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Abstract: Land agencies plan multi-year prescribed-burn schedules to mitigate catastrophic wildfires, but fuel growth
and treatment effectiveness are uncertain and budgets are tight. We study how to allocate treatments over space and time to
dismantle high-risk fuel load and landscape connectivity while guaranteeing performance under uncertainty. We develop a
robust multi-period optimization model that captures fuel dynamics and decision-dependent treatment effects. The model
is easy to calibrate, requiring only two fuel growth parameters, a treatment effect parameter, and the time since the last fire
in every location. A new formulation exploits problem structure to reduce model size from cubic to linear dependence in
the planning horizon length, enabling large-scale instances. Using the Hawkesbury (NSW, Australia) landscape and fire-
history data, robust schedules reduce worst-case high-fuel load and connectivity relative to deterministic plans; the value
of robustness grows with planning horizon and uncertainty exposure. Solutions compute quickly, supporting interactive
policy exploration. In settings with uncertain parameters, modest robustness strengthens guarantees without materially
degrading risk performance. Improvements in estimating treatment effectiveness have the largest impact on losses. Our
sensitivity analysis also pinpoints uncertainty ranges within which robust plans perform comparably to deterministic ones,

offering clear targets for how much learning is needed to avoid unnecessary conservatism.
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1 Introduction

Wildfires are uncontrolled fires that spread rapidly through vegetation, such as forests, grasslands, or
brush. These fires can start from natural causes like lightning or human activities such as campfires,
discarded cigarettes, or arson. Wildfires are ubiquitous in areas prone to dry, hot climates, but they
are not limited to a particular continent or environment. With climate change leading to higher
temperatures and drier conditions, the frequency, severity, and duration of wildfires have been
steadily increasing around the globe (World Health Organization 2024).

Although not all wildfires are natural occurrences, the U.S. Environmental Protection Agency

(2024) classifies them as natural disasters. Indeed, wildfires can take down more than just forests,
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especially when they spread as far as the Californian and Australian wildfires of 2020 or the Cana-
dian wildfires of 2023. During Australia’s 2019-2020 fire season, over 46 million acres were burned,
causing the loss of approximately one billion animals and numerous endangered species (Ehsani
et al. 2020). In 2020, the California August Complex fire burned over 1 million acres and damaged
935 structures (NIFC 2022). In 2023, Canada experienced a record-breaking fire season with over
6.6 thousand wildfires, burning approximately 45.5 million acres across the country (NASA Earth
Observatory 2023).

The vast majority of wildfires are triggered by lightning (Igini 2023). While this natural phe-
nomenon is completely unpredictable, adequate land management and fuel treatment planning can
significantly diminish the intensity of wildfires. Prescribed burning, also known as hazard reduction
or controlled burning, plays an essential role in managing wildfires. This practice entails deliberately
setting small, low-intensity fires under controlled conditions to eliminate undergrowth, dry grass,
and excess vegetation that could otherwise feed larger wildfires. The use of prescribed burning pre-
dates modern civilization in many areas worldwide. Indeed, indigenous people of North America and
Australia used this land management practice for millennia (Kane 2025).

The early adoption of prescribed burning in Australia was influenced primarily by the understand-
ing that following First Nations land management practices was crucial to mitigate more frequent and
severe fires (Morgan et al. 2020). By strategically reducing these fuels, the intensity of future fires is
diminished, making them more manageable and thereby safeguarding communities, infrastructure,
and natural ecosystems. Although the effectiveness of prescribed burning is currently a subject of
intense debate, numerous studies argue that the benefits are likely to outweigh the costs (Price and

Bradstock 2012, Hunter and Taylor 2022).
1.1 Literature review

As with most natural disasters, wildfires cannot be prevented entirely, and only their effects can be
mitigated (Gupta et al. 2016). Previous work on disaster management related to wildfires emphasizes
the importance of preventive actions prior to the fire season, including the placement of fire breaks
and fuel treatments (Charnley et al. 2015, Martell 2015).

Most studies on fuel treatment optimization use mixed-integer programming (MIP) models (Gillen
et al. 2017, and the references therein), starting with the seminal work of Wei et al. (2008). The
objective of the model in Wei et al. (2008) is to minimize expected fire loss across the landscape. The
landscape is divided into cells, with a probability of fire ignition assigned to each cell. Wei (2012)

extends the model of Wei et al. (2008) by replacing the analytic loss function with simulation of
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ignitions and burn progression, while Wei and Long (2014) presents a further revision of this model,
explicitly aiming to fragment high fire hazard fuel patches.

Numerous other studies follow a similar line of reasoning (e.g., Acuna et al. 2010, Yemshanov
et al. 2021). However, they all require a substantial amount of parameter estimation and calibration,
which can be a daunting task for practitioners, especially in new environments. As an alternative,
Minas et al. (2013) develops a single-period optimization model that jointly determines fuel treatment
and suppression resource allocation to maximize area coverage.

All of the models described above are single-period models, which poses a significant limitation
because, in practice, the effects of fuel treatments on fire behavior are only temporary (Finney 2001).
Furthermore, the long-term goal of hazard reduction is to achieve sustainable ecosystem manage-
ment through the development and maintenance of desirable landscape-level fuel configurations. This
task necessitates a multi-period framework that explicitly models the longevity of individual treat-
ments. To that end, Minas et al. (2014) proposes the first multi-period landscape-level fuel treatment
optimization model, with the objective of minimizing the number of cells with high fuel levels. Fur-
ther refinements of this model appear in Rachmawati et al. (2015, 2016, 2018), Leén et al. (2023).
Although each work improves upon its predecessor, these models are limited by two factors: (i) they
all use vegetation age as a proxy for the amount of fuel in the cell, and (ii) they all implicitly assume
that the amount of fuel resets to the same fixed value after each treatment.

Using vegetation age as a proxy for fuel quantity is problematic because it assumes constant fuel
accumulation rates, which do not accurately reflect how fuel actually behaves. Empirical studies show
that fuel tends to accumulate rapidly in the first several years after a burn, with accumulation rate
steadily decreasing in the following years (McCaw 2013). The assumption that fuel quantity resets
to a fixed value after each treatment implies that all treatments have the same effect. This contradicts
empirical studies, which report that treatment effects can vary substantially (Price et al. 2022).

A comprehensive model is provided by Matsypura et al. (2018), which integrates fuel accumu-
lation, treatment effects, and landscape connectivity. The goal is to minimize the size of potential
fires by reducing the connectivity of the network that represents a given landscape. Each node (i.e.,
each cell) is considered to be either active or inactive, where the active state implies a sufficiently
high fuel load, modeled using the modified Olson fuel accumulation equation. The network connec-
tivity is reduced through fuel treatments that remove a portion of the fuel load, thus rendering the
corresponding nodes inactive and deactivating the incident edges. Although the authors conduct a
sensitivity analysis of the treatment effectiveness, they do not explicitly address the uncertainty in

model parameters.
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One approach to address parameter uncertainty, which has been applied to wildfire fuel manage-
ment, is stochastic optimization (e.g., Bhuiyan et al. 2019, Lagos et al. 2025, and the references
therein). However, this approach is highly data-intensive, as it relies on distributional assumptions
or requires large amounts of data for calibration. For example, Troncoso et al. (2016) considers a
stochastic spatio-temporal forest harvesting problem on flammable landscapes, but does not attempt
to develop a mathematical model, citing its complexity. Instead, the authors develop a heuristic algo-
rithm. Evidently, measuring fuel load, treatment effectiveness, and fire ignition distribution with
heterogeneous vegetation types poses significant challenges.

Another approach to handling parameter uncertainty is robust optimization. In essence, it requires
that solutions remain feasible for all parameters within a given uncertainty set. Robust optimization
treats uncertainty without specifying a distribution, making it suitable for settings with limited data
availability. In addition, it is typically more tractable than stochastic approaches. In developing our
models, we build upon the ideas of Bertsimas and Sim (2004) and Bertsimas and Thiele (2006). The
first paper introduces the budget uncertainty set, a polyhedral uncertainty set that allows control over
the degree of uncertainty via the budget parameter. The second paper explicitly considers a time-
varying budget of uncertainty. In both models, due to the polyhedral structure, a linear constraint with
a budget uncertainty set permits a linear reformulation.

In certain settings, decisions can influence the size of the uncertainty set. For example, in the con-
text of wildfire management, the longer we plan to leave a cell untreated, the greater our uncertainty
about its future fuel load. This phenomenon is known as decision-dependent uncertainty. In our
methods, we draw on the ideas from Poss (2013) and Nohadani and Sharma (2018), which propose

models where binary decisions impact the size of an uncertainty set.
1.2 Main contributions and structure of this work

We introduce a robust multi-period model for fuel treatment optimization based on the setting in Mat-
sypura et al. (2018). Our approach allows us to reduce the complexity of the base model and develop a
robust optimization framework. Our model captures fuel dynamics and treatment effectiveness more
accurately than existing models in the literature, yet requires estimation of just four parameters: ini-
tial fuel load, steady-state fuel load, annual rate of decomposition, and treatment effectiveness. Our
contribution to the existing literature is threefold.

Scalability. Our formulation significantly improves scalability and computational efficiency, mak-
ing it applicable to larger and more complex landscapes. Specifically, our model reduces the number

of variables and constraints from O(nT?) (Matsypura et al. 2018) to O(nT'), where n is the number
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of cells in the landscape and T is the length of the planning horizon. This model also admits a robust
extension for parameter uncertainty; the model in Matsypura et al. (2018) is too complex for this.

Robustness. Unlike the prior work, we explicitly handle uncertainty in fuel accumulation and treat-
ment effectiveness. All fuel treatment optimization models rely on problem parameters that reflect
natural phenomena, such as vegetation growth, which governs the effectiveness of treatments in prac-
tice. However, estimating these parameters can be challenging, as collecting reliable data and calibrat-
ing the parameters accurately is not straightforward. Our work provides a general robust optimization
framework, thereby extending the practical applicability of optimization-based fuel treatment plan-
ning models by ensuring that solutions remain effective under uncertainty.

Insights. Our numerical study evaluates the robust model across uncertainty sources and treatment
budgets, quantifying the trade-offs as uncertainty changes. We find that modest robustness strength-
ens worst-case guarantees without materially degrading typical performance when parameters
are uncertain. Learning priorities emerge: improving estimates of treatment effectiveness has a
larger impact on risk reduction than refining fuel-growth inputs, which the robust formulation can
absorb at low cost. We also identify practical uncertainty ranges within which robust plans perform
comparably to deterministic plans, providing targets for how much accuracy is needed to avoid
over conservatism. Finally, robustness is budget-sensitive: as treatment budgets increase, the risk
reduction delivered by robust schedules grows relative to deterministic solutions.

The remainder of the paper is structured as follows. In Section 2, we develop the base multi-period
deterministic model and present its noisy counterpart. In Section 3, we present our robust framework.
Figure 1 provides a summary of the model development process. In Section 4, we examine several
objectives that satisfy our modeling assumptions. The computational study is described in Section 5,
where we demonstrate the benefits of the robust solutions using historical data from Hawkesbury,
New South Wales, Australia. We provide our conclusions in Section 6. The E-Companion includes
the proofs, the complete set of computational results, including the scalability study, and other
technical details.

