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ABSTRACT

The tractability of optimization problems depends critically on structural properties
of the objective function. Convexity guarantees global optimality of local solutions
and enables polynomial-time algorithms under mild assumptions, but many prob-
lems arising in modern applications—particularly in machine learning—are inher-
ently nonconvex. Remarkably, a large class of such problems remains amenable to
efficient optimization due to additional structure that weakens or generalizes con-
vexity without forfeiting favorable algorithmic behavior. This paper surveys and sys-
tematizes notions of convexity and its generalizations, while also providing new com-
parative insights and explicit inclusion relationships among these function classes.
We present a coherent taxonomy of functions that generalize, strengthen, and relax
convexity, consolidating definitions, equivalent characterizations, closure properties,
and hierarchical relations that are currently scattered across the optimization, op-
erations research, and machine learning literature. Particular emphasis is placed on
quasar-convexity, a recently introduced geometric condition that captures structured
nonconvexity while enabling convergence guarantees comparable to those of convex
optimization for many first-order methods. Through explicit inclusion diagrams and
systematic comparisons, we clarify the relationships among classical generalizations,
geometric variants, regularity conditions, and partial convexity notions. The result-
ing “convexity zoo” provides a comprehensive reference for researchers seeking to
understand and exploit structured nonconvexity in contemporary optimization.

KEYWORDS
Nonconvex optimization; generalized convexity; quasar-convexity; star-convexity;
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1. Introduction

Convexity stands as arguably the most consequential structural property in mathe-
matical optimization: when both the objective function and feasible region are con-
vex, every local minimizer is automatically global, first-order optimality conditions are
both necessary and sufficient, and a rich algorithmic toolkit—from gradient descent
to interior-point methods—delivers polynomial-time convergence guarantees [20, 68].
This elegant framework has driven the remarkable success of convex optimization
across signal processing, machine learning, statistics, and control. Yet the scope of
practical optimization extends far beyond convexity; modern applications in reinforce-

CONTACT A. Khademi Email: abbaskhademi92@gmail.com



ment learning [31], deep learning [26], matrix factorization [25], and robust statistics
[60] routinely involve objectives that are manifestly nonconvex. A central challenge
in contemporary optimization research is therefore to identify and exploit structure
within nonconvexity—properties weaker than convexity that nonetheless enable effi-
cient algorithms with rigorous guarantees.

This challenge has spawned a rich and increasingly fragmented landscape of func-
tion classes that generalize, strengthen, or relax convexity in distinct directions. Clas-
sical generalizations such as quasi-convexity and pseudo-convexity, introduced in the
1960s [9, 62], preserve convex sublevel sets or the equivalence between stationarity and
global optimality. Weakly convex (also termed para-convex or semi-convex) functions
[24, 30, 80, 88] permit controlled deviation from convexity via quadratic majoriza-
tion, thereby enabling proximal-type methods in nonsmooth nonconvex settings [27].
Regularity conditions—including the Polyak-Lojasiewicz (PL) inequality [76] and er-
ror bounds [61]—encode gradient dominance and ensure linear convergence without
any convexity assumption. More recently, geometric generalizations have emerged as
particularly powerful: star-convex functions, formalized in the context of cubic reg-
ularization [69], require the convexity inequality to hold only along rays emanating
from a global minimizer, thereby accommodating local nonconvexity while preserving
favorable global structure.

Among these, quasar-convexity has rapidly become a focal point for the algorith-
mic analysis of structured nonconvex problems. Initially introduced as “weak quasi-
convexity” in [39] for linear dynamical system identification—and subsequently re-
named in [42] to avoid confusion with classical quasi-convexity—quasar-convexity is
parameterized by v € (0, 1], continuously interpolating between star-convexity (y = 1)
and progressively weaker conditions as v — 07. This parametric flexibility captures
a form of “structured nonconvexity” that is strict enough to enable fast convergence
yet broad enough to encompass objectives arising in recurrent neural network training
[37, 39], policy optimization [31], low-rank matrix recovery and phase retrieval [25],
and modern neural loss landscapes [90]. Algorithmically, quasar-convex functions ad-
mit convergence rates closely mirroring those for convex optimization—representing
a dramatic improvement over generic guarantees for smooth nonconvex functions and
identifying a practically relevant “middle ground” between convexity and full noncon-
vexity.

Despite its growing importance, the theory surrounding quasar-convexity—and,
more broadly, the entire ecosystem of convexity generalizations—remains scattered
across disparate literatures. Definitions vary across communities (e.g., “weakly con-
vex” in optimization vs. “para-convex” in functional analysis [82] or “semi-convex” in
PDE theory [24]); implications are often stated without proof or under incompatible
assumptions; and the mapping from structural properties to algorithmic consequences
is frequently obscured by notational inconsistencies. This fragmentation impedes both
research and practice: algorithm designers may be unaware of the precise function
classes their methods exploit, practitioners lack a systematic framework for diag-
nosing problem structure, and newcomers face a bewildering array of disconnected
definitions.

To address this, we present the first comprehensive, unified treatment of func-
tion classes enabling tractable nonconvex optimization. We provide a coherent tax-
onomy organized by structural theme—relaxations of convexity (quasi-convexity,
pseudo-convexity, invexity, weak convexity), geometric generalizations (star-convexity,
quasar-convexity and its variants), regularity conditions (PL, error bounds, quadratic
growth), partial convexity (biconvex, multiconvex), and special classes (log-convex,



DC)—supplying precise definitions, equivalent characterizations, and closure proper-
ties in consistent notation. We establish and visualize the hierarchical relationships
among these classes through explicit inclusion diagrams, clarifying which implications
are strict, which hold only under additional hypotheses (e.g., smoothness, compact-
ness), and which fail in general. In particular, we deliver the most complete exposition
to date of quasar-convexity—including strong, projected, and tilted variants—and po-
sition it as a central organizing concept linking classical notions (star-convexity, PL
condition) to modern algorithmic guarantees. While prior works offer deep but nar-
row treatments—e.g., [33] on generalized convexity in economics, [24] on semi-concave
functions, [49] on regularity conditions, and [34] on biconvex optimization—our survey
is distinguished by its breadth, its emphasis on modern geometric classes emerging
from machine learning, its focus on inter-class relationships, and its sustained algo-
rithmic perspective.

The remainder of the paper is structured as follows. Section 2 reviews the founda-
tions of classical convexity. Section 3 surveys traditional generalized convexity. Sec-
tion 4 reviews weak convexity. Section 5 develops geometric generalizations, with
emphasis on quasar-convexity and its algorithmic implications. Section 6 explores reg-
ularity conditions and their interrelations. Section 7 discusses partial and pointwise
convexity. Section 8 covers special classes, including log-convex and DC functions.
Finally, Section 9 synthesizes the entire landscape in the “Convexity Zoo,” before
concluding remarks in Section 10.

1.1. Notation and conventions

We work in R™ equipped with the norm [|z| = V& Tz. The extended real line is
R = RU {4o00}. We denote by R, the set of strictly positive real numbers. For a
function f: X — R, we denote its epigraph by epi(f) = {(z,t) | z € X, f(z) < t},
and its a-sublevel set by lev,(f) = {x € X | f(z) < a}. A function f is said to be
continuously differentiable on a set C if there exists an open set U O C such that
f is defined and continuously differentiable on U. For differentiable f, V f(z) is the
gradient and V2 f(z) the Hessian (when it exists). A differentiable function f: X — R
is said to be L-smooth (or have L-Lipschitz continuous gradient) for some L > 0 if

IVf(z) =Vl < Lz -yl forallz,yeX. (1)

For a symmetric matrix A € R™" we write A = 0 (A > 0) to indicate that A is
positive semidefinite (definite).
Throughout this paper, we consider optimization problems of the form

min f(x), (2)

reX

where X C R” is a (typically convex) feasible set and f : X — R is the objective
function. The set of global minimizers is denoted X* = argmin,c, f(x), assumed
nonempty where relevant. We write f* := inf,cx f(z) for the optimal value (which
equals mingcy f(z) when the minimum is attained). If X* # (), we let 2* € X* denote
an arbitrary global minimizer, so that f(z*) = f*. We write 2 := Projy.(x) for the
Euclidean projection of x onto the set of global minimizers A™*.



2. Foundations of Convexity

Classical convexity theory forms the bedrock of modern optimization, with roots trac-
ing back to Jensen’s definition of convex functions in 1906 [45]. Valued for their struc-
tural simplicity and proximity to linearity among nonlinear functions [19], convex
functions have become indispensable across optimization, economics, and operations
research. In this section, we provide a systematic exposition of convex and strongly
convex functions, focusing on the core characterizations and properties essential for
understanding their generalizations in subsequent sections. Additional technical de-
tails and supplementary results are provided in Appendix A.

From this foundation, we formalize the basic geometric and analytic primitives upon
which the theory rests.

2.1. Basic definitions

We begin with the foundational definitions of convex sets and functions.

Definition 2.1 (Convex Set). A set X C R" is convez if for all z,y € X and all
A e [0,1],

A+ (1-MNyeX.

O

Definition 2.2 (Convex Function). A function f : X — R is conver if X is convex
and, for all x,y € X and X € [0, 1],

FOz+ (1 =Ny) <Af(z)+ (1 =N f(y).
O

If the above inequality is strict whenever x # y and 0 < A < 1, then f is strictly
conver. A function is concave (resp., strictly concave) if —f is convex (resp., strictly
convex).

Remark 1. For extended-real-valued functions f : R® — R, the convexity inequality
in Definition 2.2 is required to hold only when z,y € dom(f). For the function to be
convex, the effective domain dom(f) must itself be convex. O

One of the beautiful aspects of convexity is the multiplicity of equivalent charac-
terizations, each providing different geometric or analytic insights.

Property 2.3 (Jensen’s Inequality). Let X C R™ be a convex set and f : X — R.

Then f is convex if and only if for everz finite collection z!,--- ,z* € X and every set

of weights Ay,---, Ay > 0 satisfying > ", A =1,

1=

k k
f (Z )\ixi> < Z Aif ().

i=1



Property 2.4 (Epigraph Criterion). Let X C R™ be a convex set and f : X — R.
Then f is convex if and only if its epigraph, epi(f) is a convex subset of R™*1. O

Property 2.5 (Sublevel Set Convexity). Let f: X — R be a convex function, where
X C R" is convex. Then for every a € R, the sublevel set lev,(f) is convex. O

Remark 2. The converse of Property 2.5 does not hold: functions with convex sub-
level sets are called quasi-convez (see Section 3) and need not be convex. For example,
f(x) = 2® on R has convex sublevel sets but is not convex.

When f is differentiable, convexity can be characterized through gradient inequal-
ities and Hessian conditions.

Property 2.6 (Gradient Inequality). Let f: X — R be differentiable on a nonempty
convex set X C R"™. Then f is convex on X if and only if for all z,y € X

fy) = f@)+ V(@) (y—=).
Moreover, if the inequality is strict for all x # y, then f is strictly convex. O

The gradient inequality states that the first-order Taylor approximation globally
underestimates a convex function.

Property 2.7 (Second-Order Characterization). Let f : X — R be twice continu-
ously differentiable on a nonempty convex set X C R”. Then:

(1) fis convex on X if and only if V2f(x) = 0 for all z € X.
(2) If V2f(x) = 0 for all x € X, then f is strictly convex.

1 is strictly convex on R, but f”(0) = 0. O

The converse of (2) is false: f(z) ==

Additional equivalent characterizations, including the line restriction property,
monotone secant slope criterion, and gradient monotonicity, are provided in Ap-
pendix A.1.

2.2. Subgradients and subdifferentials

Many convex functions arising in applications are not differentiable. The theory of
subgradients extends differential calculus to this nonsmooth setting.

