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Abstract

In this paper, we introduce a framework for contextual distributionally robust optimiza-
tion (DRO) that considers the causal and continuous structure of the underlying distribution by
developing interpretable and tractable decision rules that prescribe decisions using covariates.
We first introduce the causal Sinkhorn discrepancy (CSD), an entropy-regularized causal Wasser-
stein distance that encourages continuous transport plans while preserving the causal consis-
tency. We then formulate a contextual DRO model with a CSD-based ambiguity set, termed
Causal Sinkhorn DRO (Causal-SDRO), and derive its strong dual reformulation where the worst-
case distribution is characterized as a mixture of Gibbs distributions. To solve the corresponding
infinite-dimensional policy optimization, we propose the Soft Regression Forest (SRF) decision
rule, which approximates optimal policies within arbitrary measurable function spaces. The
SRF preserves the interpretability of classical decision trees while being fully parametric, dif-
ferentiable, and Lipschitz smooth, enabling intrinsic interpretation from both global and local
perspectives. To solve the Causal-SDRO with parametric decision rules, we develop an efficient
stochastic compositional gradient algorithm that converges to an ε-stationary point at a rate of
O(ε−4), matching the convergence rate of standard stochastic gradient descent. Finally, we vali-
date our method through numerical experiments on synthetic and real-world datasets, demon-
strating its superior performance and interpretability.

Keywords: Contextual distributionally robust optimization, Causal Sinkhorn discrep-
ancy, Soft regression forest, Stochastic compositional optimization

1 Introduction

Contextual stochastic optimization (CSO) is a widely applied method in real-world engineering
and business decision-making (Sadana et al., 2025). It assumes that decision-makers have access
to historical data, including uncertain parameters and associated contextual information (called
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covariates or features, Chenreddy et al. (2022)). Such contextual information enables a more pre-
cise characterization of uncertain parameters, leading to better decisions (Ban and Rudin, 2019;
Bertsimas and Kallus, 2020). The goal of CSO is to seek an optimal policy that maps covariates
to decisions, thereby avoiding the need to solve optimization models repeatedly for every new
covariate (Sadana et al., 2025).

In practice, the CSO model may suffer from misspecification. This issue arises from statistical
errors due to limited sample sizes and distributional shifts between training and testing environ-
ments, resulting in suboptimal out-of-sample performance and even fragility (Bennouna and Van
Parys, 2022; F. Liu et al., 2024). To hedge against this uncertainty, the contextual distributionally
robust optimization (DRO) method has received much attention in recent literature (R. Chen and
Paschalidis, 2019; Esteban-Pérez and Morales, 2022; Kannan et al., 2024; Nguyen et al., 2025; Sim
et al., 2025; Srivastava et al., 2021; T. Wang et al., 2021). This approach seeks the optimal robust
decision that minimizes the worst-case risk over an ambiguity set containing all plausible joint
distributions of covariates and uncertain parameters. Unlike traditional DRO, which takes into
account the ambiguity of uncertain parameters but ignores that of covariates, contextual DRO
considers both to avoid suboptimal, overly conservative, or even infeasible solutions (Ban and
Rudin, 2019; Zhu et al., 2022).

For contextual DRO, extensive literature constructs ambiguity sets based on optimal trans-
port (Kannan et al., 2024; Nguyen et al., 2020, 2025; T. Wang et al., 2021; J. Yang et al., 2022).
A critical yet often overlooked aspect in contextual DRO is the causal information structure: fu-
ture covariates are conditionally independent of historical uncertain parameters given the his-
tory. For instance, in a newsvendor setting, while daily temperature (covariate) influences de-
mand (uncertain parameter), if the historical temperature is known, the historical demand and
the future temperature are conditionally independent, as they cannot affect each other. To char-
acterize this structure, J. Yang et al. (2022) propose a contextual DRO model with an ambiguity
set constructed using causal Wasserstein distance that takes into account this causal relation. This
model hedges against a discrete worst-case distribution that remains causally consistent, thereby
avoiding causally implausible robustness scenarios.

Another critical observation is that the underlying distribution of CSO is typically continuous
in practical applications (e.g., continuous temperature and demand distributions), and a discrete
worst-case distribution from the aforementioned DRO framework (J. Yang et al., 2022) may lead
to overly conservative decisions. Therefore, it remains an open question to develop a contextual
DRO model that simultaneously captures the causal structure and absolute continuity of the worst-case
distribution. J. Wang et al. (2025) recently develop a new DRO framework based on the Sinkhorn
discrepancy to characterize the continuity of underlying distributions. This framework, referred
to as Sinkhorn DRO, incorporates entropic regularization into the Wasserstein distance, thereby
excluding all discrete distributions in the ambiguity set. The variants of Sinkhorn DRO have also
been explored in literature (Azizian et al., 2023a, 2023b; Birrell and Ebrahimi, 2025; Blanchet
et al., 2023) and has wide applications in hypothesis testing (J. Wang and Xie, 2022; J. Wang et al.,
2024; S.-B. Yang and Li, 2023), experimental design (Dapogny et al., 2023; Jiang and Mao, 2025),
machine learning (Cescon et al., 2025; Ouasfi et al., 2025; Shen et al., 2023; Song et al., 2024), etc.
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While the Sinkhorn DRO is capable of providing continuous worst-case distributions, the
infinite-dimensional nature of policy optimization imposes a computational challenge. To ad-
dress this, recent literature has developed both parametric and non-parametric decision rule ap-
proaches to seek effective approximate policies. For parametric rules, Ban and Rudin (2019) con-
sider affine decision rules for the CSO. Although computationally efficient, it may lead to subopti-
mal decisions because it often fails to capture complex and nonlinear relations between covariates
and decisions. Later Bertsimas and Koduri (2022), Qi et al. (2023), Han et al. (2025), and Z. Liu
et al. (2025) propose kernel-based and deep-learning-based decision rules, respectively, to ap-
proximate the complicated function space. These methods have superior empirical performance,
but are often difficult to interpret. Alternatively, non-parametric rules developed in Zhang et al.
(2024) and Nguyen et al. (2025) offer better interpretability, but they are computationally ineffi-
cient as the sample sizes increase and are only applicable to special contextual DRO problems.
Inspired by literature, we aim to answer the following question:

How to develop a decision rule approach with interpretability and computational tractabil-
ity for solving general contextual DRO problems?

The tree-based family, including decision tree and random forest, has been developed for gen-
eral CSO models for estimating conditional distributions of uncertain parameters to improve the
interpretability (Bertsimas and Kallus, 2020; Elmachtoub et al., 2020; Kallus and Mao, 2023).
However, few studies employ tree-based models for decision rule optimization. This is primarily
because constructing an optimal tree is NP-Hard, and its non-differentiable structure precludes
efficient end-to-end policy optimization (Aghaei et al., 2025; Notz and Pibernik, 2024). It is desir-
able to explore a computationally tractable tree-based model for decision rule optimization that
preserves interpretability.

In this paper, we develop a new contextual DRO model with an ambiguity set based on causal
and entropy-regularized Wasserstein distance, which retains the causal and continuous structure
of the underlying distribution, referred to as Causal Sinkhorn DRO (Causal-SDRO). To efficiently
approximate optimal policies, we propose a parametric decision rule based on the Soft Regression
Forest (SRF), which ensembles several differentiable soft decision trees to prescribe end-to-end
and interpretable decisions. Our main contributions are summarized as follows.

(I) To model the ambiguity set of Causal-SDRO, we introduce the causal Sinkhorn discrep-
ancy, which is a variant of Wasserstein distance that combines the causal property from
(J. Yang et al., 2022) and the continuous property of transport plans from (J. Wang et al.,
2025). We further derive the strong dual reformulation and the expression of the worst-case
distribution for the inner problem of Causal-SDRO under general assumptions.

(II) We propose a Soft Regression Forest (SRF) decision rule, which approximates optimal poli-
cies within arbitrary measurable function spaces. The proposed SRF retains the intrinsic
interpretability of traditional non-differentiable decision trees while offering a parametric,
differentiable, and Lipschitz smooth decision rule. We demonstrate the interpretability of
this decision rule, grounded in its structural transparency, stability, and robustness, and
introduce intrinsic interpretation measures from both global and local perspectives.
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(III) We reformulate Causal-SDRO with parametric decision rules as a multi-level stochastic
compositional optimization. We first consider the sample average approximation (SAA)
approach, which approximates the target problem as deterministic optimization. Its theo-
retical sample complexity is O(δ−2) to control the approximation error within δ with high
probability. However, due to the multi-level compositional structure of the problem, it is
still computationally challenging to solve the SAA problem. Instead, we develop a stochas-
tic compositional gradient algorithm that converges to an ε-stationary point at a rate of
O(ε−4), which is at the same order as standard stochastic gradient descent (Ghadimi et al.,
2016).

(IV) We validate the proposed approach through numerical experiments on three applications:
a feature-based newsvendor problem, a feature-based inventory substitution problem (rep-
resenting a two-stage contextual DRO setting), and a real-world data-driven portfolio se-
lection problem. Throughout the experiments, our methods are both computationally effi-
cient and exhibit interpretability compared with existing baselines.

The remainder of this paper is organized as follows. The next two subsections in this sec-
tion review the related literature and introduce conventions and notations throughout this paper.
Section 2 presents the necessary definitions and formulates the Causal-SDRO model. Section 3
derives the strong dual formulation and the worst-case distribution of the Causal-SDRO model
given a fixed decision rule. Section 4 proposes the interpretable soft regression forest decision
rule. Section 5 discusses several methods for solving the Causal-SDRO model with parametric
decision rules. Section 6 reports the numerical results of our methods on three contextual DRO
applications. Section 7 concludes the paper. Proofs and additional analyses are provided in the
E-companion to this paper.

1.1 Related Literature

In this subsection, we review existing literature related to our work.
On data-driven prescriptive analytics. Our study is rooted in the data-driven decision-making

paradigm, which leverages data to prescribe decisions in optimization problems under uncertain
(Bertsimas and Kallus, 2020; Sim et al., 2025). This approach, leveraging rich covariates to im-
prove decision-making with uncertain parameters, is called Contextual Stochastic Optimization
(Sadana et al., 2025). To address this problem, existing studies have developed various frame-
works. Bertsimas and Kallus (2020) propose a data-driven framework based on weighted sample
average approximation. This method estimates the conditional distribution by generating data-
driven weights via machine learning models (e.g., k-nearest neighbor method and decision trees)
and prescribes decisions by minimizing the reweighted empirical cost. Building on this, Kallus
and Mao (2023) propose a stochastic optimization forest method, which calculates weights by
optimizing the downstream decision quality rather than prediction accuracy. Elmachtoub and
Grigas (2022) develop a smart predict-then-optimize framework, which integrates learning and
optimization by introducing a decision-oriented loss function. Qi et al. (2025) present an inte-
grated conditional estimation-optimization framework based on the downstream objective. Dis-
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tinct from the aforementioned approaches that still involve an intermediate estimation process,
our work focuses on the decision rule approach, which directly maps covariates to final decisions
(Liyanage and Shanthikumar, 2005). Notable examples include the linear and kernel-based deci-
sion rules for newsvendor problems by Ban and Rudin (2019) and the deep-learning-based rules
for inventory management by Qi et al. (2023).

On contextual Distributionally Robust Optimization (DRO). To hedge against the distributional
shift issue in CSO, contextual DRO has received much attention with various types of ambiguity
sets. Early approaches focused on φ-divergence (Poursoltani et al., 2023; Srivastava et al., 2021)
and moment-based (Perakis et al., 2023) ambiguity sets, primarily due to their computational
tractability. In recent literature, the optimal transport-based (i.e., Wasserstein distance-based)
ambiguity sets are widely used for contextual DRO modeling (Esteban-Pérez and Morales, 2022;
Kannan et al., 2024; Nguyen et al., 2025; Qi et al., 2022; Zhang et al., 2024), due to their data-
driven nature and satisfactory out-of-sample guarantees. Most relevant to our work is J. Yang et
al. (2022), which provide an ambiguity set based on the causal transport distance to preserve the
conditional independence structure between historical uncertain parameters and newly observed
covariates. However, as a variant of the Wasserstein contextual DRO, this ambiguity set hedges
against discrete worst-case distributions, which may lead to overly conservative contextual deci-
sions, as the true distribution is often continuous in many applications. We bridge this gap by
extending the causal transport distance to a causal and entropy-regularized discrepancy (J. Wang
et al., 2025), ensuring that the resulting DRO model hedges against continuous distributions while
preserving causal structure.

On decision rule approach for contextual DRO. Decision rule approaches seek an optimal policy
within a pre-specified function class that makes end-to-end decisions based on covariates. Ex-
isting research has developed several parametric and non-parametric decision rule approaches
for solving contextual DRO. J. Yang et al. (2022) reformulate the causal optimal transport-based
DRO as a conic program for affine decision rules. However, it may not be tractable for more
general parametric decision rules. Under such a case, Hu et al. (2023) reformulate this prob-
lem as a large-scale bilevel program, whereas it is still computationally challenging. For non-
parametric decision rules, finite-dimensional convex reformulations of contextual DRO have been
provided (Esteban-Pérez and Morales, 2022; Fu et al., 2024; Nguyen et al., 2025; J. Yang et al.,
2022; Zhang et al., 2024) for special problem structures or with special choices of the Wasserstein
distance and its variants. In this paper, we propose a Soft Regression Forest (SRF) decision rule
for general contextual DRO, aiming to balance the trade-off between interpretability and compu-
tational tractability.

On trustworthy and interpretable decision-making. In machine learning, interpretability gener-
ally refers to the ability to explain or to present in understandable terms to humans (Bertsimas
et al., 2019; Doshi-Velez and Kim, 2017). As mentioned above, kernel or deep-learning-based
methods for contextual optimization perform well but lack trustworthiness and interpretability
(Bertsimas and Koduri, 2022; Oroojlooyjadid et al., 2020). Therefore, in high-stakes applications,
such as healthcare and finance, those methods may pose risks (Forel et al., 2023; Rudin, 2019).
Instead of explaining deep learning models (Lundberg et al., 2020), extensive literature is dedi-
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cated to applying or developing inherently trustworthy models for decision-making (Forel et al.,
2023), such as decision tree and forest methods, which have been considered interpretable and
used in some decision-making processes due to their explicit “if-then” logical structures (Aghaei
et al., 2025; Bertsimas and Dunn, 2017; Bertsimas and Stellato, 2021; Rudin, 2019). These meth-
ods have also been applied in CSO (Bertsimas and Kallus, 2020; Elmachtoub et al., 2020; Kallus
and Mao, 2023; Notz and Pibernik, 2024). Distinct from existing tree-based methods, where trees
are constructed via greedy heuristics due to non-differentiability and NP-hardness, the proposed
SRF decision rule is differentiable and can be efficiently trained by gradient-based methods, while
maintaining the intrinsic interpretability.

1.2 Conventions and Notations

For integer K ∈ Z+, define [K] ≜ {1, · · · ,K}. We denote random vectors by bold upper case letters
(e.g., X ,Y ) and their realizations by bold lower case letters (e.g., x,y). For a measurable set Y ,
denoteM(Y ) as the set of measures on Y , and P (Y ) as the set of probability measures on Y . Let
(X ,∥ · ∥X ), (Y ,∥ · ∥Y ) be subsets of normed vector spaces. For simplicity, the subscripts in ∥ · ∥X
and ∥ · ∥Y will be omitted if no ambiguity exists. Denote P ⊗Q as the product measure of two
probability measures P and Q. Given a probability distribution P and a measure µ, we denote
by suppP the support of P, and write P ≪ µ if P is absolutely continuous with respect to µ.
Let the logarithm function log take with base e. A function f : X → R

n is said to be L-Lipschitz
continuous, if there exists a constant L > 0 such that ∥f (x1)−f (x2)∥2 ≤ L∥x1−x2∥2 for any x1,x2 ∈
X . A function f : X → R is said to be S-Lipschitz smooth if it is continuously differentiable and
its gradient is S-Lipschitz continuous. A function f : X → R

n(n > 1) is said to be S-Lipschitz
smooth if it is continuously differentiable and its Jacobian Jf (x) is S-Lipschitz continuous. Let
Vξ(t(·;ξ)) denote the variance of the random variable (or random vector) t(·;ξ). Let (·)+ denote
the element-wise positive part operator. That is, for any vector x = [x1, . . . ,xdx ]

⊤ ∈ Rdx , we have
(x)+ = [max{x1,0}, . . . ,max{xdx ,0}]

⊤. For a vector w ∈ Rd , we denote [w]k as its k-th element for
any k ∈ [d]. We use |·| to represent the cardinality of a set.

2 The Causal-SDRO Model

In this section, we introduce the Causal-SDRO model. Consider a CSO model where a decision
rule f : X → Z maps a covariate vector x for a compact covariate space X ⊆ R

dx to a decision
z ∈ Z ⊆ R

dz . The goal is to Z ⊆ R
dz to minimize the expectation of the measurable loss function

Ψ : Z ×Y → R∪ {∞} with respect to uncertain parameters y ∈ Y ⊆ R
dy . Consequently, the CSO is

formulated as
inf
f ∈F

E(x,y)∼P̂

[
Ψ (f (x) ,y)

]
,

where F is a space of measurable functions, and P̂ represents the empirical joint distribution of
x and y. Based on CSO, contextual DRO assumes the unknown true distribution P lies within an
ambiguity set P (P̂) constructed based on P̂. The objective is to identify a robust decision rule that
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minimizes the worst-case expected loss

inf
f ∈F

max
P∈P (P̂)

E(x,y)∼P

[
Ψ (f (x) ,y)

]
.

To construct our ambiguity set, we first recall the causal transport distance (J. Yang et al.,
2022), which incorporates the causal structure into the optimal transport framework.

Definition 1. (Causal Transport Distance, J. Yang et al., 2022). Let distributions P,Q ∈ P (X ×Y ).
A joint distribution γ ∈ Γ (P,Q) is termed a causal transport plan if, for ((X̂ , Ŷ ), (X ,Y )) ∼ γ , the
random variable X is conditionally independent of Ŷ given X̂, denoted as

X ⊥ Ŷ | X̂ .

Let Γc(P,Q) be the set of all causal transport plans within Γ (P,Q). For p ∈ [1,∞), the p-causal transport
distance between P and Q is defined as

Cp(P,Q) :=
(

inf
γ∈Γc(P,Q)

E((x̂,ŷ),(x,y))∼γ

[
cp((x̂, ŷ), (x,y))

])1/p

,

where cp((x̂, ŷ), (x,y)) = ∥x− x̂∥p + ∥y − ŷ∥pis a transport cost function. ^

The ambiguity set of causal transport distance-based DRO includes both discrete and contin-
uous distributions, whereas it typically hedges against a discrete one, which may not be realistic
in practice, as the true distribution is often continuous in many applications. In this paper, we
introduce the Causal Sinkhorn Discrepancy (CSD) by incorporating entropy regularization, which
excludes all discrete distributions in the ambiguity set. The CSD is defined as follows.

Definition 2. (Causal Sinkhorn Discrepancy, CSD). Consider distributions P,Q ∈ P (X ×Y ), and
let measures µ,ν ∈ M(X × Y ),νX ∈ M(X ),νY ∈ M(Y ) be reference measures such that P ≪ µ and
Q≪ ν. For regularization parameter ϵ ≥ 0 and p ∈ [1,∞), the p-CSD between two distributions P and
Q is defined as

Rp(P,Q) :=
(

inf
γ∈Γc(P,Q)

E((x̂,ŷ),(x,y))∼γ

[
cp((x̂, ŷ), (x,y))

]
+ ϵ ·H

(
γ | µ⊗

(
νX ⊗ νY

)))1/p

,

where Γc(P,Q) is the causal transport plan set, and the relative entropy of γ with respect to the measure
µ⊗

(
νX ⊗ νY

)
is given by

H
(
γ | µ⊗

(
νX ⊗ νY

))
= E((x̂,ŷ),(x,y))∼γ

[
log

 dγ((x̂, ŷ), (x,y))

dP̂(x̂, ŷ)dνX (x)dνY (y)

],
where dγ((x̂,ŷ),(x,y))

dP̂(x̂,ŷ)dνX (x)dνY (y)
stands for the density ratio of γ with respect to µ ⊗

(
νX ⊗ νY

)
evaluated at

(x̂, ŷ,x,y). ^

Unlike deterministic transport plans derived from the Wasserstein distance, Sinkhorn trans-
port plans are probabilistic. Specifically, entropy regularization (ϵ > 0) penalizes deterministic
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Figure 1. Visualization for causal and non-causal Sinkhorn transport plans.
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transport plans, yielding smooth plans that map each source point to a probability distribution
over the target space rather than a single point.

Based on CSD, we study the following contextual DRO model, where the outer minimization
seeks optimal decision rules and the inner maximization seeks the worst-case distribution in the
ambiguity set constructed by CSD around the empirical distribution P̂:

inf
f ∈F

max
P∈P (P̂)

E(x,y)∼P

[
Ψ (f (x),y)

]
, (Causal-SDRO)

where
P (P̂) =

{
P ∈ P (X ×Y ) : Rp(P̂,P)p ≤ ρp

}
.