2 Deterministic model

In this section, we develop a simplified formulation for the wildfire fuel management problem pre-
sented in Matsypura et al. (2018), drastically reducing the number of variables and constraints. We
then present a variant of this model when noise is present in the parameters, which serves as a foun-

dation for the development of our robust formulation in Section 3.
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Figure1 Outline of the model development process in Section 2 and Section 3. The procedures for linearizing the
formulation from Section 3 are presented in the gray boxes. These steps are standard techniques in the Integer
Programming literature and, therefore, are provided along with the final MIP formulation (RMIP) in the E-Companion of

this paper. Two examples of objectives f are given in Section 4.

2.1 Fuel dynamics and objective function

Accurate estimation of fuel load is essential for assessing wildfire risk. Prior research suggests that
fuel accumulates faster in the initial years after treatment or fire, with the corresponding rates decreas-
ing significantly over the long term. This process can be modeled with the modified Olson fuel

accumulation equation (Olson 1963, Watson 2011):
Xt =L (D™ — LMY (1 — e ™) (1)
— e (L (L iy (] kD)) 4 (] )
=e X (1 — e )L™, (2)
where x" is the fuel load (in tonnes per hectare, t/ha) T periods after a fire event, k is the decomposition
rate of forest litter, L™ (t/ha) is the initial fuel load immediately after the most recent fire, and L™
(t/ha) is the steady-state fuel load, i.e., the equilibrium fuel level attained when the decomposition of
litter eventually balances its accumulation (Zazali et al. 2021).
We can simplify equation (2) by defining the inverse growth rate Y= e~*. With this notation, after

T periods of uninterrupted growth, the fuel load is given by the recursion

x‘c — 'YXT71 + (1 o ,Y)Lmax. (3)
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This recursion plays a central role in the development of our models.

Consider a simplified scenario with a single area of land. Let x’ be the fuel load at time ¢, for
t € [T], where T is the planning horizon and [T] :={1,2,...,T}. We assume that we are given the
initial fuel load x', the steady-state fuel load L™, and the inverse growth rate Y € (0, 1). Our objective
is to determine when to perform fuel treatments in order to mitigate the risk of wildfires. To capture
this decision, we introduce binary variables z' € {0, 1} for each ¢ € [T], with z' = 1 if treatment is
performed at time ¢, and z' = O otherwise.

Treatment reduces the fuel load, while not treating allows the fuel to accumulate. Thus, if we
decide to treat the area in period 7, 7 = 1, then the fuel load in the next period is given by x' ™! = o,
where o € (0, 1) is the treatment effectiveness, which represents the fraction of fuel load that remains
after the treatment (Price et al. 2022). If we decide not to treat the area in period #, then, following
equation (3), the fuel load for the next period is X! = yx’ + (1 — y)L™>*. Hence, the fuel dynamics
can be written as:

if z7=1

w4+ (1 =y L™, if Z=0.
However, we cannot handle this equation directly, so we reformulate it using Assumption 1.

As outlined in Section 1, the goal of fuel treatment is to eliminate undergrowth, dry grass, and
excess vegetation that could otherwise feed larger wildfires. Therefore, a natural objective for our
model is to minimize a function f(x) that depends on the amount of fuel in the system x and mea-
sures the size and intensity of potential fires. Since actual fire dynamics involve complex interactions
between vegetation, weather, and landscape topology, we work with simplified objectives that allow

for a tractable formulation. Specifically, we focus on objectives that satisfy the following assumption:

ASSUMPTION 1. The objective function f(X) that we minimize (or maximize) is monotone increas-

ing (or decreasing) in x, i.e., if X > X/, then f(x) > f(x') (or f(x) < f(x)).

Assumption 1 holds for most natural objectives. One simple example is the total fuel load, i.e.,
f(x) = ||x||;. We provide more details in Section 4, along with another network-based example.
Assumption 1 also allows us to formulate more complex objectives to model specialized problem
requirements. For example, if the goal is to protect high-value assets (e.g., farms or critical infras-
tructure), then we can use a weighted total fuel load, i.e., f(x) = w'x, with larger weights for the

cells containing them to prioritize treatments in those areas.
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2.2 Base deterministic model

We now present our base deterministic model. Consider a landscape susceptible to wildfires, divided
into a set of cells V, where each cell represents an area available for treatment. Add index i € V to vari-

ables and parameters in equation (4) accordingly. Then, due to Assumption 1 it is sufficient to enforce

P> 0Lx;, if z=1,
b+ (=)L, if 2 =0,

instead of (4) because the monotonicity ensures that at optimality, the value of x

®)

141

i

is pushed towards

the lower bounds. We need the following linear constraints to model inequality (5) :

XEJFI Z (X,‘XE, Vie V7 re [T]7

x§+l > ’thi + (1 - ’Yi)L;nax - (1 - min{y,-, ai})L;naXZi‘? Vie Vv re [T]>
(Fuel-dynamics)

x>0, VieV,te[T +1],

% €4{0,1}, VieV,te[T),

Another vital relationship that we need to capture is between species’ capacity to recover from fire
and the interval between successive burns. For example, in dry sclerophyll shrub/grass forests, the
minimum acceptable interval between fires is five years, with some species requiring up to 10 years to
reach maturity (Kenny et al. 2004). Let £™" denote the minimum time required for species to mature,
and let 7" denote the time since the most recent fire at the start of the planning horizon; both parame-
ters are assumed to be known. Then, (i) at f = 1 the area requires additional 7" = max {z™" — ¢init (0}
time periods before it can be considered for treatment. After /" periods have passed, we further need
to (ii) ensure that for each consecutive ™" periods there is at most one treatment in the cell. Finally,
we need to account for (iii) the resource limitations faced by the decision-maker in each period. The
parameter b’ represents available resources or budget, while ¢! denotes the relative difficulty or cost
associated with treating cell i. Generally, the decision-maker may have multiple resource constraints
in each period, or even constraints over several periods. Consequently, we say that z = (z});cy,c[r) is an

operationally feasible treatment schedule if it satisfies constraints (), (ii) and (iii) described above:

7 =0, Vie ], ieV,
min{t+tlmi“,T}
7 <1, Vee[max{1,T —"}\["], i€V, (Treatment-feasibility)
s=t
Y i <v, Vt € [T].

1%
Next, we present the complete formulation for our problem, taking into account multiple geograph-

ical areas simultaneously. The Base Deterministic Model with a non-decreasing objective function,

denoted by f(x), where X = (x!);cyc7+1], can be expressed as follows:

minimize f(x) (BDM)
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subject to  (Fuel-dynamics), (Treatment-feasibility).
By comparing BDM against the model presented in Matsypura et al. (2018), we observe that both
models incorporate the same fuel dynamics relationship between z and x. However, our model offers
an advantage by eliminating the need for n7 (T + 3) variables; the number of variables in our model
is only n(2T + 1). Constraints (Treatment-feasibility) are common to both models. Our model intro-
duces 2nT extra constraints given by (Fuel-dynamics). In contrast, Matsypura et al. (2018) requires
an additional n(T?* 4 15T + 74)T /6 constraints to model the fuel dynamics. Thus, the total number

of constraints in our model is O(nT ), whereas in Matsypura et al. (2018), it is O(nT?).
2.3 Base noisy model

Next, we develop a noisy variant of the fuel dynamics given by (4). Specifically, we assume that the
estimates of the steady-state fuel load, L™, and the treatment effect, o, are noisy. For now, we also
assume that the noise in these parameters is fixed and known. We relax this assumption in Section 3.
For exposition, we consider a single cell as we did in Section 2.1.

First, we assume that the noisy steady-state fuel load L™ (t) can be different for different periods.

The planner observes its noisy estimate L™, and the relationship between the two is

—max

L (r)=(1+7)L™
where i)' € [0, 1] is the fuel growth noise.
Here and throughout the paper, we use tilde to denote noisy counterparts of variables (e.g., X for x).
Suppose the initial fuel load £ = L™ and no treatment is performed. Analogous to (4), the fuel

dynamics in the absence of treatment are governed by the following recursion:
=y + (1 —yL™(1).
Using this recursion and the definition of X' ™! in (4), we have (see details in Section EC.3):
FH =X 4 y@ — )+ (1 -y L™ 7" (6)
Next, we allow the treatment to be less effective. In Section 2.2, we model the fuel treatment by
reducing the resulting fuel load by a factor of a € (0, 1). In this section, we assume that o is a noisy

estimate of the true fuel treatment effectiveness parameter &'. It is convenient to parametrize the

relationship between the two as

l-ad=1-a—(l—a)d,
where &' € [0, 1] is the treatment effect noise. Again, for now, we assume that o' is fixed.

We want to derive the relationship between the noisy fuel load &, and its post-treatment coun-

terpart ¥ *!. Intuitively, a treatment at time ¢ should result in ¥ = ¥ =% — (1 — &')¥, i.e., a
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reduction of the noisy fuel load by a fraction. However, in our setting, this recursion is intractable.
So, instead we use its tractable upper bound &' = ¥ — (1 — &')x’. Thus, we have
)Z’*':)Z’—(l—d’)x’:i’—x’—i—(oH—(l—oc)S’)x’. (7)
Putting (6) and (7) together, we can write the noisy fuel dynamics as:
f+,:{f—xf+(oc+(1—oc)8f)xf, if =1,
X4 y(® —X) + (1 —y L™, if =0,
Let  denote the fuel load noise in the cell at time ¢, i.e., ¥ = & —x. Since X' =y’ + (1 —y) L™,

the noisy fuel dynamics can be written as follows:

g {7 @t (-3, it Z=1, ®)
v )+ (=L (147, if 2 =0.

We interpret (8) similar to (4). That is, if we decide to treat, then the total noisy fuel load in the next
period is the current fuel load noise  plus a noisy proportion (0.4 (1—)&) of the current determin-
istic load x'. In contrast, if we decide not to treat, then the total noisy fuel load in the next period is a
convex combination with weight v of the current noisy fuel load ' +x' and the noisy steady-state fuel
load L™*(1 +1'). By equation (4) from (8), we obtain the following equation for the fuel load noise:

AN, i =1, ©)
,Yy)t + (1 _ ,Y)Lmaxﬁt7 if Zt =0.

Observe that 3! > §' for all 7 € [T]. Recall that the decision of when to perform fuel treatment in

cell i € V is encoded by vector z, and x represents the part of the fuel load assumed by the planner

at each time ¢ € [T + 1]. From (9), we can derive the following relationship between x, ¥, and z:
~t+l Z,ft se1(1=2F ( a[)sixlbzi + (1 _ ,Yl)Lmaxn (1 _7 )) (10)
Equation (10) is nonlinear due to the terms x°z* and 'yzlr:m(l’zr). To linearize these terms, we intro-
duce additional binary variables

if Y )=
5.k — {17 if ZT:s+1(1 Zl) k7 (v—def)

0, otherwise.
Since Y- wmen (173 ¢ whenever Y., (1 — zf) = k, which by (v-def) is equivalent to v{; = 1. Con-

sequently, the following equation holds:

,fq: s+ll Z Z’Y;vlt’ VlGV,l‘G[T},SG[r]a

and thus, (10) reduces to

t

=Y (((1 — )87 + (1 —y) LR (1 — 2)) Z\/l‘v > ,VieV,te[T]. (Noise)

s=1

While (Noise) is still nonlinear, standard techniques can be apphed to linearize it; we explain this

modeling procedure as well as how to model (v-def) in detail in Section EC.4.