Definition 2.8 (Subgradient and Subdifferential). Let f: X — R be a convex func-
tion, where X C R™ is convex. A vector g € R" is a subgradient of f at x € X if for
ally e X

fy) = f)+g" (y— ).
0

The set of all subgradients of f at x is the subdifferential of f at x, denoted by
O0f(x). The subdifferential 0f(z) is a closed convex set; if = € int(X), it is nonempty
and bounded. When f is differentiable at =, we have df(z) = {V f(z)}.



2.3. Strengthenings of convexity

2.8.1. Strong convexity

Strong convexity strengthens classical convexity by imposing a uniform lower bound
on curvature, leading to faster convergence rates in optimization algorithms.

Definition 2.9 (Strong Convexity). Let g > 0 and let X C R™ be a convex set. A
function f: X — R is p-strongly conver if for all z,y € X and all A € [0, 1],

O+ (1= Ny) < AF@) + (1= N F) = GAL =V~ ]

O]

Property 2.10 (Strong First-Order Condition). Let p > 0. Let f : X — R be
continuously differentiable on a convex set X C R"™. Then f is p-strongly convex if
and only if for all z,y € X

F4) = f@) + V@) (=) + Sy — =l

O]

Property 2.11 (Hessian Lower Bound). Let f : X — R be twice continuously dif-
ferentiable on a convex set X C R". Then f is u-strongly convex if and only if for all
v € X, V2f(x) = pul. O

Property 2.12 (Quadratic Perturbation Characterization). Let X C R"™ be a convex
set and g > 0. A function f : X — R is p-strongly convex on X if and only if the
function f(z) — &||z|/? is convex on X. O

Additional characterizations and properties of strong convexity are provided in
Appendix A.3.

2.8.2. Uniform convexity

Uniform convexity generalizes strong convexity by replacing the quadratic modulus
with more general growth conditions [13, 91].

Definition 2.13 (Uniformly Convex Function). Let X C R™ be a convex set. A func-
tion f : X = R is uniformly convex with modulus ¢ : Ry — R, if ¢ is nondecreasing,
#(0) =0, ¢(t) >0 for all t > 0, and for all z,y € X and all X € [0, 1],

FOz+ (1= Ny) < AMf(@)+ 1 =X fy) = A0 =) o(llz = yll).
O

When ¢(t) = L£t*, we recover p-strong convexity. The case ¢(t) = ct? for p > 1
yields p-uniformly convex functions.

The various notions of convexity form a strict hierarchy:

Strongly convex = Uniformly convex = Strictly convex = Convex



2.4. Key optimality and closure properties

Convexity dramatically simplifies optimization by ensuring local optimality implies
global optimality.

Property 2.14 (Local Equals Global). Let f : X — R be a convex function on a
convex set X' C R™. Then every local minimizer of f over X is a global minimizer. [

Property 2.15 (First-Order Optimality). Let f : X — R be convex and differentiable
on a nonempty convex set X C R™. Then z* € X is a global minimizer of f over X if
and only if for all z € X

Vi) (x—2%)>0.

In the unconstrained case (X = R"™), this reduces to V f(z*) = 0. O

Convex functions are closed under numerous operations including nonnegative
weighted sums, affine precomposition, composition with nondecreasing convex func-
tions, and pointwise suprema. These closure properties and additional optimality con-
ditions are detailed in Appendix A.5.

Collectively, these properties and characterizations constitute the core toolkit for
classical convex analysis. In the following sections, we systematically relax or replace
these assumptions—first with quasi-convexity and generalized monotonicity, then with
structured nonconvex models—to build a taxonomy of function classes capable of cap-
turing richer, real-world phenomena while preserving algorithmic tractability where
possible.

3. Traditional generalized convexity

Generalized convexity plays a fundamental role in optimization, particularly in mod-
eling nonconvex problems that retain sufficient geometric structure for tractable
analysis and algorithms. This section presents the principal generalizations of
convexity—quasi-convexity, pseudo-convexity, invexity, and r-convexity—which pre-
serve key optimization properties while accommodating broader function classes
[23, 33]. Additional variants and technical characterizations are provided in Ap-
pendix B.

3.1. Quasi-convexity

Quasi-convex functions were among the first and most influential generalizations of
convexity.

Definition 3.1 (Quasi-convex Function). Let X C R" be a convex set and f : X — R.
The function f is quasi-conver on X if for all x,y € X and all A € [0, 1],

fOz+ (1= Ny) <max{f(z), f(y)}.
O

Property 3.2 (Sublevel Set Characterization). A function f : X — R is quasi-convex
if and only if, for every a € R, the sublevel set lev,(f) is convex (with the convention



that () is convex). O

Definition 3.3 (Strictly Quasi-convex Function). Let X C R™ be convex and f :
X — R. The function f is strictly quasi-conver on X if for all x,y € X with = # y
and all A € (0,1),

f((l — ANz + )\y) < max{f(x), f(y)}
]

Definition 3.4 (Semistrictly Quasi-convex Function). Let X C R" be a convex set

and f: X — R. The function f is semistrictly quasi-conver on X if it is quasi-convex
and if for all z,y € X with f(z) < f(y) and for all A € (0,1),

FOx 4+ (1= Ny) < f(y).
0

Property 3.5 (First-Order Characterization of Quasi-convexity). Let X C R™ be
convex and f : X — R be differentiable on X. Then f is quasi-convex on X if and
only if for all z,y € X with f(x) < f(y)

Vi) (z—y) <o.

Equivalently, for every y € X, the half-space {# € R" | Vf(y) (z — y) < 0} contains
the sublevel set {z € X' | f(x) < f(y)}. O

3.2. Pseudo-convexity

A defining property of differentiable convex functions is that every stationary point is
a global minimizer. This property, however, is not exclusive to convexity. The family
of pseudo-convex functions, introduced in [62], strictly includes the family of differen-
tiable convex functions and has the above-mentioned property.

Definition 3.6 (Pseudo-convex Function). Let X C R"™ be a convex set and let
f : X = R be differentiable on X. The function f is pseudo-conver on X if for all
T,y € X,

f@) < fly) = Vi) (z—-y) <o.

Equivalently, f is pseudo-convex on X if for all z,y € X,

Vi) (x—y) > 0= f(z) > f(y).
0

From Definition 3.6, it follows immediately that if f is pseudo-convex on X and
Vf(z) =0 for some Z € X, then T is a global minimizer of f over X. Consequently,
pseudo-convexity plays a pivotal role in nonlinear programming: when the objective
function is differentiable and pseudo-convex (and the feasible region is convex), first-
order stationarity is not merely necessary but also sufficient for global optimality.



Definition 3.7 (Strictly Pseudo-convex Function). Let X C R™ be a convex set and
let f: X — R be differentiable on X. The function f is strictly pseudo-convexr on X
if for all x,y € X with x # v,

f@) < fly) = V) (@—y) <O.

Equivalently, f is strictly pseudo-convex on X if for all x,y € X with x # y,

Vi) (x—y) > 0= f(z) > f(y).

3.3. Invexity

Invex functions, introduced in [38], generalize classical convexity by allowing a flexible
“direction” mapping 7 in place of the standard displacement x — y. In recent years,
invexity and its generalizations have emerged as relevant structural assumptions in
signal processing and machine learning [12, 71], particularly in the analysis of noncon-
vex models where classical convexity is violated but first-order optimality conditions
remain sufficient for global optimality [15].

Definition 3.8 (Invex Function). Let X C R™ be a nonempty set and let f: X — R
be differentiable on X. The function f is invexr on X if there exists a vector-valued
mapping 1 : X X X — R" such that for all z,y € X,

f@) = fy) = n(z,y) V).
0

Property 3.9 (Stationary-Point Characterization of Invexity). Let X C R™ be
nonempty and let f: X — R be differentiable on X. Then f is invex on X with
respect to some mapping 7 if and only if every stationary point is a global minimizer;
that is, for all 20 € X,

Vf(x) =0 = f(2°) = inf f(z).

TEX
O
The following properties establish the relationships among these function classes.

Property 3.10 (Convexity Implies Pseudo-convexity). Every convex differentiable
function is pseudo-convex. The converse is false. O

Property 3.11 (Pseudo-convexity Implies Quasi-convexity). Every pseudo-convex
function is quasi-convex. The converse is false. O

Property 3.12 (Convexity Implies Invexity). Let f: X — R be differentiable and
convex on X. Then f is invex on X with respect to the mapping n(z,y) =2 —y. O

Thus, for differentiable functions on convex domains, we have the hierarchy:

Convex = Pseudo-convex =—> Quasi-convex



and separately:
Convex = Invex

Definition 3.13 (Quasi-Invex Function). Let X C R™ be a convex set and let f :
X — R be differentiable on X. The function f is quasi-invex on X if there exists a
vector-valued mapping 17 : X X X — R"”, not identically zero, such that for all z,y € X,

n(z,y) Vi) > 0= f(x) > f(y).
0

Property 3.14. A differentiable quasi-convex function is also quasi-invex O

Property 3.15 (Invex Implies Quasi-Invex). Let X C R" be convex, and let f : X —
R be differentiable. If f is invex on X with mapping 7, then f is quasi-invex on X
with the same kernel function 7. The converse does not hold in general. O

For proofs and additional details, see, e.g., [33]. Further variants of quasi-convexity
(strong, uniform, neat, explicit) and second-order characterizations are provided in
Appendix B. We also note that invex functions and related concepts have recently
attracted considerable attention in signal processing and machine learning; see [71]
and the references therein.

3.4. r-convexity

This subsection introduces the notion of r-convexity, a parametric generalization of
convexity that is naturally expressed via power means and exponential transforma-
tions. The concept interpolates between quasi-concavity, classical convexity, and quasi-
convexity through limiting values of the parameter r. We follow the standard defini-
tions and characterizations in [11, 94].

Definition 3.16 (Generalized r-th Mean). Let a, 8 > 0 and let A € [0,1]. The
generalized r-th mean (or power mean of order r) of a and  with weight A is defined
by

(A" + (1 =), reR\ {0},
lim M, (a, B3 \) = a8, r=0,
M, (e, By M) := e
lim M, (o, B;A) = max{a, B}, 1= +o0,
r—-+00
lim M, (o, B;A) = min{a, B}, r = —o0.
r——00

O

Definition 3.17 (r-Convex Function). Let X C R" be a convex set and let r € R. A
function f: X — R is r-conver on X if for all z,y € X and all A € [0, 1],

Fz+ (1= Ny) < log M, (e/@), /W) 1),

10



O]

Property 3.18 (Interpretation of Limiting Cases). The limiting cases correspond to
classical function classes:

(1) Case r = 0: The function f is convex in the classical sense (Definition 2.2).
(2) Case r = +oo: The function f is quasi-convexr (Definition 3.1).
(3) Case r = —oo: The function f is quasi-concave, i.e., —f is quasi-convex.

Thus, r-convexity provides a unified parametric framework interpolating between
quasi-concavity, convexity, and quasi-convexity. O

Property 3.19 (Exponential Transformation Characterization). Let X C R" be a
convex set and let r € R\ {0}. A function f : X — R is r-convex on X if and only if

the transformed function f(z) := "/ satisfies:

(1) fis convex on X if r > 0;
(2) f is concave on X if r < 0.

O]

Property 3.20 (Second-Order Characterization of r-Convexity). Let X C R™ be a
convex set and let f : X — R be twice continuously differentiable. Then f is r-convex
on X if and only if the matrix

Qz) =rV[f(z)Vf(x)" +V*f(x)
is positive semidefinite for all x € X, i.e.,
Q(z) =rVfi(@)Vf(x)" +V3f(z) =0, Vzel.
O

Property 3.21 (Optimal r-Convexity Parameter for Quasi-Convex Functions). Let
X C R"” be an open convex set and let f : X — R be twice continuously differentiable
and quasi-convex on X. Define

—2'V2f(z) 2
r* = su _—

P .
reX, zeR™ (ZTVf(.%‘))Q
lzll=1, 2T V f(2)7#0

If r* < +o0, then f is r7*-convex on X. Moreover, r* is the smallest value of r for
which f is r-convex. O

4. Weak Convexity and Its Variants

Weakly convex functions—also known as para-conver in functional analysis [80-82]
and semi-convez in nonsmooth analysis and PDE theory [24]—constitute a principled
relaxation of convexity that preserves much of its algorithmic power [48, 81]. In PDE
theory, semi-convexity and semi-concavity are often defined up to a sign convention;
both correspond to weak convexity of either f or —f.