This Causal Sinkhorn Distributionally Robust Optimization (Causal-SDRO) model hedges against
a continuous worst-case distribution (see the discussion in Section 3.2) while preserving the causal
information structure, and thereby avoiding overly conservative and causally inconsistent deci-
sions.

Figure 1 visualizes and compares the causal and non-causal transport plans for illustrative
source (x̂, ŷ) and target (x,y) distributions supported on [−3,3]2. The source shown in Figure 1(a)
comprises x̂ ∼ N (0,0.1) and ŷ from an equiprobable mixture of N (±1.5,0.3). The target shown
in Figure 1(b) is a mixture of two bivariate Gaussians centered at (−1,−1) and (1,1) with positive
correlation. Figure 1(c) illustrates non-causal Sinkhorn transport plans, where the mapping from
x̂ to x explicitly depends on ŷ. Specifically, when ŷ = −1.5 (left panel), the source mode at x̂ =
0 is transported primarily to the target’s bottom-left peak (x ≈ −1) to minimize transport cost.
Similarly, when ŷ = 1.5 (right panel), the mass is directed toward the closer upper-right peak
(x ≈ 1). In contrast, their corresponding causal Sinkhorn transport plan (Figure 1(d), middle
panel) enforces conditional independence, and consequently, it appears as an aggregate of the
non-causal plans. Figure 1(d) further demonstrates the difference between the causal Wasserstein
(ϵ = 0) and the causal Sinkhorn transport plans (ϵ = 0.5 and 5). As ϵ increases, the causal Sinkhorn
transport plans converge towards the product of marginal distributions of x̂ and x.

In the following, we introduce several practical applications of (Causal-SDRO).

Example 1. (Feature-based Newsvendor Problem). Consider a newsvendor who sells dz kinds
of products. Let h ∈ Rdz and b ∈ Rdz to represent the holding and stock-out cost. The newsvendor
loss function ΨN : Z ×Y →R for given uncertain demand y ∈ Y ⊆R

dy (dy = dz) is defined as

ΨN(z,y) := h⊤
(
z −y

)+
+ b⊤

(
y − z

)+
.

Consider features x ∈ X ⊆R
dx (e.g., season and weather), the problem is given by

inf
f ∈F

max
P∈P (P̂)

E(x,y)∼P

[
h⊤

(
f (x)−y

)+
+ b⊤

(
y − f (x)

)+]
.

This problem will be revisited in Sections 3.2 and 6.1. ♣

Example 2. (Feature-based Inventory Substitution Problem). This problem, as a variant of
the supply chain substitution problem in X. Chen and Gao (2019), is a two-stage optimization
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problem. Consider a firm selling dz types of products to satisfy customer demands, the products
are indexed by i ∈ [dz] where a lower index implies a higher quality. There is a demand class
corresponding to each product, indexed by j ∈ [dy] (dz = dy). If any demand class j cannot be
satisfied, products with higher quality i < j can substitute for demand j at an extra cost si,j . Before
the real demand is observed, the “wait-and-see” decision for the firm is to decide the prepared
inventory level z ∈ Z ⊆R

dz (suppose that the initial inventory level is zero) with cost c ∈Rdz . After
knowing the demand y ∈ Y ⊆R

dy , the “here-and-now” decision is to allocate the inventory to each
demand class, targeting the lowest total cost. Let decision variable wi,j ≥ 0 denote the quality of
product i that substitutes j, while hi ≥ 0 and bj ≥ 0 denote the unit holding cost of product i and
shortage cost of demand j, respectively. Taking features x ∈ X ⊆R

dx (e.g., demographic data) into
account, this two-stage contextual DRO problem is given by

inf
f ∈F

max
P∈P (P̂)

c⊤f (x) +E(x,y)∼P

[
ΨI(f (x),y)

]
where the inventory substitution loss function ΨI : Z ×Y →R is defined as

ΨI(z,y) := min
dy∑
j=1

j∑
i=1

si,jwi,j +
dz∑
i=1

hiui +
dy∑
j=1

bju
′
j

s.t.
dy∑
j=i

wi,j +ui = zi , ∀i ∈ [dz] ,

j∑
i=1

wi,j +u′j = yj , ∀j ∈
[
dy

]
,

ui ,u
′
j ,wi,j ≥ 0, ∀i ∈ [dz] , j ∈

[
dy

]
,

where ui represents the leftover inventory of product i, u′j represents the shortage of demand j,
and the three terms in ΨI(z,y) represent the total purchasing cost, total holding cost, and total
shortage cost, respectively. We conduct numerical experiments for this problem in Section 6.2 ♣

Example 3. (Data-driven Portfolio Selection Problem). Conditioned on a covariate x ∈ X ⊆R
dx

(e.g., macroeconomic indicators), the portfolio manager determines a portfolio allocation strategy
across various assets that minimizes the worst-case conditional risk-return tradeoff (Nguyen et
al., 2025). In this data-driven portfolio selection problem, the random vector y ∈ Y ⊆R

dy denotes
the assets’ future return, and the risk can be described by variance, conditional value-at-risk, etc.
We choose the variance of return as the measure of risk in this example, leading to the following
model

inf
f ∈F

max
P∈P (P̂)

E(x,y)∼P

[
ΨP(f (x),y)

]
,

where the portfolio loss function ΨP : Z ×Y →R is defined as

ΨP(z,y) :=

−ω ·
dy∑
i=1

yizi +


dy∑
i=1

yizi − z0


2 ∣∣∣∣∣∣

∑dy
i=1 zi = 1,

mini∈[dy ]{yizi} ≤ z0 ≤maxi∈[dy ]{yizi},
zi ≥ 0, ∀i ∈ [dy],

 ,
10



where the parameter ω balances the trade-off between the portfolio return (the first term) and the
associated risk (the second term), and for decision variables z =

(
z0, z1, · · · , zdy

)⊤
∈ Z ⊆ R

dy+1, z0

represents the expected portfolio return while zi represents the portfolio on the asset i for each
i ∈ [dy]. We will solve this problem on real data in Section 6.3. ♣

3 Duality Reformulation for Causal-SDRO

In this section, we establish the strong duality and characterize the worst-case distribution for the
inner maximization problem of (Causal-SDRO), assuming a fixed decision rule f ∈ F . The primal
problem is defined as

vP := max
P∈P (X×Y )

{
E(x,y)∼P

[
Ψ (f (x),y)

]
: Rp(P̂,P)p ≤ ρp

}
. (1)

We derive the corresponding dual problem vD as

vD := inf
λ≥0

{
λρp +Ex̂∼P̂X̂

[
λϵ log

∫
X

exp
(
g(x̂,x,λ)

λϵ

)
dνX (x)

]}
, (2a)

where

g(x̂,x,λ) = Eŷ∼P̂Ŷ |X̂=x̂

[
λϵ log

∫
Y

exp
(
Ψ (f (x),y)−λcp((x̂, ŷ), (x,y))

λϵ

)
dνY (y)

]
. (2b)

Next, we reformulate the dual problem vD as a stochastic optimization with nested expectation
structure such that, except for P̂Ŷ |X̂=x̂, all random vectors are mutually independent. Define the
kernel probability distributions (e.g., they are Laplace or Gaussian distributions when p ∈ {1,2})
for the random vectors ξ1 and ξ2 as

dQϵ (ξ1) :=
e−∥ξ1∥p/ϵ∫

R
dx
e−∥u∥p/ϵdνX (u)

dνX (ξ1) , (3a)

dWϵ (ξ2) :=
e−∥ξ2∥p/ϵ∫

R
dy e−∥u∥

p/ϵdνY (u)
dνY (ξ2) , (3b)

and a constant

ρ̄ := ρp + ϵ ·Ex̂∼P̂X̂

[
log

∫
R
dx

e−∥u∥
p/ϵdνX (u)

]
+ ϵ ·E(x̂,ŷ)∼P̂

[
log

∫
R
dy
e−∥u∥

p/ϵdνY (u)
]
. (4)

Then, Problem (2) can be reformulated as

vD = inf
λ≥0

{
λρ̄+Ex̂∼P̂X̂

[
λϵ log Eξ1∼Qϵ

[
exp

(
g ′(x̂,ξ1,λ)

λϵ

)]]}
, (5a)

where

g ′(x̂,ξ1,λ) = Eŷ∼P̂Ŷ |X̂=x̂

[
λϵ log Eξ2∼Wϵ

[
exp

(
Ψ (f (x̂+ ξ1), ŷ + ξ2)

λϵ

)]]
. (5b)

In the following, Section 3.1 presents the main result of strong duality and related discussions.
Section 3.2 presents the worst-case distribution of (1) and compares it with existing DRO models.
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3.1 Main Results for the Dual Formulation

In this part, we first present the strong duality theorem that vP = vD, and next provide related
discussions. We consider the following assumptions.

Assumption 1. (I) Both X and Z are measurable sets, and the loss function Ψ : Z ×Y → R∪ {∞}
and decision rule f : X →Z are measurable.

(II) For every joint distribution γ on (X ×Y ) × (X ×Y ) with first marginal distribution P̂, it has a
regular conditional distribution γ(x̂,ŷ) given the value of the first marginal equals (x̂, ŷ).

(III) The transport cost function cp((x̂, ŷ), (x,y)) is measurable, and for P̂ ⊗ νX ⊗ νY -almost every
(x̂, ŷ,x,y), it holds that 0 ≤ cp((x̂, ŷ), (x,y)) <∞.

(IV) The normalization constants for the kernel distributions are positive
∫
R
dx
e−∥u∥

p/ϵdνX (u) < ∞
and

∫
R
dy e
−∥u∥p/ϵdνY (u) <∞.

Assumption 1(I) ensures that the expectation over Ψ (f (x),y) is well-defined. Assumption 1(II)
ensures that each optimal transport plan can be decomposed into many conditional optimal trans-
port plans. Assumptions 1(III) and 1(IV) ensure that the optimal value of Causal-SDRO is well-
defined. Based on Assumption 1(IV), we introduce the light-tail condition on functions Ψ and g ′

in the following Condition 1 to distinguish the cases vD < ∞ and vD = ∞. We provide sufficient
conditions to easily verify whether Condition 1 holds in E-companion EC.1.1.

Condition 1. There exists λ > 0 such that Eξ1∼Qϵ

[
exp

(
g ′(x̂,ξ1,λ)

λϵ

)]
< ∞ for P̂X̂-almost every x̂ and

Eξ2∼Wϵ

[
exp

(
Ψ (f (x̂+ξ1),ŷ+ξ2)

λϵ

)]
<∞ for P̂⊗ νX -almost every (x̂, ŷ,x).

We call the constraintRp(P̂,P)p ≤ ρp in primal problem (1) the CSD constraint in the following.
Based on Assumption 1 and Condition 1, the following strong duality theorem holds.

Theorem 1. (Strong Duality). Under Assumption 1, the following results hold.

(I) The primal problem vP is feasible if and only if ρ̄ ≥ 0.

(II) Additionally, assume ρ̄ ≥ 0 is bounded above such that the CSD constraint is binding, then:

• If Condition 1 holds, then vP = vD <∞;

• Otherwise, vP = vD =∞.

The proof of Theorem 1 is provided in E-companion EC.1.2. We present several remarks re-
garding Theorem 1.

Remark 1. (Comparison with Causal-WDRO). If ϵ → 0, then the dual objective of the prob-
lem (2) converges to (see E-companion EC.1.3 for detailed proof)

λρp +E
P̂X̂

 sup
x∈suppνX

EP̂Ŷ |X̂

 sup
y∈suppνY

{
Ψ (f (x),y)−λcp((x̂, ŷ), (x,y))

}
| X̂


 , (6)
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which is the same as the dual formulation of the Causal-WDRO problem in J. Yang et al. (2022).
The optimization for Causal-WDRO is computationally challenging due to the nested inner supre-
mums within expectations in (6), which leads to a non-smooth stochastic min-max structure. Ex-
isting algorithms for solving Causal-WDRO typically focus on special cases. For example, J. Yang
et al. (2022) assume a specific structure for the loss function, and Hu et al. (2023) assume that λ
is sufficiently large and convert it to a contextual stochastic bilevel optimization with a strongly
convex lower level problem. ♣

With a proper level of entropy regularization, the supremum operators in (6) are replaced by
smooth log-sum-exp type operators, which implies that the original dual problem is replaced by
a special stochastic program, as discussed in Remark 2.

Remark 2. (Stochastic Optimization Formulation). Problem (5) can be rewritten as a stochastic
multi-level compositional optimization problem:

vD = inf
λ≥0

{
λρ̄+λϵ ·Ex̂

[
h1

(
Eξ1

[
h2

(
Eŷ|x̂

[
h1

(
Eξ2

[
h3 (λ; x̂, ŷ,ξ1,ξ2)

])])])]}
,

where the functions h1,h2, and h3 are defined as

h1 : R+→R, h1(z) = log(z),

h2 : R→R+, h2(z) = ez,

h3 : R+ ×Rdx ×Rdy ×Rdx ×Rdy →R, h3(λ; x̂, ŷ,ξ1,ξ2) = exp
(
Ψ (f (x̂+ ξ1), ŷ + ξ2)

λϵ

)
.

Existing literature has provided different variants of optimization algorithms for solving this kind
of formulation, such as M. Wang et al. (2017) and T. Chen et al. (2021). Both methods are gradient-
based algorithms, introducing auxiliary variables to track the iterative update of inner expecta-
tions in the gradient computation. ♣

Remark 3. (Soft-constrained Causal-SDRO). In problem (Causal-SDRO) with hard CSD con-
straint, the radius ρ̄ is a hyperparameter to be tuned while λ is the dual variable. However, if
we regard the hard constraint as a soft one, it suffices to tune λ as a hyperparameter. The soft-
constrained Causal-SDRO problem is given by

inf
f ∈F

max
P∈P (P̂)

E(x,y)∼P

[
Ψ (f (x),y)

]
−λ ·Rp(P̂,P)p. (Soft-Causal-SDRO)

For the inner problem in (Soft-Causal-SDRO), we derive its dual formulation by the Fenchel du-
ality, then the dual problem is given by

inf
f ∈F

Ex̂∼P̂X̂

[
λϵ log

∫
X

exp
(
g(x̂,x,λ)

λϵ

)
dνX (x)

]
, (7)

where the definition of function g is the same as Equation (2b). Under Assumption 1, it can be
shown that the strong duality of the inner problem in (Soft-Causal-SDRO) holds (by the similar
proof process as in Theorem 1). The dual problem (7) is also a stochastic multi-level composi-
tional optimization problem. The soft-constrained problem (Soft-Causal-SDRO) is easier to solve
compared with (Causal-SDRO).
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Remark 4. (Connection with KL-Divergence DRO). Let DKL

(
P||Q

)
be the Kullback–Leibler (KL)

divergence from distribution P to Q. Then, the constraint Rp(P̂,P)p ≤ ρp in (Causal-SDRO) can
be rewritten as (see E-companion EC.1.2 for details)

E(x̂,ŷ)∼P̂

[
DKL

(
γ(x̂,ŷ)||K(x̂,ŷ),ϵ

)]
≤
ρ̄

ϵ
, (8)

where γ(x̂,ŷ) is the conditional distribution of γ given the value of the marginal (x̂, ŷ), and K(x̂,ŷ),ϵ

is a kernel probability distribution defined by kernel distributions Qϵ and Wϵ in Equation (3):

dK(x̂,ŷ),ϵ(x,y) := dQϵ(x) ·dWϵ(y).

Compare with the KL-divergence-based DRO problem (Ben-Tal et al., 2013; Blanchet et al., 2023)

with constraint DKL

(
P||P̂

)
≤ ρ, in constraint (8), the conditional distribution γ(x̂,ŷ) is remained

due to the causal consideration in (Causal-SDRO), and the distribution K(x̂,ŷ),ϵ can be viewed as a
non-parametric kernel estimation constructed from P̂. ♣

3.2 Worst-Case Distribution

As demonstrated in the proof of Theorem 1 (see E-companion EC.1.2 for details), Theorem 2
characterizes the worst-case distribution of the primal problem vP.

Theorem 2. (Worst-case Distribution of Problem (Causal-SDRO)). Under Assumption 1, suppose
the dual problem vD has an optimal solution λ∗ > 0. Then the dual optimal solution λ∗ is unique, and
the density of worst-case distribution P

∗ of the primal problem vP is given by

dP∗(x,y)
dνX (x)dνY (y)

= E(x̂,ŷ)∼P̂

[
αx̂ · βx̂,ŷ,x · er(x̂,x)+s(x̂,ŷ,x,y)

]
, (9)

where αx̂ =
(∫
X e

r(x̂,x)dνX (x)
)−1

, βx̂,ŷ,x =
(∫
Y e

s(x̂,ŷ,x,y)dνY (y)
)−1

,

s(x̂, ŷ,x,y) =
Ψ (f (x),y)−λ∗cp((x̂, ŷ), (x,y))

λ∗ϵ
,

and
r(x̂,x) = Eŷ∼P̂Ŷ |X̂=x̂

[
log

∫
Y
es(x̂,ŷ,x,y)dνY (y)

]
.

We provide the proof of Theorem 2 in E-companion EC.1.4. Theorem 2 reveals that the worst-
case distribution P

∗ is a mixture of Gibbs distributions, and Causal-SDRO spreads probability
mass continuously over the support of the reference measure, governed by the regularization
parameter ϵ. This result leads to the following Corollary 1.

Corollary 1. (Worst-case Distribution of Problem (7)). Under Assumption 1, the density of worst-
case distribution P

∗
λ of the inner problem of (Soft-Causal-SDRO) for any λ > 0 is given by

dP∗λ(x,y)
dνX (x)dνY (y)

= E(x̂,ŷ)∼P̂

[
αx̂(λ) · βx̂,ŷ,x(λ) · er

′(λ,x̂,x)+s′(λ,x̂,ŷ,x,y)
]
, (10)
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where αx̂(λ) =
(∫
X e

r ′(λ,x̂,x)dνX (x)
)−1

, βx̂,ŷ,x(λ) =
(∫
Y e

s′(λ,x̂,ŷ,x,y)dνY (y)
)−1

,

s′(λ, x̂, ŷ,x,y) =
Ψ (f (x),y)−λcp((x̂, ŷ), (x,y))

λϵ
,

and
r ′(λ, x̂,x) = Eŷ∼P̂Ŷ |X̂=x̂

[
log

∫
Y
es
′(λ,x̂,ŷ,x,y)dνY (y)

]
.

We next compare P∗λ with the worst-case distribution formulation of soft-constrained Sinkhorn
DRO (SDRO), Causal Wasserstein DRO (Causal-WDRO), and KL-divergence-based DRO (KL-
DRO) models in contextual settings, denoted by P

∗
λ,SDRO, P

∗
λ,Causal-WDRO, and P

∗
λ,KL-DRO. We

summarize the formulations of these models and worst-case distributions in E-companion EC.2.

Example 1. (Revisited). Consider a single-product feature-based newsvendor problem with
one covariate, i.e., dx = dy = dz = 1. Consider a true decision rule, i.e., f = ftrue, in Figure 2, we
show the structure of distributions P̂, P∗λ, P∗λ,SDRO, P∗λ,Causal-WDRO, and P

∗
λ,KL-DRO, as well as their

marginal probability density or mass. In Figures 2(a)-2(c), historical data points (i.e., empirical
distribution P̂) are marked in red. Figure 2(a) shows the structure of P∗λ, while Figure 2(b) shows
the corresponding structure of P∗λ,SDRO. Comparing Figure 2(a) with Figure 2(b), the probability
density of P

∗
λ is more concentrated than that of P

∗
λ,SDRO. This is because the causal transport

constraint prevents transport plans that violate the conditional independence between x and ŷ

given x̂, which allows Causal-SDRO to avoid overly conservative results. In Figure 2(c), for each
point in P

∗
λ,Causal-WDRO, we mark how they are transported from the empirical distribution with

arrows. In Figure 2(d), as P∗λ,KL-DRO has the same support as P̂, we show the structure of P∗λ,KL-DRO
by color depth, where a darker color of a point means a greater probability mass. ♣

The visualization in Example 1 corroborates our theoretical findings regarding the structure
of worst-case distributions. As illustrated, the worst-case distributions for Causal-WDRO and
KL-DRO are inherently discrete (supported on finite points), while for Causal-SDRO and SDRO,
the entropic regularization leads to continuous worst-case distributions. Crucially, distinguishing
Causal-SDRO from standard SDRO, our worst-case distribution strictly remains causally consis-
tent, thereby avoiding causally implausible robustness scenarios.