Lagos, Ho-Nguyen, Matsypura, and Prokopyev: Robust Wildfire Fuel Management 11

In summary, the noisy counterpart of BDM, the Base Noisy Model, is given by:
minimize f(x+¥) (BNM)

x,y.z,v
subject to (Fuel-dynamics), (Treatment-feasibility), (v-def), (Noise),
where the key difference from BDM is the presence of noise modeled via variables § and v with

additional constraints (v-def) and (Noise).

3 Robust model

This section presents a robust counterpart to the BNM model developed in Section 2.3. It provides
a principled approach to safeguard our policies against perturbations to the noise terms S,ﬁ in the
BNM model. We think of the parameters 5, T as being chosen by “nature” in a way that we cannot
anticipate. The robust approach assumes that nature chooses S,ﬁ in an adversarial manner, i.e., to
maximize a minimization-based objective f(x + §) or vice versa.

While one may argue that a stochastic choice of S,ﬁ may be more accurate, we opt for a robust
approach because it avoids assumptions about probability distributions of S,ﬁ. Also, it does not
require access to large quantities of empirical data to estimate probability distributions. Even if we
had enough data, one could argue that changes in climate can render these estimates uninformative.
We begin in Section 3.1 by constructing an uncertainty set of perturbations for the S,ﬁ parameters
from the BNM model. In Section 3.2, we develop several robust models, culminating with the linear

MIP, which can be solved with an off-the-shelf solver.
3.1 Uncertainty set

We assume that the values of zi and x} are known to nature, which is reasonable since the z-variables
represent the fuel treatment plan, while the x variables represent the deterministic fuel load (Fuel-
dynamics). Nature’s task is to determine the values of S‘j and 1j} to increase the noisy part of the
fuel load y. We provide bounds on the choices that nature may make in the form of the following

decision-dependent budget uncertainty sets:

)= { @ s L3 <1, B <T@ S el sell). an
These are inspired by the budget uncertamty sets of Bert51mas and Sim (2004), and they give rise to
linear robust counterparts. The main difference is that in (11) the budgets of uncertainty Fﬁ"s(z,») and

;" (z;) depend on our decisions z. We next discuss how we model these.

We allow the budgets to vary depending on our treatment decisions z; = (}),cjr| as follows:
() =T () +B°(1-2),  Viev,ie[T], (12a)
[Nz) =T @)+ B (1-4),  VvieV,ee[r], (12b)
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where [.’)ﬁ-’8 and B are fixed increments that depend on environmental factors, while F?’B and F?’n are
constants that reflect the initial state of cell i.

The rationale behind this modeling choice is to allow uncertainty to increase over time, similar
to the accumulation of errors typical for forecasting models; see Hyndman et al. (2008). Since
determining the fuel load in the future is a prediction problem, it is natural to assume that errors
increase the further we look into the future. Indeed, the longer we leave a cell untreated, the less we
typically know about its current state. If, on the other hand, we were to treat a cell in every period,
then the uncertainty would not increase. The structure in (12) reflects this intuition. Furthermore,
changing the values of BZF’ and B;" in (12) allows us to control the size of the uncertainty set and,

consequently, the level of robustness of our solutions.
3.2 Robust formulation

In this section, we present our robust model, where nature selects the worst-case parameters within
the uncertainty sets presented in Section 3.1. First, we present our ideal robust setting where nature’s
selection is time-consistent, and then, we present a tractable conservative approximation of it.

A robust approach to tackling the problem implies that nature selects a combination of noise
parameters that maximizes the fuel load given the treatment decisions. We say that nature’s decision

is time-consistent if it satisfies the following condition:
(& ) sen € Al(Zi), VieV,te|[T]. (Time-consist)
That is, nature is time-consistent if its noise allocation satisfies the constraints of all uncertainty sets,

which leads to the following Ideal Robust Model:

minimize max fx+y) (IRM)

X,Z,v y,S,ﬁ: (Noise),(Time-consist)

subject to (Fuel-dynamics), (Treatment-feasibility), (v-def).
Next, we illustrate our robust modeling assumptions with a simple example of a single cell.

EXAMPLE 1. Consider a single cell, that is, |V| = 1, and let L™ = 16.4, k =0.17, oo = 0.51, ™" =
10, Lt = 0, and "' = 2. The choice of these parameter values is guided by the real-life case, which
we discuss in detail in Section 5. Figure 2 shows the fuel load dynamics for 50 periods with and with-
out treatment for different values of B%, B € {0.0,0.01,0.02,0.05}, and (I°, T™) = (B3, Bninit),
The figure on the left shows the difference in the uninterrupted growth of the fuel. Our model takes
into account uncertainty by changing the rate of fuel growth and the corresponding upper bound. The
figure on the right shows the effect of noise on fuel load with treatment. We can see that for smaller
values of B2, i.e., 0.01 and 0.02, nature chose to use the noise to offset the effect of the second, third,

and fourth treatments in periods 22, 33, and 44, respectively. Nature’s strategy is manifested in modest
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(a) No treatment. (b) Treatment.

Figure2 Sensitivity of fuel load to different values of B%, B € {0.0,0.01,0.02,0.05}, with and without treatment in
tonnes per hectare; see Example 1. Larger values of B® and B correspond to larger uncertainty sets for nature’s noise
allocation. Plot (a) shows the case where no treatment is done with uncertainty in fuel growth; plot (b) shows the case

where treatment is performed every 11 periods with uncertainty in treatment effectiveness.

reductions in the corresponding fuel loads and the fact that the corresponding curves overlap with the
deterministic case up to period 21. In contrast, for B® = 0.05, the budget of uncertainty is sufficient to
entirely offset fuel reduction due to the second treatment (flat section between periods 21 and 22) and
partially offset it before and after the second treatment. These observations suggest that with a higher

budget of uncertainty, nature is able to push some components of o and 1] to their maximum. O

The IRM problem is what we ideally would like to solve. Unfortunately, it is not tractable because
of the complicated multi-period dependence of f on the components of §. Hence, we relax nature’s
consistency constraint in a way that allows us to obtain a tractable conservative formulation. To
do this, we consider new variables 8 and T corresponding to & and 7, respectively, but having

larger dimensionality. As a shorthand, we denote 8! = (S;‘)Sem, q = (AF) sepr)» & = (8;")ser and
4[]

n;

Thus, nature’s time-consistency is enforced by:

= (M;")sey- We link (§,1) to (8,7) by identifying &' = § and 0" =" forallie v, s € [T].

(S ) e Al(zy), VieV,re(T],selt, (13a)
& =81, it =ni", VieV,te[T—1],s€elt. (13b)

See Section EC.5 in the E-Companion for an example.
To obtain a tractable model, we relax condition (13b) while keeping (13a) and use ' to denote the
relaxed (conservative) amount of noise. Our relaxation makes each expression of y:*' component-

1

wise independent:
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t
N £ (s
FAREK Ai(z) | s= .
(, ni'eat ) 1 (Relax-noise)

1—s
X Z\/jvf,") }, VieV, telT],
k=0
which leads to a tractable robust model with row-wise independent uncertainty. Hence, each element
of y = ()ievser+1) can be maximized independently. Since f(x +y) is monotone non-decreasing in

y, we can solve the following Conservative Robust Model:

minimize  f(x+Yy) (CRM)
X,y,Z,V
subject to (Fuel-dynamics), (Treatment-feasibility),

(v-def), (Relax-noise).

This relaxation is a conservative approximation (see proof of Proposition 1 in Section EC.5).
PROPOSITION 1. Under Assumption 1, the optimal value of CRM provides an upper bound for IRM.

Now, we reformulate CRM by dualizing the subproblem containing the variables associated with
nature in the uncertainty set A’(z;). Observe that nature’s maximization problem in (Relax-noise), for

eacht € [T]| and i € V, can be expressed as follows:

11

maximize Y (((1 — o)X 8 + (1 — )L™ (1 — ) Z\/jv )

N

subject to ZS”<F5 Zn“<l’“‘( ), (@}, 0! >0)
s=1

5 e 0], vae &5 >0)

Here, & and {}* are the dual variables corresponding to the upper bounds of the variables 8. and
M}, respectively, and @] and o' are the dual variables associated with the corresponding nature’s
noise budgets constraint on &;* and )}, respectively. The reader can verify that the dual for the above

problem is as follows:
t

minimize r”-’ﬁ(zi)mﬁ +I7"(z;)0! + Z(&is +&7)

RECEU =
subjectto ot + > (1 — )L™ (1 — ny‘v,,, Vs et
O+ &> (1 - op)we Z \/,‘v,, 7 Vs e[, (Dual-consist)
w;,0,8",5" >0, Vs € [1].
Then, using strong duality, we find the following robust nonlinear reformulation of CRM:
mi,{l;rznvize fx+y) (14a)

subject to  (Fuel-dynamics), (Treatment-feasibility), (v-def),
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_ 3 0 M 1 t t.s t,s
yi''= min [ (z) o) + 7Y (z)o) + X (87 + G
ol ot 2 g1 ! VieV,te[T].  (14b)
subjectto  (Dual-consist),

Under Assumption 1, and since the y-constraints are variable-disjoint, we can lift the “min” term
in equation (14b) and let the minimization in (14a) control variables ®, o, § and {. Specifically, we
use the fact that there are no common variables between the constraints that determine the values of
the elements of y, and the planner wants to have each element of y as small as possible. Hence, any
optimal solution (o}, o, E"[’], Cﬁ’m) to (14b) is optimal for the problem having these variables lifted.
Thus, we obtain the following reformulation of (14):

minimize f(x+Yy) (Single-level-CRM)
X,Y,Z,V,0,6,&,C

subject to  (Fuel-dynamics), (Treatment-feasibility), (v-def),

t
= Tz ) + T (z;)0 + LSy gl
& (o ()0 ;(Eﬂ &) VieV,te|[T]. (Dual-constr)

(Dual-consist),
Observe that formulation Single-level-CRM is non-linear. In Sections EC.6 and EC.7 of the E-

Companion, we show how to linearize Single-level-CRM and IRM. Our derivations allow us to
obtain a compact MIP formulation for CRM, thereby keeping the tractability of the deterministic
model presented in Section 2.2.

