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Abstract

This paper investigates non-convex stochastic compositional optimization under heavy-tailed noise,
where the stochastic noise exhibits bounded pth moment with p € (1,2]. The main challenges arise
from biased gradient estimates of the objective and the violation of the standard bounded-variance
assumption. To address these issues, we propose a generic algorithm framework of Normalized Stochastic
Compositional Gradient methods (NSCG) and explore two specific variance-reduced methods within this
framework: NSCG-M and NSCG-S. Considering both scenarios with and without prior knowledge of
p, we analyze the sample complexity of NSCG-M under standard Lipschitz continuity and smoothness
conditions to find an e-stationary point and that of NSCG-S under additional, yet less stringent than
existing, mean-pth moment Lipschitzness and mean-pth moment smoothness. The sample complexity
orders derived in this paper are competitive with the state-of-the-art results for first-order methods in
single-level non-convex stochastic optimization under heavy-tailed noise. Finally, we report numerical
experiments results showcasing the effectiveness of the proposed methods.

Keywords: Heavy-tailed noise, stochastic compositional optimization, normalization, variance reduction,
sample complexity

1 Introduction

In this paper, we consider the stochastic compositional optimization (SCO) under heavy-tailed noise:
min U(x) := F(G(2)) = Eevz, [f(Bg~z, 925 9)]: €], (P)

where the outer function F : R? — R with F(y) = E¢.z,[f(y;€)] and the inner function G : R? — RY
with G(z) = Eg.z,[g(z; ¢)] are continuously differentiable for almost every random variable { € Z; and
¢ € Zg, respectively, and possibly nonconvex. For problem (P), at any inquiry point x the exact objective
value G(z), Jacobian VG(z), and gradient VF'(x) are not available, while only stochastic estimates g(z; ¢),
Vyg(z; ¢), and V f(y; &) can be obtained. Crucially, the underlying distributions are heavy-tailed, meaning
the available stochastic estimates possess only bounded pth (central) moment with p € (1, 2] [36]. Formally,
for any z € R% and y € RY,

Ellg(z; ¢) = G@)|IP] < V§,  E[|Vg(a; ) = VG(@)[P] < V7,

. ol (1)
E[|Vf(y;€) — VF()|"] < V7,
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where Vy, V; and Vy are positive scalars.

In many application fields, such as reinforcement learning [14, 2], portfolio optimization [27, 19], mod-
eling the random variables with heavy-tailed distributions (e.g., a-stable or Pareto-type laws) provides a
substantially improved statistical fit. Below we present two examples that motivate the general form of
problem (P).

Ezample 1.1 (Policy Evaluation for Markov Decision Processes). Consider an infinite-horizon discounted
Markov Decision Process (MDP), denoted as a tuple M = (S, A, R, P,7%) consisting of the state space
S, the action space A, a controlled transition kernel P, a random reward function R with expectation
r:Sx A— R, and a discount factor 7 € (0,1). Let 7 : S — Z(5) be a stationary randomized Markov
policy, and define the value function V7™ (s) = E[>;7, ¥'r(s¢, at)|so = s]. Estimating V™ amounts to solving
the Bellman equation V™ = 7™ + P™V7™ where ™ and V™ can be viewed as vectors. As shown in [32],
this task can be formulated as a SCO problem:

min ¢/(E[A]z — E[b]),

zeR4
where ¢ : R? — R is smooth, E[A] = (I —5P7), and E[b] = 7™. This can be formulated as problem (P)
with the outer function f(x) = ¢(z) and the inner function G(x) = E[A]z —E[b]. A multitude of real-world
online decision-making systems exhibit heavy-tailed rewards, which can be mathematically modeled as the
reward functions ™ with finite pth moment [40, 14, 2].

Ezample 1.2 (Conditional Value-at-Risk). Conditional Value-at-Risk (CVaR) is a widely used risk
metric in portfolio optimization and insurance [27, 19, 26]. For a confidence level a € (0,1), CVaR,, is
defined as the expected loss beyond the a-quantile of the loss distribution. It admits the variational form
[27]:

1
CVaRa(Yy) = inf {U 1 Eel(Ys - U)+]} ,
where (z); = max(0,z) and u is an auxiliary variable which is bounded below. To address the non-
smoothness of (z)+ at z = 0, we approximate it by a Huber-type function ¢e(x) with parameter £ > 0,
defined piecewise: /.(z) = 0 for x < 0, £-(z) = 22/(2¢) for 0 < x < ¢, and l.(x) =  — £/2 otherwise. As
stated in [26], Y, may have heavy-tailed distributions with E[||Yy|?] < +00. Minimizing CVaR,, is in the
form of the SCO problem (P) with the outer function f(z) = inf,{u + /(1 — )} and the inner function
G(x) = Eg[le(x — u)]. In this scenario, we can derive E[|{.(Yy — u)|?] < 400 through simple calculations,
thereby violating the standard assumption of bounded variance.

The presence of heavy-tailed noise directly challenges the standard bounded-variance assumption (i.e.,
p = 2 in (1)), which serves as the cornerstone for the theoretical guarantees of numerous stochastic
optimization algorithms. Consequently, conventional SCO algorithms lose their theoretical guarantees and
may become ineffective in such settings. Although the variance may not be infinite in practical scenarios,
it can be extremely large, rendering existing SCO algorithms impractical for real-world applications. As
highlighted by an example in [36, Remark 1], the presence of heavy-tailed noise can adversely affect the
convergence of classical stochastic gradient descent algorithms.

1.1 Related work

In recent years, the study of SCO problems with bounded stochastic variances (i.e., problem (P) with
p = 2) has advanced considerably, driven by growing computational capabilities and large-scale data ap-
plications. Wang et al. [31] introduced the stochastic compositional gradient descent (SCGD) algorithm,
which employs an auxiliary variable to track the inner function. For non-convex SCO problem, SCGD
obtains a sample complexity O(e~8) to find an e-stationary point, a point with expected gradient norm
below €. Subsequent accelerations via extrapolation techniques improved the sample complexity to O(e™7).



