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Abstract Potential-based flows provide an algebraic way to model static physical flows
in networks, for example, in gas, water, and lossless DC power networks. The flow on an
arc in the network depends on the difference of the potentials at its end-nodes, possibly
in a nonlinear way. Potential-based flows have several nice properties like uniqueness
and acyclicity. The goal of this paper is to provide an overview of the current knowledge
on these models with a focus on optimization problems on such networks. We cover
basic properties, computational complexity, monotonicity, uncertain parameters, and
the corresponding behavior of the network as well as topology optimization.

1 Introduction

A potential-based flow consists of a flow 𝑥𝑎 on the arcs 𝑎 in a network and potentials 𝜋𝑣
on the nodes 𝑣. For an arc 𝑎 = (𝑢, 𝑣), they are coupled through the equation 𝜋𝑢 − 𝜋𝑣 =

𝛽𝑎 𝜓𝑎 (𝑥𝑎), where 𝜓𝑎 is a continuous, strictly increasing function with 𝜓𝑎 (0) = 0 and
𝛽𝑎 > 0 is a given parameter. This covers applications like gas and water flow, as well
as lossless DC power flow (see Section 2.1). The flow has to satisfy flow conservation
constraints in the network and guarantee a given load.

This setting shares common features with classical flows, but a potential-based flow
satisfies additional properties like uniqueness and acyclicity (see Section 2.3). Classical
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flows have been investigated in the literature for over 60 years, see, e.g., Ford and
Fulkerson [21], and are very well understood, see, e.g., Ahuja et al. [3].

Potential-based flows provide an interesting model because of their ability to model
relatively realistic problems and because the coupling of the flows and potential dif-
ferences can be nonlinear. This setting provides structure that can be exploited, which
makes it possible to handle corresponding optimization problems. Moreover, they pro-
vide a way to unify methods that would have otherwise been repeatedly developed for
particular applications like water or gas network optimization. Indeed, many techniques
have already been rediscovered in the different application areas.

One of the first publications on potential-based flows is by Birkhoff and Diaz [7] from
the 1960ies, already highlighting existence and uniqueness properties. Thus, the model
is around for quite some time, but it had been not used very frequently. One exception
is the book by Rockafellar [64] from 1998, which is devoted to the investigation of
potential-based flows. In recent years, there has been an increased interest in potential-
based flows, probably because of the reasons mentioned above.

The goal of this paper is to provide an overview of the current state-of-the-art in this
area. In particular, we want to highlight the mathematical techniques that are used when
dealing with optimization problems using potential-based flows. Thus, this paper can
be used as a reference for results and as a possible motivation for future investigations
of such models.

Note that although we try to be comprehensive, this is not an easy task, since there
are many works for particular applications like water and gas network optimization
problems that are quite close to potential-based flows, but still expressed for the partic-
ular problem. At some places, we will mention such works, but try to focus on articles
that explicitly deal with potential-based flows. We further note that AC power flow
problems cannot be modeled by the presented potential-based flows.

Finally, we mention that potential-based flows often form an approximation of more
detailed models, e.g., for gas networks they arise from a simplification of the stationary
Euler equations. The accuracy depends on the domain of application and should be kept
in mind when analyzing results.

The remainder of this paper is structured as follows. In Section 2, we introduce the re-
quired notation, present some examples, and discuss basic properties of potential-based
flows such as uniqueness or acyclicity. Section 3 then collects some basic complexity
results for potential-based flows, while their monotonicity properties are discussed in
Section 4. The more specific topics of topology optimization and robust optimization
to tackle uncertainties are summarized in Section 5 and 6, respectively. The area of
potential-based mixed-integer nonlinear problems is touched upon in Section 7 before
the paper is closed with a summary in Section 8.

2 Potential-Based Flows: Basic Properties
{sec:bascis-properties}

Potential-based flows form a basic algebraic way to model static, i.e., time-independent,
physical flows through a network. Such a network consists of a directed graph 𝐺 =

(𝑉, 𝐴) with a finite node set 𝑉 and an arc (multi-)set 𝐴 ⊆ 𝑉 ×𝑉 . We assume that there
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are no self-loops, but parallel arcs are allowed. The flow for arc 𝑎 ∈ 𝐴 in the graph is
denoted by 𝑥𝑎. The flow can be negative, if it is in the opposite direction of the arc.
Moreover, there are potentials 𝜋𝑣 on each node 𝑣.1 For an arc 𝑎 = (𝑢, 𝑣), the flow 𝑥𝑎
and the potentials 𝜋𝑢, 𝜋𝑣 on the end nodes are coupled through the potential equation

𝜋𝑢 − 𝜋𝑣 = 𝛽𝑎 𝜓𝑎 (𝑥𝑎), (1)

where 𝛽𝑎 > 0 is an arc-specific resistance constant and 𝜓𝑎 : R → R is a potential
function. We denote by (𝐺, 𝛽) the corresponding potential network. We omit the po-
tential functions 𝜓𝑎 in the potential network notation because we will assume that the
potential functions are the same function 𝜓 for all arcs. This assumption is fulfilled
in most applications, since they express the basic physical behavior of the medium to
be transported. Nevertheless, most of the results presented in this survey also apply to
potential networks in which different arcs may have different potential functions.

In the literature, several assumptions are made about the potential functions 𝜓. The
most common are quite natural: 𝜓 is continuous, strictly increasing, and 𝜓(0) = 0. In
particular, 𝜓−1 exists under these assumptions. Throughout this paper, we will use these
properties.

Note that, given the potentials at the incident nodes, we can compute the flow on an
arc 𝑎 = (𝑢, 𝑣) by

𝑥𝑎 = 𝜓−1 ((𝜋𝑢 − 𝜋𝑣)/𝛽𝑎
)
.

Moreover, sometimes one assumes that 𝜓 is odd, i.e., 𝜓(𝑥) = −𝜓(−𝑥). Further
properties of 𝜓 that are used sometimes is that it is positively homogeneous of order
𝑟 > 0, i.e.,

𝜓(𝜆 𝑥) = 𝜆𝑟 𝜓(𝑥), 𝜆 > 0.

Homogeneity is motivated by physical laws, and its order 𝑟 depends on the specific
application. Moreover, it implies that 𝜓 is of the form

𝜓(𝑥) = 𝛼 sgn(𝑥) |𝑥 |𝑟 , (2)

for some constant 𝛼 = 𝜓(1) > 0 and order 𝑟 > 0. Note that here 𝜓 is odd.

Remark 1 Alternative, equivalent models have also been investigated. For instance,
one can introduce anti-parallel arcs and make the flow anti-symmetric; see Vuffray et
al. [76]. Undirected models can be used as well; see Klimm et al. [44].

2.1 Examples
{sec:Examples}

Potential-based flows arise in many areas; see, e.g., Hendrickson and Janson [36]. We
give some examples here.