4 Objectives

In this section, we present two objective functions f that can be used in our setting. The first one sim-
ply minimizes the total fuel load, whereas the second aims to break vegetation connectivity patterns

to reduce the spread and the size of potential wildfires.
4.1 General framework

There are two tasks we wish to perform with our model: (i) determining an optimal treatment plan,
where we choose (x,z) to minimize our objective f; and (ii) evaluating a fixed treatment plan (X, z)
by maximizing f(x + §) over possible perturbations § of the deterministic fuel load x. Therefore,
we employ two representations of the objective function f: first, a minimization form to compute a

treatment policy (with BDM or CRM):

f(%)=min{a"p: h(%,p) > 0}; (15)
pe?P
and second, a maximization form to evaluate it (with IRM):
f(%) = max {b'q: g(%,q) <0}. (16)

Here, P, Q are mixed-integer linear sets, a, b are objective vectors, and g, & are some affine mappings.
To compute a treatment policy (x,z) for the min-type representation of f in (15), the variables p

can be lifted to the planner’s BDM problem as follows:
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minimize f(x) minimize a'p
X,Z X,Z,p
subject to  (Fuel-dynamics), subjectto  (Fuel-dynamics),
g
(Treatment-feasibility). (Treatment-feasibility),

p <P, h(x,p) 20,
and to the planner’s CRM problem as follows:

mg;lzr{nze f(x+y) mir;izrvnuize a'p
0&L 0&Lp
subject to  (Fuel-dynamics), subject to  (Fuel-dynamics),
(Treatment-feasibility), — (Treatment-feasibility),
(v-def), (Dual-constr). (v-def), (Dual-constr),

pPE P, h(x+y,p)>0.
In both cases, the resulting formulation on the right is a single-level MIP that can be solved using a

general-purpose MIP solver.
To evaluate a given policy (x,z), we use the max-type representation (16) and solve nature’s max-

imization problem in IRM by lifting the variables q as follows:

maximize f(x+¥) maximize b'q
§.0.1 ¥.8,1,p
subject to  (Noise), (Time-consist). — subject to  (Noise), (Time-consist),

qeQ, g(x+¥,q) <0.
Again, the resulting formulation on the right is a single-level MIP, which can be solved using a

general-purpose MIP solver.
In the following subsections, we provide both min- and max-type representations for two objective
functions f. These representations allow us to extend the BDM and CRM models, as well as evaluate

the treatment plans under the ideal robust model IRM.
4.2 Fuel load-based objective function

Our first objective is to minimize the total fuel load:
FE) =%l = [Ix[ly + 1]}

Minimization (planner’s problem). Using the lifting procedure described above, we can solve
CRM to find a robust treatment policy. However, because this objective is linear in noise parameters
o and 7, we do not have to use conservative approximation. Instead, we can use strong duality on
nature’s maximization problem in IRM and solve the ideal setting exactly. To do this, first, we use
equation (Noise) to rewrite f(X) in a more convenient form:

F®=lxh+ ¥ (((1—oc,->8:xzz;+< LR -) Y Y ) an

i€V,se(T) t=s k=l
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Then, we dualize nature’s maximization problem in IRM. Recall that nature’s problem is:

maximize f(x+¥)
y.0M

subject to  (Noise), (Time-consist).
The resulting dual is nearly identical to (Dual-consist), except that the dual constraints are associated
with fj and o from IRM, rather than N and § from CRM. Additionally, the dual variables Ef and éf
are associated with the upper bounds of the components of d and 7. Hence, the dual constraints of

the nature’s maximization problem in this case are:

T t—s
Yo+ >(1—wLr(1-2) Y v, Viev,se[T],
t=s k=0

- 3 v Ideal-dual
Y o +E > (1 —o)xiz Y v, VieV,se[T), (Ideal-dual)
t=s k=0

®},0,&,5 >0 VieV,selT].

Consequently, the expression for f(X) in this setting is the following LP:

f(x,z,v):||x||1—|—mi_n~{ y (r‘?ﬁ(z,-)coﬁ+1"§vn(zi)62+éﬁ+i§):(Ideal—dual)}. (18)

0688 | jevie(r]
We present the complete resulting formulation in Section EC.7 of the E-Companion.
Maximization (nature’s problem). To assess a given policy (x,z), we solve nature’s maximization

problem in IRM with respect to variables (7,8, 7). Formally, the problem is:
FEM(x,2,v) = ||x]|; +max {||§]|; : (Noise), (Time-consist)} . (19)
7.0,

Here nature selects coefficients that maximize the planner’s objective, taking z, X, v as given.
4.3 Number of active edges

Our second objective is to break vegetation connectivity patterns. As pointed out by Minas et al.
(2014), it is difficult to predict where a fire may start and how it spreads thereafter. Therefore, min-
imizing the number of active edges in the network induced by the landscape can be interpreted as
aiming to break the available fuel into patches and create a mosaic of different post-fire states. This
objective aligns well with the traditional practices of Australia’s First Nations and echoes our ultimate
goal of preventing wildfires from turning into disasters.

We follow the setup of Matsypura et al. (2018) and introduce a graph G = (V, E) induced by the
landscape with a set of nodes V and a set of edges E. Each node i € V corresponds to a cell of the
landscape, while (i, j) € E is created if i and j are adjacent. For example, the network representation

of the data we use in our numerical study is presented in Figure 3.
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Figure3 Network representation of the landscape used in Example 2 and Section 5.

A node is active if the fuel load of the corresponding cell exceeds a predefined threshold L.
To model this, we define binary variables 6/, where 8 = 1 if and only if & > L{™. The relationship

between X and 0 can be enforced via the following set of linear constraints:

B < (2L — L) 4 L™, VieV, te[T+1], (20a)
&> LM, VieV, re([T+1], (20b)
0: € {0, 1}, VieV, te[T+1]. (20c)

The choice of 2L™* in (20a) is justified in Remark EC.1 (E-Companion; Section EC.3).

If two adjacent nodes are active, then the edge between them is active. Otherwise, the edge is
inactive. An active edge indicates that fire can spread between adjacent cells if the fuel load in both
cells is sufficient to support it. As treatment is applied to some cells, a portion of the fuel is removed,
which can lead to the deactivation of some nodes and all edges incident to them. At the same time,
those cells where treatment was not applied continue to accumulate fuel.

We need the following auxiliary variables to model this dynamic: for all (i, j) € E, define €] ; €
{0, 1}, where € ; = 1 if and only if 8; = @, = 1, i.e., if edge (i, j) is active at time 7. The relationship

between 0 and € can be enforced through the following set of linear constraints:

€;>0,+6,—1, VieT+1], (i,j)€E, (21a)
€, <6, €,<0, vie[T+1], (i,j)€E, (21b)
&;€[0,1], Vie[T+1], (i,j)€E. (2lc)

Note that we can relax binary constraints on €} ; provided that 6{, 6 € {0, 1}.
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Minimization (planner’s problem). Using the variables and constraints above, we obtain a robust
treatment policy by solving CRM with the following objective in minimization form:
f(i)zfg’ign{HSHli (20),2D}. (22)
Note that if noise is absent and we want to compute a deterministic policy by solving BDM, ¥ should
be replaced by x} in (20).

Maximization (nature’s problem). To assess the performance of the policies using IRM, we write

the max-type representation of the objective as:

f(%) ZII(g%X{!\SHﬁ (20), (2D}, (23)
where X should be replaced in (20) by x} + 3. Nature’s objective in (23) is the opposite of the planner’s
in (22): instead of minimizing the number of active edges, nature seeks to activate as many of them
as possible throughout the planning horizon. Then, the max operator in (23) can be lifted to nature’s
problem, which controls the parameters d and ). Consequently, the performance of treatment policy

(x,z) is given by the optimal value of the following system:
™™M(x,2z,v) = max {||g||,: (Noise), (Time-consist), (20), (21)} . (24)
¥,0,1,0,€

Finally, each edge may carry weights reflecting its importance to be active/inactive for the planner’s

and nature’s objectives presented here (recall our discussion in Section 2.1).

EXAMPLE 2. We use real-life data to illustrate the benefits of our robust framework. To improve
readability, we use the notation (f?, G”) for the parameters used to compute a policy and ({3, ")
for the parameters used to assess the policy. We show two policies with objective (22), obtained by
solving BDM (deterministic case, B> = B/ = 0) and CRM (robust case, p/° = /" = 0.02). For
evaluation we use problem (24) with % = " = 0.02.

We use the landscape data, and the associated parameter values of the Hawkesbury region of NSW,
Australia, sourced from NSW Rural Fire Services (2016). Specifically, we have |V| =34, |E| =71
(see Figure 3), with the treatment budget b, = 5, and the planning horizon T =5, the threshold for
node activation LI = 13.4, the steady state fuel load L™ = 16.4, and the treatment effect parameter
o; = 0.51. Initial maturities, i.e., parameter ™" are presented in Table EC.3 in Section EC.8 of the
E-Companion. The choice of parameter values is based on local vegetation and is discussed in detail
in Section 5.

We present the resulting treatment policies in Figure 4, deterministic on the left and robust on the
right. The initial number of active edges is 40 in both cases. For the deterministic policy, this number
decreases to 20 in t = 2, then increases to 46 in f = 3, and it is 32 in ¢ = 4. For the robust policy, this
number decreases to 23 at t = 2, then increases to 38 at t = 3, and then it is 21 at ¢t = 4. In this case,

the improvement offered by the robust solution is about 12%. O
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Period Deterministic policy ([38 = ﬁ" =0) Robust policy (35 = ﬁ” =0.02)

r=1
t=2
t=3
t=4

Figure4 Minimizing active edges: deterministic vs. robust optimal policies under (IRM) for the objective (24) with

B? = B" = 0.02. Node colors: red = treated; yellow = fuel below threshold; green = fuel above threshold; Lr=13.4.

5 Numerical study

This numerical study aims to demonstrate the benefits of our robust framework, assess its scalability,

and obtain practical insights. We ground the evaluation in a real-world landscape with literature-



Lagos, Ho-Nguyen, Matsypura, and Prokopyev: Robust Wildfire Fuel Management 21

validated parameters for that specific area; see Section 5.1. We discuss our findings in Section 5.2. For
the complete set of computational results and the scalability study on real and simulated landscapes,
see Section EC.9 of the E-Companion.

All experiments were implemented in Python 3.7.1 with Gurobi 9.0 (Gurobi 2022) and computed
on a Windows 10 PC, Intel Xeon CPU E5-1620 3.60 GHz, and 32 GB of RAM.

5.1 Real-world instance data and preliminaries

We use the landscape and fire history data of Hawkesbury region in New South Wales, Australia,
obtained from NSW Rural Fire Services (2016). This area covers 277,600 hectares, with about 28%
privately owned, 69% managed by National Parks & Wildlife Services, and the remaining 3% man-
aged by various other agencies. The graph representation of the area with 34 nodes and 71 edge is
shown in Figure 3. We used the time-since-fire data to set /™" and x! (see Section EC.8 for details).

For fuel dynamics, we use the steady-state fuel load L™ = 16.4 t/ha, annual decomposition rate
K; = 0.17 with the corresponding inverse growth rate y; = 0.84, and minimum maturity ™" = 10,
consistent with the Hawkesbury’s prevailing dry sclerophyll forest; see Watson (2011). The node
activation threshold L™ = 13.4 t/ha, treatment cost ¢’ = 1, and treatment budget (in number of areas)
b, € {1,3,5} were adopted from Matsypura et al. (2018). We set the treatment effectiveness parame-
ter oo = 0.51, as suggested by Price et al. (2022).

