2)

T (ϵ)|+ |U (3)
T (ϵ)| ≤ |ST (ϵ)|+ log2

(
τmax

τ0

)
.
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Thus,

T (ϵ) = |U (1)
T (ϵ)|+ |U (2)

T (ϵ)|+ |U (3)
T (ϵ)|+ |ST (ϵ)|

≤ 2 log2

(
τmax

τ0

)
+

25

2
τmax(f(x0)− flow)ϵ

−2. (11)

Since each iteration of Algorithm 1 requires at most (FEg + 2) function evaluations and (REg + 1)
retractions, it follows from (11), that the bounds (9) and (10) hold.

Theorem 3.1 assumes that τk is bounded for all k. We next prove that this condition holds under
A1. The following lemma shows that the finite-difference gradient defined in (6) is an approximate
Riemannian gradient in the sense of Definition 2.1, with Cf = LM

√
d/2. This allows us to apply

Lemma 2.2 and Lemma 2.3 to guarantee a sufficiently large norm of the finite-difference gradient
when xk is not an ϵ-critical point of f , as well as a sufficient decrease of the objective function when
τk and σk are sufficiently large. As a result, the steps are eventually accepted systematically and τk
does not increase beyond a fixed threshold.

Lemma 3.2. Assume that A1 holds, and let gh(x) be the intrinsic finite difference gradient defined
in (6). Then

∥grad f(x)− gh(x)∥x ≤ LM
√
d

2
h.

Proof. Let {e1(x), . . . , ed(x)} be an orthonormal basis of TxM, then any tangent vector η ∈ TxM
can be written as

η =
d∑

l=1

⟨η, el(x)⟩xel(x).

In particular,

grad f(x) =
d∑

l=1

⟨grad f(x), el(x)⟩xel(x).

There follows:

∥gh(x)− grad f(x)∥2x =

∥∥∥∥∥
d∑

l=1

f(Rx(hel(x)))− f(x)

h
el(x)− grad f(x)

∥∥∥∥∥
2

x

=
1

h2

d∑
l=1

(f(Rx(hel(x)))− f(x)− h⟨grad f(x), el(x)⟩x)2

≤ d

(
LMh

2

)2

,

where we used the fact that, by A1, for l = 1, . . . , d, there holds

|f(Rx(hel(x)))− f(x)− h⟨grad f(x), el(x)⟩x| ≤
LMh2

2
∥el(x)∥2x =

LMh2

2
.
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The next result provides an upper bound on τk for k ∈ {0, . . . , T (ϵ)− 1}.

Lemma 3.3. Assume that A1 holds, and let (xk)
T (ϵ)−1
k=0 be a sequence generated by Algorithm 1.

Then, for all k ∈ {0, . . . , T (ϵ)− 1}, there holds

τk ≤ max{τ0, 4LM} =: τ Intmax. (12)

Proof. We proceed by induction on k. For k = 0, (12) holds trivially. Assume that (12) holds for
some k ∈ {0, . . . , T (ϵ)−2}. We show that (12) also holds for k+1 by considering the following three
cases.

Case 1: k ∈ U (1) (i.e., (7) holds).

In this case, we must have
τk < LM, (13)

since otherwise Lemma 3.2 and Lemma 2.2, with Cf = LM
√
d/2, would imply that ∥ghk

(xk)∥x ≥
4ϵ/5, contradicting (7). Using (13) and the update rule for τk in Step 1.2 of Algorithm 1, we obtain

τk+1 = 2τk < 2LM ≤ τ Intmax,

so that (12) holds for k + 1.

Case 2: k ∈ U (2) (i.e., (8) fails and σk+1 > τk).

In this case, we must have
τk < 2LM, (14)

since otherwise
2σk = σk+1 > τk ≥ 2LM,

which implies τk ≥ σk > LM. By Lemma 2.3 and Lemma 2.2, with Cf = LM
√
d/2, this would imply

that (8) holds, contradicting the definition of U (2). Therefore, using (14) and the update rule for τk
in Step 1.4 of Algorithm 1, we obtain

τk+1 = 2τk < 4LM ≤ τ Intmax,

and thus (12) holds for k + 1.

Case 3: k ∈ U (3) ∪ S.

In this case, the update rule for τk in Step 1.4 and the induction hypothesis imply that τk+1 = τk ≤
τ Intmax. Hence, (12) also holds in this case.