1 Note that the name “potential” is motivated by physical applications. The term is also used with a
different meaning for the dual variables of the classical flow problem.
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• Lossless DC Power: Here, the potentials are the voltages and the flow is electric
current. The potential function is 𝜓(𝑥) = 𝑥. The resistances 𝛽𝑎 = 1/𝐵𝑎 are the
reciprocal of the susceptance 𝐵𝑎 of the line 𝑎 ∈ 𝐴; see, e.g., [43].

• Gas: In stationary models of gas transport through pipe networks, the potentials
correspond to the square of the pressures at the corresponding nodes. For horizontal
pipes, the potential function is 𝜓(𝑥) = sgn(𝑥) 𝑥2 = 𝑥 |𝑥 | and 𝛽𝑎 depends on technical
parameters of the pipe like its diameter, length, or roughness of its inner wall. For
more details on modeling stationary gas flow in pipeline networks we refer the reader
to the chapter “A Catalog of Gas Network Models: PDEs, Coupling Conditions, and
Numerical Schemes” of the upcoming book [57] as well as Chapter [22] of the book
by Koch et al. [46] and the references therein. See also the discussion in Groß et
al. [29] for the handling of non-horizontal settings.

• Water: In water networks, potentials correspond to hydraulic heads. The head-loss
model uses 𝜓(𝑥) = sgn(𝑥) |𝑥 |1.852 or 𝜓(𝑥) = sgn(𝑥) |𝑥 |2 in fully filled pipes [1, 13,
52, 56]. The resistances 𝛽𝑎 again depend on the properties of the pipes.

2.2 Networks and Controllable Components

So far, we introduced the model for potential-based flows for a single arc. We now extend
this to entire networks that may also include controllable elements such as switches.

The amount of flow that should be inserted or extracted from the network is specified
by a balanced vector 𝑏 ∈ 𝐵(𝑉) := {𝑏 ∈ R𝑉 :

∑
𝑣∈𝑉 𝑏𝑣 = 0}. Thus, if flow moves

through the network, then flow conservation has to hold, i.e.,∑︁
𝑎∈ 𝛿out (𝑣)

𝑥𝑎 −
∑︁

𝑎∈ 𝛿in (𝑣)
𝑥𝑎 = 𝑏𝑣, 𝑣 ∈ 𝑉,

where 𝛿out (𝑣) := {(𝑣, 𝑤) ∈ 𝐴} are the outgoing arcs and 𝛿in (𝑣) := {(𝑢, 𝑣) ∈ 𝐴} are
the incoming arcs of 𝑣 ∈ 𝑉 . Note that 𝑏𝑣 > 0 refers to injections (entries), 𝑏𝑣 < 0 to
withdrawals (exits), and 𝑏𝑣 = 0 to inner nodes with flow conservation.

Often, there are lower and upper bounds on the flows and potentials. For arc 𝑎 ∈ 𝐴,
the lower and upper flow bounds are 𝑥

𝑎
and 𝑥𝑎 ∈ R, respectively, where 𝑥

𝑎
≤ 𝑥𝑎 holds.

For node 𝑣 ∈ 𝑉 , the lower and upper potential bounds are 𝜋
𝑣
, 𝜋𝑣 ∈ R with 𝜋

𝑣
≤ 𝜋𝑣.

Further network components allow to control the flows through the network. To this
end, the arc set 𝐴 is partitioned into arcs 𝐴𝐿 = 𝐴𝐿 (𝐺) representing so-called lines used
for transport and arcs 𝐴𝑆 = 𝐴𝑆 (𝐺) representing switches, which allow to block flow.
We call a potential network passive if 𝐴𝑆 = ∅ holds. Otherwise, we call it active.

For a line-arc 𝑎 = (𝑢, 𝑣) ∈ 𝐴𝐿 , the flow 𝑥𝑎 and potentials 𝜋𝑢 and 𝜋𝑣 satisfy (1). For
every switch-arc 𝑎 = (𝑢, 𝑣) ∈ 𝐴𝑆 , we have a control variable 𝑧𝑎 ∈ {0, 1}, specifying the
state of the switch. If 𝑧𝑎 = 1, then 𝜋𝑢 = 𝜋𝑣 has to hold and the flow 𝑥𝑎 is not restricted
by the incident potentials. Otherwise, if 𝑧𝑎 = 0, the flow on the arc has to be 0, i.e.,
𝑥𝑎 = 0, and the potentials are decoupled from 𝑥𝑎. In these cases, the switch is said to
be “on” and “off”, respectively.
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A potential-based flow (𝑥, 𝜋, 𝑧) in a potential network (𝐺, 𝛽) = ((𝑉, 𝐴), 𝛽) consists
of a flow 𝑥 ∈ R𝐴, potentials 𝜋 ∈ R𝑉 , and control variables 𝑧 ∈ {0, 1}𝐴𝑆 . We call
(𝑥, 𝜋, 𝑧) feasible for a given balance vector 𝑏 ∈ 𝐵(𝑉), if it satisfies the constraints{ch:pot:eq:FlowFeasible} ∑︁

𝑎∈ 𝛿out (𝑣)
𝑥𝑎 −

∑︁
𝑎∈ 𝛿in (𝑣)

𝑥𝑎 = 𝑏𝑣, 𝑣 ∈ 𝑉, (3a)

𝜋𝑢 − 𝜋𝑣 = 𝛽𝑎 𝜓(𝑥𝑎), 𝑎 = (𝑢, 𝑣) ∈ 𝐴𝐿 , (3b)
−𝑥

𝑎
𝑧𝑎 ≤ 𝑥𝑎 ≤ 𝑥𝑎 𝑧𝑎, 𝑎 ∈ 𝐴𝑆 , (3c)

(𝜋
𝑢
− 𝜋𝑣) (1 − 𝑧𝑎) ≤ 𝜋𝑢 − 𝜋𝑣 ≤ (𝜋𝑢 − 𝜋

𝑣
) (1 − 𝑧𝑎), 𝑎 = (𝑢, 𝑣) ∈ 𝐴𝑆 , (3d)

𝑥𝑎 ∈ [𝑥
𝑎
, 𝑥𝑎], 𝑎 ∈ 𝐴𝐿 , (3e)

𝜋𝑣 ∈ [𝜋
𝑣
, 𝜋𝑣], 𝑣 ∈ 𝑉, (3f)

𝑧𝑎 ∈ {0, 1}, 𝑎 ∈ 𝐴𝑆 . (3g)

Note that the system implies that if 𝑧𝑎 = 1 for a switch arc 𝑎 ∈ 𝐴𝑆 , then 𝜋𝑢 = 𝜋𝑣 and
the flow is not restricted by (3c). Similarly, if 𝑧𝑎 = 0, then 𝑥𝑎 = 0 and the potentials are
not restricted by (3d).

Remark 2 Note that the flow and potential bounds often arise from safety or legal
considerations in order to guarantee the reliable operation of the network. These bounds
can often be used to further strengthen other bounds (given some balance vector 𝑏).