To study our model’s sensitivity to different levels of uncertainty, we use different values for the
budget of uncertainty parameters B> and .. To simplify the exposition, we set B° = B3 and p/" =
[3)“ (i.e., the sames for all i and ¢), where ﬁf’ and fﬁ“ take different values for different experiments;
specifically, ﬁﬁ, ﬁ” € {0,0.01,0.02,0.05}. Our choice of values for ﬁ“ is based on the measurements
of L™ from the literature (Watson 2011, Bowman et al. 2021). A typical value for L™ in dry
sclerophyll forests of the Hawkesbury area is 16.4 t/ha, with some regions reaching up to 18 t/ha. We
selected the maximum value for B" to be 0.05 because it corresponds to L™ ~ 18.0 in our framework,
depending on the initial fuel load (see Figure 2). The rest of the values of B“ were chosen to represent
less extreme scenarios, with B" = O representing the absence of uncertainty. This range BS also covers
the necessary range of values for treatment effectiveness parameter o (Price et al. 2022).

To conduct the analysis, we compute the mismatch loss, which is analogous to the mismatch cost
used widely in the Newsvendor Problem literature; see for example Olivares et al. (2008). Since no
money is involved, we use the term loss instead of cost to avoid confusion. This loss reflects the
reduction in policy performance due to the mismatch between the selected uncertainty level ﬁa, [3“ and
the nature’s ex post uncertainty level 3%, B". Hence, it tells us how much better we could have done

if we had known the true values of B and B". To describe the mismatch loss precisely, we introduce
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the notation (X(ﬁ5, M), z([§5, ﬁ“)) to denote the policy obtained by solving the corresponding version
of BDM, IRM (for the fuel load objective) or CRM (for the active edges objective), for a given
uncertainty level B, 1. We compute the mismatch loss for each combination of objective function
and parameter values by repeating the following steps:
1. Pick an objective function (either total fuel load or number of active edges), a time horizon T, a
treatment budget b,, and a level of uncertainty BB, ﬁ“.
2. Compute the corresponding optimal policy (x(ﬁS,BT‘),z(ﬁs,ﬁ")) by solving BDM, IRM or

CRM, depending on which objective function and uncertainty level are selected in step 1.
3. Pick a “true” level of uncertainty 3% " and compute the corresponding evaluation function

P(B2, B B2, BN := FRM(x (B, BM), z(BP, B"); B2, B"), e.g., by solving (19) for the fuel load objec-
tive, or (24) for the number of active edges objective.

4. Compute the “oracle” policy by setting (B%, f") = (B%, B") and solving problem BDM, IRM or
CRM, depending on which objective is selected in step 1.

5. Compute  the  corresponding  oracle  evaluation  function  v*(B%,B") =
FRM(x(B3, BM),z(B, B"); B, M) for the policy obtained in step 4.

6. Compute the mismatch loss by taking the relative difference (as a percentage) between the two

evaluation functions:
MML (B°, B B, B ) := (

5.2 Case study results and insights

‘;(667[371;[35’[311) —v(B%,B") v 100) 9% (25)

v(B°, B")

There are four possible values for ﬁa and f’)“: 0,0.01,0.02,0.05, and three different budget thresholds,
b; = 1,3,5. This setting means that we computed 48 different policies for each objective function.
We evaluated each policy using 16 combinations for 3% and " over the same four values. In total, for
each objective function, we performed 768 MML computations.

Figures 5 and 6 present the average MML over different budgets b,, for selected pairs B5 and B”,
while Figure 7 presents this values for different policies in the deterministic setting, and Figures 8
and 9 disaggregate the cases in Figures 5 and 6 for individual budgets. These combinations of [35,
B“, B® and B" best illustrate our findings, relegating the other combinations to Section EC.9 of the
E-Companion. Our key findings are grounded in four questions.

Q1: Do robust policies result in lower MML compared to non-robust ones?

Al: Based on our study, there is evidence that utilizing robust models can benefit performance.
For example, Figure 5(a) plots MML for total fuel load when there is no robustness in the model

(BS, B“) = (0,0). Comparing this to Figure 5(c) we see that the MML is reduced for all combinations
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Figure 5 MML (mismatch loss) values for the total fuel load objective, averaged over different budgets b, = 1,3, 5.

of true parameters (B2, B") except for (B2, ") = (0,0). The same comparison holds when comparing
Figures 5(a) and 5(d). This observation means that for the total fuel load objective function, using a
non-robust model is useful only when we have accurate estimates of the o,y parameters. Otherwise,
even a crude estimate of the magnitude of noise (i.e., (B, ") = (0.05,0) or (B2, ") = (0.01,0.05))
results in vastly reduced MML across a wide range of (B%,B"). That said, we also see in Figure 5(f)
that adding foo much noise can be detrimental to performance. This observation also holds in
Figure 6 for the number of active edges objective function. Compared to the policy obtained
without any robustness (Figure 6(a)), the policy that performs most favorably is in Figure 6(b) when
(B3, ") = (0.01,0). In fact, across most parameter combinations, the MML in Figure 6(b) is lower
than that in Figure 6(a). On the other hand, when we estimate larger amounts of uncertainty (e.g.,
(B3, B") = (0.05,0.05)), the performance of robust solutions can degrade for most combinations of
(B3,B") except for those where our guess happens to be correct (see Figures 6(c) and 6(f)).

Insight I1: This observation suggests that planners who do not have a good sense of potential
deviations in the estimated growth rate and treatment effectiveness parameters should introduce a
small degree of robustness into the model. Even this small adjustment can improve performance
compared to the non-robust model.

Q2: Which uncertainty parameter affects MML the most?
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Figure 6 MML values for the number of active edges objective, averaged over different budgets b, = 1,3, 5.

A2: We find evidence that B affects MML more than " for the total fuel load objective, which
is strikingly seen in Figure 5. The different colored bars show different values of B". We see that
when [ is held constant (within a group of four different colored bars), there is almost no change in
the MML. On the other hand, when we compare different B® (groups of four bars), there is visible
change in the MML. For the number of active edges, the conclusion is less clear, though there are
some glimpses that this pattern holds here as well.

To make comparisons easier, we define and compute a measure of variation as follows. For each
[35, ﬁ” combination, we fix B? and compute the standard deviation of the four MML values from the
different values of B". Since there are 16 combinations of [ASF’, ﬁ“ and four values of %, this gives us
64 different standard deviation computations. We then take the average of these 64 numbers, and
denote it std(8). We repeat this but switch the role of p® and ", to get std(n). We obtain Table 1,

which indeed shows that MML is more sensitive to B°.

Objective | std(3) std(n)
Total fuel load | 1.03% 0.03%
Number of active edges | 19.10% 9.53%

Table 1  Variation in B% vs B%; see A2 for how this measure is defined.

Insight 12: For the planners aiming to minimize fuel load, a deep understanding of potential devia-

tions in treatment effectiveness (understanding the magnitude of 3°) can improve model performance
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Figure7 MML when there is no uncertainty (true: B = B® = 0); policy-design uncertainty budgets (", $%) vary in
{0,0.01,0.02,0.05}. Each bar is the average over three budgets b, = 1,3, 5.

as it helps refine the choice of BS. On the other hand, model performance remains relatively consis-
tent, regardless of the uncertainty in fuel growth (i.e., irrespective of the true value of B"). Therefore,
when planners have limited resources for gathering information and tuning model parameters, they
should focus their efforts on more accurately estimating treatment effectiveness. If the planner aims
to minimize the number of active edges, then this insight still holds, albeit to a lesser extent.

Q3: What happens when estimated uncertainty levels ([AS“, G5) are higher than the true levels
(B, B°)?

A3: From the MML curves (see Figure 7) with true " = % = 0, we obtain practical targets for
the design of uncertainty levels (B”, BS). For the fuel-load objective, lowering the treatment-effect
uncertainty from high to moderate-high ([Ai5 :0.05 — 0.02) drives the loss close to the deterministic
optimum even if B” remains high. If fuel-growth noise is eliminated (B" =0), lowering uncertainty in
treatment effect is unnecessary. For the active-edges objective, loss is large when either fuel growth
and treatment effect uncertainty are high or moderate high, but decreases significantly once both are
small (B = ® = 0.01).

Insight I3: A small level of robustness can ensure good performance even when there is no uncer-
tainty.

Q4: How does the size of the treatment budget affect MML?.

A4: We find evidence that MML tends to increase with the rise in the treatment budget; see Fig-
ures 8 and 9. This observation is expected, as larger budgets allow for more treatments to be per-
formed in each time period. This tendency is particularly pronounced for the number of active edges
objective. When comparing the plots in Figure 9 from left to right, we observe a significant increase

in the heights of the bars, especially in cases with high uncertainty in treatment effectiveness (i.e.,
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Figure8 MML (mismatch loss) values of different budgets b,, for the total fuel load objective.
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Figure9 MML values of different budgets b,, for the number of active edges objective.

B® = 0.05). However, by comparing the top row of plots in Figure 9 with the corresponding plots
in the bottom row, we see that using our robust model with a very modest level of uncertainty in

treatment effectiveness (i.e., [35 = 0.01) helps reduce variability in MML, particularly in situations
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with a large budget and nature’s true uncertainty level (i.e., b, = 5 and B5 = 0.05). We observe a
similar pattern for the total fuel load objective, albeit on a smaller scale; see Figure 8. For example,
by introducing small amount of robustness in treatment effectiveness, we reduce the corresponding
MML three-fold and more for moderate budget case (Figures 8(b) and 8(e)) and about two-fold for
the large budget case (Figures 8(c) and &(f)).

Insight 14: Practitioners with larger treatment budgets should exercise extra caution when using
fuel-based objectives to determine fuel treatment plans, since models are more susceptible to
uncertainty. More importantly, robust optimization offers a cost-effective method to mitigate this
vulnerability without having to expend resources in improving parameter estimates.

6 Conclusions

We develop a robust multi-period fuel treatment model that incorporates parameterized uncertainty
in fuel growth and treatment effectiveness. In addition, our deterministic model can solve the
problem presented in Matsypura et al. (2018) using fewer variables and constraints.

Through an experimental analysis utilizing data from dry sclerophyll forests in the Hawkesbury
region, located in NSW, Australia, we derive practical insights. Our findings indicate that using a
robust approach can mitigate losses due to higher uncertainty in fuel data, potentially resulting in
minimal losses across different objectives when considering fuel load as an indicator of wildfire
risk. Moreover, we demonstrate that in our real life study accurate estimation of fuel treatment
effectiveness holds greater importance than estimation of fuel growth. Furthermore, under more
intensive treatment, treatment effect estimation gains greater importance. Finally, we illustrate
the differences in the solution structure between different objectives and levels of uncertainty and
provide an explanation of the factors driving these differences.