This accelerated variant was later extended to handle non-smooth penalty terms while maintaining the
same sample complexity [32]. Chen et al. [3] proposed a stochastically corrected stochastic compositional
gradient (SCSC) method with sample complexity in order O(¢~*), incorporating a linear correction term
for the inner function estimate. By lifting the problem to a higher-dimensional space, Ghadimi et al. [10]
developed the nested averaged stochastic approximation (NASA) algorithm for the non-convex SCO prob-
lems with convex set constraints, also achieving O(e~*) sample complexity. In [33], the authors proposed
data-driven schemes for addressing misspecified SCO problems. Moreover, various variance reduction tech-
niques have also been incorporated into SCO algorithms, leading to improved sample complexity under
some additional assumptions (such as, uniform Lipschitzness or average smoothness). Specifically, by
the idea of stochastic recursive gradient descent, Hu et al. [13] developed an algorithm named SARAH-
Compositional, achieving the sample complexity of O(¢~3). In [37], the authors proposed a composite
gradient method with incremental variance reduction (denoted as CIVR) for the SCO problem with a de-
terministic outer function, which employs the stochastic path-integrated differential estimator (SPIDER)
[8]. Chen and Zhou [4] improved the CIVR with the momentum scheme, resulting in the MVRC algo-
rithm for non-smooth regularized SCO. Further extensions include a normalized proximal approximate
gradient method with nested variance reduction [38] and projection-free variance-reduced methods [17].
Despite these advances, the theoretical analysis in all aforementioned works fundamentally depends on the
bounded-variance assumption, rendering them inapplicable to the heavy-tailed noise setting considered in
this work.
Existing algorithms for handling heavy-tailed noise have primarily focused on single-level stochastic
optimization (SO):
min G(x) = Egez,[g(a; 9)], (2)

zeRd

where the stochastic estimate Vg(z; ¢) is unbiased with respect to G(z) and its error possesses a bounded
pth moment. A prevalent strategy to mitigate the impact of heavy-tailed noise is the gradient clipping
technique, which thresholds gradient norms to suppress outliers. Zhang et al. [36] first applied this
technique to non-convex SO problem (2), 3p1"(2)posilf1g a clipped stochastic gradient descent method (SGD-C)

that attains a sample complexity of (’)(e_ﬁ) in expectation, together with a matching sample complexity
lower bound. Subsequent works have aimed to improve these guarantees. Cutkosky et al. [5] combined

~ 3p—2
gradient clipping with normalization and momentum, achieving the sample complexity of O (e_zfj) in high-
probability sense, where O(-) further hides the poly-logarithmic factors. Liu et al. [22] further introduced
the variance reduction strategy to break the previous lower bound, and then attain an improved sample

complexity of @(6_%) based on the uniform Lipschitzness of Vg. Relying solely on gradient clipping
technique, Nguyen et al. [24] established a high-probability convergence result for the SGD-C that match
the lower bound of the convergence rate. In recent years, a variety of other stochastic optimization
algorithms with gradient clipping have also been developed to mitigate the effects of heavy-tailed noise
[20, 29, 25, 18, 11, 35].

More recent study indicates that, while gradient clipping-based algorithms can provide convergence
guarantees, there is a discrepancy between the theoretical insights and practical applications of this tech-
nique. Specifically, as stated in [15, 12], large clipping thresholds are required to ensure theoretically
convergence, whereas small thresholds are typically employed in real-world applications. This has mo-
tivated the development of clipping-free algorithms. Sun et al. [30] proposed a normalized SGD with

3p—2
momentum (NSGD-M) achieving the sample complexity of 0(6_5?). By incorporating a variance reduc-

tion technique, they also developed the NSGD-VR methods, improving sample complexity to 0(67%)
with the uniform Lipschitzness condition on Vg. Under generalized heavy-tailed noise, Liu and Zhou [23]
proposed a batched variant of NSGD-M. The notable work [15] indicates that normalized SGD (NSGD)
algorithm with batched sampling can also effectively handle the heavy-tailed noise. Convergence results



were established in both expectation and high-probability sense, matching existing lower bounds of sample
complexity. Moreover, the convergence results of the NSGD-M without batched sampling were analyzed
in [15]. He et al. [12] designed NSGD-M variants using three momentum strategies, achieving optimal
complexity without the requirement of explicit knowledge of problem-specific quantities. More recently, the
vanilla SGD algorithm, devoid of any additional strategies such as gradient clipping or normalization, has
been demonstrated to effectively handle heavy-tailed noise in [16]. However, under standard smoothness

assumptions, its sample complexity with O(e_%) is suboptimal for non-convex SO problem (2). Despite
these extensive advances for SO under heavy-tailed noise, the intricate compositional structure of the SCO
problem (P) prevents the direct and efficient application of existing algorithms, calling for novel algorithmic
designs tailored to this setting.

1.2 Challenges

The main challenges in solving the SCO problem (P) with heavy-tailed noise lie in its compositional
structure and the failure of the standard bounded-variance assumption. In particular, the algorithms
developed in this paper needs to resolve the following issues.

e Existing algorithms that effectively handle heavy-tailed noise in SO (2) crucially rely on the unbi-
asedness of the stochastic gradient estimator. In the SCO problem (P), however, the randomness in
both layers of functions makes it difficult to construct an unbiased estimator for the gradient of the
compositional objective. This structural limitation prevents the direct application of SO methods to
the SCO context.

e Conventional SCO algorithms, whose convergence analysis depends heavily on the bounded-variance
assumption, are no longer theoretically justified in the presence of heavy-tailed noise. Moreover,
even seemingly mild assumptions, such as the uniform Lipschitzness of the inner function g, must be
carefully re-examined to ensure they remain compatible with heavy-tailed distributional assumptions.

1.3 Contributions

In this work we study the SCO problem (P) under heavy-tailed noise. We propose an algorithm framework
for Normalized Stochastic Compositional Gradient methods (NSCG), which relies on estimates for the
inner function G, its Jacobian VG, and the outer gradient VF', and updates variables via gradient normal-
ization. We introduce two specific variance-reduced methods, NSCG-M and NSCG-S, and provide a sample
complexity analysis for finding an e-stationary point (see (3)). Under standard Lipschitzness and smooth-

3p—2
ness conditions, NSCG-M achieves a sample complexity of C’)(e_ﬁ) with the prior knowledge of p, and

2
O(e_r—pl) when p is unknown. By further introducing the mean-pth moment Lipschitzness and mean-pth
2p—1
moment smoothness (Assumptions 4), NSCG-S attains the sample complexity of (9(67:?) if p is known.

3
Without prior knowledge of p, the corresponding sample complexity order becomes 0(6_2?’%2). Moreover,
when p = 2, they recover the optimal sample complexity O(¢~3) obtained by first order algorithms for
SCO problems. A detailed comparison with existing algorithms is summarized in Table 1.

1.4 Notations and organization

For any integer T > 1, [T] denotes the set {1,2,..,T}. The Euclidean norm of a vector z € R? is
|z = V2T x, and the corresponding operator norm For a matrix A € R?*? is |A| = max{|Az| | ||z]| = 1}.
The standard Euclidean inner product is written as (-, -).