Remark 3 While this work focuses on static potential-based flows, we remark that gen-
eralizations to transient, i.e., time-dependent models, have been studied in the literature
as well. In the classical network flow literature, time-dependent flows are referred to as
dynamic flows or flows over time, and have been extensively studied in the literature;
see Skutella [69, 70] for recent surveys. In the context of potential-based flows, Groß,
Pfetsch, and Skutella [30] study the computational complexity of a simplistic model of
transient potential-based flows consisting of a sequence of 𝑘 stationary potential-based
(gas) flows. They present efficiently solvable cases and NP-hardness results, establish-
ing complexity gaps between stationary and transient potential-based flows as well
as between transient potential-based 𝑠-𝑡-flows and transient potential-based 𝑏-flows.
Burlacu et al. [14] study the transient optimization of gas networks, focusing on max-
imizing the storage capacity of the network. Their model is obtained by discretizing
a coupled system of nonlinear parabolic partial differential equations. The resulting
nonlinear discretized system contains a potential-based flow in each time-step and is
proved to be well-posed.

Remark 4 We note that other components like compressors or control valves in gas
networks are important in respective applications as well. These are usually not covered
in a potential-based flow context, because they might require specific physical modeling.
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2.3 Basic Properties of Potential-Based Flows
{sec:BasicProperties}

One very important result concerns uniqueness—a result that has been rediscovered
and reproved several times in the past; see Remark 5 below.

Theorem 1 (Theorem 7.1 in [46]) Let (𝐺, 𝛽) be passive and weakly connected poten-{ch:pot:thm:uniqueness}

tial network with a balanced load vector 𝑏 ∈ 𝐵(𝑉). Let the potential function 𝜓 be
continuous, strictly increasing, and satisfy 𝜓(0) = 0. Suppose that there are no flow
and potential bounds. Then, there is a unique flow 𝑥 ∈ R𝐴 satisfying Constraints (3a)
and (3b). Moreover, there exist potentials 𝜋 ∈ R𝑉 such that the set of feasible points is
given by

{(𝑥, 𝜋 + 𝜂1) : 𝜂 ∈ R},

where 1 = (1, . . . , 1)⊤ ∈ R𝑉 is a vector of ones.

Proof idea. Consider the optimization problem

min
𝑥

∑︁
𝑎∈𝐴

𝛽𝑎

∫ 𝑥𝑎

0
𝜓(𝜉) d𝜉

s.t.
∑︁

𝑎∈ 𝛿out (𝑣)
𝑥𝑎 −

∑︁
𝑎∈ 𝛿in (𝑣)

𝑥𝑎 = 𝑏𝑣, 𝑣 ∈ 𝑉. (4)

Because of the assumptions on 𝜓 (monotonicity), the objective is strictly convex.
Thus, this problem has a unique flow solution. Using 𝜋𝑣 as dual variables for the flow
conservation constraints and formulating the KKT conditions yields (1). Since (1) only
depends on the differences of potentials, there is still one degree of freedom regarding
the potentials. ⊓⊔

Corollary 1 Let the requirements of Theorem 1 hold and additionally assume that the
potential level 𝜋𝑠 of one single node 𝑠 ∈ 𝑉 is fixed. Then, there is a unique feasible
potential-based flow (𝑥, 𝜋) that satisfies 𝑏.

{ch:pot:rem:uniqueness}

Remark 5 Uniqueness as in Theorem 1 has already been discussed by Birkhoff and
Diaz [7]. The argument illustrated in the proof was used by Maugis [58] for𝜓(𝑥) = 𝑥 |𝑥 |.
Collins et al. [17] used this argument in the general setting. Finally, Rı́os-Mercado et
al. [62] provide a different proof.

{ch:pot:rem:homogeneous}

Remark 6 For homogeneous potential functions and without flow and potential bounds,
one can formulate the dual problem of (4) for which strong duality holds; see Maugis [58]
for 𝜓(𝑥) = 𝑥 |𝑥 |. Rockafellar [64] contains a general discussion; see also [29].

Exploiting the uniqueness result of Theorem 1, the feasibility of potential-based
flows can be characterized by validating flow bounds and potential differences. This
characterization was first established by Gotzes et al. [27] for the case of gas networks
and was then extended to general potential-based flows by Labbé et al. [50, Theorem 7].

{ch:pot:thm:feasibility-potential-differences}

Theorem 2 Let (𝐺, 𝛽) be a passive and weakly connected potential network with a
potential function 𝜓 that is continuous, strictly increasing, and that satisfies 𝜓(0) = 0.
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Further, let 𝑏 ∈ 𝐵(𝑉) be a balanced load vector and let (𝑥, 𝜋) be flows and potentials
satisfying (3a), (3b), and (3e). Then, there exist potentials 𝜋̃ satisfying the potential
bounds (3f), i.e., the point (𝑥, 𝜋̃) is a feasible potential-based flow for 𝑏, if and only if
the following inequalities are satisfied

𝜋𝑢 − 𝜋𝑣 ≤ 𝜋𝑢 − 𝜋
𝑣
, (𝑢, 𝑣) ∈ 𝑉2. (5)

This characterization allows to check if there exists a feasible potential-based flow
for a given load 𝑏 by first computing flows and potentials according to Theorem 1 and
then validating (5) without explicitly shifting the potentials to satisfy the corresponding
potential bounds (3f).

Another fundamental property is acyclicity, which has been observed many times
in particular applications, e.g., Kirchhoff’s Circuit Law, and is explicitly formulated in
Habeck and Pfetsch [33] for potential-based flows. For a flow 𝑥 ∈ R𝐴, define

𝐴(𝑥) := {(𝑢, 𝑣) ∈ 𝑉 ×𝑉 : 𝑎 = (𝑢, 𝑣) ∈ 𝐴 with 𝑥𝑎 > 0}
∪ {(𝑣, 𝑢) ∈ 𝑉 ×𝑉 : 𝑎 = (𝑢, 𝑣) ∈ 𝐴 with 𝑥𝑎 < 0},

i.e., the set of arcs with positive flow and reverse arcs that have a negative flow in the
original.

{ch:pot:thm:acyclic-flow-passive-networks}

Theorem 3 Let (𝑥, 𝜋) be a potential-based flow in a passive potential network (𝐺, 𝛽).
Then 𝐴(𝑥) is acyclic in the directed sense.