11



This function class arises naturally in nonsmooth optimization, phase retrieval, neu-
ral network training, and Moreau envelope smoothing, where nonconvex objectives ex-
hibit controlled deviations from convexity. A defining feature of weak convexity is that
adding a suitable quadratic term restores convexity, thereby enabling the extension of
proximal and subgradient methods to nonconvex settings with rigorous convergence
guarantees [27, 30].

Definition 4.1 (Weakly Convex (Para-convex) Function). Let X C R™ be a convex
set. A function f : X — R is p-weakly convez (or p-para-convezr) on X with modulus
p > 0if for all z,y € X and all A € [0, 1],

J a4 (1= X)) < Af(@) + (1= NF@) + EA0 =N o=yl

O

The following characterization is the cornerstone of algorithmic extensions: mini-
mizing f is equivalent to minimizing a convex function after an additive quadratic
transformation.

Property 4.2 (Quadratic Convexification). Let X C R" be convex and f: X — R.
Then f is p-weakly convex if and only if the function f(z)+ 5||z||* is convex on X. [

Property 4.3 (First-Order Characterization). Let f : X — R be differentiable on a
convex set X C R". Then f is p-weakly convex if and only if for all z,y € X,

) = f(@) + V@) (g =) = Slly - =]

O]

This inequality states that the first-order Taylor model, corrected by a quadratic
term that controls the allowable nonconvexity, globally lower-bounds f. It generalizes
the gradient inequality for convex functions (Property 2.6) and is instrumental in
convergence analysis of first-order methods.

Property 4.4 (Second-Order Characterization). Let f : X — R be twice continu-
ously differentiable on a convex set X C R™. Then f is p-weakly convex if and only if
forall x € X

VQf(x) = —p[,

i.e., all eigenvalues of V2 f(z) are bounded below by —p. Compare with the strong con-
vexity condition in Property 2.11. Weak convexity allows indefinite Hessians, provided
negative curvature is uniformly bounded. O

Property 4.5 (Smoothness Implies Weak Convexity). Let f : X — R be differen-
tiable on a convex set X C R™. If V f is L-smooth, then:

(1) fis L-weakly convex;
(2) —f is L-weakly convex.

O]

Thus, any L-smooth function and its negative are both L-weakly convex—a fact

12



important in minimax and bilevel optimization.

Remark 3 (Terminology). The terms weakly convex [88], para-convex [82], and semi-
convex [24] are used interchangeably in modern literature, with minor variations in
constant conventions. All refer to the same structural property: convexity up to a
quadratic penalty. O

4.1. Generalized para-convezxity

The notion of weak convexity can be extended by allowing subquadratic or su-
perquadratic deviation from convexity. Introduced in [80] and further developed in
[48, 70], these classes model functions whose nonconvexity is controlled by power-
type error terms. They arise in Hoélder-smooth optimization, robust estimation, and
regularized inverse problems where quadratic bounds are too restrictive.

Definition 4.6 ((v, p)-Para-convex Function). Let X C R" be a convex set, let v €
(0,1], and let p > 0. A function f : X — R is (v, p)-para-conver on X with modulus
p if for all z,y € X and all X € [0, 1],

FO+ (1= Ny) Af(@) + (1= NF() + 5 minfd, 1= A} o =y,

O]

The exponent 1 + v captures subquadratic (v < 1) or quadratic (v = 1) deviation
from convexity.

Property 4.7 (Recovery of Weak Convexity). Let f : X — R be continuous on a
convex set X C R™. Then f is (1, p)-para-convex if and only if f is weakly convex in

the sense of Definition 4.1. O

Thus, v-para-convexity with v < 1 strictly generalizes weak convexity, enabling
analysis of functions with slower-than-quadratic curvature decay (e.g., f(z) = ||z||**”
near zero).

The structural richness of weakly convex functions is underscored by their role
in difference-of-convex (DC) programming and as building blocks for advanced op-
timization methods. Recent work investigates their Moreau envelope properties [79],
approximate subdifferentials [87], inexact proximal schemes [53], and applications to
robust low-rank recovery [55, 77]. Extensions to composite and stochastic settings, as
well as learning-theoretic perspectives [10, 17, 35], attest to the continued relevance
of this function class.

5. Modern Geometric Generalizations of Convexity

This section presents two geometrically motivated generalizations of convexity—star-
convexity and quasar-convexrity—that have emerged as particularly relevant for mod-
ern optimization, especially in machine learning. These classes retain sufficient struc-
ture to support efficient first-order methods with provable convergence guarantees,
while accommodating objectives that are inherently nonconvex yet structured.

The key insight underlying both notions is that global optimization does not re-
quire convexity along all line segments. Instead, it suffices to impose favorable geome-
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try along paths leading toward global minimizers. This perspective leads to one-sided
conditions relative to optimal points, rather than the symmetric conditions charac-
teristic of classical convexity.

5.1. Star-convexity

Star-convex functions constitute an important class of nonconvex functions that prop-
erly contains all convex functions [69].

5.1.1. Basic definitions and geometric intuition

Definition 5.1 (Star-Shaped Set). A set S C R" is star-shaped with respect to a point
z* € S if for every x € S and every A € [0, 1],

Az*+ (1—=Nzx e S.

The point x* is called a star center of S. Equivalently, S is star-shaped at x* if the
line segment [z*,z] C S for all z € S. O

Every convex set is star-shaped with respect to each of its points. However, a star-
shaped set need not be convex. The notion of star-convexity extends this geometric
concept to functions.

Definition 5.2 (Star-Convex Function). Let X C R”" be a convex set and let f : X —
R. The function f is star-conver on X if the set of global minimizers X'™* is nonempty,
and for every a* € X*, every z € X, and every \ € [0, 1],

FO* + (1= V) < Af@*) + (1= N f(a).

O]

This definition requires the star-convexity property to hold uniformly for all global
minimizers [69]. Some works consider a weaker, center-specific notion where the in-
equality need only hold for a single global minimizer [42, 57].

Definition 5.3 (Star-Convex with Respect to a Point). Let X C R"™ be a convex set,
let ¥ € X, and let f : X — R. The function f is star-conver at z* on X if for all
z € X and all X € [0,1],

f()\x* +(1- )\)x) <Af(@) + (1= A f(z).

In particular, if z* € X*, then f is said to be star-convex at a global minimizer. [

More generally, f is strictly star-conver with respect to a point x* € X if the same
strict inequality holds for all z € X'\ {z*} and all A € (0,1).

Intuitively, when visualizing the objective function as a landscape, star-convexity
ensures that each global optimum is “visible” from every feasible point. More precisely,
along any ray from a point x toward any global minimizer z*, the function values
decrease monotonically (in a weighted sense). This visibility property implies there
are no ridges obstructing direct paths to global optima, though ridges may exist in
orthogonal directions. This geometric structure suggests that gradient-based descent
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methods should be effective for this function class, as following the negative gradient
will generally make progress toward the optimum.

Property 5.4 (Convexity Implies Star-Convexity). Let f : X — R be convex on a
convex set X' C R", and suppose the set of global minimizers X™* is nonempty. Then f
is star-convex with respect to every * € X*—in particular, f is star-convex. Moreover,
if f is strictly convex, then it is strictly star-convex (and X™* is a singleton). O

The converse does not hold: star-convexity is strictly weaker than convexity. This
gap is precisely what makes star-convexity valuable—it captures a broader class of
functions while retaining key optimization-friendly properties.

Definition 5.5 (Strong Star-Convexity). Let X C R™ be a convex set, let f : X — R,
and let p > 0. Suppose that the set of global minimizers X* is nonempty. The function
f is p-strongly star-convex with respect to x* € X* if for all z € X and all A € [0, 1],

FAz" + (1= N)z) < Af(z*) + (1 =N f(z) - %/\(1 -\ |lz* = z|)?.

O]

Strong star-convexity, in the context of cubic-regularized Newton methods,
strengthens star-convexity by adding a quadratic margin [69]. This additional struc-
ture ensures linear convergence for both gradient and proximal point methods [28, 42].

Property 5.6 (Strong Convexity Implies Strong Star-Convexity). Strong convexity
is a special case of strong star-convexity. Specifically, if f is p-strongly convex on X,
then f is p-strongly star-convex with respect to its unique minimizer x*. O

5.1.2. Characterizations of star-convexity

Star-convexity admits multiple equivalent characterizations that provide different per-
spectives on this function class.

Property 5.7 (Epigraph Characterization). Let X C R™ be convex, and let f : X —
R be a function with nonempty set of global minimizers X*. For any z* € X*, the
function f is star-convex at x* if and only if its epigraph, epi(f) is star-shaped with
respect to the point (z*, f(x*)). O

This characterization provides a direct geometric interpretation: star-convexity of
f corresponds to star-shapedness of its epigraph, just as convexity of f corresponds
to convexity of its epigraph.

Property 5.8 (Star-Shaped Sublevel Sets). Let f : X — R be star-convex with
nonempty set of global minimizers X*. Then for every o € R, the sublevel set lev,(f)
is star-shaped with respect to every x* € X™*. ]

Property 5.9 (First-Order Characterization of Star-Convexity). Let f : X — R be
differentiable on a convex set X C R", and assume the set of global minimizers X* is
nonempty. If f is star-convex, then for every x* € A* and every = € X,

f@) > f(x)+ Vi) (2 — ).

15



O]

This first-order condition states that the tangent hyperplane at any point x lies
below the optimal value f(z*) when evaluated in the direction of z*. Compared to the
gradient inequality for convex functions, this is a one-sided condition that need only
hold in the direction toward the optimum.

Property 5.10 (First-Order Characterization of Strong Star-Convexity). Let X C
R™ be convex, and let f : X — R be differentiable. Suppose the set of global minimizers
X* is nonempty, and let 2* € X*. Then f is p-strongly star-convex at x* if and only
if for all x € X,

@) > f(2) + V@) (@ =) + Sl — 2|

O]

Property 5.11 (Necessary Second-Order Condition for Star-Convexity). Let X C R"
be open and star-shaped with respect to 2° € X, and let f : X — R be twice
continuously differentiable. If f is star-convex on X at x*, then the Hessian of f at x*
is positive semidefinite:

V2f(z*) = 0.

O

This necessary condition shows that star-convexity imposes local curvature require-
ments at the star center, though it does not require positive semidefiniteness of the
Hessian at all points (as convexity does).

5.1.8. Algorithmic implications

The geometric structure of star-convex functions—particularly the visibility prop-
erty—ensures that gradient-based methods can effectively locate global minimizers
without getting trapped in spurious local optima. The concept was introduced in [69]
to study cubic-regularized Newton methods for unconstrained optimization, and has
since been extended to various algorithmic settings [28, 47, 52, 57].

For star-convex functions, gradient descent with appropriate step sizes converges
to the global optimum at rate O(1/N), matching the rate for convex functions. For
strongly star-convex functions, linear convergence is achievable, paralleling the behav-
ior of strongly convex optimization.