Table 1: Sample complexity of related algorithms for finding an e-stationary point in non-convex

SO and SCO.
. Moment . Sample
Problem Algorithm Order Assumptions Complexity
_ 3p—2
. . O(e » 1)
NSGD-M [23, 15] pe(1,2] Lipschitzness of VG 2
O(e p=1)*
Uniform _2p=1
SO (2) NSGD-VR [30] pe (1,2] Lipschitzness of Vg O(e »-1)
Lipschitzness of VG, 1 1 2
NSGD-M [12] pe (1,2] Mean-pth moment O((< log(;)); )
smoothness of g O((% log(7))z=2)*
Lipschitzness of _
NASA [10] p=2 FPVF ity O(e™)
_ Uniform Lipschitzness 4
SCSC [3] p=2 of Vf. Vg O(e™®)
B Uniform Lipschitzness _3
MVRC [4] p=2 of f, Y/, g. Vg O(e™)
O(c 7 1)
Lipschitzness of (Theorem 1)
SCO (P) NSCG-M pe(1,2]
F,VF, G, VG 0(67%)*
(Theorem 2)
Lipschitzness of _—
F,VF, G, VG, O(e 7 1)
NSCG-S pe,2] Mean-pth moment (Theorem 3)

Lipschitzness of g;
Mean-pth moment
smoothness of f, g

O(c 7 )*
(Theorem 4)

! Uniform Lipschitzness of function g denotes that for any z,y € R?, there exits a constant £ > 0 such that
lg(x; ¢)—g(y; @)|| < €|z —y]| for almost every ¢, and Lipschitzness of function G refers to |G(z)—G(y)| < £|z—y]|.

2 Mean-pth moment Lipschitzness of g refers to Assumption 4 (a). Mean-pth moment smoothness of g and f refers
to Assumption 4 (b) and (c), respectively.

3 The asterisk * indicates the sample complexity without prior knowledge of the tail index p.



The remainder of the paper is structured as follows. Section 2 presents the foundational assumptions.
Section 3 introduces a general framework for NSCG methods. Section 4 details the two specific variance-
reduced methods: NSCG-M and NSCG-S, and analyzes their sample complexity for solving the SCO
problem (P) under heavy-tailed noise. Numerical experiments are reported in Section 5, and conclusions
are drawn in Section 6.

2 Preliminaries

This section presents the foundational assumptions for our analysis and discusses the specific challenges
of solving the SCO problem (P) under heavy-tailed noise. We begin by stating the assumptions used
throughout the remainder of this paper.

Assumption 1 The objective function ¥(x) is bounded below, i.e., ¥* =inf pa U(z) > —00.

Assumption 2 The function F is £p-Lipschitz continuous and its gradient function VF is Lp-Lipschitz
continuous, and the function G is £g-Lipschitz continuous and its Jacobian VG is Lg-Lipschitz continuous.

The above two assumptions are standard in SCO literature (see e.g., [4, 37, 10]). We proceed by presenting
the crucial assumptions of unbiasedness and review the assumptions regarding heavy-tailed noise. For
integer ¢ > 0, let {&}L_, ~ =1, {d}h_, ~ Za, and {dx}L_, ~ Z» be mutually independent random
variables sampled during the iterative process.

Assumption 3 For any given x € R? and y € RY, the stochastic oracle returns stochastic estimates

g(z:dr), V(y:&) and Vg(z; dy) that satisfy

Elg(z; ¢1)] = G(x), Elllg(z; ¢¢) — G(x)\l”] <Vy,
E[Vg(x;¢)] = VG(2),  E[|Vg(z; ) — VG ()] < V7,
E[Vf(y:&)]l = VF(y),  E[IVf(y:&) - VEQ@P < VY.

Assumption 3 includes the standard bounded-variance condition (when p = 2), but in general is weaker.
Most existing algorithms designed for handling heavy-tailed noise cannot be directly applied to prob-
lem (P) due to its compositional structure. A key limitation lies in their reliance on unbiased gra-
dient estimates of the overall objective. By the chain rule, the gradient of the objective is given by
V¥ (r) = VG(z) "'V f(G(x)). However, under Assumption 3, the stochastic oracles only provide unbiased
estimates for each individual component, but not for the full composition. And constructing an unbiased
estimate of VW is computationally expensive and even infeasible in practice [31, 32, 3]. This fact prevents
the direct application of algorithms designed for the SO problem (2) to the SCO problem (P).

Furthermore, as illustrated by the examples in Introduction, problem (P) involves heavy-tailed noise
in the estimate of the inner function G itself. Such random noise may propagate to the Jacobian estimate,
rendering its stochastic noise distribution heavy-tailed [2]. Consequently, it meets only the bounded-pth
moment condition as stated in Assumption 3, not the standard bounded-variance condition. Moreover,
we consider a general setting that the stochastic estimate noise of gradient VF also follows the heavy-
tailed distribution. Due to the compositional form of the gradient VG(x)"VF(G(z)), the noise from each
source may further accumulate and propagate through the chain of estimation. This phenomenon leads
to amplified bias and variance in the full gradient estimate. These factors collectively significantly distort
the gradient of W(z), making existing SCO algorithms that rely on finite-variance assumptions ill-suited
for the heavy-tailed setting considered here.



Algorithm 1

Require: Initial point z; € R?, step size o > 0, time horizon 7.
1: fort=1,...,T7 do
2:  Call the stochastic oracles to construct the estimates g;, Vg, and V f;.
3:  Compute the estimate @{’g = Vg, V.
4:  Update variable xy;+1 through .
v 59

Tt41 = Tt — (4)
va,

5. end for

This work aims to develop tailored algorithms to solve the SCO problem (P) under heavy-tailed noise,
and to establish their sample complexity to find an e-stationary point, i.e., a point = € R satisfying

E[[V¥()[] < 3)

where the expectation is taken with respect to all random variables generated during the algorithm process.

3 Algorithm framework of normalized stochastic compositional gradi-
ent methods

In this section, we propose the algorithm framework of NSCG methods for solving the SCO problem
(P) under heavy-tailed noise, outlined in Algorithm 1. At ¢th iteration, stochastic oracles provide the
estimates g;, Vg, and V f; to approximate the true values G, VG, and VF, respectively. Their composition
@{ 9 .= VgV, serves as an estimate of the full gradient VG (2;)"VF(G(z;)). We do not require the
stochastic estimate @{ Y be unbiased; instead, we focus on controlling the bias of this estimate. As stated
in Assumption 3, heavy-tailed noise violates the standard assumption of bounded variance, leading to
significantly increased bias in stochastic estimates. To mitigate this effect, we normalize the estimate
@{ " before updating x; along its negative direction. This normalization strategy effectively transfers the
estimation bias to be precisely controlled by the step size « [5]. As a result, desired convergence properties
can be obtained through a carefully tuned step size schedule. For convenience, let

Ay = W(x,) = U*, V9=Vl Vf, VI:=Vg/VF(g), VI:=VG(x:) VF(g).
The following lemma provides an estimate on the averaged gradient norm at iterates.

Lemma 1 Suppose Assumptions 1 and 2 hold. Then, the iterates generated by Algorithm 1 satisfies

T T
2 20
TZ (VU] < 7 Y ENVE = V] + FZEHVgt VG ()]
t=1 t=1 t=1
(5)

Aol S Eflge — Gal] + 2L 4 0L

Glan] + 2L 4 ok

P gt — t ol 5

where L := EéLF + Lolp.