Future work may explore the integration of additional fuel treatment planning aspects, such as
incorporating high-value asset protection via more tailored objective functions. Another extension
can consider modeling rate-of-spread using landscape and weather information.
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EC.1 Nomenclature
Sets and Parameters
V  Set of fuel treatments areas, |V|=n b €R, total budget available for treatment at time ¢
E CV xV Setoftuples of areas, representing their adja- "™ € Z, Initial age of a patch of area (number of peri-
cency ) ods since last fire or treatment)
T €Z, Number of time periods planning horizon, 1™ € Z, Minimum time required for maturity of veg-
[T):={1,...,T} etation species

L™ >0 Steady-state fuel load £ = max{f™" — " 0}

L™ >0 initial fuel load after the most recent fire ' B >0 Protection level increment at time 7 in T%®(z;)
and I (z;), respectively, if treatment is not
performed

L>0 mean annual surface fuel that accumulates Sp‘, ot > 0 Protection level increment Bi‘s = Sp[ and
Bi™ = Bow. respectively, for policy computa-
tion
o; € [0,1] Remaining fraction of accumulated fuel load B3..,B. >0 Protection level increment Bi® = B3, and
one period after treatment Bi" = Pa.. respectively, for policy evalua-
tion
¥ €[0,1] Decomposition rate of forest litter I‘?‘s,l'?‘" >0 Nature’s initial budget for fuel load noise
allocation
Y €10,1] Inverse growth rate L™ >0 Fuel load threshold for node activation
¢t e Ry costof treating area i at time ¢
Variables
x{ >0 Deterministic fuel load, X = (x!)cy e(r+1] 7 €{0,1} Fuel treatment decision variable, z; =
5 (Zi)re[T]’ 7= (Zﬁ):ev.ze[r]
&, 7! €[0,1] Relative increase in fuel load parameters by 8°,m* €10,1] Relative increase in fuel load parameters by
nature in the idea setting, S,['] = (Sj)sg[,], ﬁy] = nature in the conservative setting, 6;"['] =
(M)sefy (3 )seps " = (] )sepy
3 >0 Fuel load noise in the ideal setting, § = X, >0 Total (deterministic plus noise) fuel load
(yi')ieVJE[TH‘ curve
¥: >0 Fuel load noise in the conservative setting, ®;,0; >0 Dual variables associated with nature’s surge
Y= () ieveerr+1] allocation budget constraints
& T >0 Dual variable associated with &, 7} < 1 E7.C" >0 Dual variable associated with 8°,m}* < 1
vif €{0,1} Variable indicating whether number of treat- 7 €{0,1}  Variable indicating whether both areas i, j €
ments in area i in periods s, ..., is equal to V, at time ¢, belong to the same connected
ke{0,...;t—s}h vi, = (vf_‘,k)xe[,]_kem _____ —s) components in the graph induced by active
edges
0 €{0,1} Variable indicating whether the cell is active & Va%iable indicating whether 8; = 6/ = 1, for
i,jev
pi€{0,1} Variable indicating whether area i has the ,uf;{‘} >0 te[T+1),(i,j)eVI\E:i<j,(i*,j") €E
largest index in its connected component
wh= vii-z) = 2
Xii = Vit M= (1-z)(0+0)

1(z,),1"(z;) > 0

i

Nature’s uncertainty budgets for noise allo-
cation

Table EC.1

Definitions of sets, parameters, and variables.
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EC.2 Summary of the size complexity of the models

System | # of variables # of constraints
Matsypura et al. (2018) Oo(nT?) O(nT?)
BDM o(nT) o(nT)
BNM O(nT? /1™im) O(nT? [1™in)
UP: 0(}1T3/me) 0 nTB/tmm)
Base IRM LL: | O(nT) olnT)
UP: 0(nT3/[m1n) O(nT3/tmm)
CRM LL: | O(nT?) onr?)
CRM (single-level reformulation) O(nT? /1™n) O(nT? /™)
RMIP (after linearizations EC.4, EC.6) | O(nT?/t™in) O(nT? /tmin)
Planner (18) (Fuel load) o(nT) Oo(nT)
L (22) (Active edges) O((|E| +n)T) O((|E| +n)T)
Objectives
Nature (19) (Fuel load) o(nT) O(nT)
(24) (Active edges) O((|E| +n)T) O((|E| +n)T)
Matsypura et al. (2018)+{ (22) O(|E|T +nT? O(|E|T 4 nT?)
Solved (18) o(nT) o(nT)
Formulations ~BDM+4 (22) O((|E| +mn)T) O((|E| +m)T)
IRM+* (18)= (EC.10) O(nT? /t™n O(nT? /rmn
RMIP+ (22) O(nT?/t™" + |E|T) O(nT*/t™" + |E|T)

Table EC.2  Size complexity in terms of number of variables and number of constraints of the different models

considered in this work. The base models size complexities are calculated considering that the modeling of f is dominated

by the other components of the model. Each of the planner objectives can be combined with the base models, whereas the

nature objectives are used to assess the value of a given policy in the IRM setting. Finally, for the solved formulations size

complexities result from the different combinations of base models and planner’s objectives that we use to compute

treatment plans. We also include the size complexity of the formulation from Matsypura et al. (2018) for comparison.

EC.3 Derivation of the noisy fuel load dynamics in the absence of

treatment

In this section we derive the expression used in (6). Recall that the noisy fuel load are given by

and that L™ (1) = (1 +f{')L™. Hence, it follows that:

' =y¥ +(1—y)L

=y +(1-

—max

(r)
=W+ (1 =pL™ (1 +7)

—max

V)L

(1),

=P+ (=L (Y1 +R7) + (1+7))

:,Y‘HLinit + (1 _ ,Y)Lmax Z ,st(l +ﬁs)
s€lt]

_ ,Y/+1Linit +Lmax(1 o ,YrJrl) + (1 o ,Y)Lmax Z ,stﬁs
set]

(EC.1)
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:xtJrl + Lmax ZY n

set]

=T Y(F =) + (1= L™ (6)

The first four equalities are obtained by applying (EC.1) iteratively. The fifth equality follows from
the fact that (1 —¥) = (1 —7) L,y ¥’ The sixth equality follows from the definition of x'*', and

the last equality is derived by substituting the obtained expression for X'.

REMARK EC.1. Upper bound of the fuel accumulation function ast =T — o in an area not treated.
Clearly, Olson’s curve (2) is bounded above by L™, hence x* < L™*. Next, from the derivation of
(6), we have
T=x"+(1- y)Lma" 11m Z LML LM —y) Zy" =2L™
se[T] =
where the inequality follows from 7}* < 1. Since x* — L™, this implies that the total amount of noise
is bounded by L™**. This observation allows us to construct useful objective measures in Section 4. []

EC.4 Linearizing noisy fuel dynamics

In this section, we linearize the expression
W (1= )8z + (=L - 2) (10)

by using the binary variable

i ! — 7N =
5.k { 1 9 lf ZT:S+1 (1 Zl ) k (v—def)

Vie = 0, otherwise.
From this definition, (10) becomes

t
F =Y (1 - 0)&xz + (1 =)L (1 — 20)) Ly ¥oviy ), VieV,t€[T].  (Noise)

s=1
Note that constraints (v-def) and (Noise) are still nonlinear, but they are a lot easier to deal with
than constraint (10). In particular, (Noise) contains only bilinear terms, at one of which involves
binary variables, thus can be linearized using the standard Glover’s technique; see Glover (1975),

McCormick (1976). Thus, to linearize (v-def), we first show that it is equivalent to the following set

of bilinear equations involving z:
vip =1, VieV,re[T], (EC.2a)

viy =i ozt VieV,re[T],selt—1], (EC.2b)

v = (=gt et VieVire[T), set—2),keft—s—1],  (EC.2¢)
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v =t (=g, VieV,te[T],selt—1]. (EC.2d)

Here, (EC.2a) reflects the initial condition that Y —z) = 0 is always true. The following

S=i t+1(
three sets of constraints reflect the fact that in each period for a given cell 7, the number of treatments
can either stay the same or increase by a maximum of one. First, (EC.2b) imposes that vf’o =1ifand

only if treatments are done every perlod between s + 2 and 7 (i.e., vs+l 0

= 1) and treatment is also
done at time period s + 1 (i.e., zi™' = 1). Then, in (EC.2¢) v ¥ can take the value of 1 if and only if
either there are 1 — s — k treatments performed in cell 7 in the time interval [s + 2,7] (i.e., \f+1 =)
and no treatment is done at time s + 1 (i.e., ' = 0), or there are t — s — k — 1 treatments in the

s+1,k

interval [s + 2,7] (i.e., v;; ~ =1) and treatment is done at time s + 1 (i.e., z™! = 1). Finally, (EC.2d)

ensures that v;; * = 1 if and only if no treatment is done in the range [s + 2,7] (i.e., v},

s+1,t—s—1 — l)

and no treatment is done at time s + 1 (i.e., z7"' = 0). Note that non-negativity constraints on v =
sk ..

(v,»,[ ) ieVe[T)seli] ke {0, ..i—s} ATE implicit due to (EC.2a) and non-negativity of z = (zi) ievyelT)-

Next, we present a result that shows the validity of our modeling of (v-def) using (EC.2).

PROPOSITION EC.1. Suppose that 7. € {0,1} for all i € V and t € [T] holds. If v satisfies (EC.2),
then vi\ satisfies (v-def), foralli €V, t € [T}, s € [t] and k € {0,...,t — s}.

Proof. Letz €{0,1} foralli€V and ¢ € [T]. We aim to model v} =1 <= Y. (1 —2) =k
for all k € {0,1,...,t — s} and s € [t]. For s =1, we clearly have Y., (1 —zf) = 0 hence vj} = 1
always. For s =1 — 1, we have Y._ . (1 — zf) = 1 — !, which verifies v, =1{{z in (EC.2b) and
Vi, M =i (1 —2) in (EC.2d).

W e Y (=) =K forall K €
{0,...,t — s — 1}. We now show that this implies that v,, =1 <= Y. ,.,(1—-2) =K for all
K e {0, ., t—s}. Consider Y. (1—2))=(1—z"")+ ¥ »(1—2F). We break the analysis down

into the following cases:

Now assume that for some s € [t — 2| we know v;;

s+1,0

* Y (1 —2f)=0. By our inductive hypothesis we have vi, = =1 and all other v”' * =0 for

k € [t —s— 1], hence by (EC.2):
vl =z by (EC.2b),
vl =1—2* by (EC.20),
with v} *— 0 for all other k € {2,...,t — s}, implied by (EC.2c) and (EC.2d). Thus, we deduce:

T Zs+1 =1 then ¥’ H—l( ) =1- Zl;+1 =0, and we have vjlo =1.