Now we can provide a complete complexity result for Algorithm 1.

Corollary 3.4. Under A1 and A2, Algorithm 1 finds an ϵ-critical point of (P) (i.e., a point x∗ ∈ M
such that ∥ grad f(x∗)∥x∗ ≤ ϵ) with the following worst-case complexity bounds:

FE(ϵ) ≤ (d+ 2)

[
2 log2

(
max {τ0, 4LM}

τ0

)
+

25

2
max {τ0, 4LM} (f(x0)− flow)ϵ

−2

]
,

RE(ϵ) ≤ (d+ 1)

[
2 log2

(
max {τ0, 4LM}

τ0

)
+

25

2
max {τ0, 4LM} (f(x0)− flow)ϵ

−2

]
,

10



Proof. It follows directly from Theorem 3.1 and Lemma 3.3, noting that the computation in (6)
requires FEg = d function evaluations in addition to f(xk), as well as REg = d retractions.

Comparing Corollary 3.4 with the results from [24], we recover the linear dependency in problem
dimension (the dimension d of the manifold in our case). Note also that choosing τ0 larger typically
improves the logarithmic terms in the bounds, which is expected since it corresponds to more accurate
Riemannian gradient approximations, and equivalently, fewer unsuccessful iterations of type I and
III. On the other hand, increasing σ0 (and so τ0) slows down the convergence in general since step
size may be too conservative. We therefore recommend to implement the method with τ0 much
larger than σ0. Note also that the number of retractions scales similarly to the number of function
evaluations, we will show next that it is possible to reduce it drastically when M is a Riemannian
submanifold of Rn.

4 An extrinsic finite-difference scheme on manifolds

Let us assume now that the objective function f in (P) is defined over an n-dimensional Euclidean
space E , but that its minimization is restricted to a d-dimensional Riemannian submanifold M of E .
We make the following assumption on f .

A3. The function f : E → R is LE -smooth, i.e., for all x ∈ E ,

|f(x+ η)− f(x)− ⟨∇f(x), η⟩| ≤ LE
2
∥η∥2, ∀η ∈ E ,

where ⟨·, ·⟩ and ∥ · ∥ are the usual Euclidean inner product and norm, respectively.

Remark 4.1. According to [9], when M is a compact Riemannian submanifold of E, Assumption
A3 implies Assumption A1 for some constant LM that depends on its Euclidean counterpart, on the
diameter of the manifold and on some norm of the differential of the retraction.

The goal of this section is to propose an alternative finite-difference scheme, presented in Al-
gorithm 2, that relies on the embedding of M in E to avoid the need of computing retractions in
the intrinsic finite-difference scheme used in last section. This is motivated by the observation that
the computational cost of retractions can be substantial in practice. For instance, on the orthogo-
nal group, retractions involve matrix factorizations such as the QR or polar decompositions, whose
computation requires a cubic number of floating point operations in terms of the size of the matrix,
becoming prohibitive in high dimensions (see, e.g., [3, Example 4.1.2]).

The convergence analysis of Algorithm 2 relies on the following result, which shows that the
extrinsic finite-difference scheme (15) leads to an approximate Riemannian gradient in the sense of
Definition 2.1, with Cf = LE

√
d/2.

Lemma 4.2. Let f : E → R and let M be a d-dimensional Riemannian submanifold of E in (P).
Assume that A3 hold, and let gh(x) be the extrinsic finite-difference gradient of f defined in (15),
then

∥grad f(x)− gh(x)∥x ≤ LE
√
d

2
h,

where ∥·∥x coincides with the Euclidean norm, since M is a Riemannian submanifold of E.
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Algorithm 2: Extrinsic Riemannian finite-difference method (Ext-RFD)

Step 0. Let x0 ∈ M, σ0 > 0, τ0 > σ0, ϵ > 0, and set k := 0. Let d be the dimension of M.
Step 1.1. Let hk = 2ϵ

5
√
dτk

and compute the approximate Riemannian gradient

ghk
(xk) =

d∑
l=1

f(xk + hkel(xk))− f(xk)

hk
el(xk), (15)

where {e1(xk), . . . , ed(xk)} is an orthonormal basis of Txk
M.

Steps 1.2–1.4: Same as Steps 1.2–1.4 of Algorithm 1.