Proof. Assume there exists a directed cycle 𝐶 in 𝐴(𝑥). Sum along forward (𝐶 ∩ 𝐴) and
backward (𝐶 \ 𝐴) arcs and use (1) to obtain∑︁

𝑎∈𝐶∩𝐴
𝛽𝑎 𝜓(𝑥𝑎) −

∑︁
(𝑢,𝑣) ∈𝐶\𝐴

𝛽(𝑣,𝑢) 𝜓(𝑥 (𝑣,𝑢) )

=
∑︁

(𝑢,𝑣) ∈𝐶∩𝐴
𝜋𝑢 − 𝜋𝑣 +

∑︁
(𝑢,𝑣) ∈𝐶\𝐴

𝜋𝑢 − 𝜋𝑣 = 0,

because the potentials cancel out along the cycle. Since 𝛽𝑎 > 0, 𝜓 is strictly increasing,
and 𝜓(0) = 0, it holds that 𝛽𝑎 𝜓(𝑥𝑎) > 0 for all 𝑎 ∈ 𝐶 ∩ 𝐴 and 𝛽(𝑣,𝑢) 𝜓(𝑥 (𝑣,𝑢) ) < 0 for
all (𝑢, 𝑣) ∈ 𝐶 \ 𝐴. Thus, the left hand side is positive—a contradiction. ⊓⊔

One interesting property is that passive potential networks with homogeneous po-
tential functions and a single entry and a single exit behave like a graph with a single
arc.

Theorem 4 (Theorem 3.6 in [29]) Let (𝐺, 𝛽) be a passive weakly connected potential {ch:pot:thm:single˙arc}

network without flow and potential bounds and homogeneous potential functions of
order 𝑟 > 0. Let 𝑏 ∈ 𝐵(𝑉) with only two nonzero entries with values 𝑏𝑠 = 𝐵 and
𝑏𝑡 = −𝐵 for 𝑠, 𝑡 ∈ 𝑉 . Consider the graph 𝐺̃ = ({𝑠, 𝑡}, {(𝑠, 𝑡)}) with two distinct nodes
𝑠, 𝑡 and one arc (𝑠, 𝑡) as well as 𝑏̃ with 𝑏̃𝑠 = 𝐵, 𝑏̃𝑡 = −𝐵. Then, there exists a constant 𝛽
such that there exists a potential-based flow (𝑥, 𝜋) in (𝐺, 𝛽) for 𝑏 if and only if there
exists a potential-based flow (𝑥, 𝜋̃) in (𝐺̃, 𝛽) with for 𝑏̃ and 𝜋𝑠 = 𝜋̃𝑠 and 𝜋𝑡 = 𝜋̃𝑡 .
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Note that if 𝐺 is series-parallel, then [29] describes rules how 𝛽 can be iteratively
computed based on the 𝛽-values of 𝐺.

Klimm et al. [45] study possible generalizations of Theorem 4 to passive weakly
connected potential networks with more than two terminals, i.e., entries and exits. For
the special case of electrical networks with linear potential function 𝜓(𝑥) = 𝑥, the so-
called Kron [48] reduction (see also Dorfler and Bullo [19]) yields a smaller equivalent
network that only contains the terminal nodes and edges connecting them. Here, two
networks with the same set of terminals are equivalent if for any 𝑏-vector the potentials
at the terminals are always the same, where the potential at one node is fixed. Thus,
these networks cannot be distinguished by measuring the potentials at terminals.

For more than two terminals, however, the existence of the Kron reduction strongly
relies on the linearity of the mapping between loads and potentials in such networks.
Nevertheless, for general homogeneous potential functions 𝜓, there exist sufficient con-
ditions under which passive potential networks can be reduced to equivalent networks
defined on the set of terminals:

Theorem 5 (Theorem 3 in [45]) Let (𝐺, 𝛽) be a potential network, 𝑇 ⊆ 𝑉 be the set of{ch:pot:thm:reduction}

terminals and 𝑣 ∈ 𝑉 be chosen arbitrarily. We define

𝑁𝑇 (𝑣) := {𝑡 ∈ 𝑇 : ∃ 𝑣-𝑡-path which does not contain any terminal except 𝑡}

and assume that all potential functions 𝜓(𝑥) are sgn(𝑥) |𝑥 |𝑟 for some degree 𝑟 > 0.
Moreover, suppose that |𝑁𝑇 (𝑣) | ≤ 2 for every inner node 𝑣 ∈ 𝑉 \ 𝑇 . Then, (𝐺, 𝛽) is
equivalent to a potential network (𝐺′, 𝛽′), where 𝐺′ = (𝑇, 𝐸 ′) with 𝐸 ′ ⊆ 𝑇 × 𝑇 .

However, Theorem 5 in [45] shows that for every 𝑚 ∈ N, there exists a potential
network with potential functions of order 𝑟 = 2 and three terminals such that no network
with at most 𝑚 arcs is equivalent to it. Notably, the proof of this result uses insights
from semi-algebraic geometry.

3 Complexity
{sec:complexity}

In this section, we briefly collect some central results about computational complexity
in the context of potential networks.

We start with 𝑠-𝑡-flows for some 𝑠, 𝑡 ∈ 𝑉 . Here, the balanced load vector 𝑏 satisfies
𝑏𝑣 = 0 for all 𝑣 ∈ 𝑉 \ {𝑠, 𝑡} and a feasible potential-based 𝑠-𝑡-flow satisfies (3); in
particular, switches are allowed in the model. The following problem was introduced
in [29]:

𝑠-𝑡-FlowFeasibility
Input: A potential network (𝐺, 𝛽)
Problem: Is there a feasible potential-based 𝑠-𝑡-flow (𝑥, 𝜋, 𝑧) for (𝐺, 𝛽)?

On top of that, when maximizing the flow from 𝑠 to 𝑡, feasible 𝑠-𝑡-flows do not have
to satisfy Constraints (3a) for 𝑠 and 𝑡:
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𝑠-𝑡-MaxFlow
Input: A potential network (𝐺, 𝛽)
Problem: Find a feasible feasible potential-based 𝑠-𝑡-flow (𝑥, 𝜋, 𝑧) for (𝐺, 𝛽)

of maximal value val(𝑥).

Here, the value of the flow is defined as usual via

val(𝑥) =
∑︁

𝑎∈ 𝛿out (𝑠)
𝑥𝑎 −

∑︁
𝑎∈ 𝛿in (𝑠)

𝑥𝑎 .

These two problems are natural analogues of classical flow problems. Let us note
that one could also consider an analogue of the min-cost-flow problem. This, however,
seems less natural since the flow is unique on passive potential networks with fixed
balance vector 𝑏, i.e., unless switches are present.

Let us start by reviewing what is known for these two problems in the literature. First
of all, both problems are polynomial-time solvable for linear potential functions 𝜓 on
passive potential networks because both problems are linear problems. Other variants
with linear 𝜓 are mainly discussed in the literature on DC power flow problems. In
Lehmann et al. [53], the following is shown.

Theorem 6 (Corollary 1 in [53]) The DC 𝑠-𝑡-FlowFeasibility problem is strongly NP-
hard for planar graphs of maximum degree 3 with switches.

They also showed that the extension of the 𝑠-𝑡-MaxFlow problem with at least two
sources and sinks cannot be approximated in polynomial time better than 2(log 𝑛)1−𝜀

for an 𝜀 > 0 unless problems in NP can be solved in quasi-polynomial deterministic
time. For arbitrarily many sources and sinks, the DC flow feasibility problem is weakly
NP-hard even on cactus graphs of maximum degree 3.