—1Ifz"' =0then}: , (1-2f)=1-z""=1,and we have v}, = L.
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s+1,k s+1,k' -0

* Y, o(1—2) =k, forsome k € [t —s—1]. Then, by induction, v, = 1 and all other v},

for k' € [t — s] \ {k}, consequently system (EC.2) implies:
vip =z and vt =1-2", by (EC.20),

with vf;,k/ =0 forall other ¥ € {0,...,t —s}\ {k,k+ 1}, by (EC.2b), (EC.2¢c) and (EC.2d). Now
we have established that:
—Ifz"' =1then}: , (1 -2f)=k+1—2z"" =k and we have v}; = 1.
—Ifz"' =0thenY: ., (1 -2)=k+1—2"" =k+ 1, and we have v};*' = 1.
* Y. ..»(1 —2f) =t —s— 1. Then, again by the inductive hypothesis, vs+1 =71 = 1, and for all

kelt—s—2] vfjl’k = 0, hence from bilinear system (EC.2) we get:

v =2+ by (EC.20),

1t

viy "=1-z"", by (EC.2d),

with vf’,k/ =0forall ¥ € {0,...,r —s—2}, by (EC.2b) and (EC.2c). Therefore, we conclude:
—1If "' =1 then ¥ M

—Ifz"' =0thenY; ., (1 -2) =t —s—14+1—2"" =1 —s,and we have v;; " =1.

st (1 — H=t—s—1+1-zg"=t— s — 1, and we have v}

|

Next, we use the standard linearization technique to tackle the non-linear terms in (EC.2); see

(Glover 1975, McCormick 1976). A linearized version of (EC.2) is presented next (note that it should
include (EC.2a) to be complete).

5,0 5+1,0 s+1
Vi,z 2 vzl,t +Zi - 17

VS‘O < s+1,0

it — Vit I

VieV,te[T]|,set—1], (EC.3a)

sO b+]
Vir %

5.k s+1,k—1
vlt S 1t +Z17

VieV,te[T|,selt—2],ket—s—1], (EC.3b)
s,k s+1,k—1 s
Vit 2 Vig — 4

s,k s+1,k s
Vit Sviﬁt +(1_Zi)?

VieV,iie[T)|,selt—2],ket—s—1], (EC.3c)
itz - (1-2),

S,t—S§ s+1,t—s—1 s+1
Vit > it —&

P Ly VieV,t€[T],s€t—1], (EC.3d)

it lt ’

J—
Vi't s S 1— Z?Jrl

)
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>0, VieV,te[T],se {0} Ut],kc {0} Ut —s]. (EC.3e)

In this linear version of the bilinear system outlined in (EC.2), the constraint (EC.3a) corresponds
to the bilinear constraint (EC.2b). Similarly, (EC.3b) and (EC.3c) are analogous to (EC.2c), and
(EC.3d) aligns with (EC.2d). For brevity, we present a result from this formulation in Proposi-
tion EC.2 without proof, as it follows directly from Glover (1975).

PROPOSITION EC.2. If z. € {0,1} for all i € V and t € [T], then system (EC.2) is equivalent to
(EC.2a) with (EC.3).

Proposition EC.2 can be verified by imposing conditions either zI™' = 0 or z/*' = 1, and then
comparing the respective relationship between the equations in (EC.2) and (EC.3) as pointed above.
It is useful to recall at this point the constraints of BDM, as they are common to all of our models

in this paper:

X > o VieV,telT], (EC.4a)

i - i

2+ (1)L

— (1 = min{y;, o }) L™z, VieV,telT], (EC.4b)
=0, VieV, e[, (EC.4c)
min{t+tlmi“,T} Vie V,

2 <1, _ (EC.44)
pa t € [max{T — ™ 1}]\ [£/*"],
Y i <b, vt € [T], (EC.4e)
194
x>0, VieV,te[T +1], (EC.41)
7 e{0,1}, VieV,telT), (EC.4g)

We thus arrive at the following formulation for the base deterministic model with noisy fuel dynamics

minimize fx+y) (BNM)

X3.2Y

subject to (EC.4), (Noise), (EC.2a), (EC.3).

REMARK EC.2. Note that the required number of variables v can be significantly decreased. Indeed,
note that by (EC.4c), the number of treatments in a given area throughout the time horizon is at most
[T /t™"]. Thus, we have vj} = 0 for all k <t — s — [T /t™"], and we can drop these variables from
the model. Using this remark, we can reduce the size of the formulations, by considering at most

O(T /t™™) for the k indices of variable v, see Table EC.2 in Section EC.2 of this E-companion. [
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EC.5 Example of (13) and the proof of Proposition 1

EXAMPLE EC.1. Let T =3 and |V| = 1. Then, we have that the constraint (13) is constructed as

follows:

(62,n*)=(*n*), @'n*)=@E"'n*"), @' n*)=@E"n""),

§ 4 &2+ <I¥(z), 144t <TP(2),

3?2481 <I*¥(z), M2 4+n>' < (z), 8" <TI'¥z), M <I'(z),

0< 8,0, 8202, 8 0, 82 P2, 8 P 8 < 1. O

PROPOSITION 1 Under Assumption 1, the optimal value of CRM provides an upper bound for IRM.

Proof.  Suppose the values of x,z, v are known and fixed, and (&*,1*) is optimal for the inner
maximization problem of IRM. Since f(x + ¥) is monotone non-decreasing in y, we have that any

solution

it = Z(((1—Oti)5§’SX?Z?+(1—%)L?’” (1-2)) ZY,‘V>

s=1

>Z< )8, xz) + (1 =YL n;( Zﬁv )

=y, VieV,telT],

(EC.5)

also satisfies f(x +§) > f(x+§), see (Noise). Now, suppose that the inner maximization in CRM
has an optimal solution (8, 1) given fixed values of x, z, v, which does not satisfy (EC.5). It follows
that there exist i € V and ¢ € [T] such that the left-hand side of (EC.5) is strictly smaller than the

«[1]

right-hand side. Now, observe that (J;

l

,nf[']) € Ai(z;), by definition. Hence, replacing the values of
S’fm and T‘]’fm with the values of Sf[’] and nfm, respectively, provides a feasible solution with strictly

§:*! and where every other component of § is the same as before. We can repeat

larger value of J
this reconstruction of the solution until (EC.5) is satisfied. Since (S,ﬁ) remains optimal, we have
f(x+§) > f(x+9¥),ie., for any fixed treatment policy the inner max evaluation in CRM provides
an upper bound of the inner max evaluation in IRM. |
EC.6 Robust Mixed Integer Reformulation of Conservative
Approximation

In Section 3 the full linearization of CRM is omitted for brevity. In this section we complete the
analysis and obtain an MIP model. At the end of Section 3.2, we obtain the following reformulation
of CRM:

minimize f(x+Yy) (Single-level-CRM)

X,y,2,v,0,6,€,C
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subjectto (EC.4), (v-def),

o+ > (1 —y) L™ (1 — Zw,, VieV,te€[T],sc[t], (EC.6a)

o +E > (1-o szfZYjv,,, VieV,te[T],s€t], (EC.6b)

o, o), & L >0, VieV,te[T],sct], (EC.6c)
t

Y =T (z)el + T (z)ol + Y (67 + 8, VieV,te[T]. (EC.6d)

s=1
Observe that Single-level-CRM is non-linear. In particular, constraints (EC.6a) and (EC.6b),
'x!, respectively. Since I¥°(z;) = I'"(z,) + B/°(1 — 2) and TV (z;) =
7" (z;) + B"(1 — 24, we have that (EC.6d) is equivalent to

yit! <

include the terms v} Z and v;; ‘e

1

Bt =)+ 18 ) (L (B - 2) ) i g+ )

s=1

SO

(B350 + B0l (1 —2)) + TP + T, ,+Z g+ 8Y), VieV,re[T]. (EC.T)

s=1

Hence, we also need to linearize the products (1 — z})®} for s € [t] in (EC.7). Our derivations allow
us to obtain a compact MIP formulation for CRM. This implies that our reformulation keeps the
tractability of the deterministic model presented in Section 2.2. Thus, we reformulate these products
by introducing new variables and employing a standard approach to obtain a linear model; see Glover

(1975), McCormick (1976). Specifically, we define

oy =vir (1-2)), (EC.8a)
, =Zpx;, (EC.8b)
X =vitul, (EC.8c)
A =(B} s} 4 Bi,o)) (1 —2)). (EC.8d)

Observe that each equation in (EC.8) is a product of a binary variable with a non-negative bounded
variable. This ensures that the reformulation we obtain is exact.
Finally, using the reformulation obtained in Section EC.4, we know that (v-def) can be modeled

using (EC.2a), (EC.3). Hence, our robust MIP reformulation for CRM is:

minimize f(x+Yy) (RMIP)

X,¥,Z,V,u,
A, T,0,0,6,8

subject to  (EC.4),(EC.6c), (EC.2a), (EC.3),

o+ > (1 —vy)Lm™ Z Yt VieV,te|T], selt, (EC.9a)
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sk s,k s,k
P TAST, <Vm VzGVte[ ] e,
7:,7, <1- ke {0, .. s} (EC.9b)
o +&°>(1-a foxm VieV,te[T],s€[], (EC.9¢)
<l < Lmaxy .
X — L?ma(lf’: rL) <Z;t} <, VieV,telT], (EC.9d)
0 <Xy < LMy, VzeVze[ ] et
w L (1= i) <7 < k0. ety (BC
t
Y=Y N HE + )+ T + TN, VieV,te(T], (EC.9f)

s=1

0" < (Bis+Bin) L™ (1 —2),
(B 5, +Bm o) — (B,5+B,H)Lmz; <A, VieV,te[T),seft]. (EC9g)
A < (Bsw) + By ol),

In this reformulation, constraints (EC.9a) and (EC.9b) linearize the bilinear terms vf,k z; in (EC.6a).
Note that (EC.9b) corresponds to (EC.8a). Similarly, (EC.9¢), (EC.9d) and (EC.9¢) linearize terms
v,tz‘x’ in (EC.6b). Here (EC.9d) and (EC.9e) correspond to (EC.8b) and (EC.8c), respectively. In
addition, constraint (EC.9f) corresponds to (EC.6d). Finally, (EC.9g) enforces the definition intro-
duced in (EC.8d).

EC.7 Reformulation ideal robust model total fuel load minimization

For the fuel load minimization, i.e., minimizing f(x,z,v) in (18), as mentioned previously in Sec-
tion 4.2, IRM can be optimized directly without the need to approximate the lower level problem.
The resulting formulation is very similar to RMIP since the linearization approach is the same. Below
we present the resulting linear MIP formulation:
t
mipimize ), (xi YA+ 840+ 0+ 1 cﬁ)

X,2,V,u,

Axm0.0.88 i€Ve[T+1] s=1

subjectto (EC.4),(EC.2a),(EC.3),
(EC 9b), (EC.9d), (EC.9e), (EC.9g),

Zo +&>0-y L““"nyn,,, VieV,se[T], (EC.10a)
Zco +&>01-a kax,,, VieV,sc[T], (EC.10b)
mi,c,.,g,.,c;zo VieV,se[T]. (EC.10c)

The expression for the objective function of (EC.10) is the same as in (18) after linearization, whereas
all the constraints, except for (EC.10a)-(EC.10c), which is a linearized expression of (Ideal-dual), are

the same as in the system to formulate RMIP.
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nodeid (i) #" x! nodeid (i) ™ x! nodeid i) "™ x! nodeid (i) "  x!

i i i i

1 28 16.28 10 33 1635 19 24 16.17 28 30 16.32
2 31 16.33 11 9 13.40 20 16 15.49 29 30 16.32
3 8 12.85 12 26 16.23 21 9 13.40 30 17 15.63
4 17 15.63 13 17 15.63 22 14 15.12 31 14 15.12
5 17 15.63 14 34 16.36 23 14 15.12 32 14 15.12
6 33 16.35 15 24 16.17 24 24 16.17 33 16 15.49
7 17 15.63 16 8 12.85 25 14 15.12 34 2 655
8 8 12.85 17 42 16.39 26 18 15.75

9 33 16.35 18 24 16.17 27 30 16.32

Table EC.3 Initial maturities 7" and initial fuel loads (x}) of the locations considered in Example 2 and Section 5. The

calculation of initial fuel loads is given by x} = L™ (1 — exp(—k (" +1))).