Proof. Since M is a Riemannian submanifold of E , the Riemannian gradient grad f(x) is the orthog-
onal projection of its Euclidean counterpart ∇f(x) onto the tangent space TxM, i.e., grad f(x) =
ProjTxM∇f(x) for all x ∈ M, see [3, eq. 3.37]. Let {e1(x), . . . , ed(x)} be an orthonormal basis of
TxM, then any tangent vector η ∈ TxM can be written as

η =
d∑

l=1

⟨η, el(x)⟩el(x).

Particularizing this equality to the Riemannian gradient gives

grad f(x) =
d∑

l=1

⟨grad f(x), el(x)⟩el(x) =
d∑

l=1

⟨ProjTxM∇f(x), el(x)⟩el(x) =
d∑

l=1

⟨∇f(x), el(x)⟩el(x),

by definition of the orthogonal projection. There follows:

∥gh(x)− grad f(x)∥2 =

∥∥∥∥∥
d∑

l=1

(
f(x+ hel(x))− f(x)

h
− ⟨∇f(x), el(x)⟩

)
el(x)

∥∥∥∥∥
2

=
1

h2

d∑
l=1

(f(x+ hel(x))− f(x)− h⟨∇f(x), el(x)⟩)2

≤ d

(
LEh

2

)2

,

where the inequality results from Assumption A3, which implies that, for l = 1, . . . , d

|f(x+ hel(x))− f(x)− h⟨∇f(x), el(x)⟩| ≤
LEh

2

2
∥el(x)∥2 =

LEh
2

2
.

Similarly as in the previous section, we can use this upper bound on the relative error on gra-
dient approximations to derive upper bounds on the parameters σk and τk in Algorithm 2, for
k = 0, . . . , T (ϵ) − 1. For this, we rely on the four sets of iterations U (1),U (2),U (3),S, defined in
Section 3 for Algorithm 1, and whose definition can be identically transferred to Algorithm 2.
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Lemma 4.3. Let f : E → R and let M be a d-dimensional Riemannian submanifold of E. Assume

that A1 and A3 hold and let (xk)
T (ϵ)−1
k=0 be a sequence generated by Algorithm 2. Then, for all

k ∈ {0, . . . , T (ϵ)− 1},
τk ≤ max{τ0, 4LM, 4LE} =: τExtmax.

Proof. It follows exactly as in the proof of Lemma 3.3, by using Lemma 4.2 with Cf = LE
√
d/2.

Remark 4.4. Note that, while the sufficient decrease of the objective is only governed by the Lipschitz
constant of the gradient along the manifold (written LM, see Lemma 2.3), the minimum accuracy of
the extrinsic finite-difference gradient required in Lemma 4.2 and Lemma 2.2 depends on the Lipschitz
constant LE of the gradient of the objective in the Euclidean space, which will also account for
variations of the objective in directions normal to the manifold. In other words, while by Remark 4.1,
Lipschitz-smoothness of f in E ensures Lipschitz-smoothness of f on the manifold when the latter
is compact, LE may be much larger than LM. This is accounted for in Algorithm 2 by the fact
that repeated failures of the descent condition in Step 1.3 will lead to a progressive increase of σk,
possibly going beyond LM, triggering in Step 1.4 an associated increase of τk, until the extrinsic
finite-difference scheme gets sufficiently accurate to allow for a decrease of the objective in Step 1.3,
which will occur as soon as τk ≥ LE .

Note that Theorem 3.1 also applies to Algorithm 2. Since in Algorithm 2, each computation
of the finite-difference gradient requires FEg = d function evaluations in addition to f(xk), and
REg = 0 retractions, we obtain the following complexity result.

Corollary 4.5. Let f : E → R and let M be a d-dimensional Riemannian submanifold of E. Assume
that A1, A2 and A3 hold. Then, Algorithm 2 finds an ϵ-critical point of (P) (i.e., a point x∗ ∈ M
such that ∥ grad f(x∗)∥x∗ ≤ ϵ) with the following worst-case complexity bounds:

FE(ϵ) ≤ (d+ 2)

[
2 log2

(
max {τ0, 4LE , 4LM}

τ0

)
+

25

2
max {τ0, 4LE , 4LM} (f(x0)− flow)ϵ

−2

]
,

RE(ϵ) ≤ 2 log2

(
max {τ0, 4LE , 4LM}

τ0

)
+

25

2
max {τ0, 4LE , 4LM} (f(x0)− flow)ϵ

−2.