Proof.  From Assumption 2, V¥ is L-Lipschitz continuous (see, e.g. [10]). It follows that

U(zi1) — V()

L
SV (@), 241 — 20) + 5 e — a4

v a2l
=~V (a), =) + -

vl 2
= —a| VI + (V] = V(ay), =T+

V79
(%) ~ ~ a’L
< —a V{9 + o V] = V()| + =
o9 _ 9 9 g g a’L

< —a|V(a)| + 20 (|99 = V1| + V¢ = V] + V] = Ve()]) + 57,

where (*) is by

(VI9 =W (), VP9IV < V19— V0 @) ||V IV = V]9 = VO ()],

and the last inequality is due to
VU (o) < [VE9)+ [V = Vi + V] = V] + V] = VT (ae)].
Taking the expectation on both sides gives

E[W (z141)] — B[ (2)] < 20E[|[V]? — VY] + 20E[| VY — V{|]

a’L (6)
+ 20E[| V] — V()] - aB[[VE ()] + 2.

By Assumption 2, we obatin
E[|V{ = V{|] <E[|Vg: — VG ()| [VF (90)]] < (rE[| Vg — VG (a1)]].
An analogous inequality also holds for E[||V{ — V¥ (z;)|]:
E[|V] = V¥ (zi)|] < E[IVG(2)|[VF(9:) — VF(G(x0))] < LaLrE[|g: — G(x)]]-

Substituting the above two inequalities into (6) and adding up the recursion from ¢ = 1 to T yield the
desired result. o

According to Lemma 1, a convergence guarantee follows if we can control the cumulative errors in (5),
e, YL R[|IVI =], XL, E[|[Vgi— VG(x:)[], and X, E[[lg: — G(a)]]. This motivates our algorithm
designs and analysis in the next section.

4 Variance-reduced NSCG methods

The key step in Algorithm 1 is the construction of stochastic estimates g;, Vg; and V f;. This section
presents two variance-reduced methods based on the mini-batch estimator and SPIDER, respectively. We
will establish the sample complexity of each method for finding an e-stationary point of the SCO problem
(P). To proceed, we first introduce three technical lemmas.



Lemma 2 ([15, Lemma 10]) Let p € (1,2], and My,..., M, € R? be a martingale difference sequence
satisfying E[||M;|P] < +o for all j =1,...,n. Then,

] i E I[P,

n

p
IE[ M;
j=1

2.

Lemma 3 ([7, Example 4.1.7]) Let X and Y be independent random variables valued in (Eq,31) and
(Eo,%5). For any measurable h : By x Ey — R? with E[|h(X,Y)|] < +o0, define g(z) = E[h(x,Y)]. Then
it holds almost surely that E[h(X,Y) | X] = g(X).

Lemma 4 (/28, Theorem 6.3]) For any a,be R? and b # 0, it holds that

- Ca,b)
la+ " < 227P|al” + [ b]” Py

4.1 The NSCG-M method

NSCG-M refers to Algorithm 1 that uses mini-batch estimator to generate stochastic estimates. More
specifically, at tth iteration of Algorithm 1, we generate three index sets consisting i.i.d. samples:

Bt,l = {d)gl)a ¢£2)7 sy ¢§Bt’1)}7 Bt,? = {ng(tl)v AEZ)a .. 7¢tBt 2 }a Bt,?) = {5151) ) 152) PRI 7€tBt ? }7

where By 1, B2 and B, 3 are positive integers. Then, we compute the estimates

1 Bt,l ) Bt 2 Btg
"= B > g@se)), Vo= Z V(e "), V= Z V(96" @)
1= 42 b3

Although NSCG-M can be regarded as an extension of the algorithm in [15] to the SCO problem (P) under
heavy-tailed noise, it is not trivial to analyze its theoretical behavior due to the challenges we mentioned
earlier. We then provide upper bounds for the three error estimates in NSCG-M.

Lemma 5 Suppose that Assumptions 2 and 3 hold. Let {(x¢, g1, Vgi, Vfi)} be the sequence generated by
NSCG-M. Then, for anyt e [T],

N N _p-1
E[|V]? - VIl < 4(Vs +La)ViBys " (8)
_p=1
E[[Vg: = VG2l <2ViBy, ", (9)
p 1
Ellg: — G(zo)|] < 2VyB,, " - (10)

Proof. By the independence of B; 1, B2, and B; 3, we obtain

E[|V]¥ — V{21, 9:] < E[|Vail B[V f: — VF(g:)] 9]

1 B
By 2 B[V (7 8”) 1

<
(11)
B;,E jij (Vf (%?ff@) - VF(gt)) e



For the first term on the right-hand side of the aforementioned inequality, Jensen’s inequality implies that

1 Qe 1 Qe
Bis 2 [HW(Wt 1] < 55 L (|9 (wdl”)[" 1]

2
< =
Bt2

<2(Vy+ fc),

S =

[va <33t, Bl ) - VG(azt)Hp + IVG(xt)p|a:t]’1’

where the last inequality is by Assumptions 2 and 3 and the fact that (a + b) aP + bv with a,b>=0.
Next, we use Lemma 2 to bound E[H ZBtS(Vf(gt7£t ) — VF(g¢))|gt], which follows the proof of [15,

Proposition 1]. Let M} := Vf(gt,ﬁt ) —VF(gt),i=1,...,B3. Based on the fact that M}, -, M} are
independent random variables and g; is o(M}, -+, M, ’_1) measurable, we have

E[M; M}, , M1 = B[V f(g:&") = VF(g1)| 1] = 0

Additionally, by Assumption 3, we obtain

E[|M "] = E[E[|V £(9::&") — VF(90)Plg:]] < VE < +oo.

Thus, applying Lemma 2 yields

p
a5 (Vf (9:6") = VE@)| | < )Y |97 (9:6) = VF@)|'| <2Biavp. (13)
i=1 i=1

Let Z = (¢, ..., ¢{P%)) and s(gr, Z) = | 2275 (V£ (9: €)= VF(g))|P. According to the independence
of g+ and Z, we apply Lemma 3 obtaining

s B . s
Els(o Dladr =E || (9 (56”) = V@) | | < 285V
i=1

Furthermore, applying Jensen’s inequality gives
Bt’3 . 1 1
E[|Y (9 (9:6”) = VF(a))| It | <Els(gr, 2)lge] < 2B{,Vy. (14)
i=1

Finally, taking the expectation over (11) and substituting (12) and (14) leads to (8). Through completely
similar analyses, we can also obtain (9) and (10). o
We now establish the sample complexity results of NSCG-M to find an e-stationary point.

Theorem 1 (complexity with known p) Suppose Assumptions 1, 2, and 3 hold, and for any given

Aqgyd , ) ) P . 1602 LZV2
T €Ny, let = ($7)2. The estimates in (7) use the batch sizes Byy = [(01T)%2] with by = —K 1+,
2772

Byo = [(boT)52] with by = "2, and Byg = [(bsT)% 7] with by — "XV Then, the iterates
generated by NSCG-M satisfy

T

Z (V¥ ()] =0 (T7%)

- _3p—2

and the sample complexity to find an e-stationary point is in order O(e »=1).