4 Soft Regression Forest Decision Rule

Optimizing policies in a general measurable function space is computationally challenging due
to the infinite-dimensional functional optimization involved. Instead, we consider a parametric
decision rule approach f : X → Z that approximates the optimal mapping between covariates
and decisions. In this section, we propose a parametric and interpretable Soft Regression Forest
(SRF) decision rule. Section 4.1 introduces the structure of this decision rule, and Section 4.2
discusses its intrinsic interpretability.
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Figure 2. Structure of distributions P̂ (red points in 2(a)-2(c)), P∗λ, P∗λ,SDRO, P∗λ,Causal-WDRO, and
P
∗
λ,KL-DRO (p = 2, λ = 0.5, ϵ = 0.05, and sample size N = 100)

4.1 Structure of the Soft Regression Forest

In practice, the decision-making process may follow a hierarchical and interpretable structure,
such as an ‘if-then’ structure, rather than a fixed and continuous function. To capture this struc-
ture, unlike the traditional deep-learning-based methods, the proposed SRF decision rule is based
on the principles of soft decision trees (Frosst and Hinton, 2017) and ensemble learning. Com-
pared with the traditional hard decision-tree-based methods, SRF is parametric, differentiable,
and can be end-to-end trained by gradient-based algorithms, while maintaining the intrinsic in-
terpretability.
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Figure 3. Structure of a soft regression tree t with D(t) depth

The SRF consists of an ensemble of T full binary Soft Regression Trees (SRTs). For the t-th
(t ∈ [T ]) tree with depth D(t), each leaf node l ∈

[
2D(t)

]
(i.e., a node has no child node) corresponds

to a decision πl,t ∈ R
dz
+ and a unique route from the root node in the tree. For each route of leaf

node l ∈
[
2D(t)

]
for any t ∈ [T ], denote the left-hand-side and right-hand-side node sets on the

route as L(l) and R(l), respectively, and Λ(l) := L(l)∪R(l).
Distinct from hard regression tree method that select a determined child-node at each branch,

in an SRT t, at each internal node j ∈ [2D(t)−1] in SRT t, a gating function S(w⊤j,tx+bj,t) determines
the probability of directing the input x to the left child, where S(·) represents the Sigmoid function
and wj,t ∈ Rdx , bj,t ∈ R. Consequently, the probability that a given input covariate x reaches leaf
node l (i.e., the decision πl,t) in tree t is given by

pl,t(x) =
∏
i∈L(l)

S(w⊤i,tx+ bi,t) ·
∏
j∈R(l)

(
1− S(w⊤j,tx+ bj,t)

)
.

The final output of the SRF is the ensemble average of the expected decisions from all trees, and
thus the SRF decision rule f SRF

θ : X →Z is explicitly defined as

[
f SRF
θ (x)

]
k

:=
1
T

T∑
t=1

2D(t)∑
l=1

pl,t(x) ·
[
πl,t

]
k
, ∀k ∈ [dz] , (SRF)

where [πl,t]k represents the k-th decision for any k ∈ [dz], the vector θ ∈ Θ is the collection of all
individual parameters {wi,t ,bi,t ,πl,t} for each non-leaf node i ∈ Λ(l), leaf node l ∈

[
2D(t)

]
and tree

t ∈ [T ]. This decision rule needs to train (dx+1) ·
∑T
t=1(2D(t)−1)+dz ·

∑T
t=1 2D(t) parameters in total.
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Figure 3 shows the structure of a single SRT t ∈ [T ] with D(t) layers (let the root node be in
layer 0). As illustrated, on the left-hand side, we show the input and output structure of each
node, while on the right-hand side, we show the route and node subsets L(l) and R(l) for each
leaf node. The SRF employs an ensemble of SRTs to mitigate the high variance and potential
overfitting risks associated with individual trees (Breiman, 2001).

Compared with existing deep-learning-based decision rules, this proposed decision rule with
a hierarchical structure and probabilistic decisions possesses intrinsic interpretability. In SRF,
each SRT is similar to a distilled non-fully connected multi-layer neural network where only the
important nodes are connected, which enhances the efficiency of feature representation.

Recall that Bertsimas and Kallus (2020) and Kallus and Mao (2023) introduce tree-based
model for solving CSO. In their framework, they use hard split decision trees to estimate the
conditional local weights in the weighted sample average approximation method. In comparison,
the proposed parametric SRF decision rule makes end-to-end decisions based on covariates and is
applicable for both CSO and contextual DRO.

4.2 Interpretability of the Soft Regression Forest

In this subsection, we demonstrate the intrinsic interpretability of SRF by its transparent structure
and stability for decision-making.

As a tree-based model, SRF inherits the transparent structure from the traditional methods.

Remark 5. (Asymptotic Consistency to Hard Regression Forest). Adding a scaling parameter

τ to the linear transformation part at each internal node in all SRTs, i.e., S
(
(w⊤x + b)/τ

)
for all

j(t) ∈ [2D(t) − 1], we obtain a variant of SRF decision rule termed f SRFθ,τ (x) where each leaf node
l ∈ [2D(t)] in tree t can be reached with probability pl,t,τ . The proposed SRF f SRFθ (x) shown in
Section 4.1 is a special case with τ = 1. For any input covariate x not lying on any decision
boundary (i.e., {x ∈ X | w⊤j,tx + bj,t , 0,∀j, t}), when τ → 0, the structure of SRF converges to
a hard regression forest, which implies that the sigmoid function takes value only in {0,1} and
thus only one deterministic leaf node can be selected as the final decision, i.e.,

∑2D(t)

i=1 pi,t,τ = 1
and limτ→0 pi,t,τ ∈ {0,1}. Unlike traditional univariate decision trees, all trees in the resulting
hard regression forest provide multivariate splits at all nodes, which improve the accuracy and
interpretability by reducing tree depth (Bertsimas and Dunn, 2017; Bertsimas and Stellato, 2021).

Although the SRT theoretically aggregates outputs across all routes, probabilities for weakly
correlated routes effectively vanish as they are calculated as products of several Sigmoid functions.
Consequently, the final decision is typically dominated by a few high-probability routes. This
inherent sparsity enhances interpretability, enabling decision-makers to easily trace the primary
routes driving the final prescription. We provide empirical evidence for this in Section 6.3.

As traditional decision trees allow for tracing the decision process via routes and identifying
the impact of each feature, the SRT can also explicitly trace the influence of features and their
interaction effects along each route.
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Proposition 1. (Traceability of Decisions in SRF). In SRF, given an input covariate x ∈ Rdx , for
each route selected with probability pl,t(x), the marginal contribution of each feature and the interaction
effects among features along that route are explicitly characterized by

∂pl,t(x)
∂xj

= pl,t(x) ·
∑
i∈Λ(l)

ψi,t

[
wi,t

]
j
,

∂2pl,t(x)
∂xj∂xk

= pl,t(x) ·
( ∑
i∈Λ(l)

ψi,t

[
wi,t

]
j

)( ∑
i∈Λ(l)

ψi,t

[
wi,t

]
k

)
−

∑
i∈Λ(l)

S
(
w⊤i,tx+ bi,t

)(
1− S

(
w⊤i,tx+ bi,t

))[
wi,t

]
j

[
wi,t

]
k

,
∀j,k ∈ [dx], l ∈ [2D(t)], t ∈ T ,

where for each i ∈Λ(l), l ∈ [2D(t)], t ∈ T ,

ψi,t :=


1− S

(
w⊤i,tx+ bi,t

)
, if route l goes left at node i;

−S
(
w⊤i,tx+ bi,t

)
, if route l goes right at node i.

We provide the proof of Proposition 1 in E-companion EC.1.5. Although many uninterpretable
deep learning models are also differentiable, their gradients are typically aggregated through
opaque dense layers, obscuring the internal decision mechanism. In contrast, the SRF derivatives
explicitly decompose the feature influence into specific decision nodes along the route, allowing
us to exactly trace where (at which node) and how (direction and magnitude) a feature contributes
to the decision process.

Beyond the transparency and traceability, we next show that the mathematical smoothness
of the SRF structure also contributes to interpretability. We define Wmax := maxi,t ∥wi,t∥2 as the
maximum norm of the internal node weights, Πmax := maxl,t ∥πl,t∥2 as the maximum norm of leaf
vectors, and Dmax as the maximum tree depth. Then, the following proposition holds.

Proposition 2. (Lipschitz Continuity and Smoothness of SRF). The SRF decision rule f SRF
θ :

X →Z is LSRF-Lipschitz continuous and SSRF-Lipschitz on the compact set X ⊆R
dx , where

LSRF =Wmax ·Πmax · (Dmax − 1),

SSRF =W 2
max ·Πmax · (Dmax − 1) · (Dmax −

3
4

).

We provide the proof of Proposition 2 in E-companion EC.1.6. These Lipschitz properties
confirm the decision stability and robustness (interpretation stability) of SRF, distinguishing it
from existing uninterpretable deep learning models and post-hoc explanation methods, which
are typically not Lipschitz as small input perturbations may lead to abrupt changes in decisions
and explanations (Alvarez-Melis and Jaakkola, 2018).

All analyses above demonstrate the structural transparency, stability, and robustness of the
SRF decision rule. In E-companion EC.3, we further introduce both global and local intrinsic
interpretation measures for SRF, which depend only on the structure of SRF and avoid post-hoc
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explanation analyses. In the following Section 6.3, we confirm the practical interpretability of
SRF based on its structure and the proposed intrinsic interpretation measures on the portfolio
problem shown in Example 3 with real data.

5 Solving Causal-SDRO

In this section, we discuss the algorithms to solve the Causal-SDRO problem. In Section 5.1, we
reformulate (7) as a three-level stochastic compositional optimization. For this tractable formula-
tion, we analyze the sample and computational complexity of the sample average approximation
method in Section 5.2, and develop a gradient-based algorithm to solve it in Section 5.3.

5.1 Tractable Reformulation for Causal-SDRO

Let each decision rule fθ be parameterized by a parameter vector θ ∈ Θ ⊆ R
dθ . In this subsection,

we reformulate the dual problem of (Soft-Causal-SDRO), which is given by:

min
θ∈Θ

F (θ) = Ex̂∼P̂X̂

[
λϵ log Eξ1∼Qϵ

[
exp

(
h(θ; x̂,ξ1,λ)

λϵ

)]]
(11a)

where

h(θ; x̂,ξ1,λ) = Eŷ∼P̂Ŷ |X̂=x̂

[
λϵ log Eξ2∼Wϵ

[
exp

(
Ψ (fθ(x̂+ ξ1), ŷ + ξ2)

λϵ

)]]
. (11b)

Since the nominal distribution P̂ is the discrete empirical distribution from the training data,
the conditional distribution P̂ŷ|x̂ also has a finite support for any given historical covariate x̂. As
all historical data are available, the conditional probability p̂(ŷi | x̂) given x̂ can be estimated by
the empirical frequency, i.e.,

p̂(ŷi | x̂) =
1
nx̂

nx̂∑
j=1

I

(
ŷj = ŷi

)
,

where nx̂ is the number of observed outcomes for ŷ associated with covariate x̂, and function I (·) is
an indicator function. Therefore, the conditional expectation in Equation (11b) can be computed
by

h(θ; x̂,ξ1,λ) = λϵ ·
nx̂∑
i=1

p̂(ŷi | x̂) · log Eξ2∼Wϵ

[
exp

(
Ψ (fθ(x̂+ ξ1), ŷi + ξ2)

λϵ

)]
.

Then, the problem (11) is equivalent to a three-level stochastic compositional optimization
(SCO) problem, driven by the three independent random vectors x̂, ξ1, and ξ2:

min
θ∈Θ

F (θ) = λϵ ·Ex̂∼P̂X̂

[
t1

(
Eξ1∼Qϵ

[
t2

(
Eξ2∼Wϵ

[
t3

(
θ; x̂,ξ1, ŷ,ξ2

)]
; x̂,ξ1

)]
; x̂

)]
(SCO)

where
t1 : R+→R, t1(z; x̂) = log(z),

t2 : Rnx̂ →R+, t2(v; x̂,ξ1) = exp
( nx̂∑
i=1

p̂(ŷi | x̂) · log (vi)
)
,

t3 : Rdθ →R
nx̂ ,

[
t3(θ; x̂,ξ1, ŷ,ξ2)

]
i

= exp
(
Ψ (fθ(x̂+ ξ1), ŷi + ξ2)

λϵ

)
,∀i ∈ [nx̂] ,

(12)
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where the set of vectors {ŷi}
nx̂
i=1 is implicitly defined by a covariate x̂. For brevity, we denote

functions t1(z; x̂), t2(v; x̂,ξ1), and t3(θ; x̂,ξ1, ŷ,ξ2) as t1(z), t2(v), and t3(θ) respectively. We also
define

φ
(0)
x̂ (θ) := Ex̂

[
t1(θ; x̂)

]
, φ

(1)
ξ1

(θ) := Eξ1

[
t2(θ; x̂,ξ1)

]
, and φ(2)

ξ2
(θ) := Eξ2

[
t3(θ; x̂,ξ1, ŷ,ξ2)

]
.

In the following subsections, we introduce several assumptions for this problem in Assumption
2, which are commonly used by related literature, e.g., Hu et al. (2020) and Shapiro et al. (2021).

Assumption 2. We assume that

(I) (Bounded Diameter). The decision set Θ ⊆ R
dθ has a positive finite diameter DΘ > 0, that is, for

any θ1,θ2 ∈Θ, ∥θ1 −θ2∥2 ≤DΘ .

(II) (Lipschitz Continuity). For any fixed x and y and given parameteric decision rule, the loss
function L(θ;x,y) := Ψ (fθ(x),y) is Lθ-Lipschitz continuous with respect to θ.

(III) (Bounded Cost). The loss function Ψ (z,y) satisfies 0 ≤ Ψ (z,y) ≤ B for any z ∈ Z and y ∈ Y .

Assumption 2(I) on the diameter of the decision space is used for sample complexity analysis.
Assumption 2(II) is crucial for deriving the convergence rate of the gradient-based algorithms.
From Assumption 2, we have the following Proposition 3.

Proposition 3. (Properties of Problem (SCO)). Under Assumption 2, functions t1, t2, and t3 in
Equation (12):

(I) are L1-, L2-, and L3-Lipschitz continuous;

(II) are S1-, S2-, and S3-Lipschitz smooth;

(III) have bounded stochastic gradients in expectation, i.e., E
[
|∇t1(z)|2

]
≤ C2

1 , E
[
∥∇t2(v)∥22

]
≤ C2

2 ,

and E

[
∥∇t3(θ)∥22

]
≤ C2

3 ;

(IV) have finite variances, i.e., σ2
1 = supθ∈ΘVx̂

(
t1

(
φ

(1)
ξ1

(θ)
))
< ∞, σ2

2 = supθ∈Θ,x̂Vξ1

(
t2

(
φ

(2)
ξ2

(θ)
))
<

∞, and σ2
3 = supθ∈Θ,x̂,ξ1,ŷ

Vξ2

(
t3

(
θ
))
<∞;

where
L1 = S1 = C1 = 1; L2 = C2 = exp

(
B/λϵ

)
, S2 =

√
2L2;

L3 =
1
λϵ

exp
(
B/λϵ

)
, S3 =

1
λϵ
L3, C3 = L3Lθ

√
Ex̂∼P̂X̂

[
nx̂

]
;

where Ex̂∼P̂X̂

[
nx̂

]
is a finite positive constant since the expectation is over the finite support of the

empirical distribution P̂X̂ .

We provide the proof of Proposition 3 in E-companion EC.1.7.
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5.2 Complexity of Sample Average Approximation

A standard method for solving the stochastic compositional optimization problem (SCO) is the
Sample Average Approximation (SAA), which replaces each nested expectation with its corre-
sponding empirical average, constructed from finite samples generated by the Monte Carlo sam-
pling technique. In this subsection, we analyze the sample and computational complexity of SAA
on our problem.

Specifically, we draw N1 independent and identically distributed (i.i.d.) samples {(x̂i , ŷi)}N1
i=1

from the nominal distribution P̂, N2 i.i.d. samples {ξj1}
N2
j=1 from the kernel distributionQϵ, and N3

i.i.d. samples {ξk2}
N3
k=1 from the kernel distributionWϵ. This leads to the following SAA formulation

for (SCO):

min
θ∈Θ

F̂N1,N2,N3
(θ) =

λϵ
N1

N1∑
i=1

t1

( 1
N2

N2∑
j=1

t2

( 1
N3

N3∑
k=1

t3

(
θ; x̂i ,ξj1, ŷ

i ,ξk2

)
; x̂i ,ξj1

)
; x̂

)
. (SAA)

Let θ∗ and θ̂N1,N2,N3
be the optimal solutions of the problems (SCO) and (SAA), respectively.

We next analyze the number of samples required for the solution to the problem (SAA) to be δ-
optimal of the problem (SCO) with high probability, i.e. Pr

(
F
(
θ̂N1,N2,N3

)
−F (θ∗) ≤ δ

)
≥ 1 − α for

any δ > 0 and α ∈ (0,1).
Using Assumption 2, we derive the sample complexity of the SAA method on this problem in

the following Theorem 3.

Theorem 3. (Sample Complexity for Problem (SAA)). Under Assumption 2, the following results
hold.

(I) For any κ > 0, there exists an δ1 > 0 such that for any δ ∈ (0,δ1), it holds that

Pr
(
F
(
θ̂N1,N2,N3

)
−F (θ∗) > δ

)
≤O (1)

(8L1L2L3DΘ

δ

)dθ (
N1N2nx̂ exp

(
− N3δ

2

144(2 +κ)λ2ϵ2L2
1L

2
2σ

2
3

)
+N1 exp

(
− N2δ

2

144(2 +κ)λ2ϵ2L2
1σ

2
2

)
+ exp

(
− N1δ

2

144(2 +κ)λ2ϵ2σ2
1

))
.

(II) With probability at least 1−α, the solution to Problem (SAA) is δ-optimal to the original problem
(SCO) if the sample sizes N1,N2, and N3 satisfy that

N1 >
O (1)σ2

1

δ2

[
dθ log

(8L1L2L3DΘ

δ

)
+ log

( 1
α

)]
,

N2 >
O (1)L2

1σ
2
2

δ2

[
dθ log

(8L1L2L3DΘ

δ

)
+ log

( 1
α

)
+ log (N1)

]
,

and

N3 >
O (1)L2

1L
2
2σ

2
3

δ2

[
dθ log

(8L1L2L3DΘ

δ

)
+ log

( 1
α

)
+ log (N1N2nx̂)

]
.
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Ignoring the log factors, the total sample complexity of problem (SAA) for achieving a δ-optimal

solution is T =N1 +N2 +N3 = O
(
dθ/δ

2
)
.

The proof of Theorem 3 is provided in E-companion EC.1.8. For the problem (SAA), the com-

putational complexity of using the gradient descent (GD) algorithm is at least O
(
d3
θ/δ

6
)
, since a

single iteration requires N1 ×N2 ×N3 gradient updates. Similarly, the computational complexity

of using the unbiased stochastic gradient descent (SGD) algorithm is at least O
(
d2
θ/δ

4
)
, which is

still computationally challenging. This motivates us to develop an efficient algorithm for solving
this SCO problem.

5.3 Stochastic Compositional Algorithm

In this subsection, we introduce a gradient-based algorithm for the problem (SCO). Before in-
troducing the gradient algorithm for the stochastic compositional optimization problem, we first
show the inherent challenge of applying the standard stochastic gradient descent (SGD) method
to Problem (SCO). The true gradient of function F(θ) at point θk (i.e., the vector at iteration k) is
given by

∇F(θk) =Ex̂,ŷ,ξ1,ξ2

[
∇t1

(
φ

(1)
ξ1

(θk)
)
· ∇t2

(
φ

(2)
ξ2

(θk)
)
· ∇t3(θk)

]
.

Given the samples (x̂k , ŷk), ξk1, and ξk2 drawn at iteration k, for brevity, we define

tk1(z) := t1
(
z; x̂k

)
, tk2(v) := t2

(
v; x̂k ,ξk1

)
, and tk3(θ) := t3

(
θ; x̂k ,ξk1, ŷ

k ,ξk2

)
.

The SGD method replaces t2
(
φ

(2)
ξ2

(θk)
)

by tk2

(
tk3

(
θk

))
, and t1

(
φ

(1)
ξ1

(θk)
)

by tk1

(
tk2

(
tk3

(
θk

)))
in each iter-

ation. That is, it simplifies the computation of the true gradient ∇F(θ) by replacing the expected
values with stochastic estimates computed from single random samples. However, as functions t1,

t2, and t3 are all non-linear, the stochastic gradient of the SGD method, denoted as
(
∇F(θk)

)
SGD

,

is biased, i.e.,(
∇F(θk)

)
SGD

= Ex̂k ,ŷk ,ξk1,ξ
k
2

[
∇tk1

(
tk2

(
tk3

(
θk

)))
· ∇tk2

(
tk3

(
θk

))
· ∇tk3(θk)

]
, ∇F(θk).

Since the bias of the standard SGD method is uncontrollable, it cannot be used to solve the prob-
lem (SCO) directly.

Therefore, we provide a Stochastically Corrected Stochastic Compositional gradient method
(SCSC, T. Chen et al., 2021) to solve the problem (SCO), which controls the bias using momentum
gradient updates. This method provides estimators for the expectations in ∇F(θ) at each itera-
tion. Specifically, in each iteration k with samples (x̂k , ŷk), ξk1, and ξk2, functions φ(1)

ξ1
and φ(2)

ξ2
are

estimated by yk1 and yk2, respectively, and thereby the parameters of decision rule are updated by

θk+1 := θk −αk · ∇tk1(yk1) · ∇tk2(yk2) · ∇tk3(θk), (13)

where
yk+1

1 = (1− βk) ·
(
yk1 + tk2(yk+1

2 )− tk2(yk2)
)

+ βk · tk2(yk+1
2 ), (14)
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and
yk+1

2 = (1− βk) ·
(
yk2 + tk3(θk)− tk3(θk−1)

)
+ βk · tk3(θk). (15)

Compared to the stochastic compositional gradient descent method proposed by M. Wang et
al. (2017) which update the y1 and y2 by

yk+1
1 = (1− βk) · yk1 + βk · tk2(θk),

and
yk+1

2 = (1− βk) ·yk2 + βk · tk3(θk),

the SCSC method adds a correction on yk to avoid the information lag as yk is updated by the
outdated θk−1.