5.2. Quasar-convexity

The class of quasar-convex functions provides a principled framework for analyzing
structured nonconvex optimization problems amenable to efficient first-order meth-
ods. Introduced initially as weak quasi-convezity in [39] and [37] in the context of
linear dynamical system identification, the notion was later renamed quasar-convezity
in [42] to avoid ambiguity with classical quasi-convexity. The name deliberately evokes
a conceptual kinship with quasi-convexity while underscoring a distinct—indeed in-
comparable—functional geometry.
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5.2.1. Basic definitions and motivation

The defining feature of quasar-convexity is a single parameter v € (0,1] that con-
trols the degree of nonconvexity. When « = 1, the class reduces to star-convexity, the
classical geometric generalization [69]. As vy decreases from 1, progressively stronger
deviations from convexity are permitted, yet the structure remains sufficiently regular
to enable efficient first-order optimization methods with provable convergence guaran-
tees. This “structured nonconvexity” has emerged as particularly relevant in modern
machine learning applications. Training objectives for linear dynamical system iden-
tification exhibit quasar-convex structure [39], and certain overparameterized neural
network architectures yield quasar-convex loss landscapes [90]. Policy optimization
objectives in reinforcement learning and low-rank matrix recovery problems under
appropriate conditions also fall within this framework.

From an algorithmic perspective, quasar-convex functions admit convergence rates
that closely mirror those for convex optimization while encompassing a substantially
broader class of objectives. Quasar-convexity thus captures a practically relevant
“middle ground” between convexity and full nonconvexity.

Quasar-convexity admits a clean first-order characterization, which is often more
amenable to algorithmic analysis.

Definition 5.12 (Quasar-Convexity). Let X C R" be a convex set and let f : X — R
be continuously differentiable on X. Suppose that the set of global minimizers X is
nonempty, and fix z* € X*. For v € (0, 1], the function f is v-quasar-conver on X at
a* if for all x € X,

f(@) - f*) < i V@) (@ —a").

O]

When v = 1, the inequality reduces to the first-order condition for star-convexity
at x*.

Remark 4 (Domain Assumptions). The assumption that X be convex may be re-
laxed. Definition 5.12 remains well-posed under the weaker condition that X is star-
convex at x*. In the unconstrained setting where X = R", this condition is trivially
satisfied.

The following property establishes the fundamental relationship between quasar-
convexity and star-convexity.

Property 5.13 (Star-Convexity as a Special Case). Let f: X — R be continuously
differentiable on a convex set X C R™. If f is star-convex at x* € X, then f is 1-
quasar-convex at x*. Conversely, if f is 1-quasar-convex at x*, then f is star-convex
at x*. O

Since convexity implies star-convexity (Property 5.4), we have the chain of impli-
cations: convex functions are star-convex, which is equivalent to 1-quasar-convexity,
which in turn implies y-quasar-convexity for all v € (0, 1].

Property 5.14 (Quasar-Convexity Parameter Ordering). Let f : X — R be ;-
quasar-convex at x* for some 7, € (0,1]. Then f is yp-quasar-convex at z* for all

72 € (0,m]. O
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This property shows that larger values of v correspond to stronger conditions: a
function that is y-quasar-convex for larger v is “closer to convex” in a precise sense.

5.2.2. Optimality of stationary points

A defining characteristic of quasar-convex functions is that first-order stationary
points are global minimizers—a hallmark of well-behaved nonconvex landscapes that
enables the use of local search methods with global optimality guarantees.

Property 5.15 (First-Order Stationary Points Are Global Minimizers). Let X C R"
be a nonempty convex set and f : X — R be continuously differentiable. Suppose f
is y-quasar-convex on X’ at a global minimizer z* € X* for some v € (0, 1]. Then any
first-order stationary point € X—i.e., a point satisfying Vf(z)" (y — ) > 0 for all
y € X—is a global minimizer of f on X, and satisfies f(z) = f(z*). O

This property is fundamental for the algorithmic tractability of quasar-convex op-
timization: methods that converge to stationary points automatically find global op-
tima, eliminating the problem of spurious local minima that plagues general nonconvex
optimization.

Property 5.16 (Quasar-Convexity Implies Invexity). Let X C R"™ be convex and
f: X = R be continuously differentiable and y-quasar-convex at z* € X™* for some v €
(0,1]. Then f is invex with respect to the mapping n(x,y) = %(a:* —x). Consequently,
every stationary point is a global minimizer. O

5.2.8. Strong quasar-convexity

Analogous to the relationship between convexity and strong convexity, strong quasar-
convexity adds a quadratic growth term that ensures unique minimizers and enables
linear convergence rates.

Definition 5.17 (Strongly Quasar-Convex Function). Let X C R™ be a convex set
and let f: X — R be continuously differentiable on X'. Suppose that the set of global
minimizers X'* is nonempty, and fix z* € X*. For parameters v € (0,1] and pu > 0,
the function f is (u,~y)-strongly quasar-convex on X at x* if for all z € X,

N oM x
fl@) = f(a”) < §Vf(x)T(w—w )=5llz—2 I
If 4 > 0, then z* is the unique global minimizer of f on X. O

When v =1 and p > 0, strong quasar-convexity reduces to strong star-convexity
(Definition 5.5).

Property 5.18 (Uniqueness of the Minimizer). Let X C R™ be convexand f : X — R
be continuously differentiable. If f is (u,)-strongly quasar-convex on X for some
v € (0,1] and p > 0, then f admits a unique global minimizer in X O

Property 5.19 (Equivalent Characterization of Strong Quasar-Convexity). Let X C
R™ be a convex set, f : X — R be differentiable, and fix z* € X'. For v € (0,1] and
p > 0, the function f is (u,y)-strongly quasar-convex on X at z* if and only if for all
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z € X and A € [0,1],

FAz*+ (1= Nz) + )\<1 - ﬂ)w la* — ]| < A f(2") + (1 =) f().

In this case, x* is a global minimizer of f on X’; moreover, if © > 0, then z* is the
unique global minimizer. O

5.2.4. Projected quasar-convexity

In applications involving constrained optimization and stochastic optimization with
nonconvex objectives, a natural variant of quasar-convexity arises where the reference
point is not a fixed global minimizer but rather the projection onto the set of all
global minimizers. This notion, termed projected quasar-convexity, has recently gained
attention in the analysis of first-order stochastic methods [84].

Definition 5.20 (Projected Quasar-Convex Function). Let X C R™ be a convex set
and let f: X — R be continuously differentiable on X'. Suppose that the set of global
minimizers X* is nonempty, and denote the optimal value by f* := min,cy f(x). For
v € (0, 1], the function f is projected v-quasar-conver on X if for all z € X,

fl) - f < i Vi) (2 - a?),

where 2P := Projy. (z) denotes the Euclidean projection of z onto X'™*. O

Remark 5 (Comparison with Standard Quasar-Convexity). The key distinction is
that projected quasar-convexity requires the inequality to hold with respect to the
projection zP onto the minimizer set X*, rather than a fixed minimizer z* € X™.
When X* is a singleton, the two definitions coincide. However, when X™* contains
multiple points, projected quasar-convexity is a stronger condition.

Property 5.21 (Projected Quasar-Convexity Implies Standard Quasar-Convexity).
Let X C R™ be a convex set and f : X — R be continuously differentiable with convex
set of global minimizers X™*. If f is projected y-quasar-convex on X for some v € (0, 1],
then f is y-quasar-convex with respect to every point x* € X™*. O

Definition 5.22 (Projected Strongly Quasar-Convex Function). Let X C R" be a
convex set and f : X — R be continuously differentiable. For parameters v € (0, 1]
and p > 0, the function f is projected (u,~y)-strongly quasar-conver on X if for all
r e X:

F@) = < 91 @) (@ =) = Sl = a7,

where 2P = Proj y. (). O

Analogous to Property 5.21, projected strong quasar-convexity implies strong
quasar-convexity with respect to every point in X* when the minimizer set is convex.
Projected quasar-convexity is particularly natural in stochastic optimization set-
tings where the exact location of minimizers is unknown. The projected variant allows
for analysis of convergence to the minimizer set X* rather than a specific point, which
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is crucial for understanding the behavior of stochastic gradient methods on nonconvex
objectives [84]. Moreover, the projected formulation naturally handles problems with
multiple global minimizers without requiring a priori knowledge of their locations.

5.2.5. Tilted convexity

Tilted convexity provides a two-sided generalization that implies quasar-convexity and
captures additional structure useful for algorithm design [63, 64].

Definition 5.23 (Tilted Convex Function). Let X C R™ be a convex set and let
[+ X — R be continuously differentiable. For parameters 7,7, € (0, 1], the function
fis (7,7p)-tilted conver on X if for all z,y € X,

f<x>+in<x>T<y—x> < f). V@) (- <0,

f@)+3 V@) (y—2) < fly), V@) (y—2)>0
0

The parameter 7 controls the behavior when moving in a descent direction (toward
lower function values), while 7, controls the behavior in ascent directions. When v =
vp = 1, tilted convexity reduces to standard convexity.

Property 5.24 (Tilted Convexity Implies Quasar-Convexity). Let X C R™ be a
convex set and f : X — R be continuously differentiable. If f is (y,7,)-tilted convex
on X for some 7,7, € (0,1], then for any first-order stationary point z* € X (i.e.,
Vf(@)T(y —2*) > 0 for all y € X), the point 2* is a global minimizer and f is
~-quasar-convex at x*. O

Property 5.25 (Smoothness Lower Bound for the Class). The class of (u,y)-strongly
quasar-convex functions (with v € (0,1] and p > 0) is not contained in the class of
L-smooth functions for any L < 27—v' That is, for every L < 27:, there exists a
(1, y)-strongly quasar-convex function whose gradient is not L-Lipschitz. O

5.2.6. Geometric properties and closure properties

Property 5.26 (Star-Convexity of the Minimizer Set). Let X C R™ be convex and
f & = R be continuously differentiable and ~y-quasar-convex on X for some ~ €
(0,1]. Then the set of global minimizers X* is star-convex. That is, for any z* € X™*,
the line segment [z*,z] C X for all z € A™. O

This property ensures that the solution set has favorable geometric structure, which
is important for both theoretical analysis and algorithmic convergence.

Quasar-convexity enjoys several closure properties that facilitate its use in compos-
ite optimization problems.

Property 5.27 (Nonnegative Weighted Sums Preserve Quasar-Convexity). Let X' C
R™ be a convex set and x* € X. Suppose fi1,--+,fr : X — R are continuously
differentiable and y-quasar-convex on X with respect to the common minimizer x*,
for some v € (0, 1]. Then, for any non-negative weights Ay, -+, A\ > 0, the function

f= Zle i fi is also y-quasar-convex on X at z*. O
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Property 5.28 (Stability Under Addition for Strong Quasar-Convexity). Let X C
R™ be convex and x* € X. Suppose f,g : X — R are continuously differentiable
and (u1,7)- and (ug,72)-strongly quasar-convex on X with respect to the common
minimizer z*, where 1,7 € (0,1] and p,pue > 0. Then the sum h := f 4 g is
(11 + pa, v)-strongly quasar-convex at x*, where v = min{~y,y2}. O

Property 5.29 (Stability Under Finite Summation). Let X C R™ be convex and
e X. Fori=1,--- k, let f; : X - R be continuously differentiable and (p;,;)-
strongly quasar-convex on X with respect to the common minimizer x*, where ~; €
(0,1] and g; > 0. Define h(z) := Y% | fi(z). Then h is (u,)-strongly quasar-convex
at z*, where v = min;<;<;y; and p = Zle L. O

Property 5.30 (Affine-Scaling Invariance). Let f : R" — R be v-quasar-convex on
R™ with respect to a minimizer x*, where v € (0, 1]. For any scalars a > 0 and b # 0,
define g(z) := a f(bx). Then g is y-quasar-convex on R" with respect to the minimizer
xy =z /b. O

Property 5.31 (Scaling of Strong Quasar-Convexity Parameters). Let X C R™ be
convex and f : X — R be differentiable. Suppose f is (u,7)-strongly quasar-convex
on X with respect to a minimizer x* € X', where v € (0,1] and g > 0. Then, for any
0 € (0, 1], the function f is also (u/6, 6v)-strongly quasar-convex at x*. O

This scaling property reveals a trade-off between the quasar-convexity parameter -y
and the strong convexity modulus p: one can increase the effective strong convexity
at the cost of a smaller +, and vice versa.