Proof. It follows directly from Theorem 3.1 combined with Lemma 4.3.

Note that Corollary 4.5 implies that RE(ϵ) does not depend on the problem dimension, because
retractions are no longer used in the extrinsic finite-difference scheme. This feature makes the method
particularly well-suited for large-scale problems where the retractions are expensive to compute. On
the other hand, this may come at the cost of an increased number of function evaluations. Indeed,
the smoothness constant LE may be larger than LM, which means that more function evaluations
may be needed to build sufficiently accurate finite-difference gradients. The worst-case complexity
rates of the two methods proposed in this paper are summarized in Table 1.

Int-RFD Ext-RFD

FE(ϵ) O(LMdϵ−2) O(max{LM, LE}dϵ−2)

RE(ϵ) O(LMdϵ−2) O(max{LM, LE}ϵ−2)

Table 1: Worst-case complexity bounds to reach an ϵ-critical point in terms of number of function
evaluations FE(ϵ) and number of retractions RE(ϵ).
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5 Numerical results

We compare here numerically our proposed algorithms to existing derivative-free methods. The
first part of the section addresses the Euclidean setting, where we compare Algorithm 1 to the
finite-difference method proposed in [24]. We then compare Algorithm 1 and Algorithm 2 to the
DFRO method proposed in [30] on three common Riemannian optimization problems. The im-
plementation of Algorithm 1 and Algorithm 2 are available on https://github.com/taminiaut/

Extrinsic-Intrinsic-Riemannian-Finite-Difference-Method.

5.1 Experiments in the Euclidean setting

Our proposed algorithms (Algorithm 1 and Algorithm 2) rely on two sequences of parameters (σk)k≥0,
(τk)k≥0 to account for the smoothness of the objective in the stepsize and finite-difference accuracy.
In contrast the Derivative-Free Quadratic Regularization Method (DFQRM), proposed in [24], only
uses one such sequence of parameters (equivalently, σk is constrained to be equal to τk at each
iteration). In this section, we show numerically that relying on two sequences results in a faster
convergence compared to DFQRM. Our comparison is run on the OPM test set proposed in [25]
which is a subset of 134 problems the well-known CUTEst collection [21]. Note also that, since, in
the Euclidean setting, M = Rn in (P), our proposed Int-RFD and Ext-RFD algorithms (respectively,
Algorithm 1 and Algorithm 2) are equivalent, hence we only consider here the Int-RFD algorithm.
Note that, for the sake of comparison, we do not use Hessian approximations in DFQRM, and choose
exactly the same parameters for DFQRM (in particular, σ0 = 1 and ϵ = 10−5) as for Algorithm 1
(with τ0 = 100).

We use the performance profiles introduced in [16] to compare the two methods. Let P be a set
of problems, S a set of solvers and η ∈ (0, 1) a tolerance, we measure the computational cost tp,s
(either in terms of number of function evaluations, or running time) required by any solver s ∈ S to
find a point x that satisfies the following convergence test, on problem p ∈ P and for some initial
iterate x0:

f(x0)− f(x) ≥ (1− η)(f(x0)− fbest), (16)

where fbest is the best function value found by any of the solver in S within a fixed maximum budget
of 100(d + 1) function evaluations (where d is the dimension of the manifold). The performance
profile curve of the solver s is then given by

ρs(α) =
1

|P|

∣∣∣∣{p ∈ P :
tp,s

mins′∈S tp,s′
≤ α

}∣∣∣∣ .
Performance profiles allow to compare simultaneously the efficiency and robustness of the methods.
The value ρs(1) indicates the proportion of problems that were solved, according to (16), by the
method s with the smallest budget; more efficient methods are associated with a larger ρs(1). On
the other hand, more robust methods, i.e., methods that can solve more problems possibly with an
increased budget, will have higher ρs(α) for α large. In our experiments, we chose η = 10−3 in (16)
and we relied on the implementation of performance profiles from [36]. The resulting performance
profiles in terms of function evaluations and running time are presented in Figure 1a and Figure 1b,
respectively. These plots show that using two distinct estimates makes the method better on almost
all the problems and it is also better in terms of robustness.
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Figure 1: Numerical experiments in the Euclidean case on the OPM test set [25].

