A speed up strategy for gradient methods

Anna De Magistris’?", Serena Crisci'?, Valentina De Simone!?,

Gerardo Toraldo!?

IDepartment of Mathematics and Physics, University of Campania
“Luigi Vanvitelli”, Viale Lincoln 5, Caserta, 81100, CE, Italy.
2The authors are members of the INdAAM research group GNCS, which
partially supported this work.

*Corresponding author(s). E-mail(s): anna.demagistrisQunicampania.it;
Contributing authors: serena.crisciQunicampania.it;
valentina.desimone@unicampania.it; gerardo.toraldo@Qunicampania.it;

Abstract

In this paper, we propose a new acceleration strategy for gradient-based methods
applied to strictly convex Quadratic Programming (QP) problems. The strategy
consists in performing, at selected iterations, minimization steps along alternative
descent directions or even within low-dimensional affine subspaces. In particular,
considering the contribution of the linear and quadratic part of the objective func-
tion could be useful in designing line searches in acceleration steps. We present
numerical experiments to assess the impact of acceleration steps on the per-
formance of different gradient methods. We examined randomly generated QP
and box constrained QP test problems, designed to assess the algorithms under
various conditions, such as matrix dimensions, condition numbers, and initializa-
tion strategies. Our experiments show that the use of acceleration steps in some
Barzilai-Borwein methods significantly improves computational results. Moving
to general minimization problems, the extension of our approach is not straight-
forward; in particular, it is not possible to directly extend the two-dimensional
minimization phase. In this work, we take a first step in this direction by pro-
viding preliminary ideas for a possible extension of the accelerated algorithm to
the minimization of general functions.

Keywords: gradient methods, convex quadratic programming, acceleration strategies,
bound constrained quadratic programming

1 Introduction

We are primarily interested in designing convergence acceleration techniques for
gradient-based methods to solve the problem

~ 1 T T
ilélﬁgf(x):%x Ax — b ' x, (1)

where A € R"*™ is symmetric positive definite and b € R"™. This problem, possibly
adding simple bounds or linear constraints on the variables, is of practical importance
in several applications (see e.g. [1-6]).

Gradient methods still occupy a prominent place in the field of optimization
methods thanks to their low computational cost and reduced storage requirements.
Furthermore, problem (1) is a useful framework for testing algorithmic strategies in
gradient methods that can subsequently be applied to more general problems. Indeed,
in this paper we do not restrict our attention solely to the convex quadratic case,
showing a possible way to extend our ideas to a more general context.

Starting from x(€ R”, gradient methods generate a sequence {xy} as follows

Xk+1 = Xp — Qg8

where g, = V f(xx) and a > 0 is the steplength. In particular, in the classical Cauchy
Steepest Descent (SD) method, where the steplength selection is based on the exact
minimization rule, we have
-
_ 8 8k (2)
g, Agx
which guaranties the Q-linear rate of convergence

)\max -)\min

* *
[xk41 — x4 < N %k — x| 4,
where Apax, Amin are the respectively the maximum and the minimum eigenvalues of
A and [[v]ja = v Av for any v € R". It is well known that the Cauchy algorithm
performs very badly, even for mild conditioned problems, since the worst case predicted
by (1) is likely to happen.

This has been explained by Akaike [7], who proved that the sequence generated by
(1) gets trapped in the two-dimensional space spanned by the eigenvectors associated
t0 Amax and Apin, very slowly if the ratio Apax/Amin 18 large, without being able to
eliminate from the basis of the current search direction any of the two eigencomponents
and hence to align the gradient with an eigendirection of the Hessian matrix. To
overcome this drawback, many rules have been proposed [8-10], mainly related to the
Barzilai-Borwein (BB) formulas

BBl _ l[sk—1? BB2 _ 52_1}’1@—1
Qg =7 o % = o 2o
Sp_1Yk-1 yr—1ll

where sp_1 = X — Xp—1, Yi—1 = 8k — Sk—1,

proposed by Barzilai and Borwein in their seminal work [11] in 1988. The nice behav-
ior of the BB methods is often explained with the nonmonotonicity of such algorithms
producing an erratic path of the steplengths in the interior of the spectrum of A~!
which fosters not getting caught into badlands [12]. Since then, several gradient meth-
ods have been proposed moving from BB rules: gradient methods with retards, cyclic,
adaptive BB-inspired rules [9, 10, 13, 14].