5.2.7. Algorithmic implications and applications

Quasar-convexity has found broad application in the analysis of first-order optimiza-
tion methods for nonconvex problems. The key insight is that the structure provided
by quasar-convexity is sufficient to establish convergence rates comparable to those
for convex optimization.

Quasar-convexity has been exploited in the convergence analysis of numerous first-
order methods. For gradient descent, [8, 21] establish O(1/N) rates and linear con-
vergence under strong quasar-convexity. Accelerated gradient descent with improved
rates leveraging momentum has been analyzed in [41, 42]. Extensions to stochastic gra-
dient descent in noisy gradient settings appear in [36, 46], while accelerated stochastic
methods combining acceleration with variance reduction are studied in [32].

Beyond gradient methods, proximal algorithms for handling composite objectives
with nonsmooth regularizers are analyzed in [28, 41]. Frank—-Wolfe and conditional
gradient methods for projection-free constrained optimization are developed in [52,
64]. Conjugate gradient methods exploiting curvature information are studied in [56],
and adaptive methods including AdaGrad-type algorithms with adaptive step sizes
are analyzed in [59, 89].

Notable applications of quasar-convexity include training of linear dynamical sys-
tems [39], neural network optimization in overparameterized regimes [90], and various
machine learning settings where the optimization landscape exhibits structured non-
convexity. For additional characterizations of quasar-convexity and further theoretical
developments, we refer the reader to [42].
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6. Regularity Conditions

Beyond generalized convexity, a variety of reqularity conditions have emerged as pow-
erful tools for analyzing optimization algorithms on nonconvex landscapes. Notable
examples include the Polyak—Lojasiewicz (PL) condition [76], error bounds (EB) [61],
quadratic growth (QG) [6], essential strong convexity (ESC) [58], the restricted se-
cant inequality (RSI) [93], and weak (or quasi-) strong convexity [66]. As established
in [49], these conditions can be viewed as successive relaxations of strong convexity,
extending linear convergence guarantees to broad classes of nonconvex functions.

6.1. The Polyak—Lojasiewicz condition

The Polyak—Lojasiewicz (PL) condition has become a cornerstone for establishing lin-
ear convergence in nonconvex optimization [2, 3, 18, 49, 76]. Recent work has explored
connections between the PL condition and generalized convexity notions. For instance,
[41] studies the relationship between strong quasar-convexity and the PL condition,

while [90] analyzes convergence properties of smooth quasar-convex functions satisfy-
ing PL or QG.

Definition 6.1 (Polyak—Lojasiewicz Condition). Let f : X — R be differentiable and
bounded below. The function f satisfies the Polyak-Lojasiewicz (PL) condition with
parameter u > 0 if for all x € &,

SIVF@I > w(f(@) - 1),

where f* :=infycr f(y). O

When X C R™, this property is sometimes referred to as a local PL condition [4].
The PL condition is strictly weaker than strong convexity.

Property 6.2 (Strong Convexity Implies PL). Every p-strongly convex function sat-
isfies the PL condition with parameter . O

While the PL condition does not imply convexity, it does imply invexity.

Property 6.3 (PL Implies Invexity). A function satisfying the PL condition is invex
with respect to the mapping n(z,y) = —ﬁVf(;v). O

Property 6.4 (Strong Quasar-Convexity Implies PL). Let X C R"™ be convex and
f : & — R be continuously differentiable and (u,~)-strongly quasar-convex on X
with respect to a minimizer x*, where v € (0,1] and g > 0. Then f satisfies the PL
condition with parameter ppy, = 72pu:

SIVI@IP > Pu(i@) — ), rex.

O]

More recently, the PL condition has been interpreted as a special case of the
Lojasiewicz gradient inequality [78].
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Definition 6.5 (Lojasiewicz Inequality with Exponent #). Let f : X — R be continu-
ously differentiable. The function f satisfies the Lojasiewicz inequality with exponent
6 € [0,1) and parameter p > 0 if, for all x € X,

SIVF@IP > () - 1),

where f* :=infycx f(y). O

Property 6.6. If f satisfies the Lojasiewicz inequality with exponent 6 = %, then it
satisfies the PL condition with the same constant p. O

Remark 6 (On the Range of Admissible Exponents). If f satisfies Lojasiewicz in-
equality for some 6 € [0,1), then it also satisfies the inequality for any 6 € [0,1),
possibly with a different constant ji > 0. Moreover, if f is L-smooth and non-constant
in a neighborhood of some minimizer z*, then the inequality cannot hold with any
exponent 0 < % in that neighborhood. O

Finally, for twice continuously differentiable functions, the PL condition is not sub-
stantially more general than strong convexity. As shown in [67], bounded minimizer
sets together with the PL condition enforce local strong convexity.

Property 6.7. Let f : X — R be twice continuously differentiable and satisfy the
PL condition with parameter p > 0, and assume the set of global minimizers X* is
nonempty and bounded. Then:

(1) f admits a unique global minimizer z*.
(2) there exists o > f* such that f is p-strongly convex on the sublevel set lev,(f).

O]

The PL condition has been used to establish linear convergence of the ADMM
method [92], difference-of-convex algorithms [1, 3], gradient methods [2], and generic
classes of descent algorithms [16].

6.2. Error bounds

Error bounds constitute a powerful regularity condition that quantifies how the norm
of the gradient controls the distance to the set of minimizers. Unlike strong convexity,
the error bound property does not require global curvature and can hold for certain
nonconvex or weakly convex functions—making it instrumental in establishing linear
convergence for first-order methods beyond the strongly convex regime [29, 49].

Definition 6.8 (Error Bound Condition). Let f : X — R be differentiable, and
suppose that the set of global minimizers X'* is nonempty. The function f satisfies the
error bound (EB) condition with parameter p > 0 if for all z € X,

IVF@) = pllz — 2.
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6.3. Quadratic growth

The quadratic growth condition characterizes the curvature of f near the optimal set
without requiring convexity.

Definition 6.9 (Quadratic Growth). A function f satisfies quadratic growth (QG)
with parameter p > 0 if for all z € X,

s

_ P2
5 llz— 2]

flz) =1 =

If f is additionally convex, this property is referred to as optimal strong convezity
(OSC) [58] or semi-strong convezity [66]. O

Property 6.10 (Quadratic Growth of Strongly Quasar-Convex Functions). Let X C
R™ be convex and f : X — R be continuously differentiable. Suppose f is (u,~)-
strongly quasar-convex on X with respect to a minimizer z* € X, where v € (0, 1]
and g > 0. Then f satisfies the quadratic growth condition:

— ||z -z, VreX.

O

Unlike the PL and EB conditions, QG alone does not preclude the existence of non-
optimal local minima. However, when combined with appropriate descent properties,
QG still enables linear convergence to global minimizers.

6.4. Restricted secant inequality

The restricted secant inequality provides a directional strong convexity property along
the path to the optimal set.

Definition 6.11 (Restricted Secant Inequality). A function f satisfies the restricted
secant inequality (RSI) with parameter p > 0 if for all x € X,

where 27 = Projy.(7) and X* = argmin,cy f(y).
When f is additionally convex, this condition is termed restricted strong convezity
(RSC) [93]. O

The RSI condition ensures that the gradient points sufficiently toward the optimal
set, which is crucial for establishing linear convergence rates.

6.5. Essential strong convexity and weak strong convexity

Two intermediate conditions between strong convexity and the PL condition are es-
sential strong convexity and weak strong convexity, introduced in [58].

Definition 6.12 (Essential Strong Convexity). A function f satisfies essential strong
convexity (ESC) with parameter p > 0 if for all z,y € X such that 2P = yP (i.e., they
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project to the same optimal point),

) = f(@) + Vi@ (y - 2) + Sy - o]

O

Essential strong convexity requires the strong convexity inequality to hold only
among points sharing the same nearest optimizer—strictly weaker than global strong
convexity when the solution set is non-singleton.

Definition 6.13 (Weak Strong Convexity). A function f satisfies weak strong con-
vexity (WSC) with parameter p > 0 if for all z € X,

2 f@)+ V@) (@ =)+ Slla” -l

where 2P = Projy. () and f* = infycx f(y). O

Weak strong convexity requires the strong convexity inequality to hold only in the
direction of the nearest optimizer, making it weaker than ESC but still sufficient for
linear convergence.

The regularity conditions studied here are related through a well-known hierarchy.
For smooth functions, strong convexity implies error bound—type conditions, including
the Polyak-Lojasiewicz (PL) inequality, which in turn imply quadratic growth. Under
convexity, several of these conditions are equivalent. We refer to [49] for a detailed
and complete characterization.

7. Partial Convexity and Pointwise Convexity

7.1. Biconvexity and multiconverity

Biconvex functions represent an important class of structured nonconvex functions
that arise naturally in numerous optimization problems across machine learning, signal
processing, and control theory. While jointly nonconvex in their full argument, these
functions exhibit convexity when restricted to subsets of variables, a property that
enables the development of efficient alternating optimization algorithms [34, 75, 96].

Definition 7.1 (Biconvex Function). Let X C R"™ and Y C R™ be convex sets. A
function f : X x Y — R is biconvex if, for every fixed y € ), the function x — f(z,y)
is convex on X, and for every fixed x € X, the function y — f(z,y) is convex on

V. O

Equivalently, a function f: X x ) — R is biconvex if it is convex in each block
of variables when the other block is held fixed. This blockwise convexity naturally
extends to related classes: f is called biconcave if both partial functions = +— f(z,y)
and y — f(z,y) are concave for all fixed counterparts; biaffine if both partial functions
are affine; and bilinear if both are linear. Notably, bilinear functions constitute a strict
subclass of biaffine functions (those vanishing at the origin), and every biaffine function
is simultaneously biconvex and biconcave.

Property 7.2. The class of biconvex functions is closed under nonnegative weighted
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summation. Specifically, if f1,---, fn: X X Y — R are biconvex and wy,--- ,w,, > 0,
then the function

is biconvex on X x ). ]

In particular, nonnegative scaling preserves biconvexity, and the sum of two bicon-
vex functions is biconvex. Additional closure properties are provided in Appendix C.

In practice, solving a biconvex optimization problem—that is, minimizing a bicon-
vex function f(z,y) over a biconvex (often product-form) feasible set X' x })—typically
relies on heuristic strategies, the most widely used being alternating convex search
(ACS), also known as block coordinate descent or alternating minimization. In each
iteration, ACS fixes one block of variables (e.g., y*)) and solves the convex subprob-
lem mingcy f(x,y™®); it then fixes the updated z*+1) and solves mingey f (D ),
Under mild regularity conditions (e.g., compactness of X, ) and continuity of f), the
sequence of objective values is nonincreasing and converges, and every limit point
of the iterates is a blockwise stationary point [34]. However, global optimality is not
guaranteed due to the nonconvex nature of the joint problem.

Biconvexity has also been extended to more general settings; see [73]. The concept
of biconvexity naturally generalizes to functions involving more than two blocks of
variables.

Definition 7.3 (Multiconvex Function). Let AX3,..., A}, be convex subsets of Eu-
clidean spaces. A function f : &} x --- x &, = R is multiconvex if it is convex with
respect to each block of variables z° € X; when all other blocks are held fixed.

Formally, for each i € {1,...,p} and for all fixed (z!,...,z" Y 2t ... 2P), the
function

i 1 i—1 i 41 P
e fle, ettt 2P
is convex on Aj. O

One may also define multiconvex functions by allowing the variables to be parti-
tioned into multiple blocks, such that the objective is convex in each block when the
remaining variables are held fixed. Multi-convex problems appear in domains such
as machine learning [85]. Biconvexity has emerged as a key structural property in
the mathematical optimization community, with applications in robust optimization
[51, 95] and quadratic optimization [50].