10



Proof. By substituting the results in Lemma 5 into Lemma 1, we obtain
T p—1

T
1 4
T;MVMMM<T;<wmwmwm VB,

—=1\ A ol
+LGLFVyB,, ” ) + —Tl + 0‘7 (15)

According to the choice of parameters o, By 1 B2 and By 3, we further have

S(VJ -l-fG)Vf n 4UpVy n 45@LFV:Q n VAL n VAL

1 T
= MENVI @] <
t=1

(bsT): (D)2 (WT): T3 272
5\/A1 (9( )
Ts '

To find an e-stationary point, we set the number of iterations T' = O(e2). Consequently, the total sample
T
N = Z(B,n + Bio+ B 3) = O <<<b1)2p 2+ (52)21’ 2 + (bg)2r-

complexity (denoted as N) is calculated as
) (A L) )
2
t=1 €
3p 2
—o( ).

This completes the proof. o

NSCG-M achieves the same order of sample complexity as the algorithms for non-convex SO problems
(2) [36, 15, 30, 23, 12]. Moreover, when p = 2 (i.e., the finite variance case), the sample complexity of
NSCG-M reduces to O(e~*), matching the optimal results in the existing work of non-convex SCO problems
[10, 3].

Theorem 1 establishes the sample complexity of NSCG-M when the tail index p is known. However, in
many practical computations it is difficult to determine the value of p. Under such circumstances, NSCG-M
owns the following properties.

Theorem 2 (complexity with unknown p) Suppose Assumptions 1, 2, and 3 hold, and for any given
T e N, let a = (%)% The estimates in (7) use the batch sizes By1 = [biT| with by = EQGL%VQZ,
By o = [boT| with by = E%VJQ, and By3 = [bsT| with bs = (Vi + 6@)2‘/}2. Then, the iterates generated by
NSCG-M satisfy

*Z E[|V¥(z)]]=

t 1

p—1

2-p 2-p 2-p
((VJ-I-fg)Vf) P +(€FVJ) P+ (ggLFVg) P n AL
% Tz )’
-1
which is in order O(T_pT). Moreover, the sample complezity of NSCG-M to find an e-stationary point of
2

problem (P) is in order O(ﬁfzfpl).

Proof.  Inequality (15) in the proof of Theorem 1 remains valid. With the chosen parameters o, By 1,
B2, and B3, it follows directly that

(VJ + EG)V 46pVy 4aLpV, VAL VAL
—ZE|V‘IJJU,5)H] p;lf+ =+ L§’+ T
t=1 (bgT) (bQT) (blT) T2 272
((VJ + fg)Vf) " + 4(€FVJ) v + 4(€0LFV ) N 24/A1L
< i
TT T2

N|=

2-p 2-p 2-p
_ 0 (((VJ"FEG)VJC) » + (EFVJ) p + (fgLFVg) P N VA1L>

e T
_p=1
=(9<T P )

11



Following the same derivation logic as in Theorem 1, the sample complexity to find an e-stationary point

is
AL\ _2p
N:O((bl+b2+b3)< ! ) ):(’J(e p—l).

61)

This completes the proof. o
The proof of Theorem 2 follows a reasoning similar to that of Theorem 1. Note that Theorem 2 presents

2
a sample complexity of (’)(efpfpl), matching the result for the SO methods without the prior knowledge of
p [12, 23]. Moreover, for p = 2, this result can still be reduced to the sample complexity of O(¢~4).

4.2 The NSCG-S method

NSCG-S refers to Algorithm 1 using the variance reduction technique SPIDER [8]. Formally, NSCG-S
is a double-loop method. In each outer iteration t € [T], we use large sample sizes B 1, Bt 2 and B3 to
construct the estimates of G(z:), VG(zt0) and VF(g. ), respectively. For inner iteration j € [r — 1]
with integer 7 = 1, the SPIDER estimator is employed in combination with relatively smaller sample sets
Stj1, Stj2 and S 3 to construct the estimates of G(xy;), VG(2;) and VF(g ), respectively. More
specifically, at tth outer iteration, stochastic estimates are constructed through

1 By
91:,0=BZ1 $t07¢t s

)

B

Vo = 2 (0 4, (16)

Bt,3

1 ()
Vfio = Kg Z; Vi(g0:&"),

where By = By k|, k = 1,2.3. Within the inner iterations, they are built in the following manner, that is
for je[r —1],

St
RN i i
gtj = gtj—1+ S ; <g($t,j;¢l(m)-) - 9($t,j—1;¢§,;)) ; (17)
s
=TI 1\ — A0 1
Ve =g | Vo1 + o Z Vo(re:8\)) — Vo(rei1:8)) | . (18)
t,2 i=1

1 St,1 ) )

Vi = Vgt g 2 (Vo &) = Vilos6))) (19)
=1

where Sy = |S; k| for k =1,2,3, and the projection operator Il for R > 0 is defined as Ilg(z) =
argmin|;|<r |z — x|?. The projection operator plays a crucial role in bounding the stochastic Jacobian
estimate Vg; ;. Finally, the inner iteration ends after setting x¢110 = ¢ r,.

To establish the sample complexity of SCO algorithms based on variance reduction techniques, existing
analysis (such as those in [13, 4, 38, 21]) typically requires g(x; ¢) satisfy uniform Lipschitzness, i.e., for
any z,y € RY |g(x;0) — g(y; ¢)| < £y|x — y| for almost every ¢, with £, > 0. However, this assumption
is not applicable to the problem (P) under heavy-tailed noise. Specifically, the uniform Lipschitzness and

12



almost-sure differentiability of g(-;¢) implies |Vg(z;¢)|| < ¢, for any z € R% Then, for some z € R?
satisfying |VG(z)| < +00, there exists a > p such that

E[[Vy(z; ¢) = VG(@)[*] < E[[Vg(z; )" + [VG(2)[*] < +eo,

which contradicts the Assumption 3 that only guarantees a finite pth moment. Therefore, a weaker
assumption is needed for (P) under heavy-tailed noise.

Assumption 4 The following conditions hold concerning problem (P).

(a) (Mean-pth moment Lipschitzness of g) There exists {5 > 0 such that
Ellg(x;¢) — g(y; 9)IP] < &x —y|?,  Va,ye R
(b) (Mean-pth moment smoothness of g) There exists Ly > 0 such that

E[|Vg(z;¢) = Va(y; o)l < Lhlz —y[”, Yo,y eR7

(c) (Mean-pth moment smoothness of f) There exists Ly > 0 such that
E[|Vf(2;:€) = VI OIP] < Lz —y[P,  Va,yeRL

Remark 1 Note that Assumption J (a) combining the almost-sure differentiability of g(-; ¢) implies E[||Vg(x; ¢)|P] <

5 for any x € Re. It is noteworthy that, Assumption 4 (a) can be implied by the uniform Lipschitzness
of g(x; ¢). Moreover, it also recovers the condition of bounded second moment (i.e., E[|Vg(x; ¢)|?] < £2),
which is standard in the SCO literature [3, 10, 34]. When p = 2, Assumption 4 (a) reduces to the mean-
squared Lipschitzness (such as in [17, 39]). Similarly, Assumption 4 (b) and (c) are relaxed conditions
tailored for heavy-tailed noise settings. Similar conditions in the SO literature relate to the so-called “weakly
average smoothness” [12, 9]. For p = 2, they recover the standard mean-squared smoothness as seen in
[8, 6, 17, 39]. Therefore, when 1 < p < 2, our Assumption 4 is strictly milder and better aligned with the
behavior of heavy-tailed noise.