In particular, in [10] the authors proposed the Adaptive Barzilai-Borwein (ABB)
rule, defined as follows

Pk
aBBl otherwise,

ABB {a}?m if 32: <7, 7€(0,1)

= k
which was modified by Frassoldati et al. in [9], introducing the so-called ABByin
strategy:

aEB 1 otherwise

min{aP? | j = max(1,k — M k) oif %k 0,1
aABanin:{ ; j = max(1,)y ko aEBl<T,T€(,)
where M, > 0 is a prefixed integer.

The rationale behind the adaptive rule is to promote the use of smaller steplengths
(realized by the BB2 rule), switching to a larger one when a reliable approximation of
the inverse of the smallest eigenvalue is likely to occur. In this perspective, the ABBin
strategy represents a refinement of this strategy, since it appears to provide a faster
reduction of the gradient’s component that would rather become dominant [15, 16].

Despite nonmonotonicity, BB related rules are shown to be much more effi-
cient than (2) with surprisingly computational results even when generalized to
nonquadratic and constrained problems [16-20]. We still do not have a complete under-
standing of their practical behavior; nevertheless some recent works investigating the
relationships between the steplengths and the spectrum of the Hessian of the objective
function were able to provide insight into the computational effectiveness of gradi-
ent methods, for both quadratic and general unconstrained/constrained optimization
problems [12, 15, 21-25]. The design of effective steplength rules is the common ground
on which all new gradient methods are based on.

In this paper, we propose a different approach to accelerate the convergence of
gradient methods, based on the idea of performing, at selected iterations, minimization
along descent directions other than the negative gradient sy, or even in afline subspaces
of low dimension. Indeed, the idea of using composite search directions or minimization
in low-dimensional subspaces has been explored by several authors in the past. The
s-gradient method for convex quadratic functions was one of the first approaches to
generalizing the steepest descent method using minimizations in spaces of dimension
greater than one. Referring to the quadratic function

Fla) = 1x7 Ax,

in the k—th iteration the s-gradient method computes

k k 42 k
X1 = X + 07 Axp + a5 Axp + - -+ al A¥xy,,

where the vector a* = (o}, a%,... o) is the solution of the problem

arg min f(xgp + a1 AXy + a0 A%y + -+ agAXy).

Q1,02,...,0s

The first work on this algorithm dates back to the early 1950s [26]. However, an
elegant and comprehensive analysis of convergence and asymptotic behavior was pre-
sented by Forsythe [27]. In particular, generalizing the result demonstrated by Akaike
[7] for s = 1, Forsythe shows that in the s-dimensional gradient method x;, eventu-
ally lies in a subspace of dimension at most 2s. He also proves that, in general, the
s-gradient process converges no faster than linearly. Recently, a more in-depth analysis
was conducted in [28], based on a dynamical-system approach. Among other things,
the authors demonstrate that an algorithm that periodically alternates between s = 1
and s = 2 significantly improves the convergence rate compared to s = 2, achieving
superlinear convergence for n = 3. For general n, they conjecture that “by switch-
ing periodically between algorithms one destroys the stability of the limiting behavior
obtained when s is fived (which is always associated with slow convergence)”.

Different motivations underlie the “dog-leg” algorithm, proposed by Powell [29],
which also incorporates a trust region condition. In the composite search direction of
the form

Sk = dk + BkPrk,
pir represents a Newton, type Newton, or quasi-Newton direction, while q; is the
negative gradient. More generally, qx can be chosen as a suitable descent direction
designed to address non-convex problems or to achieve global convergence.

More recently, Bartholomew-Biggs has proposed a modified version of Newton’s
method based on composite directions, which involves fitting the objective function
in the plane spanned by both the Newton direction and the steepest descent direc-
tion [30]. Additionally, a globalization strategy for Newton’s method that combines
Newton steps with gradient steps has been introduced in [31]. There are more exam-
ples of the use of composite search directions in the literature, including [32-34], and
actually some classical methods such as the Polyak Heavy Ball Method [35], and the
Conjugate Gradient method (see exercise 6.5 in [36]) can be framed as gradient-based
minimization methods that use a composite search direction by combining the current
gradient with the previous step. With the aim of designing an algorithm particularly
suited to implementation on parallel computing systems, a generalization of the opti-
mal gradient method to an s-dimensional conjugate gradient method is presented in
[37]. Also the DWGM (Delayed Weighted Gradient Method) [38-40], although based
on the idea of computing a new iteration as a weighted average between an inter-
mediate new point and the penultimate iterate, can be seen as an algorithm using a
composite search direction.

Many algorithms that utilize composite directions often use gradient methods to
improve the convergence of second-order algorithms. However, our approach is differ-
ent in that we aim to accelerate gradient methods by performing a minimization, at
selected iterations, along descent directions explicitly chosen to act on the quadratic
term of the objective function. We believe that this is an underexplored area that
deserves more attention. To test our approach, we will focus primarily on the quadratic
case (1), which provides an adequate basis for a preliminary analysis before address-
ing general minimization problems. For the latter, only a few very preliminary results
are presented in this article.