7.2. Pointwise and midpoint convexity

Classical convexity requires the convexity inequality to hold for all pairs of points.
Pointwise convexity weakens this requirement to behavior relative to a single reference
point, while midpoint convexity requires the inequality only at A = %

Definition 7.4 (Convexity of a Function at a Point). Let X C R" be star-shaped
with respect to a point 2° € X, and let f : X — R. The function f is said to be convex

26



at 2% (with respect to X ) if for all z € X and all X € [0, 1],
FA?+ (1= N)z) < Af(@°) + (1= N f(2).

The function f is said to be strictly conver at z° if the inequality is strict whenever
r € X with z # 2% and X € (0,1). O

Definition 7.5 (Pseudo-Convexity at a Point). Let X C R" let 2° € X, and let
f : X = R be differentiable at x°. The function f is said to be pseudo-convezr at x°
(with respect to X') if for all x € X,

Vi) (@ —a%) 2 0= f(z) > fa*).
Equivalently, f is pseudo-convex at x° if for all z € X,
f(a) < f(z°) = Vf(2°) " (z —2°) < 0.

O]

Definition 7.6 (Quasi-Convexity at a Point). Let X C R”" be star-shaped with
respect to a point z° € X, and let f : X — R. The function f is said to be quasi-
convex at x° (with respect to X ) if for all x € X and all X € [0, 1],

f2) < f(z%) = f(Aa® + (1 - N)z) < f(2°).

O]

Property 7.7 (Epigraph characterization of pointwise convexity). Let X C R"™ be
nonempty, z° € X, and f: X — R. Then f is convex at 2 (with respect to &) if and
only if its epigraph is star-shaped at (:1:0, f (xo)). O

Property 7.8 (First-Order Condition for Pointwise Convexity). Let X C R™ be star-
shaped with respect to a point 2 € X, and let f : X — R be differentiable at z°. If
f is convex at z° (with respect to X), then for all z € X,

fla) = f(2°) 2 Vf(@@®)  (z —a?).

If f is strictly convex at 2%, then the inequality is strict for all z € X with x # 2°. O

Property 7.9 (Second-order condition for pointwise convexity). Let X C R™ be open
and star-shaped at 2z € X, and let f: X — R be twice continuously differentiable at
20, If f is convex at ¥, then the Hessian V2 f(2°) is positive semidefinite. O

Property 7.10 (First-Order Condition for Pointwise Quasi-Convexity). Let X C R"
be star-shaped with respect to a point 2° € X, and let f : X — R be differentiable at
20, If f is quasi-convex at z° (with respect to X), then for all z € X,

f(a) < f(a") = Vf(@*) T (x - 2°) <0.
Equivalently, if f is quasi-convex at x°, then for all x € X,

Vi) (@ —a") > 0= f(z) > f(z°).
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O]

Property 7.11 (Quasi-convexity implies pseudo-convexity under nonzero gradient).
Let X C R" be open, and let f: X — R be continuous on X and differentiable at
2’ € X. If f is quasi-convex at 2" (with respect to X) and Vf(z%) # 0, then f is
pseudo-convex at x°. O

Property 7.12 (Characterization of pseudo-convexity via stationary points). Let
X C R” be open and convex, and let f: X — R be differentiable and quasi-convex
on X. Then f is pseudo-convex on X if and only if every stationary point is a global
minimizer; that is,

Vi) =0= f(2°) = inf f(z), Va'ecA.

zeX
]

Midpoint convexity, also known as Jensen convexity [44], constitutes a weaker no-
tion than full convexity. It plays a foundational role in the study of functional inequal-
ities and regularity conditions for convex functions.

Definition 7.13 (Midpoint Convex Function). Let X C R™ be a convex set and let
f: X = R. The function f is midpoint convexr on X if for all z,y € X,

f(fc;ry> < f(w);f(y)

O
Property 7.14. Every convex function is midpoint convex. O

Property 7.15. If a midpoint convex function f is continuous on X', then f is convex
on X. O

8. Structured Function Classes

Beyond classical convexity, a variety of structured function classes have been intro-
duced to model nonlinear phenomena while preserving useful analytical and algo-
rithmic properties. These classes refine or relax standard convexity in different ways:
some strengthen convexity through nonlinear transformations (such as logarithmic
or exponential mappings), while others decompose nonconvex functions into convex
components or dispense with linear structure altogether. The function classes pre-
sented in this section—logarithmically convex functions, exponentially convex func-
tions, difference-of-convex (DC) functions, and abstractly convex functions—play a
central role in modern optimization, variational analysis, and information theory.
They provide flexible modeling tools and underpin many contemporary algorithms
for nonconvex optimization.
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8.1. Logarithmic convexity

The notion of logarithmic convexity, as introduced and systematically studied by
Klinger [54], captures a strengthening of ordinary convexity: rather than requiring the
function itself to lie below its chords, one requires that its logarithm does. Intuitively,
this means the function grows (or decays) at an accelerating multiplicative rate — its
curvature is controlled on the logarithmic scale, reflecting exponential-type behavior
in the original variable. This property arises naturally in probability, statistics, and
information theory, notably in the analysis of moment-generating functions, partition
functions, likelihoods, and entropy-related quantities.

Definition 8.1 (Log-Convex Function). Let X C R™ be a convex set. A function
f: X = Ry is called logarithmically convex (or log-convex) on X if for all z,y € X
and all A € [0,1],

1-X

FOz+(1=Ny) < [f@] [f)]

Equivalently, f is said to be strictly log-convez if the inequality is strict for all A € (0,1)
and all x # y. O

A function f: X — R, is called log-concave if the reverse inequality holds, i.e.,

f()\x—l—(l—)\)y) > [f(x)]/\[f(y)]l_/\,Vm,yeX, A€ [0,1].

We now present equivalent characterizations of log-convexity. These formulations
highlight structural, analytic, and geometric facets of the concept.

Property 8.2 (Log-Transform Convexity). A function f : X — R, is log-convex
on X if and only if the composition logof is convex on X. O

Property 8.3 (Exponential Representation). f: X — R, is log-convex on X if and
only if there exists a convex function h : X — R such that f =e” on X. O

Property 8.4 (Power Convexity). f: X — R, is log-convex on X if and only if f¢
is convex on X for every o > 0. O

Indeed, it suffices to verify convexity for a single exponent o > 0 with a # 0.
The case a = 1 recovers ordinary convexity, which is necessary but not sufficient for
log-convexity.

Property 8.5 (Reciprocal Log-Concavity). f: X — Ry, is log-convex on X if and

only if 1/f is log-concave on X. O
Property 8.6 (Generalized Jensen Inequality). f: X — R, is log-convex on X if
and only if for any finite collection z',--- ,z* € X and weights A\j,---,\, > 0 with
YA =1,

f(i/\z:rl> < f[(f(xi))Ai-

i=1
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Property 8.7 (Gradient Ratio Monotonicity). Assume f : X — R, is differentiable
on an open convex set X. Then f is log-convex on X if and only if the mapping
x+— Vlog f(z) = Vf(x)/f(x) is monotone, i.e., for all z,y € X,

(o) [(L2_TI0) 5

f(x) f()
0

Property 8.8 (Log-Gradient Inequality). Assume f : X — R, is differentiable on
an open convex set X. Then f is log-convex on X if and only if for all x,y € X,

(.T - y)T Vi) <1 f(z) < (x o y)T Vf(z)

) — ry f(x)

O]

Property 8.9 (Modified Hessian Condition). Assume f: X — R, is twice contin-
uously differentiable on an open convex set X. Then f is log-convex on X if and only
if for every x € X,

VZlog f(x) = —— V2f(2) — s V(@) V(@) = 0,

.
f(x) f(x)?

or equivalently,
f@) V2 f(z) — V(@) V(@) = o0
O

Property 8.10. Every log-convex function on a convex set X is convex on X. The
converse does not hold in general.

Property 8.11. Every positive concave function on a convex set X is log-concave on
X. The converse does not hold in general.

Property 8.12. For positive functions on a convex set X, log-convexity is a strictly
stronger condition than convexity, whereas log-concavity is a strictly weaker condition
than concavity. O

For further details on this concept, we refer the reader to [54].

8.2. Exponential convexity

Exponentially convex functions, studied in [7, 72], strengthen classical convexity by
requiring convexity of the exponential transform ef. This class finds notable appli-
cations in mathematical programming, information theory, and entropy optimization

[5, 74].

Definition 8.13 (Exponentially Convex Function). Let X C R" be a convex set. A
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function f: X — R is exponentially convex on X if for all z,y € X and all A € [0, 1],

I OT 1N < 2o F @) 4 (1 = \) ),

Equivalently, f is exponentially convex if and only if ef is convex on X’. O

Property 8.14 (Logarithmic Characterization). Let X C R™ be a convex set. A
function f : X — R is exponentially convex if and only if for all z,y € X and all
A€ [0,1],

fAz+(1—=ANy) < log(/\ef("”) +(1- )\)ef(y)).

O]

Property 8.15 (Relationship to r-Convexity). A function f : X — R is exponentially
convex if and only if f is 1-convex in the sense of Definition 3.17. Thus, exponential
convexity is a special case of r-convexity with r = 1. O

Property 8.16 (Exponential Convexity Implies Convexity). Let f : X — R be
exponentially convex on a convex set X' C R"™. Then f is convex on X. The converse
does not hold in general. O

8.3. Difference-of-convex functions

Difference-of-convex (DC) programming, pioneered by [40] and systematically devel-
oped by [43] [86], and subsequent authors, provides a universal framework for modeling
and analyzing nonconvex optimization problems. The class of DC functions is remark-
ably expressive: it contains all twice continuously differentiable functions on compact
convex domains and is closed under most standard algebraic operations.

Definition 8.17 (DC Function). Let X C R" be a convex set. A function f: X — Ris
said to be difference-of-convex (or DC') if there exist two convex functions g, h: X — R
such that

f(z) =g(x) — h(x), Ve X.

The pair (g, h) is called a DC' decomposition of f. O

Remark 7. The DC decomposition of a given function is not unique: for any convex
o, f = (g9+ ¢) — (h+ ¢) is also a valid DC decomposition.

Property 8.18 (Universality of DC Functions). Let X C R"™ be a compact convex
set. Every function f: X — R that is twice continuously differentiable on X is DC on
X. O

Property 8.19 (Algebraic Closure). Let f1, fo: X — R be DC functions on a convex
set X C R". Then:

(1) f1+ f2 and f1; — f2 are DC;

(2) afy is DC for any a € R;

(3) If f; is bounded below and f; is bounded above, then f - f5 is DC;

(4) If f; is DC and ¢: R — R is convex and nondecreasing, then ¢ o f; is DC.
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O]

Additional closure properties, including preservation under pointwise maximum,
minimum, and absolute value operations, are provided in Appendix E.

Property 8.20 (Subdifferential Characterization). Let X C R™ be open and convex,
and let f = g— h be a DC function on X with g, h convex and locally Lipschitz. Then
f is locally Lipschitz and its Clarke subdifferential satisfies

dof(x) € dg(x) — Oh(x),  VzedX,

where dg(x) and Oh(x) denote the convex subdifferentials of g and h, respectively. [J

Property 8.21 (DC Structure of Other Function Classes). The following inclusions
hold:

(1) Every convex function is DC (take h = 0);

(2) Every concave function is DC (take g = 0);

(3) Every weakly convex (para-convex) function is DC;

(4) Every twice continuously differentiable function on a compact convex domain is
DC;

(5) Every polynomial function is DC;

(6) Every rational function with positive denominator on X is DC.