EC.8 Initial maturities

For completeness and reproducibility, we provide in Table EC.3 the initial maturities and fuel loads
used in the case study, described in Example 2 and Section 5. These values were also used in Matsy-
pura et al. (2018). To compute the initial fuel loads from these values, we assume an initial post fire
state L™ = 0 and calculate the resulting load using (2) after #"' 4- 1 years of uninterrupted fuel growth.

EC.9 Additional computational results

In this section, we present the remaining results for combinations of [35, G” € {0,0.01,0.02,0.05}
and the scalability results not included in Section 5. Our scalability study uses both the real instance
described in Section 5.1 with a time horizon of 7 = 14 as well as randomly generated synthetic

instances, described later. Each instance was run with a time limit of two hours.
EC.9.1 Additional robust policies and optimization results in Hawkesbury

We first discuss results of the real instance. Table EC.4 presents our results for different values
of BB, [3”. We ran the model of Matsypura et al. (2018) only with [35 = B” = 0 (the deterministic
setting) since no robust version of this model exists. Table EC.4 reports solution times in seconds
for instances that reached the default Gurobi optimality tolerance (0.01%), and also the reported
optimality gap as a percentage for instances that hit the time limit. These results show the clear
superiority of our model with respect to the previous one for our case study in the Hawkesbury region.

Figures EC.1 and EC.2 present the complete mismatch—loss results for all the objectives
considered. These results support our conclusions from Section 5. For the fuel-load objective,
overspecifying uncertainty raises loss but it collapses once treatment-effect uncertainty is reduced
to moderate levels; when fuel-growth noise is near zero, increasing uncertainty of treatment effect
incurs in high mismatch losses. For the active-edges objective, penalties decline only when both

uncertainty sources are small, after which robust plans behave comparably to deterministic ones.
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Figure EC.1 MML (mismatch loss) values for the total fuel load objective, averaged over different budgets b, = 1,3, 5.
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Objective b, | Matsypura et al. (2018) | B3 =0, =0 B>=0.02,1=0 p3=0,p"=0.02 p*=0.02, 1 =0.02

Total 1 3.55% <1 1.30% 22 1.56%
fuel load 3 10.24% <1 6.14% 0.07% 6.61%
5 12.99% <1 4.22% 17 5.69%

Number of 1 29.31% 14 9.67% 74 15.30%
active edges 3 47.90% 10 51.37% 11.84% 47.12%
46.95% <1 49.86% 6.60% 43.99%

Table EC.4 Solution time (in seconds) and optimality gap (in % at the two-hour limit) on the real instance with 7 = 14
and b, € {1,3,5}. The column labeled Matsypura et al. (2018) reports results on the previous equivalent formulation when

(B3, B") = (0,0) in the deterministic case.

EC.9.2 Random instances generation

To generate a random instance, we first generate a random planar graphs as follows. We sample a
number of points from the unit square, and construct a Voronoi diagram, which partitions the unit
square. Vertices of the Voronoi diagram (points in the square that are equidistant to three or more
sampled points) become graph vertices. Edges of the diagram become edges of the graph as well;
only edges with both endpoints in the unit square are used. This procedure is used to generate three
different network topologies with (|V |, |E|) € {(20,26), (51,68), (101, 138)}. Once the planar graph
is generated, we generate instances by assigning different initial maturities to each vertex, generated
as a random integer between 1 and 40. For each graph, 10 sets of initial maturities were generated,
thus giving us 30 instances overall. For each random instance, we solve our model with time horizons
T € {14,19}, budgets b, € {{0.05|V|],[0.1|V|], 0.15|V||}, and uncertainty budgets (%, ") €
{(0,0),(0.05,0), (0,0.05), (0.05,0.05) }. Therefore, for each instance we solve 24 different models.

EC.9.3 Scalability study random instances

In this section, we test the scalability of our models for the random instances generated using
the methodology described in Section EC.9.2. In the deterministic setting (without robustness)
our models are equivalent to that of Matsypura et al. (2018), though with much fewer variables
and constraints. To enable comparison of the benefit of our new model, we test the old model of
Matsypura et al. (2018) on deterministic instances. It is known that adding robustness makes models
more complex as compared to their deterministic counterparts, therefore we test to what extent we
can reasonably solve our robust formulations.

Table EC.5 reports the results for the total fuel load objective. For each graph and parameter
combination (7, b,,[gs, ﬁ”), the average solution time is reported when all 10 instances of initial
maturities solved to optimality within the two-hour limit; otherwise, the average optimality gap is
reported. (It turned out that on all combinations, either all instances solved, or all instances did not

solve.) For the deterministic case (B, ") = (0,0) we see from Table EC.5 that our model is able to
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Objective: total fuel load

V| T b | Matsypuraetal. 2018) | B3 =0,f1=0 $3=0.05,p1=0 B>=0,p1=0.05 P*>=0.05,f"=0.05
20 14 1 4.90% <1 2.98% 522 4.15%
2 9.59% 2 4.90% 1075 5.12%
3 13.12% <1 4.79% 533 5.24%
19 1 14.48% 31 5.83% 0.20% 7.62%
2 19.66% 6 11.18% 0.24% 12.51%
3 20.36% 2 9.50% 0.19% 10.45%
51 14 2 5.69% 2 3.08% 0.14% 3.79%
5 12.30% 4 7.30% 0.09% 8.23%
7 13.35% 2 6.04% 0.07% 7.11%
19 2 12.35% 25 5.90% 0.48% 7.28%
5 21.66% 23 12.04% 0.45% 14.52%
7 21.93% 16 11.61% 0.36% 13.70%
101 14 5 8.25% 7 5.51% 0.28% 6.57%
10 14.07% 13 8.82% 0.13% 10.23%
15 15.96% 10 7.75% 0.09% 9.35%
19 5 17.43% 455 8.16% 0.81% 10.04%
10 26.37% 52 14.15% 0.86% 15.92%
15 25.38% 23 12.84% 0.70% 14.33%
Table EC.5  Average solution time (in seconds) and average optimality gap (in % at the two-hour limit) on synthetic

instances. The column labeled Matsypura et al. (2018) reports results on the previous equivalent formulation when

(B3, B") = (0,0) in the deterministic case.

solve all instances to optimality within five minutes on average, many of which solve within seconds.

In contrast, the previous model was not able to solve any to optimality. When robustness is added,

the computation becomes more challenging, and for the majority of parameter combinations our

model does not solve to optimality. However, the optimality gaps are reasonable, no more than 16%,

and often less than 10%. In particular, the optimality gaps for the robust settings are lower than the

model of Matsypura et al. (2018) for the deterministic setting. These results further demonstrate the

superior scalability of our new formulation, as well as the tractability of the new robust framework.

Table EC.6 is analogous to Table EC.5 except it is for the number of active edges. The results in

Table EC.6 indicate that increasing uncertainty in the fuel load ([3”) makes it harder to find feasible

solutions within the two hour limit than increasing uncertainty in treatment effect (fﬂs). That said,

when feasible solutions are found, lower optimality gaps are reported for uncertainty in fuel growth.

In summary, the scalability results suggest that our robust optimization framework can be used for

the fuel load and active edge objectives.
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Objective: number of active edges

\

V| T b |pP=0,p1=0 p=005p1=0 p>=0,p1=0.05 B*=0.05f"1=0.05
20 14 1 419s (10) 5000s (3) 2670s (10) 3958s (10)
- 11.68% (7) - -
2 14s (10) 31235 (10) 4462s (4) 2464s (10)
Z Z 5.41%(6) -
3 ‘ 45 (10) 2185s (10) 4331s (10) 1500s (10)
19 1 2990s (4) - - -
2.85% (6) 45.85% (10) 10.72% (10) 21.16% (10)
2 50s (10) - _ _
- 59.56% (10) 22.86% (10) 33.95% (10)
3 125 (10) - - 6410s (1)
- 53.99% (10) 21.35% (10) 28.22% (9)
51 14 2 1795s (10) - - 6331s (2)
- 20.52% (10) 1.26% (10) 9.67% (8)
5 160s (10) - - 58955 (2)
- 44.69% (10) 10.12% (10) 8.46% (8)
7 255 (10) - - 4510s (3)
- 33.85% (10) 8.88% (10) 2.19% (7)
19 2 _ _ - _
10.42% (10) 42.12% (10) 14.4% (10) 30.19% (10)
5 654s (10) - - -
- 81.23% (10) 55.39% (10) 80.96% (10)
7 111s (10) - - -
- 80.34% (10) 48.45% (10) 70.48% (10)
101 14 5 - - - -
6.2% (10) 37.72% (10) 11.33% (10) 19.66% (10)
10 2374s (9) - - -
1.07%(9) 68.0% (10) 25.9% (10) 57.51% (10)
15 375s (10) - - -
- 61.5% (10) 24.65% (10) 30.14% (10)
19 5 - - - -
18.7% (10) 59.36% (10) - 58.55% (10)
10 5098s (1) - - -
Z 86.35% (10) - -

709s (10) -

15‘

86.12% (10)

84.23% (6)

Table EC.6 Average solution times and optimality gaps for computing policies under varying levels of uncertainty for
the active edges objective (||€]|,), using synthetic instances. Each cell reports the following in a two-line format: the
average time in seconds and the number of instances solved to optimality within the two-hour time limit (first line); and
the average optimality gap (in %) and the number of instances for which a feasible solution was found within the time
limit (second line). A “~” indicates that the corresponding value is not applicable (i.e., all instances solved to optimality,
no instance solved to optimality or no feasible solutions found). Each entry is based on 10 instances. The four columns for
each objective correspond to different values of [35 and ﬁ", i.e., to get the first column we solve BDM, while for the others

we solve the linearization of CRM given by RMIP.



	Introduction
	Literature review
	Main contributions and structure of this work

	Deterministic model
	Fuel dynamics and objective function
	Base deterministic model
	Base noisy model

	Robust model
	Uncertainty set
	Robust formulation

	Objectives
	General framework
	Fuel load-based objective function
	Number of active edges

	Numerical study
	Real-world instance data and preliminaries
	Case study results and insights

	Conclusions
	Nomenclature
	Summary of the size complexity of the models
	Derivation of the noisy fuel load dynamics in the absence of treatment
	Linearizing noisy fuel dynamics
	Example of (13) and the proof of proposition:CRMisupperboundIRM
	Robust Mixed Integer Reformulation of Conservative Approximation
	Reformulation ideal robust model total fuel load minimization

	Initial maturities
	Additional computational results
	Additional robust policies and optimization results in Hawkesbury
	Random instances generation
	Scalability study random instances