The remainder of the paper is organized as follows. In Section 2 we introduce
our acceleration strategy, preceded by some theoretical considerations that justify our
choices. In particular, it is emphasized that attention should be paid to the reduction of
the quadratic term and the linear term of the objective function in a descent method.
In Section 3, we show how our strategy can be incorporated into a gradient projection
algorithm for convex quadratic programming with bound constraints. In Section 4 we
analyze through numerical experiments the performance of our acceleration strategy,
both for unconstrained and bound constrained convex quadratic problems. In Section
5 we consider a possible generalization of our algorithm to the unconstrained mini-
mization of a general function, with some preliminary computational results. Finally,
in Section 6 we draw some conclusions.

Throughout the paper, vectors are denoted by boldface lowercase letters, || - ||
denotes the Euclidian norm, g = g(z) = Vf(z). Given v € R, S(v) C {1,...,n}, the
vector v° is defined componentwise as follows

o v(@) if i e S(v),
ve (i) _{ 0 if i ¢S(v).

0 € R” indicates the null vector. Finally, we denote by x(A) the spectral condition
number of the matrix A.

2 The Accelerated Gradient Method (AGM)

This section provides an analysis of the proposed method along with some theoretical
results. To describe our approach, we start with some considerations about the linear
term and the quadratic term of the objective function in (1).

If we define the error vector at iteration k as

*
e =X — X,

in a gradient method, where x* = A~'b is the solution of problem (1), the evolution
of the error follows the rule

€pt1 =Xpy1 —X = —ap A) e,
which is governed entirely by the matrix I —ay, A. The linear term —b " x does not affect
the contraction factors in the error dynamics. Instead, the vector b only influences x*

by shifting its position away from the origin. The convergence rate of gradient descent
is dictated by the spectrum of A. Since A is symmetric positive definite, it can be
diagonalized as

A=VAVT,

where V' is an orthogonal matrix and A = diag(A1, \a, ..., \,) contains the eigenvalues
of A. Let us define the transformed error

-
yie =V e
Then, the error recursion in the eigenbasis becomes

Yie+1 = (I—O[A) Yk,

or, componentwise,

yk-’-l(z):(l_a)‘l) Yk(l)ﬂ Z:L,n,

the decay along each eigen-direction is given by |1 —a\;|, completely indipendent of b.
We notice that the solution x* of problem (1) satisfies the equation

b'x =x"Ax, (3)
then, if x;, — x*, then

lim b'x, = lim x5 Axjp = ¢*
k— 400 k— o0

for some ¢* > 0.
The following proposition characterizes the solution to problem (1) in the set of
points that satisfy the equation (3).

Proposition 1 Solving the problem (1) is equivalent to solving the following constrained
maximization problem

max f(x) = x| Ax (4)
st.h(x)=x'Ax—b ' x=0.

Proof The strict convexity of problem (4) ensures uniqueness of the optimal solution. The
thesis follows from the observation that
the Lagrange conditions for (4)

2Ax = X\ (2Ax — b),
x Ax —b 'x=0
are satisfied by A = 2 and x* = A~ 'b.

Therefore, the linear and quadratic terms are perfectly balanced in the solution,
and the latter reaches the maximum value in the feasibility set of problem (4). The
functions f(x), f(x),h(x), are depicted in Figure 1.

IS

w

~

Fig. 1 Graphical representation of the problem (4).

Proposition 2 Let us assume that x;, is such that
x;Axk < bTxk [x;—Axk > bTxk], (5)
then dj, = xp, [d, = —xp] is

(a) a descent direction for f(x) at Xy,
(b) an ascent [descent] direction for f(x) at xj.

Proof Because of (5) one has Vf(x) 'xi < 0 [Vf(xy)' (=xx) < 0], which proves (a).
While (b) follows from the positive definitiveness of A. O

Proposition 2 shows that if x,1 is computed by minimizing f(x) along xj, moving
from xy, this will not only produce a reduction of f(x) but also create a “balancing
effect” on the quadratic part of the objective function. Specifically, the quadratic term
will decrease if kaAx;,C > b'xy, and it will increase otherwise.

Here, we present some simple theoretical results that can help us better under-
stand the behavior of the two sequences {b'x;} and {x; Ax}, hereby providing a
convincing motivation for our acceleration strategy.

Proposition 3 Let assume b # 0, then for all x € R™ such that b'x # 0 one has

.
| b x|
[[x*[| | cos 0]

x' Ax < K(A) |

where x* is the solution of (1) and 0 is the angle between b and x.