The pseudo-code of the SCSC is shown as the following Algorithm 1.

Algorithm 1 : SCSC for problem (SCO)

1: Initialize θ0, y0
1 , y0

2 , stepsizes α0, β0

2: for k = 1, · · · ,K , do
3: select (x̂k , ŷk),ξk1,ξ

k
2 randomly;

4: compute tk2(yk2),∇tk2(yk2) and tk3(θk),∇tk3(θk);
5: update yk+1

1 and yk+1
2 by Equations (14) and (15);

6: compute ∇tk1(yk1) and ∇tk2(yk2);
7: update θk+1 by Equation (13);
8: end for

We analyze the convergence of SCSC based on the following assumption.

Assumption 3. (Unbiased Oracle). We assume that the sampling oracle satisfies that for each k ∈ [K],

(I) φ0
x̂k

(θ) = φ(0)
x̂ (θ), φ1

ξk1
(θ) = φ(1)

ξ1
(θ), and φ2

ξk2
(θ) = φ(2)

ξ2
(θ);

(II) Ex̂k ,ŷk ,ξk1,ξ
k
2

[
∇tk1(y1)∇tk2(y2)∇tk3(θ)

]
= Ex̂,ŷ,ξ1,ξ2

[
∇t1(y1)∇t2(y2)∇t3(θ)

]
.

Assumption 3 is standard in stochastic compositional optimization (T. Chen et al., 2021), and is
analogous to the unbiasedness assumption for stochastic non-compositional problems. According
to T. Chen et al. (2021), we have the following convergence results.

Theorem 4. (Convergence of SCSC for Problem (SCO)). Under Assumptions 2 and 3, if we choose
the step-sizes as αk = 2βk

A2
1+A2

2
= 1√

K
, then

(I) the iterates {θk} of the Algorithm 1 satisfy:∑K−1
k=0 E

[
∥∇F(θk)∥2

]
K

≤ Cconst√
K

,

whereA1,A2,Cconst are constants that depend on the initial setting of the algorithm and constants
C1,C2,C3,S1,S2,S3;
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(II) to obtain an ε-stationary point of function F, i.e., a point θ̂ satisfying E

[
∥∇F(θ̂)∥2

]
≤ ε2, the

number of iterations required, the sample complexity, and the gradient complexity of functions
t1, t2, and t3 are all at the order of O(ε−4), and this result is nearly optimal.

The proof of Theorem 4 is provided in E-companion EC.1.9. Theorem 4 also shows that the
convergence rate of SCSC is O(k−1/2), which is on the same order as SGD’s rate for the stochastic
non-compositional nonconvex problems.

6 Applications and Numerical Results

In this section, we validate the efficiency of the proposed approach across three applications: the
newsvendor problem (Example 1) in Section 6.1, the inventory substitution problem (Example 2)
in Section 6.2, and the portfolio selection problem with real data (Example 3) in Section 6.3. Ad-
ditionally, we demonstrate the interpretability of the SRF decision rule for the portfolio problem
in Section 6.3.2.

In all experiments, we train the decision rule by solving the soft-constrained Causal-SDRO
model. Following Remark 3, we treat the penalty coefficient λ as a tunable hyperparameter in-
stead of the radius ρ̄. We take ℓp-norm as transportation cost for the causal Sinkhorn discrepancy,
where p ∈ {1,2}. For brevity, we denote the resulting model as p-Causal-SDRO, and solve it using
the SCSC algorithm described in Section 5.3. We take T = 20,D(t) =

⌈
log2 dx

⌉
+ 1 for each t ∈ [T ]

for the SRF decision rule. The experiments are coded in Python 3.8 and conducted on a personal
computer equipped with an Intel Core i9-13900HX CPU, 32 GB of RAM, and an Nvidia GeForce
RTX 4060 GPU. All GPU computations are performed using PyTorch 2.0.1 (utilizing CUDA 11.8).

For benchmark comparison, we also examine the performance of a two-layer neural network
(2NN) decision rule, which is a learning-based parametric decision rule but lacks interpretability.
Letm be the dimension of the hidden layer in the 2NN. Then, the 2NN decision rule f 2NN

θ : X →Z,

parametrized by θ ∈Θ that collects all parameters
{
ak ∈ Rm,bk ∈ Rm,wk

i ∈ R
dx
}

for all i ∈ [m] and

k ∈ [dz], is given by [
f 2NN
θ (x)

]
k

:=
1
m

m∑
i=1

aki ·ReLu
(
(wk

i )⊤x+ bki

)
, ∀k ∈ [dz] , (2NN)

where ReLu : R→ R+ represents the ReLu activation function, while aki and bki represent the i-th
element in vectors ak and bk , respectively, for any i ∈ [m]. This decision rule requires training
a total of m · dz(dx + 2) parameters. According to Ma et al. (2018), over-parameterized 2NNs can
effectively approximate optimal policies within the Barron space with dimension-independent
convergence rates. We takem = 64×dx for the 2NN decision rule to ensure its number of trainable
parameters approximates that of SRF.

We evaluate the out-of-sample performance using the coefficient of prescriptiveness (Bertsi-
mas and Kallus, 2020). Let S denote an independent test dataset sampled from the true joint
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distribution, disjoint from the training data. We define the average out-of-sample loss as

H (θ) =
1
|S|

∑
(x,y)∈S

Ψ

(
fθ(x),y

)
.

where |S| represents the cardinality of set S . Let H∗ represent the oracle loss under perfect infor-
mation, and then the coefficient of prescriptiveness is given by

Prescriptiveness(θ) =
(
1− H (θ)−H∗

H
(
θERM)

−H∗
)
× 100%, (16)

where θERM denotes the parameter trained by the empirical risk minimization (ERM) model, i.e.,

θERM ∈ argmin
θ∈Θ

1
N

N∑
i=1

Ψ

(
fθ(x̂i), ŷi

)
.

A higher value indicates a better out-of-sample performance of decision rules. In the experiments
in Section 6.1 and 6.2, we set a testing dataset size of |S| = 105.

6.1 Feature-based Newsvendor Problem

In this subsection, we consider a feature-based newsvendor problem, adopting an experimental
setup similar to that of J. Yang et al. (2022), where the demand y ∈R+ depends on the covariate x

in a nonlinear way:

y = ftrue(β⊤x) + ς, where ftrue(λ) = c
[
sin(2λ) + 2exp(−16λ2) + 1

]
.

Here, ς ∼N (0,1) represents an independent Gaussian noise, the coefficient vector β ∈ Rdx is gen-
erated by taking each component sampled from the uniform distribution U ([−0.1,0.1]), the covari-
ate x ∈ Rdx is generated from a multivariate normal distribution with zero mean and covariance
matrix Σ with Σij = 0.5|i−j | for each i, j ∈ [dx], the constant c = 1.7. To ensure non-negativity, the
demand y is simulated via the acceptance and rejection method. We conduct experiments across
observed historical sample size N ∈ {200,400,800,1000}, feature dimension dx ∈ {5,10,20,50}.
The unit holding and stock-out costs are set to h = 0.6 and b = 1.0, respectively.

Figure 4 compares the out-of-sample performance across different sample sizes and feature
dimensions. In these plots, the results of SRF are distinguished by boxes with solid borders. As il-
lustrated, the proposed SRF decision rule outperforms the 2NN benchmark and the ERM baseline
across nearly all tested instances. Under 2-Causal-SDRO, the SRF provides positive out-of-sample
performance on all instances. Quantitatively, the SRF achieves average prescriptiveness scores of
50.2% (1-Causal-SDRO) and 52.0% (2-Causal-SDRO), marking a significant advantage over the
2NN, which yields only 1.4% and 10.3%, respectively. Beyond average performance, the box plots
reveal that the SRF exhibits significantly lower variance (indicated by shorter interquartile ranges)
compared to the 2NN, highlighting the stability of our approach. Notably, the SRF achieves its
peak performance at dx = 5 across all sample sizes, whereas the 2NN performs worst in this set-
ting. These results show that the proposed SRF rule is highly effective for decision-making tasks,
even when historical data is limited.
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Figure 4. Out-of-sample performance of the decision rules on the newsvendor problem

Figure 5 visualizes the fitted 2NN and SRF decision rules against the true conditional mean
(blue dashed line) for sample size N ∈ {400,1000}. The 2NN decision rule (green line) exhibits
high variance, resulting in overfitting to the observed noise. In contrast, the SRF decision rule
(orange line) yields a stable fit that captures the underlying shape of the true function well. Note
that the SRF curve lies consistently above the conditional mean. This alignment correctly reflects
that the unit holding cost is lower than the unit stock-out cost (h < b), thereby decision-makers
prefer maintaining higher inventory levels to mitigate stock-out risks.

Figure 6 reports the out-of-sample performance of the proposed method for the Causal-SDRO
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Figure 5. True distribution vs. Trained decision rules for 2-Causal-SDRO (dx = 10)
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Figure 6. Out-of-sample performance of the newsvendor problem with different parameters (N =
400,dx = 10)

model across different parameter combinations, including penalty parameter λ, regularization
parameter ϵ, and norm p, taking instances where N = 400 and dx = 10 as examples. As shown
in these plots, though both models achieve positive out-of-sample performance on almost all in-
stances, the 2-Causal-SDRO illustrates a higher out-of-sample performance on most parameter
combinations. These results indicate that performance improves by moderately increasing λ and
decreasing ϵ. This is because a small λ leads to excessive conservatism, while a large λ reduces
the model to ERM. Similarly, an insufficient ϵ fails to adequately characterize the continuity of
the underlying distribution, while an excessive ϵ dilutes the correlation between covariates and
uncertain parameters.
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6.2 Feature-based Inventory Substitution Problem

In this subsection, we conduct a numerical study on the feature-based inventory substitution
problem introduced in Example 2. This application serves as a representative two-stage contex-
tual DRO problem.

The inventory substitution problem with a soft CSD constraint is equivalent to the following
stochastic compositional optimization problem

min
θ∈Θ

F (θ) = λϵ ·Ex̂∼P̂X̂

[
t1

(
Eξ1∼Qϵ

[
t2

(
Eξ2∼Wϵ

[
t′3

(
θ; x̂,ξ1, ŷ,ξ2

)]
; x̂,ξ1

)]
; x̂

)]
where functions t1 and t2 are defined in (12), and the inner function t′3 involves the dual of the
second-stage recourse problem, denoted by Ψ ∗I :[

t′3(θ; x̂,ξ1, ŷ,ξ2)
]
i

= exp
(
Ψ ∗I (fθ(x̂+ ξ1), ŷi + ξ2)

λϵ

)
, ∀i ∈ [nx̂] ,

and

Ψ ∗I (f (x),y) := max
η∈Rdz ,υ∈Rdy


dz∑
i=1

[f (x)]i(ηi + ci) +
dy∑
j=1

yjνj

∣∣∣∣∣∣
ηi ≤ hi , ∀i ∈ [dz],
νj ≤ bj , ∀j ∈ [dy],
ηi + νj ≤ si,j , ∀j ∈

{
i, i + 1, · · · ,dy

}
, i ∈ [dz]

.
Detailed derivations are provided in E-companion EC.4. We solve Ψ ∗I (f (x),y) using the commer-
cial solver Gurobi (version 12.0.1).

We examine a scenario with dz = dy = 3 products, varying feature dimensions dx ∈ {3,5,8,10}
and sample sizes N ∈ {100,200,400,800}. Let the conditional demand distributions of the prod-
ucts be exponential and Gamma distributions parametrized by covariates:

y1 | x ∼ Exp(eβ
⊤x), y2 | x ∼Gamma(2, eβ

⊤x), y3 | x ∼Gamma(4, eβ
⊤x),

where β ∈ R
dx is sampled from U ([−0.1,0.1]), and x ∈ R

dx is constructed by the procedure in
Section 6.1. We specify the cost parameters as

h =


1

0.7
0.6

 , b =


1.8
1.6
1.2

 , S =


0 1.7 2
∞ 0 1.5
∞ ∞ 0

 ,
and c = 0. Note that in the substitution cost matrix S, Si,j =∞when i > j as lower-quality products
cannot substitute for higher-quality ones.

Figure 7 reports the out-of-sample performance of the proposed approach across varying p,N,
and dx. The SRF decision rule demonstrates superior efficacy, achieving average prescriptive-
ness scores of 48.5% (1-Causal-SDRO) and 49.4% (2-Causal-SDRO), while consistently maintain-
ing positive out-of-sample performance across all instances. In comparison, the 2NN benchmark
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Figure 7. Out-of-sample performance of the decision rules on the inventory substitution problem

yields only 33.8% (1-Causal-SDRO) and 35.7% (2-Causal-SDRO). These results validate that our
proposed approach generalizes effectively to two-stage contextual DRO problems.

Regarding parameter sensitivity, the Causal-SDRO model exhibits trends consistent with the
newsvendor problem. Please see E-companion EC.5 for details.
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6.3 Data-driven Portfolio Selection Problem

In this subsection, we consider a data-driven portfolio selection problem using real-world market
data adapted from Nguyen et al. (2025). This dataset contains the historical asset returns of
S&P500 constituents from January 1, 2017, to March 31, 2023. All of the selected 399 assets have
been in the S&P500 since 2010. The features include five publicly available market indices: (i)
Volatility Index (VIX), (ii) 10-year Treasury Yield Index (TNX), (iii) Crude Oil Index (CL=F), (iv)
S&P 500 (GSPC), and (v) Dow Jones Index (DJI) to construct the covariate x ∈ R5. These features
capture the macro market environment and economic conditions, and it is reasonable to assume
they are exogenous to the historical returns of individual assets given historical values, thereby
satisfying the causal structure in our model.

In the following, Section 6.3.1 shows the performance of our approach on the portfolio prob-
lem, and Section 6.3.2 shows its intrinsic interpretability from an empirical perspective.

6.3.1 Performance of the Proposed Approach

We implement a rolling-horizon experiment to validate the performance of the proposed ap-
proach. For the first trade day of each month between January 2021 and December 2022, we
randomly sample dy = 50 assets from the universe to form the stock pool. We make portfolio
decisions based on an empirical distribution formed by the prior two-year window data on the
covariates and asset returns, targeting the best return over the subsequent 60-day holding period.

Let ri,j denote the return of asset i on day j within the testing horizon (j ∈ [60]). We compare
the following methods:

(I) The post-hoc testing (PT) model. This benchmark provides a theoretically optimal objective
value (i.e., H∗) when the information of the future 60 days is completely known:

min
z∈Z

1
60

60∑
j=1

[
−ω ·

dy∑
i=1

ri,jzi +


dy∑
i=1

ri,jzi − z0


2 ]
.

(II) The equal-weighted (EW) model. This model provides equal weights to each selected asset,
i.e., the investment amount for all assets is 1/dy .

(III) The unconditional mean-variance (MV) model. This model is a traditional portfolio model
that makes a decision based on the empirical distribution P̂Ŷ :

min
z∈Z

Ey∼P̂Ŷ

[
ΨP(z,y)

]
,

where the portfolio loss function ΨP is defined in Example 3.

(IV) The conditional mean-variance (CMV) model. This is a contextual stochastic optimization
(CSO) approach that trains a decision rule f ∈ F to minimize the empirical conditional
risk:

inf
f ∈F

E(x,y)∼P̂

[
ΨP(f (x),y)

]
.
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(V) Our conditional p-Causal-SDRO mean-variance (p-DRO-CMV) model shown in Example 3.

Let r̃t denote the realized daily return of the portfolio on day t within the 60-day holding pe-
riod (t ∈ [60]). We compute and report the following performance metrics: (1) The mean return
Mean({̃rt}t∈[60]), and the standard deviation of return stdDev({̃rt}t∈[60]). (2) The portfolio loss value
shown in Example 3. (3) The annualized Sharpe ratio

√
252×Mean({̃rt}t∈[60])/stdDev({̃rt}t∈[60]). (4)

The Conditional Value-at-Risk (CVaR) at the 5% level, which quantifies the expected loss in the
worst-case scenarios. (5) The out-of-sample performance for all decision rules following Equa-
tion (16).

We employ the proposed SRF as the parametric decision rule for both the CMV and Causal-
SDRO models. Table 1 shows the experimental results across varying risk aversion levels ω ∈
{1,3,5,7,9}, representing different tradeoffs between portfolio mean return and variance. As illus-
trated, the Causal-SDRO model achieves the lowest average loss among all implementable base-
lines (excluding the PT oracle) for the four cases where ω ∈ {1,5,7,9}. The only exception occurs
at ω = 3, where the CMV yields a slightly smaller average loss and yet Causal-SDRO delivers
the highest mean portfolio return. Across almost all values of ω, both CMV and Causal-SDRO
outperform the unconditional MV model, underscoring the value of incorporating covariates for
decision-making. In practice, although decision-makers cannot obtain all covariates, our results
demonstrate that our approach maintains robust performance even when the observed features
may be imperfect.
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Figure 8. Out-of-sample performance of the decision rules on the portfolio problem

Figure 8 compares the out-of-sample performance of decision rules on the portfolio selection
problem. As illustrated, the SRF decision rule outperforms the 2NN benchmark, achieving an
average score of 33.2% compared to 22.6%. Furthermore, the SRF consistently maintains a higher
median performance across all tested values of p and ω.
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Table 1: Average performance for mean-variance methods

ω Methods Average Loss ↓ Sharpe ↑ Mean ↑ stdDev ↓ CVaR ↓

1

PT 0.468 4.125 0.176 0.784 1.971
EW 1.425 1.163 0.068 1.195 2.450
MV 1.009 1.578 0.072 1.008 1.971

CMV 0.984 1.156 0.061 1.003 2.108
1-DRO-CMV 0.950 1.352 0.067 0.985 2.004
2-DRO-CMV 0.925 1.559 0.081 0.978 1.965

3

PT 0.016 5.189 0.263 0.883 1.543
EW 1.288 1.163 0.068 1.195 2.450
MV 0.936 1.512 0.069 1.037 2.033

CMV 0.865 1.367 0.069 1.016 2.089
1-DRO-CMV 0.929 1.387 0.072 1.044 2.109
2-DRO-CMV 0.895 1.260 0.065 1.022 2.058

5

PT -0.569 5.383 0.315 0.991 1.705
EW 1.152 1.163 0.068 1.195 2.450
MV 0.890 1.445 0.066 1.073 2.103

CMV 0.836 1.293 0.063 1.045 2.132
1-DRO-CMV 0.800 1.353 0.074 1.060 2.127
2-DRO-CMV 0.851 1.107 0.059 1.053 2.147

7

PT -1.234 5.360 0.345 1.075 1.818
EW 1.016 1.163 0.068 1.195 2.450
MV 0.874 1.367 0.061 1.111 2.176

CMV 0.895 0.917 0.046 1.087 2.258
1-DRO-CMV 0.775 1.192 0.062 1.085 2.222
2-DRO-CMV 0.823 1.203 0.058 1.084 2.310

9

PT -1.943 5.261 0.361 1.135 1.897
EW 0.879 1.163 0.068 1.195 2.450
MV 0.861 1.317 0.058 1.147 2.236

CMV 0.752 1.141 0.052 1.081 2.265
1-DRO-CMV 0.698 1.115 0.062 1.102 2.337
2-DRO-CMV 0.618 1.253 0.074 1.113 2.330

Note. Bold values represent the best performance except for the PT model for each value of ω.

6.3.2 Interpretability of the Proposed Approach

To further understand the intrinsic interpretability, we examine a simple Soft Regression Tree
(SRT) with three layers, trained on the mean-variance portfolio problem with ω = 5. This SRT is
trained using covariates and asset returns from the preceding two-year rolling window.
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Figure 9 illustrates the structure of the trained SRT, where normalized feature weights are
displayed at each internal node. Consider two input covariates x1,x2 ∈ R5. The decision of x1

becomes π8 with weight probability (approximately) 1. The model maps x2 to decisions π7 and
π4 with weight probabilities 0.996 and 0.004, respectively. These results confirm that the final
decision is dominated by a few high-probability routes.

Layer 0 
(Root Node)

Layer 1

Layer 2

Layer 3
(Decisions on 
Leaf Nodes) 1 2 3 4 5 6 7 8

Input Covariate of '2021-01-01':  x1 Input Covariate of '2021-07-01':  x2
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Model Structure

Route for input x2 
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Information Flows

Features

VIX

TNX

CL=F

GSPC

DJI

1:
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Figure 9. The structure of the trained SRT with three layers. Here, the solid black lines denote
the model structure, while the red and blue dashed lines illustrate the decision routes and their
corresponding selection probabilities for two input covariates x1 and x2, respectively.

We next demonstrate the intrinsic interpretability of this SRT from both global and local per-
spectives. The global interpretation provides a holistic view of the model by quantifying the con-
tribution of each feature to the overall decision-making process, while the local shows how an in-
dividual decision is derived given a specific covariate (Dwivedi et al., 2023). In E-companion EC.3,
we introduce a global feature importance measure and a local feature attribution measure for SRF
based on differentiability. In the following, we analyze the SRT using these proposed interpreta-
tion measures and compare them with traditional posh-hoc explanation methods.