For gas flow networks, Szabó [73] showed that the so-called active gas nomina-
tion validation problem, which is the same as the 𝑠-𝑡-FlowFeasibility problem for gas
networks, is weakly NP-hard even for series-parallel networks. For arbitrary networks,
Humpola [38] showed that a problem similar to the 𝑠-𝑡-FlowFeasibility problem is
strongly NP-hard. The problem is called the topology optimization problem there.

While there are numerous complexity results for the special cases of DC power flow
networks as well as for natural gas networks, the literature on complexity results for
general potential-based flows is scarce. One important problem in the more general
literature is the problem of computing the maximum potential-difference nomination
(MPD). Here, the nodes are split into entry nodes 𝑉+, exit nodes 𝑉− , and the remaining
inner nodes 𝑉0, i.e., 𝑉 = 𝑉+ ∪ 𝑉− ∪ 𝑉0 holds. Then, feasibility is defined by satisfying
the constraints {ch:pot:eq:MDP}∑︁

𝑎∈ 𝛿out (𝑣)
𝑥𝑎 −

∑︁
𝑎∈ 𝛿in (𝑣)

𝑥𝑎 = 𝑏̃𝑣, 𝑣 ∈ 𝑉, (6a)

𝜋𝑢 − 𝜋𝑣 = 𝛽𝑎 𝜓(𝑥𝑎), 𝑎 = (𝑢, 𝑣) ∈ 𝐴𝐿 , (6b)
0 ≤ 𝑏𝑣 ≤ 𝑏̄𝑣 𝑣 ∈ 𝑉, (6c)
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where 𝑏̃𝑣 = 𝑏𝑣 for entry nodes 𝑣 ∈ 𝑉+, 𝑏̃𝑣 = −𝑏𝑣 for exit nodes 𝑣 ∈ 𝑉− , and 𝑏̃𝑣 = 0 for
inner nodes 𝑣 ∈ 𝑉0. Hence, this is a variant of the feasibility problem above in which we
are choosing the loads within some bounds but otherwise only have a passive network.

Then, for two given nodes 𝑣1 and 𝑣2, the optimization variant of the MPD problem
is to solve

max{𝜋𝑣1 − 𝜋𝑣2 : (𝑏, 𝑥, 𝜋) satisfy (6)}.

It is shown in [74] that this problem is NP-hard for quadratic potential functions and
general networks even if all flow directions are known in advance. Note that this problem
is easy for linear potential flows, because it can again be modeled as a linear optimization
problem. Moreover, the problem is easy for trees [50] and for a single cycle [51]. One
open complexity question is the hardness of the nonlinear case on cactus graphs.

The optimization variant of the MPD problem has been applied in various appli-
cations such as in robust network design [63, 75], see also Section 6, or for solving
multilevel markets models [10, 65].

4 Monotonicity of Parameter-Dependent Potential-Based Flows
{sec:monotonicity}

Different to many settings for classical flows, potential-based flows do not behave
monotonously with respect to changes in certain parameters of the network. The goal
of this section is to provide some intuition when this is the case. We start by first
highlighting cases in which monotonicity does not hold.
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Fig. 1 Flows (indicated above the arcs) and potentials (indicated by height) for Example 1. Left: balance
vector 𝑏1 = (1, 0, 0, −1)⊤; Right: 𝑏2 = (1, −1, 1, −1)⊤.{ch˙pot:fix:nonmonotone}

Example 1 (Nonmonotonicity of potentials w.r.t. flow balances) One could think that{ch:potentials:Ex:NonmonotonePot}

increasing the flow demand would require increasing the maximal potential difference.
However, this is not true in general, not even for trees.

The following notation for two balanced load vectors 𝑏1, 𝑏2 ∈ 𝐵(𝑉) will be useful:

𝑏1 ⪯ 𝑏2 ⇐⇒
{
𝑏1
𝑣 ≤ 𝑏2

𝑣 for all 𝑣 ∈ 𝑉 with 𝑏1
𝑣 ≥ 0,

𝑏2
𝑣 ≤ 𝑏1

𝑣 for all 𝑣 ∈ 𝑉 with 𝑏1
𝑣 ≤ 0.
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We also define the maximal potential differenceΔ(𝜋) := max𝑢,𝑣∈𝑉 |𝜋𝑢 − 𝜋𝑣 | for 𝜋 ∈ R𝑉 .
Then for a potential-based flow network (𝐺, 𝛽) with balanced load vectors 𝑏1 ⪯ 𝑏2, the
maximal potential difference is not monotone in the following sense: Let (𝑥1, 𝜋1) and
(𝑥2, 𝜋2) be potential-based flows for 𝑏1 and 𝑏2, respectively. Then Δ(𝜋1) ≤ Δ(𝜋2) does
not hold in general.
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Fig. 2 Flows (indicated above the arcs) and potentials (indicated by height) for Example 1. Left: balance
vector 𝑏1 = (1, 0, 0, −1)⊤; Right: 𝑏2 = (1, −1, 1, −1)⊤. {ch˙pot:fix:nonmonotone}

This can be shown by the following simple example; see Figure 2. Consider a path
graph 𝐺 = (𝑉, 𝐴) with four nodes, i.e., 𝑉 = {1, 2, 3, 4}, 𝐴 = {(1, 2), (2, 3), (3, 4)}.
All 𝛽-values are equal to 1 and 𝜓(𝑥) = sgn(𝑥) |𝑥 |𝑟 , 𝑟 > 0. Let 𝑏1 = (1, 0, 0,−1)⊤
and 𝑏2 = (1,−1, 1,−1)⊤. Then 𝑏1 ⪯ 𝑏2 and 𝑥1 = (1, 1, 1)⊤, 𝜋1 = (3, 2, 1, 0)⊤ is a
solution for 𝑏1, because the flow is 1 for all arcs (and thus 𝑏1 is satisfied), so the right-
hand side of (1) is 1, while the left-hand side is 1 as well. Similarly, 𝑥2 = (1, 0, 1)⊤,
𝜋2 = (2, 1, 1, 0)⊤ is feasible for 𝑏2. That the flow balance 𝑏2 is satisfied is easy to see.
Moreover, by the same argument as before, (1) is satisfied on the first and last arc. On
the middle arc, we have 0 = 1 − 1 = 𝜋2 − 𝜋3 = 𝛽 0 |0|. Thus, Δ(𝜋1) = 3 ≰ Δ(𝜋2) = 2.

Example 1 shows that the opposite case is also not monotone: Increasing the maximal
potential difference does not necessarily increase the flow balance.

Remark 7 Note that because of Theorem 4, monotonicity holds if there is a single entry
and single exit.