Next, we redefine the relevant notation for NSCG-S. For any ¢t € [T'] and j € [z — 1], let
At,j = \I’(l‘td) - \I’*, 6{7’]‘(; = VngVft,j,
Vi =Vg ;VF(g;), VI :=VG(x;)"VF(g1,),

and filtration J; ; be the o-algebra generated by all random variables used in the first ¢ outer iterations and
the first j inner iterations. Let {(z+;, ¢, Vgt.j, V frj)} be the sequence generated by NSCG-S. We state
the averaged gradient norm estimate tailored for NSCG-S below, omitting its proof as it follows closely
that of Lemma 5.

Lemma 6 Suppose Assumptions 1 and 2 hold, the iterates generated by NSCG-S satisfies

-1

a

E[[V¥(zt,5)]]

ﬂ\“ =
HM% m

1
el 0

tz %,

Tt—1

T
7; Z > E[|Vgr; — VG(ar)]]
t=1 j=0

— Aip aL
g (gt — Gz )] + anT + 5

IIMH

where L := E%LF + Lolp.
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The following lemma provides the upper bounds for the three error terms.

Lemma 7 Suppose Assumptions 2, 3, and j hold, and R = {g. Then for any t € [T] and j € [1 — 1],

1 _p—1 p—1

E[lgej — Gxej)] <87 ally +€6)S,, 7 +2VyB,, ",
1 _p—1 _p—1

E[|Vgr; — VG(2e))] < 877 a(Ly + L) S, " +2ViBy,"

pl _p—1

1
E[|V]¢ = V{1 < RS7 oLy + Lp)S, 57 +4(Vy+Lc)ViB, 3" ).

Proof.  Our proof focuses on deriving the upper bound for E[|g:; — G(x¢;)|]. Bounds for the other two
terms are obtained similarly with only minor modifications.
For E [||gt,; — G(z+;)||], we apply Lemma 4 obtaining

E[lge,; — Gz ) || Fj-1]
< 2% [llgt,j — E 91,41 F1 11|17 | Frj-1] + E[IE [ge1Frj-1] — Glae )P [Frj-1]

R [<gt,j — Elgs,|Ft 1], E [gt,j|ft,j—1]j G(xt’j»lftj_l}

|E [ge,j1F2,j-1] — G (e y)|IP7P ’
< 27PE gty — E (g6, Fej—1]I” | Fej—1] + E[E [92,]Fr 1] — Glae )P | Fej-1]
(Elgt; — Elge,jlFrj—1)Fej-1], E (g1, Frj—1] — Glae))
E [ge,j|Ftj—1] — G(2e5) >
< 22PE (gt — ElgelFej—1]I” [Fej—1] + EE [9041Fej-1] — Glae)|” | Fj1]

where the second inequality follows from the F; j_i-measurability of G(z; ;) and E[g; ;|Ft,j—1], and the last

inequality is due to E[g;; — E[g¢ j|Ftj—1]|F¢,j—1] = 0. Taking total expectation on both sides of the above
inequality yields

+p

E[lgi; — G(2e)|P]1 < 22 PE[|gt; — E [gej|Fej—1]IF] + E[|E [ge|Frj-1] — G(ze.5)|P]
<2E[lgr,j — Elge | Ft-1]1"] + EIE (g1, 1511 — Gle)[] (20)
7& jb

Below, we derive an upper bound for 77 and the equivalent form of 7.
Upper bound for 7;: By the definition of (17), it follows that

g = BlowglFaml =gt SLSZI (9 (20:905) =9 (w23-1:64)))

St,1

—E g1+ o Z ( (%,j;cf)g?) -9 (l't,jfhgbgf])')) | Ft,j—1 (21)

o X (o (i) - (rgmvol]) - G + Gy

We also apply Lemma 2 to bound the right side of above equality. We denote M;; := g(mtJ;gbg?) —
gy j-1; qbgzj)) — G(245) + G(xtj—1), and check that for any j € [r, — 1],

E [M; [ Ft -]

=E [9 (mt,j; ¢§Z)) ~g (a:t,j—l; ¢§’3> = G(a;) + G(xt,j_1)|ft,j_1]

=E [g <£L‘t7j; ¢§z])) - G(azt,j)|xt’j] +E [G(I‘t,jfl) -9 (l't,jfl; ¢§l])> ‘xt,jfl] =0,
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where the second inequality holds because x;; and z;,;_1 are Fs_i-measurable and qﬁglj) is independent
of Fij—1, and the last equality is due to the unbiasedness of function g(;¢). By following a reasoning
analogous to Lemma 5 and invoking the bounded pth moment assumption with the tower property of
expectation, we obtain

I=E [Hg (ﬂft,j; d’i?) -9 <$t,j—1; ¢£1])) — G(z¢) + G(JUt,j—l)Hp]
([l (v 0t3) ~ 0[] Bl (rimai6l5) - G

<2
<4Vgp < +00.

E[[| Mz,

Hence, Lemma 2 gives

p

E Sf (9 <$t,j;¢£2) -9 (wtvj‘lgqjgfﬂ)) ~ Clowg) + G(xm_l)>
i=1

< 2% E [Hg (xt,j; ¢§Za)> -9 (xt,j—u ¢§Zy)> — G(aj) + G(ww“l)Hp]
i=1

Combining the fact that |a + b|P < 2[a|? + 2[b|?, we further obtain

t7 p

’ SZI (9 (mmqﬁffa)) -9 (‘”tﬂj—ﬁqﬁg) ~Clowg) + G(xt’j_1)>
i=1

< 4% (E [Hg (:rt,j; ¢§ly)> -9 (art,j—u <Z>§ZJ)) Hp] +[|G(ar5) — G(wtj—l)Hp) .
i=1

< ASp1 (60 + £3) |wej — x|
< 4aP8,1 (0 + 12,

where we apply Assumption 4 (a) and Assumption 2 in the second inequality. From (21), it follows that

Ty = Ellgt; — Elgt|Ftj-1] "]

P
<E 5112 (9 <9Ut,j; Cf)gzj)) -9 (J?t,jﬂ; ¢£Z])) — G(zy) + G(%gél))

RS ) (0 ’ )
= ngE ; (9 (xt,j;¢t7j) -9 (xt,j—n ¢t,j> — Gy ) + G($t,j-1)>

(22) e lep
< 4ol (b +45)S, 1

Equivalent form of 75: Based on the fact that g;;_1 is a constant conditioning on F;;_1 and the

assumption of the unbiasedness for g(zy ;; ¢§ZJ)) and g(x¢j—1; gbgz])), we obtain