O]

Property 8.22 (DC Decomposition via Quadratic Regularization). Let f: R" — R
be L-smooth (i.e., V f is L-Lipschitz). Then f admits the canonical DC decomposition

@)= (@) + Flel?) = FllP.
——

h convex

g convex

O]

Remark 8 (Algorithmic Relevance). The DC structure enables the DC Algorithm
(DCA), which linearizes the concave part —h at each iteration and solves a convex
subproblem:

gkt ¢ argmin{g(z) — h(z®) — Vh(z®)T (z — x(k))}.

TeEX

Under mild conditions, DCA generates a sequence with monotonically decreasing ob-
jective values and converges to a critical point of f. Variants include proximal DCA,
inertial DCA, and stochastic DCA. The difference-of-convex algorithm, also known as
the convex—concave procedure. We refer to [3] and the references therein for further
details.

8.4. Abstract convexity

Abstract convexity, sometimes referred to as convexity without linearity, provides a
unifying framework that extends many fundamental results of classical convex analysis
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beyond linear and affine structures. This theory replaces linear functionals with a
general family of elementary (or support) functions, enabling optimization and duality
theory in significantly broader settings. We refer to [14, 22, 65, 83] for comprehensive
treatments and recent applications.

Definition 8.23 (Abstract Convexity). Let X C R™ be a nonempty set, and let H
be a family of real-valued functions on X, called the elementary functions or support
functions. A function f : X — R is said to be abstractly conver with respect to H (or
‘H-convez) if there exists a subset G C H such that

f(z) = sup h(z), Ve e X.
heg

Equivalently, f is H-convex if and only if it coincides with its H-envelope, defined by
f(z) =sup{h(z) | heH, h(y) < f(y) forall y € X }, Vo e X. (3)

O]

Property 8.24. When H is taken to be the family of all affine functions on R”, that
is,

H:{xHaT$+b|aER",bER},

the notion of H-convexity reduces to classical convexity, and the H-envelope coincides
with the convex envelope (or closed convex hull) of the function. O

9. The Convexity Zoo

To synthesize the diverse notions introduced throughout this survey, we summarize
the relationships among classical convexity, generalized convexity, geometric variants,
regularity conditions, and special function classes in what we refer to as the converity
200.

Figures 1 and 2 present two complementary visualizations of this landscape. Fig-
ure 1 depicts set-theoretic containments among major function classes, highlighting
strict inclusions that hold in general. Figure 2 emphasizes logical implications and
structural relationships, including connections that depend on additional assumptions
such as smoothness or convexity of the domain.

10. Conclusion

In this survey, we have presented a comprehensive taxonomy of the Convexity Zoo,
systematically organizing function classes ranging from classical convexity to modern
forms of structured nonconvexity. By consolidating definitions, equivalent character-
izations, and hierarchical relationships, we have clarified the landscape of function
properties that enable efficient optimization.

Our analysis highlights that, while classical convexity remains the gold stan-
dard, broader classes—such as quasar-convexity and functions satisfying the Polyak—
Lojasiewicz (PL) condition—provide a powerful framework for explaining why many
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Star-Convex

Figure 1. Set-theoretic hierarchy of convexity and generalized convexity classes. Nested regions represent strict
inclusions that hold in general, illustrating how classical convexity is embedded within broader nonconvex but
structured function classes.
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Strongly Convex
Uniformly Convex
Strictly Convex

Star-Convex Quasar-Convex

Weakly Convex

Convex

Pseudo-Convex

Quasi-Convex

Semistrictly
Quasi-Convex

Figure 2. Logical implications and relationships among convexity, generalized convexity, geometric variants, and
regularity conditions. Directed arrows indicate implications that hold under standard assumptions (e.g., continu-
ously differentiable and convexity of the domain); absence of an arrow does not imply non-implication.
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nonconvex problems arising in machine learning and operations research remain com-
putationally tractable.

We hope that this survey serves as a field guide to the Convexity Zoo, helping
researchers navigate, classify, and exploit structure in nonconvex optimization.

36



Appendix

This appendix complements the main survey by collecting supplementary definitions,
equivalent characterizations, and technical properties that support the results in the
body of the paper. In particular, it presents additional material on classical convexity
(including smoothness and strong convexity variants), refinements and variants of
quasi-convexity and generalized convexity, and selected closure/optimality properties
referenced in the main text but omitted there for readability.

Appendix A. Supplementary Results on Classical Convexity

This appendix provides additional technical details and properties complementing
Section 2.

A.1. Additional Equivalent Characterizations
Property A.1 (Line Restriction). Let X C R” be a convex set and f : X — R. Then

f is convex if and only if, for every x,y € X', the univariate function

gﬁﬂ,y(t) = f((l - t).’L' + ty)vt € [07 ”7
is convex on the interval [0, 1]. O

This characterization reduces multivariate convexity to univariate convexity along
all line segments.

Property A.2 (Monotone Secant Slope Criterion). Let f : X — R be a function
defined on a convex set X C R™. Then f is convex on X if and only if, for all distinct
points x,y € X and for every z strictly between x and y, i.e., z € (z,y),

fy) = fl@) _ f(2) = fy)
ly =2l = llz—yll

O]

Property A.3 (Continuity and Local Lipschitz Regularity). Let f : X — R be a
convex function, where X C R" is an open convex set. Then:

(1) f is continuous on X.
(2) f is locally Lipschitz continuous on X': for every compact subset K C X, there
exists a constant Lx > 0 such that

[f(x) = f(y)| < Li|z = ylfor all z,y € K.

O]

Property A.4 (Gradient Monotonicity). Let f : X — R be continuously differen-
tiable on a nonempty convex set X C R™. Then f is convex on X if and only if

(Vf(z) - Vf(y))T(x —y) > Ofor all z,y € X.
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O]

This monotonicity condition is equivalent to saying that V f is a monotone operator.

A.2. Smoothness

While convexity controls the function from below, smoothness controls it from above
by bounding the rate of change of the gradient.

Definition A.5 (L-Smoothness). A differentiable function f : X — R on a convex
set X C R™ is L-smooth if there exists L > 0 such that for all z,y € X

IVf(z) = VIl < Lilz -yl
O

Property A.6 (Quadratic Upper Bound). Let f: X — R be convex and L-smooth
on an open convex set X' C R™. Then for all z,y € X:

Fl) < (@) + V5@ (- 2)+ 5y — 2l

O]

The quadratic upper bound complements the gradient inequality, providing a “sand-
wich” for convex smooth functions.

Property A.7 (Equivalent Characterizations of Smoothness). Let f : X — R be
continuously differentiable and convex on an open convex set X C R". The following
are equivalent:

(1) fis L-smooth.
(2) (Quadratic upper bound) For all z,y € X:

F) < 7(@) + VI@) (- 2) + oyl
(3) (Co-coercivity) For all z,y € X:
(Vi) = Vi) (@~ v) > 71V (@)~ V)P

(4) If f is twice differentiable: V2f(x) < LI for all z € X.

A.3. Additional Strong Convexity Properties

Property A.8 (Strong Gradient Monotonicity). Let f : X — R be continuously
differentiable on a convex set X C R™. Then f is p-strongly convex if and only if

(Vf(@) = Vi) (@ —y) > plz—y|*or all 2,y € X.
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O]

Property A.9 (Regularization and Strong Convexity). Let f : R”™ — R be a proper
function. Then:

(1) f is convex if and only if f + £ - ||? is p-strongly convex for any p > 0.
(2) fis p-strongly convex if and only if f — & - [|? is convex.

A.4. Subdifferential Properties

Property A.10 (Basic Properties of Subdifferentials). Let f: X — R be convex on
a convex set X C R"™. Then:

(1) 9f(x) is a closed convex set for each =z € X.

(2) If z € int(X), then Jf(z) is nonempty and bounded.

(3) If f is differentiable at z, then 0f(z) = {V f(z)}.

(4) (Sum rule) If f = f1 + fo where f1, fo are convex, then 0f(x) D df1(z)+0fa(x),
with equality under mild constraint qualifications.

O]

A.5. Algebraic Closure Properties

Property A.11 (Nonnegative Weighted Sums). Let {f;}icz be convex functions
on a common convex set X, and let {«;};cz be nonnegative scalars. Then f(z) =
Y icz @ifi(x) is convex on X. O

Property A.12 (Affine Precomposition). Let f : R™ — R be a convex function, A €
R™ ™ and b € R™. Define g(z) := f(Az +b) on X := {x € R" | Az + b € dom(f) }.
Then X is convex and g is convex on X. O

Property A.13 (Composition with Nondecreasing Convex Function). Let f : X — R
be convex on a convex set X C R™, and let g : R — R be convex and nondecreasing.
Then h(z) := g(f(x)) is convex on X. O

Property A.14 (General Composition Rules). Let f : X - R and g : R — R be
twice differentiable. The composition h = g o f is convex if either:

(1) g is convex and nondecreasing, and f is convex; or
(2) g is convex and nonincreasing, and f is concave.

Analogously, h is concave if ¢ is concave and nondecreasing with f concave, or g is
concave and nonincreasing with f convex. O

Property A.15 (Pointwise Maximum and Supremum). Let {f;};cz be a family of
convex functions on a common convex set X C R"™. Then the pointwise supremum
f(z) = sup,cz fi(x) is convex on X. O

Property A.16 (Convexity Preserved Under Partial Minimization). Let f : X' x) —
R be convex, where X C R™ and ) C R™ are convex sets. Define g(z) := inf,cy f(z,y).
Then g is convex on X (provided g(z) > —oo for all z € X). O
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Property A.17 (Perspective Transform). Let f: X — R be convex on a convex set
X C R™. The perspective of f is g(x,t) := tf(%) for ¢ > 0. Then g is convex on its
domain. O

Property A.18 (Closure Properties for Strong Convexity). Let f be p-strongly con-
vex and g be v-strongly convex on a common convex set X. Then:

(1) For o, 8 > 0 with a+ 8 > 0: aof + By is (ap + Pv)-strongly convex.
(2) f+ his p-strongly convex for any convex function h.
(3) If A € R™™ with opin(A) > 0, then f(Ax) is puomm(A)?-strongly convex.

A.6. Additional Optimality Conditions

Property A.19 (Convexity of the Solution Set). Let f : X — R be a convex function
on a convex set X C R". Then the set of global minimizers argmin,y f(z) is convex
(and possibly empty). O

Property A.20 (Uniqueness under Strict Convexity). Let f : X — R be strictly
convex on a convex set X' C R”. If f attains its minimum over X, then the minimizer
is unique. [

Remark 9 (Connection to KKT Conditions). For constrained problems min,cy f(z)
where X = {x : g;(x) <0, hj(x) = 0}, the first-order condition extends to the Karush-
Kuhn-Tucker (KKT) conditions. Under constraint qualification, z* is optimal if and
only if there exist multipliers A\; > 0 and v; such that

0€df(x*)+ Y Ndgi(a*) + > v;Vhy(z*),
i J

along with complementary slackness \;g;(z*) = 0.

Property A.21 (Uniqueness and Quadratic Growth under Strong Convexity). Let
f: X = R be u-strongly convex on a closed convex set X C R". Then:

(1) If f attains its minimum over X', the minimizer z* is unique.
(2) (Quadratic growth) For all z € X: f(z) — f(z*) > &z — *|*.

O]

Property A.22 (Two-Sided Bounds for Smooth Strongly Convex Functions). Let
f & = R be p-strongly convex and L-smooth on a convex set X C R”, with
0 < p < L. Let * be the unique global minimizer. Then for all x € X

Pllo — 2P < 1(@) ~ fo*) <z — |
Equivalently, in terms of gradients:
iHVJ”(fU)H2 < f(2) - f(3") < — |V ()2
2L 21
The ratio k := L/ is the condition number and governs convergence rates of gradient-
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based methods. O

A.7. Boundary Behavior and Extreme Points

Property A.23 (No Interior Maximum). Let f : X — R be a nonconstant convex
function on a convex set X C R™. Then f cannot attain a global maximum at any
point in the interior of X. ]

Property A.24 (Maximum at Extreme Points). Let f : X — R be convex and
continuous on a compact convex set X C R™. Then f attains its maximum over X at
some extreme point of X. O

This result underpins the simplex method in linear programming: for linear objec-
tives over polytopes, it suffices to check finitely many vertices.