Globally, Figure 10 visualizes the relative feature importance of this SRT using the proposed
interpretation measure in E-companion EC.3 and a perturbation-based measure (Hastie et al.,
2009). The difference between the two measures is that our measure shows the feature importance
in an intrinsic way that depends only on the derivatives of SRF and avoids post-hoc perturbation
analyses. As illustrated, these measures are highly correlated with a Pearson correlation coefficient
of 0.820. This result confirms that the intrinsic interpretation of SRF is consistent with established
global post-hoc explanations.

Locally, Figure 11 visualizes the feature attributions derived from intrinsic interpretation (the
proposed EIG measure in E-companion EC.3) and a traditional post-hoc explanation (SHAP mea-
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Figure 10. Global feature importance comparison for the trained SRT
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Figure 11. Local feature attribution comparison for the trained SRT

sure, Lundberg et al., 2020) for this SRT given a specific covariate. Figures 11(a) and 11(b) display
the waterfall plots for EIG and SHAP measures, respectively, where red and blue bars indicate
positive and negative contributions, respectively. The prescription and baseline value are calcu-
lated by

∑dz
k=1[f SRF

θ (x)]k and
∑N
i=1

∑dz
k=1[f SRF

θ (xi)]k/N , respectively. Figure 11(c) directly compares
the EIG and SHAP values across all features. As illustrated, the high correlation coefficient of
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0.987 between these measures reflects the consistency between our local intrinsic interpretation
and the local post-hoc explanation.

7 Conclusion

In this paper, we consider the causal and continuous structure of the underlying distribution for
contextual DRO. We develop a new framework termed Causal-SDRO, which builds the ambiguity
set using the entropy-regularized causal Wasserstein distance, excluding discrete and causally im-
plausible distributions. To maintain interpretability and computational tractability, we develop a
Soft Regression Forest (SRF) decision rule. The SRF possesses universal approximation capabili-
ties to approach optimal policies within arbitrary measurable function spaces and maintains the
interpretability of tree-based models, enabling intrinsic interpretation from both global and local
perspectives. To solve the resulting model, we present a gradient-based algorithm with a conver-
gence rate at the order of O(ε−4), which is nearly optimal. The proposed approach empirically
outperforms baselines in both decision out-of-sample performance and interpretability.

There are several promising directions to explore. Theoretically, it is interesting to incorporate
prior information to design ambiguity sets that contain more plausible distributions for contex-
tual DRO. Moreover, it is important to develop accelerated and posterior update algorithms for
SRF decision rule-based optimization. Finally, it is promising to apply our proposed framework
for practical applications that require safety, robustness, and interpretability.

References
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E-Companion

EC.1 Technical Analyses and Proofs

EC.1.1 Analysis for Condition 1

We present the following sufficient conditions to verify whether the Condition 1 holds.

Proposition EC.1. Condition 1 holds if there exist λ > 0 and a constant α ∈ [0,1) so that for P̂⊗νX⊗νY -
almost every (x̂, ŷ,x,y), the following condition is satisfied

Ψ (f (x),y) ≤ α ·λcp((x̂, ŷ), (x,y)) +M(x̂, ŷ), (EC.1)

where M(x̂, ŷ) is a measurable function, and satisfies Eŷ∼P̂Ŷ |X̂=x̂
[eM(x̂,ŷ)/(λϵ)] <∞ for P̂X̂-almost every

x̂.

Proof of Proposition EC.1. In Equation (3), we set ξ1 = x− x̂ and ξ2 = y − ŷ. When relation (EC.1)
holds, for P̂⊗ νX -almost every (x̂, ŷ,x), we have

Eξ2∼Wϵ

[
exp

(
Ψ (f (x̂+ ξ1), ŷ + ξ2)

λϵ

)]
=

∫
y∼νY

[ e−∥y−ŷ∥
p/ϵ∫

R
dy e−∥u−ŷ∥

p/ϵdνY (u)
· exp

(
Ψ (f (x̂+ ξ1),y)

λϵ

)]
dνY (y)

≤
∫
y∼νY

[ e−∥y−ŷ∥
p/ϵ∫

R
dy e−∥u−ŷ∥

p/ϵdνY (u)
· exp

(
α ·λcp((x̂, ŷ), (x,y)) +M(x̂, ŷ)

λϵ

)]
dνY (y)

=
eα∥x−x̂∥

p/ϵ+M(x̂,ŷ)/λϵ∫
R
dy e−∥u−ŷ∥

p/ϵdνY (u)
·
∫
y∼νY

exp
(
− (1−α)∥y − ŷ∥p

ϵ

)
dνY (y)

<∞,

where the first inequality is due to (EC.1), and the second inequality is due to the assumption
in Proposition EC.1 and Assumptions 1(III) and (IV), ensuring that the terms eα∥x−x̂∥

p/ϵ < ∞,
eM(x̂,ŷ)/λϵ < ∞, the constant

∫
R
dy e
−∥u−ŷ∥p/ϵdνY (u) < ∞, and

∫
y∼νY

exp
(
− (1−α)∥y−ŷ∥p

ϵ

)
dνY (y) < ∞

as 1−α > 0. Hence, we have

g ′(x̂,ξ1,λ) = Eŷ∼P̂Ŷ |X̂=x̂

[
λϵ log Eξ2∼Wϵ

[
exp

(
Ψ (f (x̂+ ξ1), ŷ + ξ2)

λϵ

)]]
<∞,

and it follows that

Eξ1∼Qϵ

[
exp

(
g ′(x̂,ξ1,λ)

λϵ

)]
<∞,

for P̂X̂-almost every x̂.

EC.1.2 Proof of Theorem 1 in Section 3.1

To prove the strong duality in Theorem 1, we first develop the following Lemma EC.1 and a weak
duality result Lemma EC.2.
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Lemma EC.1. (Several Measurable Functions). Assume that Assumption 1 holds, then the following
results hold.

(I) Define the function w1(x̂, ŷ,x,λ) : X ×Y ×X ×R+→R as

w1(x̂, ŷ,x,λ) := sup
γY |X̂ ,Ŷ ,X

EγY |X̂ ,Ŷ ,X

Ψ (f (x),y)

−λcp((x̂, ŷ), (x,y))−λϵ log
(dγY |X̂ ,Ŷ ,X(y | x̂, ŷ,x)

dνY (y)

).
This function is jointly measurable with respect to (x̂, ŷ,x) regardless of the choice of λ ≥ 0.

(II) Define the function g(x̂,x,λ) : X ×X ×R+→R as

g(x̂,x,λ) := Eŷ∼P̂Ŷ |X̂=x̂

[
w1(x̂, ŷ,x,λ)

]
= Eŷ∼P̂Ŷ |X̂=x̂

[
λϵ log

∫
Y

exp
(
Ψ (f (x),y)−λcp((x̂, ŷ), (x,y))

λϵ

)
dνY (y)

]
.

This function is jointly measurable with respect to (x̂,x) regardless of the choice of λ ≥ 0.

(III) Define the function w2(x̂,λ) : X ×R+→R as

w2(x̂,λ) := sup
γ∈Γc(P,Q)

EγX |X̂
g(x̂,x,λ)−λϵ log

(dγX |X̂(x | x̂)

dνX (x)

)].
This function is measurable with respect to x̂ ∼ P̂X̂ regardless of the choice of λ ≥ 0.

Proof of Lemma EC.1. We prove the measurability of the three functions in sequence.

(I) For function w1(x̂, ŷ,x,λ), we consider the following two cases.

• When λ = 0, according to Lemma EC.2 in the E-companion of Wang et al. (2025), it
holds that

w1(x̂, ŷ,x,0) = ess sup
νY

Ψ (f (x),y).

By Assumption 1, the loss function Ψ (f (x),y) is measurable. Since the essential supre-
mum of a measurable function with respect to one variable is a measurable func-
tion of the remaining variables (Blackwell and Ryll-Nardzewski, 1963), the function
w1(x̂, ŷ,x,0) is jointly measurable with respect to (x̂, ŷ,x).

• When λ > 0, using the Fenchel duality, we have

w1(x̂, ŷ,x,λ) = λϵ log
∫
Y

exp
(
Ψ (f (x),y)−λcp((x̂, ŷ), (x,y))

λϵ

)
dνY (y).

According to Assumption 1, function cp is measurable. Since the difference of two
measurable functions is measurable, the function Ψ (f (x),y)−λcp((x̂, ŷ), (x,y)) is mea-
surable with respect to (x̂, ŷ,x,y). As the composition of a measurable function with
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a continuous function is measurable, the function exp
(
Ψ (f (x),y)−λcp((x̂,ŷ),(x,y))

λϵ

)
is mea-

surable. According to Tonelli’s Theorem (Cohn, 2013, Proposition 5.2.1), integrating a
non-negative, jointly measurable function with respect to one variable (here, y) yields
a function that is measurable with respect to the remaining variables. Therefore,

the function
∫
Y exp

(
Ψ (f (x),y)−λcp((x̂,ŷ),(x,y))

λϵ

)
dνY (y) is measurable, and its compositional

with the continuous function log(·) is also measurable, i.e., the function w1(x̂, ŷ,x,λ)
is jointly measurable with respect to (x̂, ŷ,x) when λ > 0.

Hence, function w1(x̂, ŷ,x,λ) is jointly measurable with respect to (x̂, ŷ,x) regardless of the
choice of λ ≥ 0.

(II) For function g(x̂,x,λ), we also consider the following two cases.

• When λ > 0, w1 is positive-valued function, which implies that w1 is measurable. On
a probability space, any finite-valued measurable function is integrable. Therefore,
by the Tonelli’s Theorem, the function g(x̂,x,λ) is jointly measurable with respect to
(x̂,x) .

• When λ = 0, for the optimization problem to be well-posed, the loss function Ψ

must be bounded below, which implies that w1(x̂, ŷ,x,0) is also bounded below. Let
the lower bound of function w1(x̂, ŷ,x,0) be M ∈ R. We decompose the function
w1(x̂, ŷ,x,0) as two non-negative measurable functions

w+
1 (x̂, ŷ,x,0) = max {0,w1(x̂, ŷ,x,0)} ∈ [0,+∞] ,

and
w−1 (x̂, ŷ,x,0) = −min {0,w1(x̂, ŷ,x,0)} ∈ [0,−min{0,M}] ,

such that

g(x̂,x,0) = Eŷ∼P̂Ŷ |X̂=x̂

[
w1(x̂, ŷ,x,0)

]
= Eŷ∼P̂Ŷ |X̂=x̂

[
w+

1 (x̂, ŷ,x,0)
]
−Eŷ∼P̂Ŷ |X̂=x̂

[
w−1 (x̂, ŷ,x,0)

]
.

Based on Tonelli’s Theorem, both Eŷ∼P̂Ŷ |X̂=x̂

[
w+

1 (x̂, ŷ,x,0)
]

and Eŷ∼P̂Ŷ |X̂=x̂

[
w−1 (x̂, ŷ,x,0)

]
are well-defined measurable functions of (x̂,x). Since Eŷ∼P̂Ŷ |X̂=x̂

[
w−1 (x̂, ŷ,x,0)

]
is a fi-

nite measurable function, this subtraction is well-defined (it avoids the ∞−∞ form).
The difference of two measurable functions is measurable. Thus, function g(x̂,x,0) is
also jointly measurable with respect to (x̂,x).

Hence, function g(x̂,x,λ) is jointly measurable with respect to (x̂,x) regardless of the choice
of λ ≥ 0.

(III) For function w2(x̂,λ), according to Lemma EC.3 in the E-companion of Wang et al. (2025),
it’s measurable with respect to x̂ ∼ P̂X̂ regardless of the choice of λ ≥ 0.
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This completes the proof.

Lemma EC.2. (Weak Duality). Under Assumption 1, vP ≤ vD.

Proof of Lemma EC.2. For the primal problem (Causal-SDRO), let λ ≥ 0 be the Lagrangian multi-
plier of the causal Sinkhorn ball constraint. Then, we have the following dual function:

q (λ) := max
P∈P (X×Y )

[
E(x,y)∼P[Ψ (f (x),y)]−λ

(
Rp(P̂,P)p − ρp

)]
= λρp + max

P∈P (X×Y )

[
E(x,y)∼P[Ψ (f (x),y)]−λRp(P̂,P)p

]
.

Define
vP(λ) := max

P∈P (X×Y )

[
E(x,y)∼P[Ψ (f (x),y)]−λRp(P̂,P)p

]
, (EC.2)

then
q (λ) = λρp + vP(λ).

Based on Lagrangian weak duality, for the primal problem, we have

vP = max
P∈P (X×Y )

{
E(x,y)∼P

[
Ψ (f (x),y)

]
: Rp(P̂,P)p ≤ ρp

}
= max

P∈P (X×Y )
inf
λ≥0

{
E(x,y)∼P

[
Ψ (f (x),y)

]
−λ

(
Rp(P̂,P)p − ρp

)}
≤ inf
λ≥0

max
P∈P (X×Y )

{
E(x,y)∼P

[
Ψ (f (x),y)

]
−λ

(
Rp(P̂,P)p − ρp

)}
= inf
λ≥0

{
λρp + vP(λ)

}
,

(EC.3)

where the inequality holds because of the min-max inequality.
We reformulate the term vP(λ) to prove the weak duality. For the formulation of CSD

Rp(P̂,P)p = inf
γ∈Γc(P̂,P)

E((x̂,ŷ),(x,y))∼γ

[
cp((x̂, ŷ), (x,y)) + ϵH

(
γ | µ⊗

(
νX ⊗ νY

))]
, (EC.4)

where the second item can be reformulated as

H
(
γ | µ⊗

(
νX ⊗ νY

))
= log

 dγ((x̂, ŷ), (x,y))

dP̂(x̂, ŷ)dνX (x)dνY (y)


= log

dP̂X̂(x̂)dγX |X̂(x | x̂)dγŶ |X̂ ,X(ŷ | x̂,x)dγY |X̂ ,Ŷ ,X(y | x̂, ŷ,x)

dP̂X̂(x̂)dP̂Ŷ |X̂(ŷ | x̂)dνX (x)dνY (y)


= log

dP̂X̂(x̂)dγX |X̂(x | x̂)dP̂Ŷ |X̂(ŷ | x̂)dγY |X̂ ,Ŷ ,X(y | x̂, ŷ,x)

dP̂X̂(x̂)dP̂Ŷ |X̂(ŷ | x̂)dνX (x)dνY (y)


= log

(dγX |X̂(x | x̂)dγY |X̂ ,Ŷ ,X(y | x̂, ŷ,x)

dνX (x)dνY (y)

)
= log

(dγX |X̂(x | x̂)

dνX (x)

)
+ log

(dγY |X̂ ,Ŷ ,X(y | x̂, ŷ,x)

dνY (y)

)
,

(EC.5)
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where the second equality is due to the chain rule decomposition of the densities for both the
joint measure γ and the empirical distribution P̂, and γX̂(x̂) = P̂X̂(x̂). The third equality in
relation (EC.5) holds since γŶ |X̂ ,X(ŷ | x̂,x) = γŶ |X̂(ŷ | x̂) = P̂Ŷ |X̂(ŷ | x̂) under the causal optimal
transport setting. By the tower property, we have

Eγ [·] = E
P̂X̂

[
EγX |X̂

[
E
P̂Ŷ |X̂

[
EγY |X̂ ,Ŷ ,X

[· | X̂ , Ŷ ,X] | X̂ ,X
]
| X̂

]]
. (EC.6)

From relations (EC.5) and (EC.6), the expectation term on the RHS of the Equation (EC.4) can be
rewritten as

E((x̂,ŷ),(x,y))∼γ

[
cp((x̂, ŷ), (x,y)) + ϵH

(
γ | µ⊗

(
νX ⊗ νY

))]
= E

P̂X̂

[
EγX |X̂

[
E
P̂Ŷ |X̂

[
EγY |X̂ ,Ŷ ,X

[cp((x̂, ŷ), (x,y)) + ϵH
(
γ | µ⊗

(
νX ⊗ νY

))
| X̂ , Ŷ ,X] | X̂ ,X

]
| X̂

]]
= E

P̂X̂

EγX |X̂
EP̂Ŷ |X̂

[
EγY |X̂ ,Ŷ ,X

[cp((x̂, ŷ), (x,y))

+ ϵ log
(dγY |X̂ ,Ŷ ,X(y | x̂, ŷ,x)

dνY (y)

)
| X̂ , Ŷ ,X] | X̂ ,X

]
+ ϵ log

(dγX |X̂(x | x̂)

dνX (x)

)
| X̂

],
Therefore, we have

vP(λ) = sup
γ∈Γc(P,Q)

EP̂X̂

EγX |X̂
EP̂Ŷ |X̂

EγY |X̂ ,Ŷ ,X

Ψ (f (x),y)−λcp((x̂, ŷ), (x,y))

−λϵ log
(dγY |X̂ ,Ŷ ,X(y | x̂, ŷ,x)

dνY (y)

)
| X̂ , Ŷ ,X

 | X̂ ,X

−λϵ log
(dγX |X̂(x | x̂)

dνX (x)

)
| X̂

]

.

Similar to relation (EC.6), the optimization for γ can be decomposed to optimize γX |X̂ and
γY |X̂ ,Ŷ ,X (distributions P̂X̂ and P̂Ŷ |X̂ are determined). Thus, using Jensen’s inequality, we have

vP(λ) ≤ E
P̂X̂

 sup
γX |X̂

EγX |X̂

EP̂Ŷ |X̂

 sup
γY |X̂ ,Ŷ ,X

EγY |X̂ ,Ŷ ,X

Ψ (f (x),y)−λcp((x̂, ŷ), (x,y))

−λϵ log
(dγY |X̂ ,Ŷ ,X(y | x̂, ŷ,x)

dνY (y)

)
| X̂ , Ŷ ,X

 | X̂ ,X

−λϵ log
(dγX |X̂(x | x̂)

dνX (x)

)
| X̂

]
= E

P̂X̂

 sup
γX |X̂

EγX |X̂

EP̂Ŷ |X̂

w1(x̂, ŷ,x,λ) | X̂ ,X

︸                               ︷︷                               ︸
g(x̂,x,λ)

−λϵ log
(dγX |X̂(x | x̂)

dνX (x)

)
| X̂

]
︸                                                                                         ︷︷                                                                                         ︸

w2(x̂,λ)

,

where functions w1(x̂, ŷ,x,λ), g(x̂,x,λ), and w2(x̂,λ) are all measurable for any λ ≥ 0 according
to Lemma EC.1. By the Fenchel duality, we have

sup
P

{
Ey∼P[f (y)]− ϵH(P|Q)

}
= ϵ log

∫
exp

(
f (y)
ϵ

)
dQ(y),

ec5



and it follows that

vP(λ) ≤ Ex̂∼P̂X̂

[
λϵ log

∫
X

exp
(
g(x̂,x,λ)

λϵ

)
dνX (x)

]
.

Hence, according to Equation (EC.3), we have

vP ≤ inf
λ≥0

{
λρp + vP(λ)

}
≤ inf
λ≥0

{
λρp +Ex̂∼P̂X̂

[
λϵ log

∫
X

exp
(
g(x̂,x,λ)

λϵ

)
dνX (x)

]}
= vD.

This completes the proof of the weak duality.

In the following, we complete the proof of the strong duality theorem.

Proof of Theorem 1. To prove Theorem 1(I), we first rewrite the constraint of the primal problem
(Causal-SDRO) as

E((x̂,ŷ),(x,y))∼γ

[
cp((x̂, ŷ), (x,y)) + ϵ log

 dγ((x̂, ŷ), (x,y))

dP̂(x̂, ŷ)dνX (x)dνY (y)

] ≤ ρp. (EC.7)

Based on Assumption 1(II), the relation (EC.7) can be reformulated as

E(x̂,ŷ)∼P̂E(x,y)∼γ(x̂,ŷ)

[
cp((x̂, ŷ), (x,y)) + ϵ log

 dγ((x̂, ŷ), (x,y))

dP̂(x̂, ŷ)dνX (x)dνY (y)

] ≤ ρp. (EC.8)

We define a kernel probability distribution K(x̂,ŷ),ϵ(x,y) using the kernel distributions Qϵ and Wϵ

from Equations (3a) and (3b):

dK(x̂,ŷ),ϵ(x,y) := dQϵ(x) ·dWϵ(y) =
e−cp((x̂,ŷ),(x,y))/ϵ

Z(x̂, ŷ)
·dνX (x)dνY (y) ,

where Z(x̂, ŷ) =
∫
R
dx
e−∥u∥

p/ϵdνX (u) ·
∫
R
dy e
−∥u∥p/ϵdνY (u). Therefore, we have

log
(

dK(x̂,ŷ),ϵ(x,y)

dνX (x) ·dνY (y)

)
= −

cp((x̂, ŷ), (x,y))

ϵ
− log Z(x̂, ŷ).