5.2 Experiments on Riemannian test sets

Secondly, we compare our methods with the RDSE-SB algorithm proposed in [30], on three smooth
Riemannian optimization problems. We constructed our test set based on these problem imple-
mentations from [30], considering for each problem several random instances and several problem
dimensions.

Algorithm 1 and Algorithm 2 are implemented with σ0 = 1, τ0 = 100 and ϵ = 10−5. As all
problems considered are defined on Riemannian submanifolds, orthonormal bases of the tangent
space were generated by projecting random vectors of the ambient space into the tangent space,
then applying the Gram-Schmidt procedure to these vectors to make them orthonormal.
For the RDSE-SB method we used the implementations provided in [30], while the manifold struc-
tures are handled thanks to the MANOPT toolbox [10]. We next describe the three test set problems
selected from [30] that we used in this work. For each problem, we generate a set of random problem
instances of different dimensions given in Table 2. To give the reader a better view on the associ-
ated manifold and ambient space dimensions (respectively d and n), we also include their values in
Table 2.

Problem I : Top singular vectors. The problem of finding the m3 leading left and right singular
vectors (associated to the largest singular values) of a matrix A ∈ Rm1×m2 is formulated as the
Riemannian optimization problem

min
X∈St(m1,m3)
Y ∈St(m2,m3)

−trace(XTAY ),

where St(m, p) = {X ∈ Rm×p | XTX = I} for m ≥ p, is the Stiefel manifold, seen as a Riemannian
submanifold of Rm×p.

Problem II : Dictionary learning. Let Y ∈ Rm1×m2 be a matrix whose columns are m1-
dimensional vectors that we would like to represent as well as possible by a sparse linear combination
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of the columns of a dictionary D ∈ Rm1×m3 , that is, we search a dictionary D ∈ Rm1×m3 and a
(sparse) matrix of coefficients C ∈ Rm3×m2 such that

min
D∈Ob(m1,m3)
C∈Rm3×m2

∥Y −DC∥2F + λϕ(C)

where Ob(m, p) = {X = (x1 . . . xp) ∈ Rm×p | ∥xi∥2 = 1, for i = 1, . . . , p} is the oblique manifold,

seen as a Riemannian submanifold of Rm×p, and ϕ(C) =
∑p

i=1

∑n
j=1

√
C2
ij + δ2 is a smoothed l1 norm

that promotes sparsity. Note that the oblique manifold constraint allows getting rid of the invariance
under scaling of the columns of D and rows of C. In our experiments, we set the regularization and
smoothing parameters to λ = 0.01 and δ = 0.001, respectively.

Problem III : Rotation synchronization. The goal here is to estimate m2 rotation matrices
R1, . . . , Rm2 ∈ Rm1×m1 from noisy measurements Hij ≈ RiR

−1
j for all i, j = 1, . . . ,m2, leading to

the optimization problem

min
R1,...,Rm2∈SO(m1)

m2∑
i=1

i−1∑
j=1

∥Ri −HijRj∥2F ,

where SO(m) = {X ∈ Rm×m | XTX = I, det(X) = 1} is the special orthogonal group, seen as a
Riemannian submanifold of Rm×m.

Problem I Problem II Problem III
Top singular vectors Dictionary learning Rotations synchronization

m1 m2 m3 n d m1 m2 m3 n d m1 m2 m3 n d
2 2 1 4 2 2 3 1 5 4 2 2 × 8 2
3 3 2 12 16 3 5 2 16 14 2 4 × 16 4
5 5 2 20 14 4 6 3 30 27 2 6 × 24 6
10 10 2 40 34 5 7 4 48 44 4 2 × 32 12
15 15 2 60 54 6 8 5 70 65 4 4 × 64 24
20 20 2 80 74 8 10 6 108 102 4 6 × 96 36
30 30 2 120 114 10 12 7 154 147 6 2 × 72 30
5 5 4 40 20 12 14 8 208 200 6 4 × 144 60
10 10 4 80 60 14 16 10 300 290 6 6 × 216 90
20 20 4 160 140 5 20 3 75 72 8 2 × 128 56
30 30 4 240 220 7 20 5 135 130 8 4 × 256 112
30 10 6 240 198 12 20 3 96 93 8 6 × 384 168
30 15 6 270 228 3 20 5 115 110 10 2 × 200 90
30 10 8 320 248 5 20 7 175 168 10 4 × 400 180
30 15 8 360 288 3 20 12 276 264 10 6 × 600 270

Table 2: Values of the parameters (m1,m2,m3) of the problem instances included in our test set,
and corresponding dimensions of the ambient space (n) and of the manifold (d).