Proof Notice that from b # 0 it follows ||x*|| # 0.
[

T 2 X
xTax < [All? = AL e
) Il 1 1o x| b7
= g At < gy B
T el eosar =i Tcosa

|

Proposition 4 Let us assume that the hypotheses of Proposition 3 hold, then for all x € R"
such that b'x* # b x, we have

x+x*|| [b"x — b x*|

T *T *
— <
[x Ax —x" Ax"| < k(A)] Tos 0] , (4A)
T #T 4 % x+x*|| [b"x — b'x*|
Ax — Ax™| < ||A 4B

where 0 is the angle between b and x — x*.

Proof
(48)
T * 1 k| Nl * * *
T Ax — T Ax*] = [(x— x*) T A x| < A x4 =7l — x| <
4] b Tx b X] b x — bTx| 1
<A < = A A~ b
A5 Toleoser 1= 1A 5 TolTcosey 14 P
x4+ x*|| b x — b x*|
< k(A
SH DTS T ool
(4B)

x " Ax — x*TAx™| = |(x — x*) T A(x + x¥)| < [Allllx +x"[[|lx — x| =
| [x+x*|||b"x—b'x*|
o] [cosO]

= [|A]

O

About the inequalities (4A - 4B) in Proposition 4 let us consider the case of A € R"*"
symmetric such that A\ = Apax(A4) > Anin(A) = 1, b = Av where v is such that
Av = v, so that x* = v; for any x = v with 5 >0, 5 # 1

T Ax —x T Ax"] = |(x — x) TA(x + x| = [(x = x") T (W) (x + x7)| =
Allx — [l + x|

x+x*|||[b"x —bTx*
,.;(A)” Il | _ 14

x| | cos 0]

[Ix + x|
[[bl[| cos 0]

[b"x—bTx"| = Allx — x*|l[|x + x|

ie. (4A - 4B) are satisfied as equality. Note that in this case it holds

Ix"Ax — x*T Ax*| = k(A)|x — x*||||x + x*|.

In general, the quadratic term is governed by the eigenstructure of A, and for ill-
conditioned problems |x " Ax — x*T Ax*| can be significantly large even when ||x —x*||
is small.

The strategy we propose aims to balance the linear and quadratic terms. We sug-
gest intervening on the latter by computing, at selected iterations, acceleration steps
into a standard gradient scheme (1).

Given xj, an acceleration step computes next iteration by one of the following
rules:

Xp41 = Xk — k8 — PrXk, where (o, Bi) = argmin,, 5 f(x; — agr, — fxx) [2D]
Xk+1 = Xk — ﬁkxk, where Bk = argminﬁf(xk — ﬁxk) []_D]

We notice that the Newton step for the quadratic term xp Axy is —xj,, which is also
a descent direction for f(x) if

xp g > 0. (6)
Notice that, if (6) holds, in accordance with Proposition 2, a [1D] step will produce a
decrease for both f(x) and f(x). A [2D] step performs the minimization in the affine
subspace generated by the gradient at x; and the Newton direction (or its opposite)
of the pure quadratic function x " Ax. It is worthwhile to note that the [2D] step can

be written as
X]H_l:Xk()zk((A'i‘@I)Xkb), (7)
Qg

i.e. a gradient step of the function f(x) in which the spectrum of the Hessian has been
shifted. Therefore, to a certain extent, [2D] can be interpreted as a gradient for the
regularised function f(z) + %HXH in the Tikhonov sense, provided that g—i > 0.

In our proposed scheme, an acceleration step is performed whenever

x4 gl
kST >y, (8)
%l

for some v € (0, 1), or mod(k,) = 0. Here, k is the iteration number, £ is some prefixed
positive integer and mod is the modulus after division. In this way, the algorithm is
forced to perform at least an acceleration step every p iterations (with @ = co meaning
that no such forcing is applied). The condition (8) ensures that xj, is a search direction
“sufficiently” not orthogonal to the gradient. We also note that the algorithm starts
with an acceleration step, provided that x(—)r go > 0. The purpose of this initial step is
to promote a balance between linear and quadratic terms from the beginning.

About the solution of the minimization problem [2D], we note that oy and 8y are
solutions of the following 2 x 2 system, where, for the sake of simplicity, we omit the
iterations indices

glag g 4x| [o] _[ele] [1 E] (o] _[#E
gl Ax x"Ax| |8 x'g sxiﬁz 1 B x'g

ie.