We decompose the logarithm term in the constraint

log
(

dγ(x̂,ŷ)(x,y)

dνX (x)dνY (y)

)
= log

(
dγ(x̂,ŷ)(x,y)

dK(x̂,ŷ),ϵ(x,y)

)
+ log

(
dK(x̂,ŷ),ϵ(x,y)

dνX (x)dνY (y)

)
= DKL

(
γ(x̂,ŷ)||K(x̂,ŷ),ϵ

)
−
cp((x̂, ŷ), (x,y))

ϵ
− log Z(x̂, ŷ),

where DKL

(
γ(x̂,ŷ)||K(x̂,ŷ),ϵ

)
represents the KL-divergence from distribution γ(x̂,ŷ) to K(x̂,ŷ),ϵ. Thus,

we reformulate (EC.8) as the following equivalent constraint in terms of the KL-divergence

ϵ ·E(x̂,ŷ)∼P̂

[
DKL

(
γ(x̂,ŷ)||K(x̂,ŷ),ϵ

)]
≤ ρp + ϵ ·E(x̂,ŷ)∼P̂

[
log Z(x̂, ŷ)

]
= ρ̄, (EC.9)

ec6



which implies that the constraint of problem (Causal-SDRO) is equivalent to constraint (EC.9),
For Theorem 1(I), according to the constraint (EC.9), we first prove the “if” part. When ρ̄ ≥ 0,

the primal problem vP has at least one feasible solution, i.e., the empirical distribution P̂. Thus,
the primal problem is feasible. The “if” part is thus completed.

Next, we prove the “only if” part by contradiction. Suppose that if the primal problem is fea-
sible, then ρ̄ < 0. According to the definition of the KL-divergence, the constraint (EC.9) always

satisfies DKL

(
γ(x̂,ŷ)||K(x̂,ŷ),ϵ

)
≥ 0 for any distributions γ(x̂,ŷ) and K(x̂,ŷ),ϵ. Thus, if the primal prob-

lem is feasible, we have 0 ≤ ϵ ·E(x̂,ŷ)∼P̂

[
DKL

(
γ(x̂,ŷ)||K(x̂,ŷ),ϵ

)]
≤ ρ̄, which contradicts the assumption

that ρ̄ < 0. Therefore, the “only if” part is completed.
For Theorem 1(II), we first consider that there exists λ > 0 such that Eξ1∼Qϵ

[
exp

(
g ′(x̂,ξ1,λ)

λϵ

)]
<∞

for P̂X̂-almost every x̂, and Eξ2∼Wϵ

[
exp

(
Ψ (f (x̂+ξ1),ŷ+ξ2)

λϵ

)]
<∞ for P̂⊗νX -almost every (x̂, ŷ,x). Ac-

cording to Lemma EC.2, we already have vP ≤ vD. Thus, we next prove vP ≥ vD. Denote the opti-
mal solution of vD is λ∗, and the optimal distribution of vP is P∗. Suppose ρ̄ ≥ 0 is bounded above

such that the CSD constraint is binding, i.e., Rp
(
P̂,P∗

)
= ρ and ϵ·E(x̂,ŷ)∼P̂

[
DKL

(
γ(x̂,ŷ)||K(x̂,ŷ),ϵ

)]
= ρ̄.

Therefore, there always exists λ∗ > 0.
Since the dual problem is convex in λ, the λ∗ satisfies the following first-order optimality

condition

ρp + ϵEx̂∼P̂X̂

[
log

∫
X
er(x̂,x)dνX (x)

]
=

1
λ∗

Ex̂∼P̂X̂

[∫
X e

r(x̂,x)t(x̂,x) ·dνX (x)∫
X e

r(x̂,x)dνX (x)

]
, (EC.10)

where

r(x̂,x) =
g(x̂,x,λ∗)

λ∗ϵ
= Eŷ∼P̂Ŷ |X̂=x̂

[
log

∫
Y
es(x̂,ŷ,x,y)dνY (y)

]
,

t(x̂,x) = Eŷ∼P̂Ŷ |X̂=x̂

[∫
Y e

s(x̂,ŷ,x,y) ·Ψ (f (x),y) ·dνY (y)∫
Y e

s(x̂,ŷ,x,y)dνY (y)

]
,

and

s(x̂, ŷ,x,y) =
Ψ (f (x),y)−λ∗cp((x̂, ŷ), (x,y))

λ∗ϵ
.

We next construct a distribution P∗, which can be proved to be feasible for the primal problem.
We take the transport mapping γ∗ such that

dγ((x̂, ŷ), (x,y))

dP̂(x̂, ŷ)dνX (x)dνY (y)
∝ er(x̂,x) · es(x̂,ŷ,x,y),

Let αx̂ =
(∫
X e

r(x̂,x)dνX (x)
)−1

and βx̂,ŷ,x =
(∫
Y e

s(x̂,ŷ,x,y)dνY (y)
)−1

, we have

dγ((x̂, ŷ), (x,y))

dP̂(x̂, ŷ)dνX (x)dνY (y)
= αx̂ · βx̂,ŷ,x · er(x̂,x)+s(x̂,ŷ,x,y).
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We verify the feasibility of distribution P∗ by the definition of the CSD, that is

Rp(P̂,P∗) = inf
γ∈Γc(P̂,P∗)

E((x̂,ŷ),(x,y))∼γ

[
cp((x̂, ŷ), (x,y)) + ϵ log

 dγ((x̂, ŷ), (x,y))

dP̂(x̂, ŷ)dνX (x)dνY (y)

]
= inf
γ∈Γc(P̂,P∗)

E((x̂,ŷ),(x,y))∼γ

[
ϵ log

ecp((x̂,ŷ),(x,y))/ϵ ·dγ((x̂, ŷ), (x,y))

dP̂(x̂, ŷ)dνX (x)dνY (y)

]
≤ E((x̂,ŷ),(x,y))∼γ∗

[
ϵ log

ecp((x̂,ŷ),(x,y))/ϵ ·dγ∗((x̂, ŷ), (x,y))

dP̂(x̂, ŷ)dνX (x)dνY (y)

]
= E((x̂,ŷ),(x,y))∼γ∗

[
ϵ log

(
ecp((x̂,ŷ),(x,y))/ϵ ·αx̂ · er(x̂,x) · βx̂,ŷ,x · es(x̂,ŷ,x,y)

)]
= E((x̂,ŷ),(x,y))∼γ∗

[ 1
λ∗

Ψ (f (x),y) + ϵr(x̂,x) + ϵ log (αx̂) + ϵ log
(
βx̂,ŷ,x

)]
=

1
λ∗

Ex̂∼P̂X̂

[∫
X e

r(x̂,x)t(x̂,x) ·dνX (x)∫
X e

r(x̂,x)dνX (x)

]
− ϵEx̂∼P̂X̂

[
log

∫
X
er(x̂,x)dνX (x)

]
= ρp,

where the inequality relation is because γ∗ is a feasible solution in Γc(P̂,P∗), and the fourth and
fifth equalities are by substituting the expression of γ∗, and the last equality is due to the first-
order optimality condition (EC.10). Therefore, under Assumption 1, the distribution P∗ is feasible
for the primal problem. We show that the primal optimal value is lower bounded by the dual
optimal value

vP ≥ E(x,y)∼P∗

[
Ψ (f (x),y)

]
= E((x̂,ŷ),(x,y))∼γ∗

[
Ψ (f (x),y)

]
=

∫
(X×Y )×(X×Y )

Ψ (f (x),y)dγ((x̂, ŷ), (x,y)) ·
dP̂(x̂, ŷ)dνX (x)dνY (y)

dγ((x̂, ŷ), (x,y))
·

dγ((x̂, ŷ), (x,y))

dP̂(x̂, ŷ)dνX (x)dνY (y)

= Ex̂∼P̂X̂

[∫
X e

r(x̂,x)t(x̂,x) ·dνX (x)∫
X e

r(x̂,x)dνX (x)

]
= λ∗ρp +λ∗ϵEx̂∼P̂X̂

[
log

∫
X

exp
(
g(x̂,x,λ∗)

λ∗ϵ

)
dνX (x)

]
= vD.

(EC.11)
According to Lemma EC.2 and Equation (EC.11), we have vP ≥ vD and vP ≤ vD. Thus vP = vD. The
proof for Theorem 1(II) is completed.

If for any λ > 0, at least one between Eξ1∼Qϵ

e
(
g′ (x̂,ξ1 ,λ)

λϵ

) = ∞ and Eξ2∼Wϵ

[
e
(
Ψ (f (x̂+ξ1),ŷ+ξ2)

λϵ

)]
= ∞

holds, then q(λ) = λρp +∞. Therefore, in this case, we have vP = vD =∞.
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EC.1.3 Analysis for Remark 1

For function g in Equation (2b), when ϵ→ 0, we have

lim
ϵ→0

g(x̂,x,λ,ϵ)

= lim
ϵ→0

Eŷ∼P̂Ŷ |X̂=x̂

[
λϵ log

∫
Y

exp
(
Ψ (f (x),y)−λcp((x̂, ŷ), (x,y))

λϵ

)
dνY (y)

]

= Eŷ∼P̂Ŷ |X̂=x̂

λ lim
τ→∞

1
τ
· log

∫
Y

exp


τ
(
Ψ (f (x),y)−λcp((x̂, ŷ), (x,y))

)
λ

dνY (y)


= Eŷ∼P̂Ŷ |X̂=x̂

λ lim
τ→∞

∇τ log
∫
Y

exp


τ
(
Ψ (f (x),y)−λcp((x̂, ŷ), (x,y))

)
λ

dνY (y)


= Eŷ∼P̂Ŷ |X̂=x̂

 lim
τ→∞

∫
Y e

τ

(
Ψ (f (x),y)−λcp((x̂,ŷ),(x,y))

)
/λ(

Ψ (f (x),y)−λcp((x̂, ŷ), (x,y))
)
dνY (y)

∫
Y e

τ

(
Ψ (f (x),y)−λcp((x̂,ŷ),(x,y))

)
/λ

dνY (y)


= Eŷ∼P̂Ŷ |X̂=x̂

 sup
y∈suppνY

{
Ψ (f (x),y)−λcp((x̂, ŷ), (x,y))

} ,
where the third equality is due to L’Hôpital’s rule. Then, for the Equation (2a), similarly we have

lim
ϵ→0

Ex̂∼P̂X̂

[
λϵ log

∫
X

exp
(
g(x̂,x,λ,ϵ)

λϵ

)
dνX (x)

]
=Ex̂∼P̂X̂

 lim
τ→∞

λ
τ

log
∫
X

exp

τ · g(x̂,x,λ, 1
τ )

λ

dνX (x)


=Ex̂∼P̂X̂

[
sup

x∈suppνX

{
lim
τ→∞

g(x̂,x,λ,
1
τ

)
}]

=Ex̂∼P̂X̂

 sup
x∈suppνX

{
Eŷ∼P̂Ŷ |X̂=x̂

 sup
y∈suppνY

{
Ψ (f (x),y)−λcp((x̂, ŷ), (x,y))

}} ,
where the second equality is due to the properties of the Log-Sum-Exp limit, cf. Laplace’s method.
When suppνX = X and suppνY = Y , the dual objective function of the problem (Causal-SDRO)
converges into that of the problem (Causal-WDRO).

EC.1.4 Proof of Theorem 2 in Section 3.2

Proof of Theorem 2. In the proof of Theorem 1, we have derived a worst-case distribution of vP,
that is,

dγ((x̂, ŷ), (x,y))

dP̂(x̂, ŷ)dνX (x)dνY (y)
= αx̂ · βx̂,ŷ,x · er(x̂,x)+s(x̂,ŷ,x,y), (EC.12)

where

αx̂ =
(∫
X
er(x̂,x)dνX (x)

)−1
, βx̂,ŷ,x =

(∫
Y
es(x̂,ŷ,x,y)dνY (y)

)−1

,
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and function r(x̂,x) and s(x̂, ŷ,x,y) are defined in (EC.11). We now prove that λ∗ is the unique op-
timal solution of the dual problem, which implies that the worst-case distribution is also unique.

Recall that v(λ) denotes the objective function for the dual problem, then we have

∇λv(λ) = ρp + ϵEx̂∼P̂X̂

[
log

∫
X
er(λ,x̂,x)dνX (x)

]
− 1
λ
Ex̂∼P̂X̂

[∫
X e

r(λ,x̂,x)t(λ, x̂,x) ·dνX (x)∫
X e

r(λ,x̂,x)dνX (x)

]
,

where

r(λ, x̂,x) = Eŷ∼P̂Ŷ |X̂=x̂

[
log

∫
Y
es(λ,x̂,ŷ,x,y)dνY (y)

]
,

t(λ, x̂,x) = Eŷ∼P̂Ŷ |X̂=x̂

[∫
Y e

s(λ,x̂,ŷ,x,y)Ψ (f (x),y) ·dνY (y)∫
Y e

s(λ,x̂,ŷ,x,y)dνY (y)

]
,

and

s(λ, x̂, ŷ,x,y) =
Ψ (f (x),y)−λcp((x̂, ŷ), (x,y))

λϵ
.

For its second-order derivative function, we have

∇2
λv(λ) = ∇λ

[
ϵEx̂∼P̂X̂

[
log

∫
X
er(λ,x̂,x)dνX (x)

]]
−∇λ

[1
λ
·Ex̂∼P̂X̂

[∫
X e

rλ,(x̂,x)t(λ, x̂,x) ·dνX (x)∫
X e

r(λ,x̂,x)dνX (x)

]]
= − 1

λ2 ·Ex̂∼P̂X̂

[∫
X e

r(λ,x̂,x)t(λ, x̂,x) ·dνX (x)∫
X e

r(λ,x̂,x)dνX (x)

]
−∇λ

[1
λ
·Ex̂∼P̂X̂

[∫
X e

r(λ,x̂,x)t(λ, x̂,x) ·dνX (x)∫
X e

r(λ,x̂,x)dνX (x)

]]
= −1

λ
· ∇λ

[
Ex̂∼P̂X̂

[∫
X e

r(λ,x̂,x)t(λ, x̂,x) ·dνX (x)∫
X e

r(λ,x̂,x)dνX (x)

]]
.

Here, we have

Ex̂∼P̂X̂

[∫
X e

r(λ,x̂,x)t(λ, x̂,x) ·dνX (x)∫
X e

r(λ,x̂,x)dνX (x)

]
= − 1

λ2ϵ
·Ex̂∼P̂X̂

[∫
X e

r(λ,x̂,x)
(
t2(λ, x̂,x) +u(λ, x̂,x)

)
dνX (x) ·

∫
X e

r(λ,x̂,x)dνX (x)(∫
X e

r(λ,x̂,x)dνX (x)
)2

−

(∫
X e

r(λ,x̂,x)t(λ, x̂,x) ·dνX (x)
)2(∫

X e
r(λ,x̂,x)dνX (x)

)2

]
,

where

u(λ, x̂,x) = Eŷ∼P̂Ŷ |X̂=x̂

[∫
Y e

s(λ,x̂,ŷ,x,y)Ψ 2(f (x),y)dνY (y) ·
∫
Y e

s(λ,x̂,ŷ,x,y)dνY (y)(∫
Y e

s(λ,x̂,ŷ,x,y)dνY (y)
)2

−

(∫
Y e

s(λ,x̂,ŷ,x,y)Ψ (f (x),y) ·dνY (y)
)2(∫

Y e
s(λ,x̂,ŷ,x,y)dνY (y)

)2

]
.
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According to the Cauchy-Schwarz inequality, we have u(λ, x̂,x) ≥ 0 for any λ ≥ 0, x̂ ∼ P̂X̂ and
x ∼ νX . Thus, we have

Ex̂∼P̂X̂

[∫
X
u(λ, x̂,x)dνX (x) ·

∫
X
er(λ,x̂,x)dνX (x)

]
≥ 0, (EC.13)

and it follows that

∇2
λv(λ) ≥ 1

λ3ϵ
·Ex̂∼P̂X̂

[∫
X e

r(λ,x̂,x)t2(λ, x̂,x) ·dνX (x)
∫
X e

r(λ,x̂,x)dνX (x)(∫
X e

r(λ,x̂,x)dνX (x)
)2

−

(∫
X e

r(λ,x̂,x)t(λ, x̂,x) ·dνX (x)
)2(∫

X e
r(λ,x̂,x)dνX (x)

)2

]
≥ 0,

where the first inequality is due to relation (EC.13), and the second inequality is due to the
Cauchy-Schwarz inequality.

Therefore, for any λ > 0, we have ∇2
λv(λ) ≥ 0, and the equality holds if and only if the function

Ψ is a constant. Thus, the strict convexity of the dual problem (2a) holds for the dual objective,
and it implies the uniqueness of λ∗.

EC.1.5 Proof of Proposition 1 in Section 4.2

Proof of Proposition 1. For brevity, let zi,t := w⊤i,tx+bi,t and let si,t := S(zi,t) be the Sigmoid activation
at node i. For an internal node i on route l in tree t, the routing probability Ωi,t(x) is defined as:

Ωi,t(x) :=

si,t , if l goes left at i;

1− si,t , if l goes right at i;
∀i ∈Λ(l).

Then the route probability is given by pl,t(x) =
∏
i∈Λ(l)Ωi,t(x). Taking the logarithm of both sides

yields:
lnpl,t(x) =

∑
i∈Λ(l)

lnΩi,t(x). (EC.14)

Equation (EC.14) is well-defined since pl,t(x) > 0 and Ωi,t(x) > 0 strictly hold for any x ∈ X .
Taking the partial derivative of both sides of Equation (EC.14) with respect to feature xj :

∂ lnpl,t(x)
∂xj

=
1

pl,t(x)
∂pl,t(x)
∂xj

=
∑
i∈Λ(l)

1
Ωi,t(x)

∂Ωi,t(x)
∂xj

.

Recall that the derivative of the Sigmoid function is s′i,t = si,t(1− si,t), for each node i on route l in
tree t, we define:

ψi,t :=
1

Ωi,t(x)
∂Ωi,t(x)
∂zi,t

=


si,t(1−si,t)

si,t
= 1− si,t , if route l goes left at i;

−si,t(1−si,t)
1−si,t = −si,t , if route l goes right at i.
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Since ∂Ωi,t

∂xj
= ∂Ωi,t

∂zi,t
· [wi,t]j , we obtain the first-order derivative:

∂pl,t(x)
∂xj

= pl,t(x) ·
∑
i∈Λ(l)

ψi,t[wi,t]j . (EC.15)

We next compute the second-order derivative ∂2pl,t(x)
∂xj∂xk

by differentiating Equation (EC.15) with
respect to xk . Applying the product rule yields two terms:

∂2pl,t
∂xj∂xk

=
∂pl,t
∂xk

 ∑
i∈Λ(l)

ψi,t[wi,t]j

︸                      ︷︷                      ︸
Term 1

+pl,t
∂
∂xk

 ∑
i∈Λ(l)

ψi,t[wi,t]j

︸                         ︷︷                         ︸
Term 2

,

where Term 1 is equivalent to

Term 1 = pl,t(x)

 ∑
i∈Λ(l)

ψi,t[wi,t]k


 ∑
i∈Λ(l)

ψi,t[wi,t]j

 .
For Term 2, we note that ∂ψi,t

∂xk
= ∂ψi,t

∂zi,t
· [wi,t]k . For both directions (left or right), the derivative of

ψi,t with respect to zi,t is identical:

∂ψi,t
∂zi,t

=


∂(1−si,t)
∂zi,t

= −si,t(1− si,t), if route l goes left at i;
∂(−si,t)
∂zi,t

= −si,t(1− si,t), if route l goes left at i.

Thus we have ∂ψi,t
∂xk

= −si,t(1− si,t)[wi,t]k , and it follows that

Term 2 = −pl,t(x)
∑
i∈Λ(l)

−si,t(1− si,t)[wi,t]j [wi,t]k .

Combining both terms, the second-order derivative is explicitly characterized by:

∂2pl,t(x)
∂xj∂xk

= pl,t(x)


 ∑
i∈Λ(l)

ψi,t[wi,t]j


 ∑
i∈Λ(l)

ψi,t[wi,t]k


−

∑
i∈Λ(l)

si,t(1− si,t)[wi,t]j [wi,t]k

.

EC.1.6 Proof of Proposition 2 in Section 4.2

Proof of Proposition 2. Since the covariate space X is compact, and the SRF consists of smooth sig-
moid compositions, f SRF

θ is continuously differentiable. Therefore, to prove Lipschitz continuity,
it suffices to show that ∥∇xf SRF

θ (x)∥2 is bounded by LSRF. Similarly, to establish Lipschitz smooth-
ness, it suffices to show that the Lipschitz constant of the ∇xf SRF

θ (x) is bounded by SSRF.
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For Lipschitz continuity, the upper bound of ∥∇xf SRF
θ (x)∥2 is given by:

∥∇xf SRF
θ (x)∥2 =

∥∥∥∥ 1
T

T∑
t=1

2D(t)∑
l=1

∇xpl,t(x) ·π⊤l,t
∥∥∥∥

2

≤ 1
T

T∑
t=1

2D(t)∑
l=1

∥∥∥∥∇xpl,t(x) ·π⊤l,t
∥∥∥∥

2

=
1
T

T∑
t=1

2D(t)∑
l=1

∥∥∥∥∇xpl,t(x)
∥∥∥∥

2
·
∥∥∥∥πl,t∥∥∥∥

2
,

(EC.16)

where the inequality is due to the triangle inequality, and the second equality is due to the prop-
erty of the spectral norm for outer products.