Example 2 (Nonmonotonicity of potentials w.r.t. switches/topology extension) Consider {ch:potentials:Ex:NonmonotonePotTop}

the same example as in Example 1 with balanced load vector 𝑏2 = (1,−1, 1,−1)⊤,
but first without the middle arc. Then 𝜋 = (1, 0, 1, 0)⊤ and 𝑥 = (1, 0, 1)⊤ are feasible.
Therefore, the maximal difference in potentials Δ(𝜋) is 1. If we re-add the middle edge
and keep the same balanced load vector, the solution is given in Example 1 with a
maximal difference in potentials of 2. The addition of the middle arc corresponds to
a valve that is opened or an arc that is built in addition. Thus, the maximal difference
does not necessarily decrease if we add arcs. By considering two parallel arcs, one of
which can be added, it is easy to see that the opposite is not true in general as well.

To provide a positive example of monotonicity, define the so-called power-loss, see,
e.g., Calvert and Keady [15],



12 Marc E. Pfetsch, Martin Schmidt, Martin Skutella, and Johannes Thürauf

∑︁
𝑣∈𝑉

𝑏𝑣 𝜋𝑣 =
∑︁

𝑎=(𝑢,𝑣) ∈𝐴
(𝜋𝑢 − 𝜋𝑣) 𝑥𝑎

for some potential-based flow (𝑥, 𝜋) with respect to the balanced load vector 𝑏 ∈ 𝐵(𝑉).
In the 𝑠-𝑡-case, the power-loss simply reads 𝑏𝑠 (𝜋𝑠 − 𝜋𝑡 ).

Theorem 7 (Theorem 5.1 in [29]) Consider a potential-based flow network (𝐺, 𝛽)
with homogeneous potential function and without potential and flow bounds. Then, for
a given balanced load vector 𝑏 ∈ 𝐵(𝑉), the power-loss of a feasible potential-based
flow is minimized if all switches are on.

5 Topology Optimization
{ch:potentials:subsec:topology-optimization}

Topology optimization, or network design, is a well-established and active research field
in mathematical optimization and operations research. It is one of the main applications
for potential-based flows. This connection is primarily driven by the modeling capa-
bilities of potential-based flows that can accurately represent a wide range of energy
or utility networks. Further, the class of topology optimization problems is of high
practical relevance and, in particular, building resilient networks has gained increased
interest in the recent years.

In topology optimization, one can generally distinguish between two types of op-
timization problems. The first ones consider a given and fixed network topology, for
which the optimization task consists of selecting specific properties, e.g., diameters of
pipes, without altering the network topology. If these properties are modeled by con-
tinuous variables, the resulting models are generally continuous nonlinear optimization
problems. In contrast to these problems, the second type of topology optimization prob-
lems does not assume a predetermined network topology. Instead, the optimization also
determines which network elements should be constructed and where they should be
located. These problems are often referred to as a green-field approach or design-from-
scratch problems and typically lead to mixed-integer nonlinear optimization problems.

The general goal of topology optimization is to find a network 𝐺 and resistances 𝛽

of smallest cost such that given 𝑏-vectors can be transported. Based on the model in [8],
we can derive the following particular model in which we choose arcs to be built:{problem}

min
∑︁
𝑎∈𝐴

𝑐𝑎 𝑧𝑎 (7a)

s.t. 𝛽𝑎𝜓𝑎 (𝑥𝑎) = 𝑧𝑎 (𝜋𝑢 − 𝜋𝑣), 𝑎 = (𝑢, 𝑣) ∈ 𝐴, (7b)∑︁
𝑎∈ 𝛿out (𝑣)

𝑥𝑎 −
∑︁

𝑎∈ 𝛿in (𝑣)
𝑥𝑎 = 𝑏𝑣, 𝑣 ∈ 𝑉, (7c)

𝑥𝑎 ∈ [𝑥
𝑎
, 𝑥𝑎], 𝑎 ∈ 𝐴𝑠 , (7d)

𝜋𝑣 ∈ [𝜋
𝑣
, 𝜋𝑣], 𝑣 ∈ 𝑉, (7e)

𝑧 ∈ {0, 1}𝐴. (7f)
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Here, 𝑧𝑎 ∈ {0, 1} decides whether the arc 𝑎 ∈ 𝐴 is build and 𝑐𝑎 > 0 is its cost. In
the model, it is assumed that every arc can be decided on (green field), but it is easy
to integrate existing arcs as well. We note that a large variety of different modeling
approaches for topology optimization exist. Even for tree-shaped networks, topology
optimization is NP-hard; see [79].

The literature on topology optimization with general potential-based flows is
scarce—in particular when compared to the vast literature on topology optimization for
specific instantiations of potential-based flows such as gas or water networks.

One of the first publications considering topology optimization with general
potential-based flows is [61], in which for a given network, resistances are selected
from a discrete set. In this work, convex relaxations for the nonconvex mixed-integer
nonlinear network design problem are developed and combined with a linearizations-
based LP/NLP branch-and-bound framework to solve a topology optimization problem.
The authors of [39] also exploit convex relaxations together with a branch-and-bound
approach to solve nonlinear and nonconvex network optimization problems arising in
gas transmission networks.

Another area that has attracted increasing attention in the recent years is the opti-
mization of resilient networks with general potential-based flows. The latter networks
are protected from uncertainties such as arc failures or load fluctuations. The authors
of [59] develop a tailored branch-and-cut approach for building networks that can
withstand specific arc failures. Moreover, the works [63, 75] develop methods to com-
pute robust passive potential-based networks with load uncertainties by exploiting the
characterization (10) presented below in Section 6.

In contrast to network optimization with capacitated linear flows, the field of devel-
oping valid inequalities for potential-based topology optimization is still in its infancy.
To the best of our knowledge, the recent work [8] is the first to propose cuts based on
potentials.

Theorem 8 (Theorem 5 in [8]) Let (𝐺, 𝛽) be a passive potential network with potential {ch:pot:thm:topopt˙inequality}

functions that are positively homogeneous of order 𝑟 > 0. Let 𝑇 be the terminal set,
i.e., the set of all entries and exits. If (𝑥, 𝜋, 𝑧) is feasible for (7b) and (7c) with global
potential bounds 0 ≤ 𝜋𝑣 ≤ 𝜋̄ for all 𝑣 ∈ 𝑉 , then

1
𝑘

𝑟
√
𝑘

𝑘∑︁
𝑖=1

∑︁
𝑎∈ 𝛿 (𝑆𝑖 )

𝜇𝑎 𝑧𝑎 ≥ 𝑏(𝑍)
𝑟
√
𝜋̄

(8)

for all subsets 𝑍 ⊆ 𝑇 and all 𝑘 disjoint (𝑇+ ∩ 𝑍, 𝑇− \ 𝑍)-cuts 𝑆1 ⊆ · · · ⊆ 𝑆𝑘 ⊆ 𝑉 , i.e.,
(𝑇+ ∩ 𝑍) ⊆ 𝑆𝑖 , (𝑇− \ 𝑍) ∩ 𝑆𝑖 = ∅ for all 𝑖 = 1, . . . , 𝑘 and 𝛿(𝑆𝑖) ∩ 𝛿(𝑆 𝑗 ) = ∅ for all
𝑖 ≠ 𝑗 , where 𝛿(𝑆𝑖) := 𝛿in (𝑆𝑖) ∪ 𝛿out (𝑆𝑖).