Appendix B. Supplementary Results on Generalized Convexity

This appendix provides additional variants and technical characterizations comple-
menting Section 3.

B.1. Additional Quasi-convexity Variants

Definition B.1 (Strongly Quasi-convex Function). Let X C R™ be convex, f : X —
R, and p > 0. The function f is u-strongly quasi-convexr on X if for all x,y € X and
all A € [0,1],

F(( =Nz + ) < max{ f(@), F@)} = 5M1=N) e —y]

O]

Definition B.2 (Uniformly Quasi-convex Function). Let X C R™ be convex and
f:X =R Let 0 : Ry — Ry be a function satisfying ¢(0) = 0, o(t) > 0 for all ¢t > 0,
and o is nondecreasing. Then f is uniformly quasi-convex on X with modulus o if for
all z,y € X and all A € (0,1),

FIA=Nz+2y) + A1 =N o(lz —yll) < max{f(z), f(y)}

When o(t) = %tQ, uniform quasi-convexity reduces to p-strong quasi-convexity.

Definition B.3 (Neatly (or Essentially) Quasi-convex Function). Let X C R"™ be
convex and f : X — R. The function f is neatly quasi-convexr on X if it is quasi-
convex and every local minimizer of f over X is a global minimizer. O

Definition B.4 (Explicitly Quasi-convex Function). Let X C R™ be convex and
f X = R. The function f is explicitly quasi-conver on X if it is both quasi-convex
and semistrictly quasi-convex on X. O
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Definition B.5 (Quasiconcave Function). Let X C R™ be convex and f : X — R.
The function f is quasiconcave on X if — f is quasi-convex on X. Equivalently, for all
z,y € X and all X € [0,1],

F((1 =Nz + Ay) > min{ f(2), f(y)}.

B.2. Additional Characterizations of Quasi-convexity

Property B.6 (Raywise Quasi-convexity). Let X C R™ be convex and f : X — R.
Then f is quasi-convex on X if and only if for every z € X and every direction d € R",
the univariate function

9z.4(t) = f(z +td), teT,g={teR|z+tde X},

is quasi-convex on the (convex) interval T 4 C R. O

Property B.7 (Segmentwise Quasi-convexity). Let X C R" be convex and f : X —
R. Then f is quasi-convex on X if and only if for every z,y € X, the univariate
function

hay(N) = f((1 =Nz + Ay), A€ 0,1],

is quasi-convex on [0, 1]. O

Property B.8 (Second-Order Characterization of Quasi-convexity). Let X C R"™ be
open and convex, and let f be twice continuously differentiable on X. Suppose that
Vf(z)#0 for all z € X. Then f is quasi-convex on X if and only if, for every x € X,
the bordered Hessian matriz

7 L 0 Vf(x)—r n x(n
)= (g1t Vager) SR

has the property that its leading principal minors of order k = 2,3, -+ ,n + 1 satisfy

(=1)" det(H(x)pg) > 0,

where H 7(w)x) denotes the k x k leading principal supmatrix of H ().
Equivalently, for each x € X and for all d € R" such that Vf(z)'d =0,

d"V2f(z)d > 0.

O]

This second-order characterization states that quasi-convexity requires the Hessian
to be positive semidefinite only on the hyperplane orthogonal to the gradient—a
weaker condition than positive semidefiniteness everywhere required for convexity.
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Appendix C. Supplementary Results on Biconvexity

This appendix provides additional technical details and properties complementing
Section 7 on biconvex and multiconvex functions.

Remark 10 (Biconvex sets under weaker assumptions). The notion of a biconvex set
is sometimes introduced under weaker structural assumptions than full convexity of
the domains X C R™ and Y C R™. In particular, a set B C X x ) is called biconvex
if for each fixed y € ), the section

By:{$€X|($,y)€B}
is convex in R", and for each fixed x € X, the section

B, ={yeY|(z,y) € B}

is convex in R™. This formulation — the original one in, e.g., [34] — does not require
X or Y themselves to be convex; only the vertical and horizontal slices of B must be
convex.

Under this definition, biconvexity is strictly weaker than convexity: a biconvex set
need not even be connected. Moreover, arbitrary intersections of biconvex sets remain
biconvex. O

The pointwise supremum of an arbitrary collection of biconvex functions is biconvex.

Property C.1. The class of biconvex functions is closed under pointwise maximum
and supremum. Specifically, if f1, -+, f;n: X XY — R are biconvex, then the function

f($7y) = max{fl($7y)7 e 7fm(xvy)}

is biconvex on X x ). More generally, for any indexed family {f;}ic; of biconvex
functions (where I is an arbitrary index set), the pointwise supremum

flzy) = sup filz,y)

is biconvex, provided the supremum is finite for all (z,y) € X x ). O

Property C.2. Let X C R” and Y C R™ be nonempty convex sets. Suppose h: RP —
R is convex and g: X x Y — RP is biaffine. Then the composition

f(z,y) == h(g(z,y))
is biconvex on X x ). O

Definition C.3. Let X C R" and Y € R™ be convex sets. A set B C X x Y is
biconvex if and only if for any (x!,4'), (2,4?), (22,4), (22,4?) € B and any (\,u) €
[0,1] x [0,1], the point

(@ ") = (L= Nzt +A2?, (1= p)y' + ny®)
belongs to B. O
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Property C.4. Let X C R"™ and ) C R™ be nonempty convex sets, and let f: X x
Y — R be biconvex. Then for every ¢ € R, the sublevel set

Lo:={(z,y) € X x V| f(z,y) < c}
is a biconvex subset of X' x ). O

Property C.5. Let X C R™ and Y C R™ be nonempty convex sets, let f: X x)Y — R
be biconvex, and let p: R — R be convex and nondecreasing. Then the composition
h(z,y) = ¢(f(x,y)) is biconvex on X x ). O

Appendix D. Supplementary Results on DC Functions

This appendix provides additional technical details and properties complementing
Section 8 on difference-of-convex functions.

Property D.1 (Closure Properties of DC Functions). Let f1,..., f, be DC functions
on a convex set X, and let Ay,..., A\, € R. Then the following functions are DC:

(1) The linear combination A fi(z) + - - 4+ Ay fu(2);
(2) The pointwise maximum max{ fi(z),..., fn(2)};
(3) The pointwise minimum min{ fi(z),..., f.(2)};
(4) The pointwise product [[1, fi(z).
O

Property D.2 (Elementary DC Transformations). Let f: X — R be a DC function
on a convex set X. Then the following functions are DC:

(1) The positive part max{0, f(z)};
(2) The negative part min{0, f(x)};
(3) The absolute value |f(x)].

O]

Property D.3 (Extended Algebraic Closure). If f1, fo are DC on X, then so are:

(1) afy + Bf2 for any o, 5 € R;

(2) ma'X{f17 f2} and min{fla f2}7

(3) |f1] (and hence max{0, f1}, min{0, f1});

(4) fi - f2, provided one is bounded below and the other above;
(5) ¢o fi,if ¢: R — R is convex and nondecreasing.

In particular, all polynomials and rational functions with positive denominators on X
are DC. n
Appendix E. Summary Table of Function Classes

To provide a concise reference summarizing the diverse notions discussed through-

out this survey, Table E collects the defining inequalities and core properties of the
principal convexity, generalized convexity, and regularity classes.
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Table E1.

Summary of common convexity, generalized convexity, and regularity classes.

Function Class Definition

Convex FOz+(1—Ny) < M)+ (1= Nf(y), Yo,y e X, Ae0,1].
Strictly Convex FOz+ (1= Ny) < M)+ (1= Nfy), Vo £y, Ae (0,1).
p-Strongly Convex Oz + (1= Ny) < Mf(2) + (1 =N f(y) = AL =Nz —yl*
Uniformly Convex O+ (1= Ay) < Af(@) + (1= N f() = A0 = N gllle — gD,
Quasi-convex fOz + (1= N)y) <max{f(z), f(y)}, Vz,y € X, A €[0,1].
Strictly Quasi-convex FOx+ (1= Ny) < max{f(z), f(y)}, Yz £y, A€ (0,1).
Semistrictly Quasi-convex F2) < fly) = FOx+(1-Ny) < fly), YA€ (0, 1).
Pseudo-convex (C1) f@) < fly) = V@) (z—y) <0, Yo,y € X.

Strictly Pseudo-convex
Invex (C1)

Quasi-invex (C!)

z#y, f(2) < fly) = Vi) (z-y) <o0.
f(@) = f) 2 n(z,y) Vi), Vz,y.
In#0st. nz,y) Vi) >0 = f(x) > f(y), Vz,u.

In: X x X - R”s.t.

Weakly Convex / p-Para-convex  f(Az+ (1 —N)y) < Af(z) + (1= A)f(y) + A1 — V)| —y|*

(v, p)-Para-convex FOz 4+ (1= Ny) < Af(@) + (1= N f(y) + Emin{A, 1 — A}[|z — y[|".
Star-Convex (w.r.t. z*) FOa* + (1= M) < M) + (1= N f(x), Vo, A€ 0,1]

p-Strongly Star-Convex (w.r.t. a*)  f(Ae* + (1= \)z) < Af(a*) + (1 — A) f(z) — A1 = M)z — 2*[|2.

~-Quasar-Convex (C!, w.r.t. z*)

(1, 7)-Strongly Quasar-Convex

f@) - fla
f@) ~ Fa*) < 19 f(@)T (@ — o) -

) < 1@) (@ - %), Vo, 7 € (0,1)

Gl —2*|*

Projected y-Quasar-Convex flx)—f< %Vf(x)T(x —aP), aP = Projy.(x).
(7, 7p)-Tilted Convex (C') For all z,y € X, us )+ TV =) < 1), %f Vf(L):(y —@) <0,
f()+“/pr() (y—2) < fly), EVf(@)' (y—2)=0

PL (Polyak-Lojasiewicz) LIVI@I? = pu(f(z) — f), Vz

Exror Bound (EB) IV£@) 2 ullz— 2], @ = Projy.(2).

Quadratic Growth (QG) f(@) = f*> L)z —a”||?, 2P =Projy.(z).

Restricted Secant Inequality (RST) Vf(z)T(z — 2P) > pllz — zP||?, 2P = Projy.(z).

Essential Strong Convexity (ESC) ¥ =y? = f(y) > f(z) + Vf(2) (y — z) + 4|y — =]

Weak Strong Convexity (WSC) [ 2 f@) + V@) (@ —2) + §lla? — ]2

Biconvex f(z,y) is convex in z for fixed y and convex in y for fixed z.

Multiconvex f(z', ..., 2P) is convex in each block z' when the others are fixed.

Midpoint Convex f(EY) < f(THf(y , Vz,y e X.

Log-Convex f >0 and log f is convex on X.

Exponentially Convex ef Qo +H1=2y) < Aef@) - (1 — N)e/ W) Vo, y, A€ [0,1].

r-Convex FOz+ (1= N)y) <log(Ae™@) + (1 - /\)(ef(w)”')]/r

Difference-of-Convex (DC) 3 g,h convex s.t. f =g —h.

Abstractly Convex (H-convex) 3G C H s.t. f(x) = supeg h(x), Va.
Notes. C!  denotes continuously differentiable  functions. x* and 2P denote a  global
minimizer and the projection onto the minimizer set, respectively. All state-
ments are subject to the assumptions specified in the corresponding sections.
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