We next analyze the gradient of route probability pl,t(x). Let Wmax := maxi,t ∥wi,t∥2 be the
maximum norm of gating weights, Πmax := maxl,t ∥πl,t∥2 be the maximum norm of leaf vectors,
and Dmax be the maximum tree depth. According to Proposition 1, we have∥∥∥∥∇xpl,t(x)

∥∥∥∥
2

=
∥∥∥∥pl,t(x) ·

∑
i∈Λ(l)

ψi,twi,t

∥∥∥∥
2

≤ pl,t(x) ·
∑
i∈Λ(l)

∥∥∥∥ψi,twi,t

∥∥∥∥
2

≤ pl,t(x) ·
∑
i∈Λ(l)

∥∥∥∥wi,t

∥∥∥∥
2

≤ pl,t(x) · (Dmax − 1) ·Wmax.

(EC.17)

Here, the first inequality is due to the triangle inequality, and the second inequality is due to
ψi,t ∈ (−1,1). The final inequality is because

∣∣∣∣Λ(l)
∣∣∣∣ ≤Dmax − 1 for all l ∈ [2D(t)−1]] and t ∈ T .

Based on Equation (EC.17), Equation (EC.16) can be bounded by

∥∇xf SRF
θ (x)∥2 ≤

1
T

T∑
t=1

2D(t)∑
l=1

pl,t(x) · (Dmax − 1) ·Wmax ·Πmax

= (Dmax − 1) ·Wmax ·Πmax

= LSRF,

where the equality is due to
∑2D(t)

l=1 pl,t(x) = 1. Thus, f SRF
θ (x) is Lipschitz continuous in x.

For Lipschitz smoothness, we examine the spectral norm of the Hessian of the route probabil-
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ity
∥∥∥∥∇2

xpl,t(x)
∥∥∥∥

2
:

∥∥∥∥∇2
xpl,t(x)

∥∥∥∥
2

=

∥∥∥∥∥∥pl,t(x) ·
( ∑
i∈Λ(l)

ψi,twi,t

)( ∑
i∈Λ(l)

ψi,twi,t

)⊤
−

∑
i∈Λ(l)

S
(
(wi,t)

⊤x+ bi,t
)(

1− S
(
(wi,t)

⊤x+ bi,t
))
wi,tw

⊤
i,t

∥∥∥∥∥∥
2

≤ pl,t(x) ·
∥∥∥∥( ∑

i∈Λ(l)

ψi,twi,t

)( ∑
i∈Λ(l)

ψi,twi,t

)⊤∥∥∥∥
2
+

∥∥∥∥ ∑
i∈Λ(l)

S
(
(wi,t)

⊤x+ bi,t
)(

1− S
(
(wi,t)

⊤x+ bi,t
))
wi,tw

⊤
i,t

∥∥∥∥
2


≤ pl,t(x) ·

∥∥∥∥( ∑
i∈Λ(l)

wi,t

)( ∑
i∈Λ(l)

wi,t

)⊤∥∥∥∥
2

+
1
4

∥∥∥∥ ∑
i∈Λ(l)

wi,tw
⊤
i,t

∥∥∥∥
2


≤ pl,t(x) ·

 ∑
i∈Λ(l)

∥∥∥∥wi,t

∥∥∥∥
2
·
∑
i∈Λ(l)

∥∥∥∥wi,t

∥∥∥∥
2

+
1
4

∑
i∈Λ(l)

∥∥∥∥wi,t

∥∥∥∥
2

∥∥∥∥wi,t

∥∥∥∥
2


≤ pl,t(x) ·

(Dmax − 1)2 ·W 2
max +

1
4

(Dmax − 1) ·W 2
max

,

(EC.18)

where the first inequality is due to the triangle inequality, the second inequality is due to the range
of ψi,t and fundamental inequality, and the third inequality is due to both the triangle inequality
and the property of the spectral norm for outer products. Thus, similar to Equation (EC.16), the
upper bound of the gradient of ∇xf SRF

θ (x) is given by

∥∇2
xf

SRF
θ (x)∥2 =

∥∥∥∥ 1
T

T∑
t=1

2D(t)∑
l=1

∇2
xpl,t(x) ·π⊤l,t

∥∥∥∥
2

≤ 1
T

T∑
t=1

2D(t)∑
l=1

∥∥∥∥∇2
xpl,t(x)

∥∥∥∥
2
·
∥∥∥∥πl,t∥∥∥∥

2

≤ 1
T

T∑
t=1

2D(t)∑
l=1

pl,t(x) ·
(Dmax − 1)2 ·W 2

max +
1
4

(Dmax − 1) ·W 2
max

 ·Πmax

= (Dmax − 1)(Dmax −
3
4

) ·W 2
max ·Πmax

= SSRF,

where the second inequality is due to the definition of Πmax and Equation (EC.18). Therefore,
f SRF
θ (x) is SSRF-Lipschitz smoothness.

EC.1.7 Proof of Proposition 3 in Section 5

Proof of Proposition 3. Under Assumption 2(III), the function Ψ is bounded by compact set [0,B].
Next, we analyze the properties of functions t3, t2, and t1 in sequence.
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• For function t3, we first define a vector-valued function

u(θ; x̂,ξ1, ŷ,ξ2) =
[
Ψ (fθ(x̂+ ξ1), ŷ1 + ξ2), · · · ,Ψ (fθ(x̂+ ξ1), ŷnx̂ + ξ2)

]⊤
.

For any θ,θ′ ∈Θ, we write u := u(θ; x̂,ξ1, ŷ,ξ2) and u′ := u(θ′; x̂,ξ1, ŷ,ξ2) for brevity.

For each i ∈ [nx̂], we have[
t3(u)

]′
i

=
1
λϵ

exp(ui/λϵ) ≤ 1
λϵ

exp(B/λϵ),

which implies that ∣∣∣∣∣[t3(u)
]
i
−
[
t3(u′)

]
i

∣∣∣∣∣ ≤ L′3 ∣∣∣ui −u′i ∣∣∣ ,
where L′3 = 1

λϵ exp(B/λϵ) and ui ,u′i are the i-th elements of u and u′, respectively. Hence, we
obtain

∥t3(u)− t3(u′)∥22 =
∑
i∈[nx̂]

∣∣∣∣[t3(u)
]
i
−
[
t3(u′)

]
i

∣∣∣∣2 ≤ (L′3)2
∑
i∈[nx̂]

∣∣∣ui −u′i ∣∣∣2 = L2
3∥u−u

′∥22,

where L3 = L′3 = 1
λϵ exp(B/λϵ). This result shows that the function t3 is L3-Lipschitz contin-

uous.

According to the second-order derivation of the function t3[
t3(u)

]′′
i

=
1

(λϵ)2 exp
( u
λϵ

)
≤ 1

(λϵ)2 exp
( B
λϵ

)
,

we obtain ∣∣∣∣∣[t3(u)
]′
i
−
[
t3(u′)

]′
i

∣∣∣∣∣ ≤ S3

∣∣∣ui −u′i ∣∣∣ ,
where S3 = 1

(λϵ)2 exp
(
B
λϵ

)
. Since the Jacobian matrix of function t3 for any u, i.e. Jt3(u), is a

diagonal matrix, we have

∥Jt3(u)− Jt3(u′)∥op = max
i∈[nx̂]

∣∣∣∣∣[t3(u)
]′
i
−
[
t3(u′)

]′
i

∣∣∣∣∣ ≤ max
i∈[nx̂]

S3

∣∣∣ui −u′i ∣∣∣ ≤ S3∥u−u′∥2,

Therefore, the function t3 is S3-Lipschitz smooth with S3 = 1
(λϵ)2 exp

(
B
λϵ

)
.

Using the chain rule, we have

∇[t3(θ; x̂,ξ1, ŷ,ξ2)]i =
[
t3(θ; x̂,ξ1, ŷ,ξ2)

]
i
· 1
λϵ
· ∇ (Ψ (fθ(x̂+ ξ1), ŷi + ξ2)) .

According to Assumption 2(II) and 2(III), we obtain∥∥∥∥∇[t3(θ; x̂,ξ1, ŷ,ξ2)]i
∥∥∥∥

2
=

∥∥∥∥ 1
λϵ
·
[
t3(θ; x̂,ξ1, ŷ,ξ2)

]
i
· ∇ (Ψ (fθ(x̂+ ξ1), ŷi + ξ2))

∥∥∥∥
2

=
1
λϵ
·
[
t3(θ; x̂,ξ1, ŷ,ξ2)

]
i
· ∥∇L(θ; x̂+ ξ1, ŷi + ξ2)∥2

≤ L3 ·Lθ
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where the inequality is due to L3 = 1
λϵ exp(B/λϵ) and ∥L(θ1;x,y)−L(θ2;x,y)∥2 ≤ Lθ∥θ1−θ2∥2.

Therefore, we have

E

[
∥∇t3(θ; x̂,ξ1, ŷ,ξ2)∥22

]
= E

[ nx̂∑
i=1

∥∥∥∥∇[t3(θ; x̂,ξ1, ŷ,ξ2)]i
∥∥∥∥2

2

]
≤ E

[
nx̂ ·L2

3L
2
θ

]
≤ L2

3L
2
θ ·Ex̂∼P̂X̂

[
nx̂

]
.

Let C2
3 = L2

3L
2
θ ·Ex̂∼P̂X̂

[
nx̂

]
. Since the number of observations of ŷ, i.e., Ex̂∼P̂X̂

[
nx̂

]
, is fi-

nite, we show that the the stochastic gradients in expectation function t3 is bounded, i.e.,

E

[
∥∇t3(θ; x̂,ξ1, ŷ,ξ2)∥22

]
≤ C2

3 .

According to the fundamental result in Casella and Berger (2024), for a bounded random
variable (vector), its variance is finite. Thus, to prove the finite variance of the function t3, it
suffices to show that the norm of the function t3 is bounded. According to Assumption 2(III),
we have

∥t3(θ; x̂,ξ1, ŷ,ξ2)∥22 =
nx̂∑
i=1

([
t3(u)

]
i

)2
≤ nx̂ exp

(
2B/λϵ

)
,

and it follows that σ2
3 = supθ∈Θ,x̂,ξ1,ŷ

Vξ2

(
t3

(
θ; x̂,ξ1, ŷ,ξ2

))
<∞.

• For function t2, according to the analyses for function t3, its domain is also bounded by

v ∈
[
1,exp(B/λϵ)

]nx̂
. For brevity, we denote t2(v; x̂,ξ1) as t2(v), and denote p̂(ŷi | x̂) as pi for

each i ∈ [nx̂]. Since
∑nx̂
i=1pi = 1, we have

t2(v) = exp
( nx̂∑
i=1

pi · log (vi)
)
∈
[
1,exp(B/λϵ)

]
.

Therefore, we obtain

∥∇t2(v)∥22 =
nx̂∑
i=1

(∂t2(v)
∂vi

)2

=
nx̂∑
i=1

(
t2(v) ·

pi
vi

)2

≤ exp
(
2B/λϵ

)
.

(EC.19)

where the inequality is due to the domain and range of the function t2
∑nx̂
j=1p

2
j ≤ 1. Let

L2 = C2 = exp
(
B/λϵ

)
. From Equation (EC.19), the function t2 is L2-Lipschitz continuous,

and have bounded stochastic gradients in expectation, i.e., E
[
∥∇t2(v; x̂,ξ1)∥22

]
≤ C2

2 , and its

variance is also finite, i.e., σ2
2 = supθ∈Θ,x̂Vξ1

(
t2

(
Eξ2∼Wϵ

[
t3

(
θ; x̂,ξ1, ŷ,ξ2

)]
; x̂,ξ1

))
<∞.
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We now show that the differentiable function t2 is Lipschitz smooth. By Taylor’s theorem,
for any v1,v2 in the domain of t2, there exists a point c on the line segment connecting v1

and v2 such that

t2(v1) = t2(v2) +∇t2(v2)⊤(v1 −v2) +
1
2

(v1 −v2)⊤∇2t2(c)(v1 −v2).

Thus, we have∣∣∣∣t2(v1)− t2(v2)−∇t2(v2)⊤(v1 −v2)
∣∣∣∣ =

∣∣∣∣12 · (v1 −v2)⊤∇2t2(c)(v1 −v2)
∣∣∣∣

≤ 1
2
∥∇2t2(c)∥op · ∥(v1 −v2)∥22,

(EC.20)

where the inequality is due to the Cauchy-Schwarz inequality. According to the definition
of Lipschitz smoothness, if ∥∇2t2(c)∥op is bounded by a constant S2, i.e., ∥∇2t2(c)∥op ≤ S2,
then the function t2 is S2-Lipschitz smooth. Denote the j-th element in vector c as cj for any
j ∈ [nx̂]. For any j,k ∈ [nx̂], the (j,k)-th element of the Hessian Matrix ∇2t2(c) is given by

(∇2t2(c))jk =
∂2t2(c)
∂ck∂cj

=


t2(c) · pjpkcjck

, if j , k;

t2(c) ·
(
p2
j

c2
j
− pj
c2
j

)
, if j = k.

Therefore, we have

∥∇2t2(c)∥2op ≤ ∥∇2t2(c)∥2F

=
nx̂∑
j=1

(
t2(c)

p2
j

c2
j

−
pj

c2
j

)2
+
∑
j,k

(
t2(c)

pjpk
cjck

)2

≤
nx̂∑
j=1

(
e
B
λϵ

pj − p2
j

1

)2
+
∑
j,k

(
e
B
λϵ
pjpk

1

)2

≤ e
2B
λϵ

[ nx̂∑
j=1

p2
j +

( nx̂∑
j=1

p2
j

)2]
≤ 2 · e

2B
λϵ ,

where the first inequality is because the Frobenius norm ∥·∥F is a upper bound of the operator
norm for a matrix, the second inequality is due to the domain and range of function t2, the
third inequality is due to pj ∈ [0,1] for any j ∈ [nx̂] and the Cauchy-Schwarz inequality, and
the last inequality is due to

∑nx̂
j=1p

2
j ≤ 1. Let S2 =

√
2exp(B/λϵ), based on relation (EC.20),

we have∣∣∣∣t2(v1)− t2(v2)−∇t2(v2)⊤(v1 −v2)
∣∣∣∣ ≤ 1

2
∥∇2t2(c)∥op · ∥(v1 −v2)∥22 ≤

S2

2
· ∥(v1 −v2)∥22,

which implies that the function t2 is S2-Lipschitz smooth.

• For function t1, its domain is the range of function t2, i.e.,
[
1,exp(B/λϵ)

]
. Thus, the range

of function t1 is
[
0,B/λϵ

]
. For brevity, we denote t1(z; x̂) as t1(z). The first and second
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derivatives of t1 with respect to z are

t′1(z) =
1
z

and t′′1 (z) = − 1
z2 .

Over the domain z ∈
[
1,exp(B/λϵ)

]
, we can bound the absolute values of these derivatives:

|t′1(z)| = 1
z
≤ 1,

|t′′1 (z)| = 1
z2 ≤ 1.

The first bound implies that t1 is L1-Lipschitz continuous with L1 = 1. The second bound
implies that t1 is S1-Lipschitz smooth with S1 = 1. Let C1 = 1; the expected squared norm
of the gradient is also bounded

E

[
|∇t1(z; x̂)|2

]
= E

[(
t′1(z)

)2]
≤ C2

1 .

Since the value of the function t1 is bounded, its variance is finite, i.e.,

σ2
1 = sup

θ∈Θ
Vx̂

(
t1

(
Eξ1∼Qϵ

[
t2

(
Eξ2∼Wϵ

[
t3

(
θ; x̂,ξ1, ŷ,ξ2

)]
; x̂,ξ1

)]
; x̂

))
<∞.

This completes the proof.

EC.1.8 Proof of Theorem 3 in Section 5.2

As an essential part of sample complexity analysis, we first introduce the following lemmas. Based
on the Cramér’s large deviations theorem, we introduce the following Lemma EC.3.

Lemma EC.3. (Cramér’s Inequality, Kleywegt et al., 2002). Let X1, . . . ,Xn be i.i.d. samples of a
zero-mean random variable X with finite variance σ2. For any δ > 0, it holds

P

1
n

n∑
i=1

Xi ≥ δ

 ≤ exp(−nI(δ)),

where I(δ) := supt∈R{tδ − logM(t)} is the rate function of random variable X, and M(t) := EetX is the
moment generating function of X. For any κ > 0, there exists δ1 > 0, for any δ ∈ (0,δ1), I(δ) ≥ δ2

(2+κ)σ2 .

Y. Hu et al. (2020) extend the Cramér’s Inequality from random variables to random vectors,
as shown in the following Lemma EC.4.

Lemma EC.4. (Concentration Inequality, Y. Hu et al., 2020). Let X1, . . . ,XN be i.i.d. samples of
a zero-mean random vector X ∈ Rk with finite variance E∥X∥22 = σ2 < ∞. Then for any κ > 0, there
exists δ1 > 0 such that for any δ ∈ (0,δ1), it holds that

Pr


∥∥∥∥∥∥∥ 1
N

N∑
i=1

Xi

∥∥∥∥∥∥∥
2

≥ δ

 ≤ 2k exp
(
− Nδ2

(2 +κ)σ2

)
.
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Using Lemma EC.4, we present the following Lemma EC.5.

Lemma EC.5. Under Assumption 2, for any κ > 0, there exists an δ1 > 0 such that for any δ ∈ (0,δ1),
it holds that

Pr
(
sup
θ∈Θ

∣∣∣F̂N1,N2,N3
(θ)−F (θ)

∣∣∣ > δ)
≤O (1)

(4L1L2L3DΘ

δ

)dθ (
N1N2nx̂ exp

(
− N3δ

2

36(2 +κ)λ2ϵ2L2
1L

2
2σ

2
3

)
+N1 exp

(
− N2δ

2

36(2 +κ)λ2ϵ2L2
1σ

2
2

)
+ exp

(
− N1δ

2

36(2 +κ)λ2ϵ2σ2
1

))
.

Proof of Lemma EC.5. For υ ∈ (0,1), the set {xl}
Q
l=1 is said to be a υ-net of X , if xl ∈ X , ∀l = 1, . . . ,Q,

and the following holds: ∀x ∈ X ,∃l(x) ∈ {1, . . . ,Q} such that ∥x−xl(x)∥2 ≤ υ. We construct a υ-net
to get rid of the supremum over θ and use a concentration inequality to bound the probability.
First, we pick a υ-net {θl}

Q
l=1 on the decision set Θ ∈ R

dθ , such that L1L2L3υ = δ/4. Under As-
sumption 2(I), Θ has a finite diameter DΘ , for any υ ∈ (0,1), there exists a υ-net of Θ, and the size
of the υ-net is bounded, Q ≤ O((D×/υ)dθ ) (Shapiro et al., 2021). By definition of υ-net, we have
∀θ ∈Θ,∃l(θ) ∈ {1,2, . . . ,Q}, s.t.

∥θ −θl(θ)∥2 ≤ v =
δ

4L1L2L3
.

Based on Proposition 3, we have∣∣∣∣F̂N1,N2,N3
(θ)− F̂N1,N2,N3

(
θl(θ)

)∣∣∣∣ ≤ L1L2L3∥θ −θl(θ)∥2 ≤
δ
4
,

and ∣∣∣∣F (
θl(θ)

)
−F (θ)

∣∣∣∣ ≤ L1L2L3∥θ −θl(θ)∥2 ≤
δ
4
.

Thus, for any θ ∈Θ, we have∣∣∣F̂N1,N2,N3
(θ)−F (θ)

∣∣∣
≤
∣∣∣∣F̂N1,N2,N3

(θ)− F̂N1,N2,N3

(
θl(θ)

)∣∣∣∣+
∣∣∣∣F̂N1,N2,N3

(
θl(θ)

)
−F

(
θl(θ)

)∣∣∣∣+
∣∣∣∣F (

θl(θ)

)
−F (θ)

∣∣∣∣
≤δ

2
+
∣∣∣∣F̂N1,N2,N3

(
θl(θ)

)
−F

(
θl(θ)

)∣∣∣∣
≤δ

2
+ max
l=1,··· ,Q

∣∣∣F̂N1,N2,N3
(θl)−F (θl)

∣∣∣
≤δ

2
+

Q∑
l=1

∣∣∣F̂N1,N2,N3
(θl)−F (θl)

∣∣∣
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It follows that

Pr
(
sup
θ∈Θ

∣∣∣F̂N1,N2,N3
(θ)−F (θ)

∣∣∣ > δ)

≤Pr

 Q∑
l=1

∣∣∣F̂N1,N2,N3
(θl)−F (θl)

∣∣∣ > δ
2


≤

Q∑
l=1

Pr
(∣∣∣F̂N1,N2,N3

(θl)−F (θl)
∣∣∣ > δ

2

)

≤
Q∑
l=1

Pr
(∣∣∣F̂N1,N2,N3

(θl)− F̂N1,N2
(θl)

∣∣∣+
∣∣∣F̂N1,N2

(θl)− F̂N1
(θl)

∣∣∣+
∣∣∣F̂N1

(θl)−F (θl)
∣∣∣ > δ

2

)

≤
Q∑
l=1

Pr
(∣∣∣F̂N1,N2,N3

(θl)− F̂N1,N2
(θl)

∣∣∣ > δ
6

)
︸                                             ︷︷                                             ︸

∆1

+
Q∑
l=1

Pr
(∣∣∣F̂N1,N2

(θl)− F̂N1
(θl)

∣∣∣ > δ
6

)
︸                                      ︷︷                                      ︸

∆2

+
Q∑
l=1

Pr
(∣∣∣F̂N1

(θl)−F (θl)
∣∣∣ > δ

6

)
︸                               ︷︷                               ︸

∆3

.