Ty = E[|E [g¢,|Ft.5-1] — Gz )]
p

St1
L < (D) ()
=E||E | g1+ S Z; (g (wt,j, ¢m~> —9 (fft,jfl» ¢t,j)) [Frj—1 | — Glzey)
= E[llgrj—1 — G(xr-1)["]-
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Therefore, substituting the bounds obtained in (23) and (24) into (20) gives

E[|ge; — Glzeg)|P] < 8P (€8 + 02)S, 17 + E[|gj—1 — G(ze-1)|"]
< 80P (8 + 02)8, 17 + E[gro — Glaeo) ]

Applying Jensen’s inequality and the fact that (a + b)'/? < a'/? + b'/P with a,b > 0 yields

1 _p=1
Ellge; — Gz )] < 87 ally + £c)S; 1 " +Elllgro — Glaio)l]

1 p—1

<8P a(ly +4a)S,, " +2VyB, ",

-

’ﬁ

1

where E [|g1.0 — G(z+0)] < 2V B is a direct result of Lemma 5. This completes the proof of the upper
bound for E[gi.; — Gzl
For E[|Vg:; — VG(x¢5)]], let

St

55 (V905 973) = Volaej1;0,),
1

7 1=

which implies Vg, ; = IIg[ve j]. With R > £, we then apply the non-expansive property of the projection
operator to get

ElIVgr; = VG )] < B[R (ve;) = Tr(VG(21,5))[] < E[|vr; — VG (25)]]-

The desired result can be obtained by an entirely analogous proof process.
For B[V — V{.|], it holds that

E[|[V]Y = Vi1 <E[Vge IV fo; — VF(9:)I] < RE[IV fu; — VF(g2,9)]],

where the last inequality is because the projection operator maps any matrix 1nto the norm ball of radius R.

1) ¢ (St,1)
Pt

NS
the filtration F; accordingly. Let Fri=Fiv a(qﬁg}j), ey gzﬁtst 1)) be the smallest o-algebra containing both

Note that g;; depends on the newly sampled random variables {¢ }, hence we need to enlarge

Fr and a(¢§71j), e (ﬁtst 1)) A similar proof process then yields the desired result. O
Now, we are ready to present the main result concerns with NSCG-S method.

Theorem 3 (complexity with known p) Suppose Assumptions 1, 2, 3, and 4 hold. For any given
TeNy,letry=7=T and a = T(++2) The estimates in (16) use the batch sizes By = [(blT)P%l] with
by = 12(GLEV,, Byy = [(bsT)71] with by = 1205V, Brg = [(bsT)7-1| with by = 24R(Vy + L)V, and
the estimates in (18), (18), and (19) use the batch sizes Sy1 = [(817%)#] with s1 = 480qLr(ly + Lc),

Sto = [(SQT%)#] with so = 48(p(Lg + L), and S 3 = [(337%)ﬁ] with s3 = 48R(L¢ + L), respectively.
Then, the iterates generated by NSCG-S satisfy

1i Z V()] = O (T
TtTt: = t,7 )

_2p—1

p—1 )

and the sample complexity to find an e-stationary point of problem (P) is in order O(e
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Proof.  Substituting the results in Lemma 7 into the Lemma 6 gives
T Tt— 1

Z > B[V ()]

tl]O

T 1—1 _p—1 _p—1
nTtZlZ <87’t a(Ly+Lp)S, 3" 4(VJ+£G)Vth73P>

; (24)
I T Tt— 1 Ll ,L_l
—TZ > <8Tt 0+ La)Sy " +2ViB,," )
t=1 j=0
%GLFinZI 87 ally +)S,, 7 12,8y, 7 )+ 2L ok
’7' —_—.
Pyl t @ “ atT 2

Noting that 7, By 1, B2, Bt 3, Si,1, St2, and Sy 3 are independent of ¢, we then obtain

TTt 1

SR(Vy+4c)Vy 4lpVy AlgLpV, 16aR(L;+ L
ZZ I (JbTG)f+ bFTJ+ C;;g+ (Ly+Lr)
t 15=0 3 ? ' »
| 16alp(Ly + La) | 16algLr(ly +l) | Ay, oL
5o s1 atT 2

By the choice of parameters by = 120G LpVy, by = 1205V, b3 = 24R(Vy + Lg)Vy, s1 = 480 Lr(ly + L),
sy = 480p(Ly + Lg), s3 = 48R(Ly + LF), and 7 = T, we further have

T 1¢—1
AIO 1 Oé(L-i-Q)
t 1 5=0

According to a = it holds that

__2
T(L+2)’

1 & TH Dol +2) 2 .

Note that NSCG-S is a double—loop method whose inner and outer iterations require different sample
sizes. Hence, to find an e-stationary point, the total number of samples required by NSCG-S with setting
T =011

s 7

N = (Bt71 + Bt72 + Bt73 + Tt(StJ + St,2 + St73))

-
Il
—

= O (01 + @71+ 07 ) T (07T 4 ()P o) )

=0 (e 215;11) .

This completes the proof. o

It can be observed that NSCG-S achieves a lower sample complexity order than NSCG-M. Moreover,
NSCG-S attains the same order of the sample complexity as the algorithms with variance reduction strategy
for the non-convex SO problem (2), such as NSGD-VR [30] and NSGD-M [12]. In the finite-variance case
(i.e., p = 2), NSCG-S recovers the optimal sample complexity O(e~?) well-established for variance-reduced
SCO [37, 4].

The following theorem also provides the convergence results of NSCG-S without the prior knowledge
of p.
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Theorem 4 (complexity with unknown p) Suppose Assumptions 1, 2, 3, and 4 hold. For any given
T eNi,letw =7 =T and « = T~L. The estimates in (16) use the batch sizes By = [(b1T)?
with bl = 4€GLF%7 Bb72 = [(bQT)2] with bg = 4€FVJ, Bt73 = [(bgT)2] with b3 = 8R(Vj + Eg)Vf, and the
estimates in (18), (18), and (19) use the batch sizes Sy1 = [s17] with s1 = (160gLp(ly+Lc))%, Sta = [s27]
with sy = (16¢p(Ly + Lg))?, and St = [s37] with s3 = (16R(Ls + LF))?, respectively. Then, the iterates
generated by NSCG-S satisfy

T’Ttl

— Z SB[V ()] = (T_% +T71) =0 (T—%) ,

tl]O
3

and the sample complexity to find an e-stationary point of problem (P) is in order 0(6_27’%2).