Note that (8) is a linear inequality in the design variables 𝑧. Furthermore, [8] shows
that these inequalities can be separated in polynomial time using submodular function
minimization.

{ch-potential:remark-topology-design-gas-water-networks}

Remark 8 A large branch of research on topology optimization with nonlinear flows
focuses on the application of gas or water networks. Many of these works solve the
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nonconvex topology optimization problem by exploiting (convex) relaxations of the
original problem such as in [9, 54]. Specific algorithms for topology optimization with
a given network design such as with continuous design decisions [18], e.g., continuous
diameter selections, or discrete ones [68] are developed. Moreover, there exist works on
valid inequalities [40], pruning conditions [41], or decompositions [67] in the context
of gas network optimization. Furthermore, the design of robust gas pipeline networks,
with interval uncertainties in the sinks only, is solved by applying a mixed-integer
second-order cone formulation; see [72]. For stochastic gas network design such as the
location of compressors under load uncertainties, we refer to [32].

For water networks, tailored mixed-integer nonlinear optimization methods for
choosing optimal diameters are developed in [11, 12]. Furthermore, two decompo-
sition methods are presented in the recent work [55]. For the literature on lossless DC
power flow networks, we refer to [20] and the recent survey [42].

Many of these approaches, in particular for gas and water networks, can most likely
be extended to general potential-based flows (3) as demonstrated for the relaxation of [9]
in [75].

6 Robust Approaches for Tackling Uncertainty
{subsec:uncertainty}

The field of potential-based flows under uncertainty is mainly driven by specific ap-
plications over the last years, e.g., topology optimization [59, 63, 75], operation of
utility networks [4], or the analyses of specific energy markets [50]. Different types
of uncertainty have been addressed, which can be classified into load uncertainties of
injections and withdrawals as well as uncertainties in technical parameters, e.g., estima-
tions of the roughness of gas pipelines. The resulting uncertain optimization problems
are mainly tackled by using robust, stochastic, or so-called probust approaches. The lat-
ter is a combination of robust and stochastic optimization. We now briefly summarize
corresponding approaches that address uncertainties in potential-based optimization
problems.

The overall goal of robust optimization consists of computing a robust solution that
is feasible for all possible realizations within an a priori defined uncertainty set. For a
general introduction to robust optimization, we refer to, e.g., [5, 25, 78].

Robust optimization methods for potential-based flow problems have attracted grow-
ing attention in the recent years. In particular, the corresponding research focuses on
adjustable robust approaches. In these optimization problems, the variables partition
into ”here-and-now” decisions that have to be decided before the uncertainty realizes
and into so-called ”wait-and-see” decisions that can be adjusted after the realization of
the uncertainty. A prominent example for this problem class is adjustable robust net-
work design with uncertain loads; see [75]. The optimization task consists of building
a network at minimum cost so that all, possibly infinitely many, load scenarios of the
uncertainty set, can be transported through the network. This can be formulated as

min
𝑧

{ ∑︁
𝑎∈𝐴

𝑐𝑎 𝑧𝑎 : 𝑧 ∈ {0, 1}𝐴 and ∀𝑏 ∈ 𝑈 ∃ (𝑥, 𝜋) satisfying (7b)–(7e)
}
. (9)
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The non-empty and compact uncertainty set 𝑈 includes all load uncertainties such as
forecasts of future energy demand. The variables 𝑧 represent the here-and-now decisions
of building an arc, which has to be decided prior to the realization of the uncertain load 𝑏.
After the worst-case realization of the uncertain load, the wait-and-see variables 𝑥, 𝜋
guarantee a feasible transport of the realized load through the network.

Note that considering the potential-based variables 𝑥 and 𝜋 as here-and-now decisions
directly leads to the infeasibility of (9) in many cases. This is a consequence of the
uniqueness results of Theorem 1, because for fixed 𝑥 and 𝜋 changing the load 𝑏 directly
renders the potential-based flow infeasible.

The wait-and-see decisions in (9) are restricted by nonlinear and nonconvex con-
straints leading to a nonlinear adjustable robust optimization problem. General methods
for this problem class are scarce [78] and, in particular, there are no general methods
of robust optimization directly applicable to solve Problem (9). For different use cases,
specific methods to solve Problem (9) have been developed over the recent years, e.g.,
starting with tree-shaped networks and further developments to more general networks.

The majority of the works focus on passive networks with load uncertainties be-
cause integer wait-and-see decisions are an additional challenge beyond the nonconvex
nature of the problem. We now highlight one of the main algorithmic developments
of this research branch that has emerged out of multiple different publications on this
topic [4, 50, 51, 60, 63, 74, 75]. To this end, we follow the most general form of these
results given in the recent publication [75]. The key idea consists of deciding robust
feasibility of a network by solving polynomially many optimization problems instead
of individually checking the feasibility for all, possible infinitely many, realizations of
the uncertainty 𝑏 ∈ 𝑈.

Theorem 9 (Theorem 1 in [75]) Let 𝑧 ∈ {0, 1}𝐴 be fixed and the corresponding poten- {ch:pot:thm:robust-feasibility-network}

tial network (𝐺, 𝛽) be passive and weakly connected. Further, the potential function 𝜓

is continuous, strictly increasing, and satisfies 𝜓(0) = 0, and a load uncertainty set
𝑈 := {𝑏 ∈ R𝑉 :

∑
𝑣∈𝑉 𝑏𝑣 = 0} ∩ 𝑍 , with 𝑍 being nonempty and compact, is given.

Then, the potential network (𝐺, 𝛽) is robust feasible, i.e.,

∀𝑏 ∈ 𝑈 ∃(𝑥, 𝜋) satisfying (7𝑏)–(7𝑒),

if and only if {characterization-robust-feasibility}

𝜋𝑢 − 𝜋
𝑣
≥ max

𝑏,𝑥, 𝜋
{𝜋𝑢 − 𝜋𝑣 : (7𝑏)–(7𝑐), 𝑏 ∈ 𝑈}, (𝑢, 𝑣) ∈ 𝑉2, (10a)

𝑥𝑎 ≥ max
𝑏,𝑥, 𝜋

{𝑥𝑎 : (7𝑏)–(7𝑐), 𝑏 ∈ 𝑈}, 𝑎 ∈ 𝐴, (10b)

𝑥
𝑎
≤ min

𝑏,𝑥, 𝜋
{𝑥𝑎 : (7𝑏)–(7𝑐), 𝑏 ∈ 𝑈}, 𝑎 ∈ 𝐴. (10c)

The key intuition of this characterization of robust feasibility is the following. For
two given nodes 𝑢, 𝑣, the right-hand sides of Constraint (10a) represent the most
stressful load scenarios w.r.t. the potential differences by optimizing over the uncertainty
set 𝑈. If and only if the maximum potential differences stays within the corresponding
potential bounds for every pair of nodes, we can shift the potentials to stay within the
potential bounds, i.e., we can satisfy Constraints (3f). Analogously, Constraints (10b)
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and (10c) check if the most stressful load scenarios for the maximum and minimum
arc flow stay within the flow bounds. Thus, by solving at most |𝑉 |2 + 2|𝑉 | optimization
problems, we can check whether a network design is robust feasible regarding, possibly
infinitely many, uncertainties in 𝑈. We note that for proving the corresponding results,
the uniqueness result of Theorem 1 and the intuition of the characterization of feasible
potential-based flows of Theorem 2 play a crucial rule.