(EC.21)

For the term ∆1 in Equation (EC.21), we have

∆1 =
Q∑
l=1

Pr
(∣∣∣F̂N1,N2,N3

(θl)− F̂N1,N2
(θl)

∣∣∣ > δ
6

)

=
Q∑
l=1

Pr
(∣∣∣∣λϵN1

N1∑
i=1

t1

( 1
N2

N2∑
j=1

t2

( 1
N3

N3∑
k=1

t3

(
θ; x̂i ,ξj1, ŷ

i ,ξk2

)
; x̂i ,ξj1

))

− λϵ
N1

N1∑
i=1

t1

( 1
N2

N2∑
j=1

t2

(
Eξ2

[
t3

(
θ; x̂i ,ξj1, ŷ

i ,ξk2

)]
; x̂i ,ξj1

))
(θl)

∣∣∣∣ > δ6)

≤
Q∑
l=1

Pr

 max
i=1,··· ,N1;j=1,··· ,N2

∣∣∣∣L1L2∥
1
N3

N3∑
k=1

t3

(
θ; x̂i ,ξj1, ŷ

i ,ξk2

)
−Eξ2

[
t3

(
θ; x̂i ,ξj1, ŷ

i ,ξk2

)]
∥2

∣∣∣∣ > δ
6λϵ


≤

Q∑
l=1

N1∑
i=1

N2∑
j=1

Pr

∥ 1
N3

N3∑
k=1

t3

(
θ; x̂i ,ξj1, ŷ

i ,ξk2

)
−Eξ2

[
t3

(
θ; x̂i ,ξj1, ŷ

i ,ξk2

)]
∥2 >

δ
6λϵL1L2


≤QN1N2 · 2nx̂ exp

(
− N3δ

2

36(2 +κ)λ2ϵ2L2
1L

2
2σ

2
3

)
,

(EC.22)
where the first inequality is due to the Lipschitz continuity, and the last inequality is due to
Lemma EC.4. Similarly, we obtain

∆2 ≤QN1 · 2exp
(
− N2δ

2

36(2 +κ)λ2ϵ2L2
1σ

2
2

)
, (EC.23)
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and

∆3 ≤Q · 2exp
(
− N1δ

2

36(2 +κ)λ2ϵ2σ2
1

)
. (EC.24)

Combining with Equations (EC.21)- (EC.24), and the fact that Q ≤ O (1) (4L1L2L3DΘ/δ)dθ , we can
obtain the desired result of Lemma EC.5.

In the following, we prove the results in Theorem 3.

Proof of Theorem 3. (I) For Pr
(
F
(
θ̂N1,N2,N3

)
−F (θ∗) ≤ δ

)
in Theorem 3(I), we have

Pr
(
F
(
θ̂N1,N2,N3

)
−F (θ∗) > δ

)
=Pr

([
F
(
θ̂N1,N2,N3

)
− F̂N1,N2,N3

(
θ̂N1,N2,N3

)]
+
[
F̂N1,N2,N3

(
θ̂N1,N2,N3

)
− F̂N1,N2,N3

(θ∗)
]

+
[
F̂N1,N2,N3

(θ∗)−F (θ∗)
]
> δ

)
≤Pr

(
F
(
θ̂N1,N2,N3

)
− F̂N1,N2,N3

(
θ̂N1,N2,N3

)
>
δ
2

)
+ Pr

(
F̂N1,N2,N3

(θ∗)−F (θ∗) >
δ
2

)
≤Pr

(∣∣∣∣F (
θ̂N1,N2,N3

)
− F̂N1,N2,N3

(
θ̂N1,N2,N3

) ∣∣∣∣ > δ2)
+ Pr

(∣∣∣∣F̂N1,N2,N3
(θ∗)−F (θ∗)

∣∣∣∣ > δ2)
(EC.25)

where the first inequality is due to F̂N1,N2,N3

(
θ̂N1,N2,N3

)
− F̂N1,N2,N3

(θ∗) ≤ 0. Using the result
of Lemma EC.5, we can obtain the desired result of Theorem 3(I) using Equation (EC.25).

(II) For Theorem 3(II), to analyze

Pr
(
F
(
θ̂N1,N2,N3

)
−F (θ∗) ≤ δ

)
≥ 1−α,

it suffices to study
Pr

(
F
(
θ̂N1,N2,N3

)
−F (θ∗) > δ

)
< α.

Let each of the three terms on the right-hand side (RHS) of the inequality in Theorem 3(I)
be no more than α/3. This leads to

O (1)
(8L1L2L3DΘ

δ

)dθ
exp

(
− N1δ

2

144(2 +κ)λ2ϵ2σ2
1

))
<
α
3
,

and then we obtain the necessary sample size from distribution P̂X̂

N1 >
O (1)σ2

1

δ2

[
dθ log

(8L1L2L3DΘ

δ

)
+ log

( 1
α

)]
.

Similarly, we can obtain the desired result of N2 and N3.

Ignoring the log factors, the required sample sizesN1, N2, and N3 are all of order O
(
dθ/δ

2
)
.

Therefore, the total sample complexity of problem (SAA) for achieving a δ-optimal solution

is T =N1 +N2 +N3 = O
(
dθ/δ

2
)
.
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EC.1.9 Proof of Theorem 4 in Section 5.3

Proof of Theorem 4. According to the Theorem 3 in Chen et al. (2021), Theorem 4(I) holds.

For Theorem 4(II), to ensure that E
[
∥∇F(θ̂)∥2

]
≤ ε2, it follows that (according to Chen et al.,

2021) ∑K−1
k=0 E

[
∥∇F(θk)∥2

]
K

≤ Cconst√
K
≤ ε2,

where Cconst is a constant that depends on the initial setting of the algorithm and constants
C1,C2,C3,S1,S2,S3. This implies that the number of iterations required satisfies

K ≥
C2

const

ε4 = O(ε−4).

Since one sample is drawn from each of the three distributions in each iteration, the total
number of samples is 3 ·K , which implies that the sampling complexity of the SCSC method is
also at the order of O(ε−4).

In each iteration, we perform one gradient calculation on each of the functions t1, t2, and t3.
Thus, each function performs a total of K gradient calculations, which implies that their gradient
complexities are the same at the order of O(ε−4).

For the classical stochastic nonconvex optimization problem, the complexity bounds of SCSC
match the existing lower bounds by Arjevani et al. (2023), i.e., O(ε−4).

EC.2 Worst-case Distributions for Compared DRO Models

In this section, we show the models and worst-case distribution formulations of Sinkhorn DRO
(SDRO), causal Wasserstein DRO (Causal-WDRO), and KL-divergence-based DRO (KL-DRO) in
soft-constrained and contextual settings.

Based on Wang et al. (2025), the soft-constrained SDRO without causal consideration for con-
textual DRO is defined as

inf
f ∈F

max
P∈P (X×Y )

E(x,y)∼P

[
Ψ (f (x),y)−λ ·Wp(P̂,P)p

]
, (SDRO)

where

Wp(P,Q) :=
(

inf
γ∈Γ (P,Q)

E((x̂,ŷ),(x,y))∼γ

[
cp((x̂, ŷ), (x,y))

]
+ ϵ ·H

(
γ | µ⊗

(
νX ⊗ νY

)))1/p

.

We present the worst-case distribution of problem (SDRO) in the following Lemma EC.6 by ex-
tending the results in Wang et al. (2025).

Lemma EC.6. (Worst-case Distribution of the SDRO Problem, Wang et al., 2025). Under As-
sumption 1, the density of worst-case distribution P

∗
λ,SDRO of the inner problem of (SDRO) for any λ is

given by
dP∗λ,SDRO(x,y)

dνX (x)dνY (y)
= E(x̂,ŷ)∼P̂

[
α̃x̂,ŷ(λ) · es

′(λ,x̂,ŷ,x,y)
]
, (EC.26)

where α̃x̂,ŷ(λ) =
(∫
X×Y e

s′(λ,x̂,ŷ,x,y) ·dνX ⊗ νY (x,y)
)−1

.
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According to Lemma EC.6, P∗λ,SDRO is a mixture of Gibbs distributions. Compared with the
worst-case distribution of problem (Causal-SDRO) in Theorem 2, P∗λ,SDRO has a simpler density
function structure.

Without considering the entropy regularization, the Causal-WDRO model is defined as Yang
et al. (2022):

inf
f ∈F

max
P∈P (X×Y )

E(x,y)∼P

[
Ψ (f (x),y)−λ ·Cp(P̂,P)p

]
, (Causal-WDRO)

where the causal transport distance Cp(P̂,P) is defined in Definition 1. Yang et al. (2022) charac-
terize the worst-case distribution of the Causal-WDRO problem. In the following, suppose that
the empirical distribution P̂ is grouped into K distinct covariates x̂k for any k ∈ [K]. For each
covariate, there are nk observations of the uncertain parameter, denoted by ŷki for any i ∈ [nk]. Let
p̂ki be the probability mass of the data point (x̂k , ŷki). Then, according to Yang et al. (2022), the
following lemma holds.

Lemma EC.7. (Worst-case Distribution of the Causal-WDRO Problem, Yang et al., 2022). If the
worst-case distribution of Causal-WDRO problem exists for given λ > 0, then it has the following form

P
∗
λ,Causal-WDRO =

∑
k,k0

nk∑
i=1

p̂kiP̂(x∗k(λ),y∗ki (λ)) +

nk0∑
i=1

p̂k0i

(
qP̂(x̄k0 (λ),ȳk0i (λ)) + (1− q)P̂(xk0 (λ),y

k0i
(λ))

)
, (EC.27)

where 1 ≤ k0 ≤ K , 0 ≤ q ≤ 1, (x∗k(λ),y∗ki(λ)) = (x̄k(λ), ȳki(λ)), and for every k and i,

x̄k(λ),xk(λ) ∈ argmax
x∈X

EP̂Ŷ |X̂

sup
y∈Y

{
Ψ (f (x),y)−λ||y − ŷ||p

}
| X̂ = x̂k

−λ||x− x̂k ||p ,
and

ȳki(λ) ∈ argmax
y∈Y

{
Ψ (f (x̄k),y)−λ||y − ŷki ||p

}
, y

ki
(λ) ∈ argmax

y∈Y

{
Ψ (f (xk),y)−λ||y − ŷki ||p

}
.

The worst-case distribution of problem (Causal-WDRO) in Equation (EC.27) is discrete, while
that of (Causal-SDRO) in Equation (9) is continuous. This shows that the introduction of CSD
allows a more realistic and smoother representation of the underlying distribution.

The contextual KL-divergence-based DRO (KL-DRO) model is defined as

inf
f ∈F

max
P∈P (X×Y )

E(x,y)∼P

[
Ψ (f (x),y)−λ ·DKL

(
P||P̂

)]
. (KL-DRO)

For problem (KL-DRO), its worst-case distribution is given by the following Lemma EC.8.

Lemma EC.8. (Worst-case Distribution of the KL-DRO Problem, Z. Hu and Hong, 2013). If the
worst-case distribution of KL-DRO problem exists for given λ > 0, then it has the following form

P
∗
λ,KL-DRO =

N∑
i=1

exp
(
Ψ (f (x̂i ),ŷi )

λ

)
∑N
j=1 exp

(
Ψ (f (x̂j ),ŷj )

λ

) · P̂(x̂i ,ŷi ), (EC.28)

where N is the number of historical observations.

In fact, KL-DRO finds the worst-case distribution by changing the likelihood ratios of the
empirical distribution rather than changing its support. Therefore, the worst-case distribution
of (KL-DRO) is still discrete.
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EC.3 Interpretability Measures

In this section, we analyze the intrinsic interpretability of the SRT by introducing global and local
interpretation measures in Sections EC.3.1 and EC.3.2, respectively.

EC.3.1 Global Interpretation Measure

Global interpretability provides a holistic view of the model by quantifying the contribution of
each feature to the overall decision-making process (Dwivedi et al., 2023). For tree-based meth-
ods, standard techniques include impurity-based and permutation-based importance measures
(Hastie et al., 2009; Kallus and Mao, 2023). However, impurity-based measures are designed for
trees with hard splits and are inapplicable to SRTs, while permutation-based methods are often
computationally expensive. Therefore, leveraging the differentiability of the SRT, we define fea-
ture importance based on the average marginal sensitivity of the decision with respect to each
feature over the training set:

Cj :=
1
N

N∑
i=1

∥∥∥∥∂f SRF
θ (xi)

∂xij

∥∥∥∥
1

=
1

N · T

N∑
i=1

T∑
t=1

2D(t)∑
l=1

∥∥∥∥∂pl,t(xi)
∂xij

πl,t

∥∥∥∥
1
, ∀j ∈ [dx], (EC.29)

where xi is the i-th training sample and xij is its j-th element, and the partial derivatives of pl,t(xi)
are computed following Proposition 1. To show the relative importance of features, we normal-
ize the importance scores Cj for each j ∈ [dx] such that they sum to 1, i.e., the relative feature
importance is given by

C̄j :=
Cj∑dx
k=1Ck

, ∀j ∈ [dx].

EC.3.2 Local Interpretation Measure

Local interpretability demonstrates how an individual decision is derived, clarifying the contri-
bution of specific features and their interactions (Dwivedi et al., 2023; Notz and Pibernik, 2024).
Lundberg et al. (2020) propose SHAP (SHapley Additive exPlanations) as a post-hoc local ex-
plainer to characterize feature contributions. While SHAP enhances the transparency of inher-
ently uninterpretable models, it can be used only after the decision is made and does not exploit
the model’s structure (i.e., model-agnostic).

In contrast, given that the SRF is intrinsically interpretable and differentiable, we propose a
novel metric, the Empirical Integrated Gradient (EIG). Adapted from the Integrated Gradients
(IG) method of Sundararajan et al. (2017), EIG derives feature contributions directly from the
model’s structure. We validate the consistency of our intrinsic interpretability by comparing EIG
with SHAP values.

According to Ancona et al. (2017) and Notz and Pibernik (2024), given input covariate x, the
k-th decision of the SRF can be decomposed into the sum of feature contributions relative to a
baseline: [

f SRF
θ (x)

]
k
−Baselinek =

dx∑
j=1

ϕj,k(θ,x).
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Distinct from Sundararajan et al. (2017) and Ancona et al. (2017), which typically use a zero
baseline, we employ the average decision over the training set as a robust baseline. Then, we
define the EIG for feature j and decision k as

ϕEIG
j,k (θ,x) :=

1
N
·
N∑
i=1

(xj − xij ) ·
∫ 1

α=0

∂
[
f SRF
θ

(
xi +α(x−xi)

)]
k

∂xj
dα, ∀j ∈ [dx], k ∈ [dz],

where xi denotes the i-th training sample. Proposition EC.2 shows that the k-th output of SRF
can be decomposed into the sum of EIG contributions from each feature, using as a baseline the
average value of the k-th output over the dataset, i.e.,

Baselinek =
1
N

N∑
i=1

[
f SRF
θ (xi)

]
k
.

Proposition EC.2. Since the decision rule f SRF
θ : Rdx → R

dz is differentiable, given an input covariate
x, the EIG valueϕEIG

j,k (θ,x) exactly quantifies the contribution of feature j to the deviation of the decision
from the average training decision baseline, i.e.,[

f SRF
θ (x)

]
k
− 1
N

N∑
i=1

[
f SRF
θ (xi)

]
k

=
dx∑
j=1

ϕEIG
j,k (θ,x), ∀k ∈ [dz].

Proof of Proposition EC.2. According to the Proposition 1 in Sundararajan et al. (Sundararajan et
al., 2017), for any x′ ∈Rdx , we have

[
f SRF
θ (x)

]
k
−
[
f SRF
θ (x′)

]
k

=
dx∑
j=1

(xj − x′j ) ·
∫ 1

α=0

∂
[
f SRF
θ

(
x′ +α(x−x′)

)]
k

∂xj
dα, ∀k ∈ [dz].

By setting the baseline as the average decision over the training set, we obtain

[
f SRF
θ (x)

]
k
− 1
N

N∑
i=1

[
f SRF
θ (xi)

]
k

=
1
N

N∑
i=1

dx∑
j=1

(xj − xij ) ·
∫ 1

α=0

∂
[
f SRF
θ

(
xi +α(x−xi)

)]
k

∂xj
dα

=
dx∑
j=1

ϕEIG
j,k (θ,x), ∀k ∈ [dz].

Regarding local feature interactions, the differentiable nature of the SRT allows us to explicitly
characterize interaction effects by computing the Hessian matrix, as detailed in Proposition 1.

EC.4 Equivalent Reformulation for Feature-based Inventory Substitu-
tion Problem in Section 6.2

The feature-based inventory substitution problem with soft CSD constraint is given by

inf
f ∈F

max
P∈P (P̂)

c⊤f (x) +E(x,y)∼P

[
ΨI(f (x),y)

]
−λ ·Rp(P̂,P)p (EC.30)
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where

ΨI(z,y) = min
dy∑
j=1

j∑
i=1

si,jwi,j +
dz∑
i=1

hiui +
dy∑
j=1

bju
′
j

s.t.
dy∑
j=i

wi,j +ui = zi , ∀i ∈ [dz] ,

j∑
i=1

wi,j +u′j = yj , ∀j ∈
[
dy

]
,

ui ,u
′
j ,wi,j ≥ 0, ∀i ∈ [dz] , j ∈

[
dy

]
.

(EC.31)

The dual problem of the linear programming problem ΨI(f (x),y) is given by

max
η∈Rdz ,υ∈Rdy

dz∑
i=1

ziηi +
dy∑
j=1

yjυj

s.t. ηi ≤ hi , ∀i ∈ [dz] ,

υj ≤ bj , ∀j ∈
[
dy

]
,

ηi +υj ≤ si,j , ∀j ∈
{
i, i + 1, · · · ,dy

}
, i ∈ [dz] .

(EC.32)

where ηi ∈ R for each i ∈ [dz] represents the dual variable of the i-th constraint in the first con-
straint set of problem (EC.31), while υj ∈ R for each j ∈

[
dy

]
represents the dual variable of the

j-th constraint in the second constraint set of problem (EC.31). According to the duality theorem,
the strong duality holds.

Define that

Ψ ∗I (f (x),y) := max
η∈Rdz ,υ∈Rdy


dz∑
i=1

[f (x)]i(ηi + ci) +
dy∑
j=1

yjνj

∣∣∣∣∣∣
ηi ≤ hi , ∀i ∈ [dz],
νj ≤ bj , ∀j ∈ [dy],
ηi + νj ≤ si,j , ∀j ∈

{
i, i + 1, · · · ,dy

}
, i ∈ [dz]

,
and then the problem (EC.30) can be rewritten as

inf
f ∈F

max
P∈P (P̂)

E(x,y)∼P

[
Ψ ∗I (f (x),y)

]
−λ ·Rp(P̂,P)p,

which is the same as (Soft-Causal-SDRO). Therefore, following the same reformulation processes
as in Theorem 1, its dual formulation is given by

inf
f ∈F

Ex̂∼P̂X̂

[
λϵ log Eξ1∼Qϵ

[
exp

(
g∗(x̂,ξ1,λ)

λϵ

)]]
,

where

g∗(x̂,ξ1,λ) := Eŷ∼P̂Ŷ |X̂=x̂

[
λϵ log Eξ2∼Wϵ

[
exp

(
Ψ ∗I (f (x̂+ ξ1), ŷ + ξ2)

λϵ

)]]
.
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For a decision rule parameterized by θ ∈ Θ, following the same reformulation processes as in
Section 5.1, this problem can be solved as the following stochastic compositional optimization
problem

min
θ∈Θ

F (θ) = λϵ ·Ex̂∼P̂X̂

[
t1

(
Eξ1∼Qϵ

[
t2

(
Eξ2∼Wϵ

[
t′3

(
θ; x̂,ξ1, ŷ,ξ2

)]
; x̂,ξ1

)]
; x̂

)]
where [

t′3(θ; x̂,ξ1, ŷ,ξ2)
]
i

= exp
(
Ψ ∗I (fθ(x̂+ ξ1), ŷi + ξ2)

λϵ

)
, ∀i ∈ [nx̂] .

EC.5 Out-of-sample Performance across Different Parameter Combi-
nations

For the feature-based inventory substitution problem, the out-of-sample performance of the pro-
posed method across different parameter combinations is shown in Figure EC.1.
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Figure EC.1. Out-of-sample Performance of the inventory substitution problem with different
parameters (N = 200,dx = 10)

For the data-driven portfolio selection problem, the out-of-sample performance of the pro-
posed method across different parameter combinations is shown in Figure EC.2.
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Figure EC.2. Out-of-sample Performance of the portfolio problem with different parameters (η =
5)
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