Proof. Since all parameters 7, By1, B2, B3, Si1, St2, and Si3 are also independent of ¢ in this
theorem, substituting them into (24) yields analogously

T m—1 1
1 S8R(V;+ 45V, WiV WalrV, 16 R(L++ L
o 5 Bl < LN S Sl | SRR
=1 j=0 (bgT) P (bgT) P (blT) P (SgT)T
1 1
167rolp(L, + L 167ralgLp (b, + ¢ A L
+TO‘F(I)9;1 G)Jr TOéGFp(;lg G)Jr 1’;+%-
(s271) » (s17) » ot

With the selected values of by, b, b3, s1, s2, and ss3, it follows that

2-p 2-p 2-p
s P P p 2— 2— 20—
1 by” +by” +bs” 2p 22 2\ 2y,
7 Z [V ()] < : N R R
t=1 j=0 T »p
Aipg | aL
atT 2
Setting 7 = T and a = T~ gives
T 2-p 2-p 2-p 2-p 2-p 2-p
1 m—1 b? +by," +by” 45,7 48,7 +85° Ao+ L)2
7 2 2 EllVE @)l < pRt
=1 7=0 T »

—-0 (T—QPJ2 4 T—1> - O(T~

By setting T' = 0(6_2;%2), the sample complexity to find an e-stationary point is

p

N=0 (((61)2 + (bg)? + (b3)2) (e_2p72>1+2 (5148t ss) <6_2pp2)1+1+1)

=0 <e_%) .

This completes the proof. o
In the absence of prior knowledge of p, NSCG-S can still achieve a sample complexity superior to that
established in Theorem 2 and improves the optimal result for the SO methods up to a logarithmic factor

3
[12], ie., O((21og(2)) 23 ). Moreover, NSCG-S continues to recover the optimal sample complexity O(e~3)
when p = 2.
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Figure 1: The SaS and Pareto distributions with various tail indices.

5 Numerical experiments

In this section, we apply our NSCG methods to a policy evaluation task following the experimental setup
in [32, Section 4]. Recalling Example 1.1 in Introduction, we consider a MDP denoted as a tuple M =
(S, A, R, P,7). The objective is to evaluate the value function v™ € R? associated with a policy m, where
each component v™(s) represents the expected cumulative return starting from state s. Let rs, 5, denote
the reward when transitioning from state s; to so. The value function satisfies the Bellman equation
v™(s) = Ex[rs, s, + 0™ (s2)|s1] for all s1, so € {1,...,S5}. The solution of this equation, denoted v*,
satisfies v* = v™. In this experiment, we adopt a tabular representation to construct the linear mapping
@s € RS for the feature of v™(s). The tabular representation encodes each state as a one-hot vector, where
a value of one appears exclusively at the dimension corresponding to the current state index [1]. Formally,
the value function v™(s) is approximated by v™(s) ~ ¢ w* for some w* € R®. As illustrated in [32, Section
4], this problem can be formulated as a Bellman residual minimization problem, i.e.,

S
min ) (¢ w — qf (w))?,

S
weR ]
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Figure 2: Convergence performance of the ASC-PG method with different step sizes.
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Figure 3: Convergence performance of the NSCG methods under SaS distribution.
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Figure 4: Convergence performance of the NSCG methods under Pareto distribution.
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where ¢7 (w) = Ex[rs¢ + o w] =Y, Pl ({rss + Yo, w}). This problem can be formulated into problem
(P) with

S
G(w) = (p{w,qf (w),..., psw, g§(w)) e R*,  f(G(w)) = Y (o) w — ¢} (w))* € R.
s=1

In our simulation, each MDP instance consists of S = 100 states and three actions per state. For
any given state-action pair, the agent transitions to one of four possible subsequent states. The transition
probabilities are sampled uniformly from the interval [0, 1] and then normalized. For the reward of each
transition, unlike in [32] where it is uniformly generated from [0, 1], we consider two heavy-tailed rewards
drawn from either a Symmetric a-Stable (SaS) or Pareto distribution. The characteristic function of
the SaS distribution is defined as p(t) = exp(—c|t|*), where @ € (1,2] denotes the tail index and c is a
scale parameter. The Pareto distribution exhibits the probability density function f(z) = @z, /%" with
T = x,,, where x,, denotes the threshold parameter and we reuse the notation & to denote the tail index
of the Pareto distribution for convenience. When the tail index & fails within (1,2), both distributions
exhibit heavy-tailed behavior, possessing only finite pth moment for p < &. With parameters set as ¢ = 5,
Tm = 3and a € {1.8,1.5,1.2}, these two distributions are visualized in Fig. 1. For visual clarity, the reward
values are truncated within [—50, 50], [—100, 100], and [—200,200] for & = 1.8, 1.5, and 1.2, respectively,
preserving at least 98% of the data. It is evident that the SaS and Pareto distributions exhibit a significant
number of outliers beyond the upper and lower bounds. As & decreases, both distributions display more
frequent extreme values, indicating more severe heavy-tailed behavior.

We first verify that the accelerated stochastic compositional proximal gradient (ASC-PG) method
from [32] fails under heavy-tailed environments, as demonstrated in Fig. 2. The step size is set as
a = min{n, t 7'}, where n € {1072,5x1073,1073, 5x 10™*,107*} and ¢ denotes the iteration step. This mod-
ification is necessary because the original schedule (i.e., t~!) directly causes divergence in |w; — w*|/|w*|.
The results demonstrate that ASC-PG method fails to converge under these step sizes when & = 1.8, not to
mention the lower &. Moreover, larger step sizes further degrade convergence performances, while smaller
step sizes do not lead to successful convergence.

We proceed to evaluate the two NSCG methods with their step sizes tuned over the set {5x1072,1072,5x
1073,...,107°}. For NSCG-M, the number of batch sizes is set to 50. To ensure a fair comparison, we align
the sample cost of iteration t across algorithms. For NSCG-M, the batch size is fixed at 50. For NSCG-S,
we set the inner iteration count to 4 with and inner/outer batch sizes to 5 and 20, respectively, resulting
in the same per-iteration cost of 50 samples. The convergence performance of the NSCG methods under
SaS distribution are shown in Fig. 3, which plots the average of 20 independent runs. It is evident that
NSCG-S requires significantly fewer samples to converge than NSCG-M. The log-scale plots demonstrate
that NSCG-M achieves higher convergence accuracy, which benefits from its larger batch sizes per iteration.
In the more severe heavy-tailed case (@ = 1.2), convergence demands a larger number of samples. Similar
convergence behavior is observed under the Pareto distribution with the average of 20 independent runs,
as shown in Fig. 4. Due to the larger initial bias, achieving convergence in these cases requires a greater
number of samples. These observations are consistent with our theoretical insights.

6 Conclusions

In this paper, we have presented a generic framework of normalized stochastic compositional gradient
methods for non-convex SCO under heavy-tailed noise. Two concrete methods are derived within this
framework: NSCG-M and NSCG-S, each employing a distinct stochastic estimator to reliably approximate
the inner function, its Jacobian, and the outer gradient in the presence of heavy-tailed noise. We established
the sample complexity of both methods for finding an e-stationary point under certain conditions, with

21



and without knowledge of p. These results align with the best-known complexity of first-order methods
for single-level stochastic optimization algorithms under heavy-tailed noise and, for p = 2, recover the
optimal complexity for the stochastic composite optimization algorithms. Numerical experiments on a
policy-evaluation task with heavy-tailed rewards confirm the practical efficacy of the proposed methods.
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