16



1 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RDSE-SB, s(1)=20.0%

Int-RFD, s(1)=80.0%

Ext-RFD, s(1)=80.0%

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RDSE-SB, s(1)=86.7%

Int-RFD, s(1)=6.7%

Ext-RFD, s(1)=6.7%

1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RDSE-SB, s(1)=53.3%

Int-RFD, s(1)=46.7%

Ext-RFD, s(1)=46.7%

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RDSE-SB, s(1)=66.7%

Int-RFD, s(1)=13.3%

Ext-RFD, s(1)=20.0%

1 2 4 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RDSE-SB, s(1)=0.0%

Int-RFD, s(1)=100.0%

Ext-RFD, s(1)=100.0%

(a) Performance profiles (function evaluations).

1 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RDSE-SB, s(1)=6.7%

Int-RFD, s(1)=6.7%

Ext-RFD, s(1)=86.7%

(b) Performance profiles (running time).

Figure 2: Experiments for the top singular vectors problem (top row), the dictionary learning problem
(second row) and the rotation synchronization problem (bottom row), on a set of problem instances
described in Table 2.
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As can be seen in Figure 2a, the Int-RFD and Ext-RFD methods strongly outperform the RSDE-
SB method of [30] in two of the three problems regarding accuracy vs function evaluations. For the
dictionary learning problem, higher efficiency and robustness were achieved by the RSDE-SB method,
though no method manages to solve all problem instances. We also notice that the Ext-RFD methods
remains robust with respect to the Int-RFD method, despite having a worse complexity bound
for function evaluations. Considering the additional computational cost of handling the manifold
structure, we see in Figure 2b that the comparison between Int-RFD and Ext-RFD in terms of
running time depends on the manifold considered. When the manifold dimension is much smaller
than that of the ambient space (d ≪ n), substantial benefits can be achieved by the Ext-RFD method,
see the performance profile of the rotation synchronization problem. The comparable running times
of Int-RDF and Ext-RFD on other problems is due to the fact that the Ext-RFD method still requires
an orthonormal basis of the tangent space, which is computed here numerically using Gram-Schmidt;
the computational cost of the later dominates the cost of retractions on some manifolds. Although
closed-form expressions for orthonormal bases of the tangent space exist for all manifolds considered
in this section, we include their computation in the cost to present numerical results that reflect
performance in generic Riemannian optimization problems.

6 Conclusions

In this paper, we introduced a novel Riemannian finite-difference method that generalizes the (Eu-
clidean) derivative-free method from [24], relying on two sequences approximating the smoothness
constant of the problem in an optimistic and conservative way, respectively. This strategy, which was
inspired from [14], amounts to use different smoothness constant estimates for the stepsize than for
the finite-difference gradient accuracy. The resulting algorithm, which is novel even in the Euclidean
setting, was showed numerically to converge faster that the original method proposed in [24]. The
second contribution of this work is to extend this finite-difference algorithm to the Riemannian set-
ting. For this, we relied on the usual definition of finite differences on Riemannian manifolds, leading
to our Int-RFD algorithm presented in Algorithm 1. We derive worst-case complexity bounds for
Int-RFD, showing that it reaches an ϵ-critical point after at most O(dϵ−2) function evaluations and
retractions. Since retractions are often computationally intensive, we propose a variant of our algo-
rithm, which we call Ext-RFD (see Algorithm 2), that relies on an extrinsic finite-difference scheme,
for optimization over Riemannian submanifolds of a Euclidean space E . We prove that this second
method reaches an ϵ-critical point after at most O(dϵ−2) function evaluations, while the number
of retractions is now independent of problem dimension. The numerical experiments indicate an
improvement over the derivative-free method proposed in [24] in the Euclidean setting and that the
extrinsic method significantly outperforms the intrinsic approach when the manifold dimension is
much smaller than the dimension of the embedding space. Nevertheless, one should be careful that
the worst-case complexity of the low cost method involves the Euclidean smoothness constant LE
which can be substantially larger than its Riemannian counterpart when the objective varies strongly
in directions normal to the manifold in the embedding space.
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