Note that for capacitated linear flows without potentials, the characterization of
Theorem 9 does not hold because flows along cycles will be infinity, which directly
renders Constraint (10b) infeasible. This is also one reason why this characterization
has only been proven in its general form for passive networks, in which no cyclic flow
can occur; see Theorem 3.

Large parts of this characterization of robust feasibility have been developed in the
context of the economic application of deciding the feasibility of a so-called booking
within the European entry-exit market; see [50, 51, 74, 75]. From a mathematical
point of view, this application is equivalent to deciding the robust feasibility of a given
here-and-now decision and a specific interval uncertainty set for the loads. For more
details on this economic application we refer to [28], which introduces the underlying
mathematical model of the European entry-exit gas market; see also the chapter “Models
for Gas Markets” of the upcoming book [57]. Moreover, there are first approaches for
deciding the feasibility of bookings in active networks under the restrictions that no
active element lies on a cycle; see [60].

We further note that robust potential-based flows in which uncertain loads only occur
in the sinks of the network are considered in [77]. For this special case, the authors also
provide a characterization of robustness using finitely many worst-case load scenarios.

A different notion of robustness is studied in [44], in which a network is defined to
be robust if for every feasible load 𝑏 ∈ 𝐵(𝑉) also 𝑏′ ∈ 𝐵(𝑉) with |𝑏′𝑣 | ≤ |𝑏𝑣 | is feasible.
If the resistances 𝛽 can be changed, this allows for a characterization of such networks
via graph minors, i.e., via resorting to purely combinatorial properties of the underlying
graph.

In addition to load uncertainties, first research on other types of uncertainty has
started. For instance, the authors of [59] propose a generic approach to compute systems
that are robust/resilient against a failure of at most a given number of components and
apply it to topology optimization of gas networks. Moreover, in [4] uncertainties in the
resistance constant 𝛽 are considered, which can represent measurement errors of the
involved physical parameters.

Remark 9 To the best of our knowledge, there are no approaches for stochastic potential-
based flows given in their general form (3). However, there are multiple approaches
driven by specific applications such as gas networks, which we very briefly summarize
in the following. The authors of [27] study the probability of feasible loads for networks
with uncertain exit loads and a single entry. To this end, they develop and apply a
spheric-radial decomposition of Gaussian random vectors in combination with Quasi
Monte-Carlo sampling. In [31], again the probability of the loads is estimated, this time
for tree-shaped gas networks with compressors. In addition, also a stochastic version
of the economic application of deciding the feasibility of a booking is studied in [37].
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For more details, see also the chapter “From Probabilistic to Probust Constraints:
Optimization under Uncertainty” of the upcoming book [57].

Remark 10 In the recent years, the combination of stochastic and robust optimization via
so-called probust constraints has gained increased attention. These probust constraints
are probabilistic constraints including a robustified infinite inequality system; see [2] for
a detailed introduction as well as the chapter “From Probabilistic to Probust Constraints:
Optimization under Uncertainty” of the upcoming book [57]. Again results for probust
constraints focus on specific applications such as gas networks [2, 26, 35] or water
networks [6].

7 Potential-Based MINLP and Beyond
{subsec:potential-based-MINLP}

One line of research focuses on replacing potential-based networks by smaller, equiva-
lent potential-based networks to simplify solving potential-based MINLPs in line with
the results of [29]; see Theorem 4. In the recent work [45] the authors show that it is
generally not possible to replace a potential-based network by a smaller network de-
pending on the number of sinks. Furthermore, they characterize specific potential-based
networks that can be reduced either to a complete graph or to a path. We note that there
exists network reduction techniques for lossless DC power flows [16, 19, 34, 47, 48].
However, it is not obvious if and how these results can be extended to general potential-
based flows.

Research on decomposition methods for general potential-based flows is still in its
early stages; see, e.g., [71], which introduces a network partitioning algorithm for gen-
eral potential-based networks. However, for specific fluids such as natural gas, tailored
decomposition methods have been developed, in, e.g., [23, 24, 49]. For related decom-
position techniques on the PDE-level, we refer to the Chapter “Domain Decomposition
for Gas Network Control” of the upcoming book [57].

For general active potential-based networks, structural properties, in particular about
the control of active elements, remain relatively underexplored in the literature. Notably,
first specific characteristics related to the control of active elements in such networks
are examined in [29]; see also the chapter “MINLP in the Context of Gas Networks” of
the upcoming book [57].

Finally, we note that the structural properties of uniqueness and positive homogeneity,
see Lemmas 1 and Remark 6, have been successfully exploited in bilevel optimization;
see [60, 66]. More precisely, for bilevel problems with a lower level that is a passive
potential-based flow problem, it can be shown that specific constraints of (3) can be
equivalently moved from the lower- to the upper-level problem. The latter then allows to
derive a single-level reformulation of the original bilevel problem that has a nonconvex
lower level.
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8 Conclusion and Challenges
{sec:conclusion}

The goal of this paper was to highlight basic properties of potential-based flows and to
highlight recent developments in this area. We believe that this model makes it possible
to develop generic techniques that would otherwise be reinvented for the different
applications.

The field also offers the opportunity for future developments. For instance, there are
most likely properties that have been studied for certain applications but that are not yet
generalized to the setting of potential-based flows. Moreover, one can try to generalize
certain network components like compressors and control valves and incorporate them
into the potential-based flow framework. The development of new valid inequalities
and cuts for potential-based networks also is a largely open field, offering multiple
opportunities for future research. Finally, open questions that we mentioned in this
survey are the theoretical hardness of the MPD problem on trees with active elements,
the development of robust optimization models and techniques for active potential
networks, the treatment of the area of bilevel network design, or, finally, the study of
further decomposition techniques for hard (MI)NLPs on potential networks.
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74. J. Thürauf. Deciding the feasibility of a booking in the European gas market is coNP-hard. Annals
of Operations Research, 318(1):591–618, 2022. doi:10.1007/s10479-022-04732-1.
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