Algorithm 1 Accelerated Gradient Method (AGM)
1: Initialization: xo € R™; k = 0; v € (0,1); tol > 0; maxiter, p € N;
2: 8o — AXO — b;
3. while ||gg| > tol- |lgo|| and k < maxiter do

4: k =]C —+ 1;

T
5 if % > 7 or mod(k, 1) =0 or (k=1 and x; g > 0) then
6: Either:
7 Xk+1 = Xk — 8k — PrXk
8 where (g, 81) = argmin,, g f(xx — agr — fxx) [2D]
o: 8k+1 = 8k — Ak — BrAxy
10: Or:
11: Xk+1 = Xk — ﬂkxk -

— : _ b

12: where), = argming f(x; — 8xx) = 1— 235 [1D]
13: 8k+1 = 8k — BrAxy
14: else
15: ay, > 0 is computed by any convergent GM stepsize rule
16: X1 = Xp— 8k
17: 8k+1 = Bk — s Agy
18: end if

19: end while

(x"Ax)(g'g) — (8" Ax)(x"g)
(g7 Ag)(x"Ax) — (g7 Ax)?

5= (8" Ag)(x'g) — (8" Ax)(g'g)

(g7 Ag)(x " Ax) — (g Ax)?
In the AGM algorithm, each step can be computed using only one matrix vector prod-
uct. Specifically, if strategy [2D] is performed, Ax; can be computed in the gradient
update as gi + b, therefore Agy is the only matrix-vector product that needs to be
computed.

We observe that AGM inherits the convergence properties of GM, provided that
the number of acceleration steps is finite or, if infinite, provided that an iteration of a
gradient scheme satisfying the assumption in [36, Prop. 1.2.6], occurs infinitely often.
Indeed, in this case, the convergence of AGM to the solution x* of problem (1) can
be derived by the following proposition.

Proposition 5 Let f(x) be a strictly conver quadratic function. Let {xy} be an infinite
sequence generated by Algorithm 1, where the steplength «y, at the step 15 of the Algorithm
1 is chosen by the exact minimization rule (2) or the Armijo rule [36, eq. (1.11)], then the
following properties hold:

(a) the sequence {xj} converges to the unique solution x* of problem 1;
(b) the sequence {f(xx)} has Q-linear convergence rate.

10

Proof (a). Let first observe that {f(xy)} is a nonincreasing sequence, i.e.

f(xk+1)§f(xk)7 k:0717"'7
and the sequence {x;} C {x : f(x) < f(x0)} is a bounded sequence, due to the strict

convexity of the objective function f. If Kgyy is the set of indices corresponding to the iterates
generated by the gradient method, Kay is infinite, the subsequence {xj : k € Kam} is
bounded and it admits at least one limit point. Then, from [36, Prop. 1.2.6] it follows that
every limit point of the subsequence {x, : k € Kqn | is a stationary point. Since f is strictly
convex, the solution x* is the only stationary point of problem (1). As a consequence, there is
a subsequence of {xj} that converges to x* and {f(xj)} converges to {f(x*)}. In particular,

we may write

Flok) =) = VA6 T ot = x) 3 ek — %) T2 G —) > 20 g 2

Since {f(xj)} converges to {f(x*)}, the previous inequality implies that {x} converges
to x*.
(b). Let xj41 be the point generated from xj, via the acceleration step [2D] (or equiv. [1D]),
whereas let denote by X4 the point generated from xj, via the exact minimization rule. By
definition, we have

f&hp1) < f(Rpg)
where the strict inequality holds for 8 > 0. Then, from [36, Prop. 1.3.1], we have

) 2
o) =) < Fusn) S < (RT3 () - 1)

Let now consider the case where the stepsize oy, at Step 15 of Algorithm 1 is determined
by the Armijo rule. If Xj4 is the iterate generated via the Armijo rule, by using a similar
argument to the previous case, one can conclude

4>\min50(1 — 0)

AIIlEi,X

) = F6*) < F(Rpsr) — F) < (1 -) (F(x) — F(x%)).

where the second inequality follows from [36, 1.3.11]. O

In cases where the earlier theoretical result is not applicable, performing a finite num-
ber of acceleration steps ensures that the convergence behavior of the underlying
gradient methods is recovered.

To gain a preliminary understanding of the impact of acceleration steps in gradient
methods, such as the Cauchy SD method and the Relaxed Cauchy SD (RSD) method
[41], we examined two different randomly generated problems with n = 500 variables,
and k(A) equal to 103,108, respectively. For these problems, we set v = 0.5, y =
00, maxiter = 5000, tol = 10~°. For each problem, we considered two different starting
points with random components in [0,1]: x , such that (xJ)"Ax{ > bTx{, and
x, such that (xg)"Ax, < b'xg. In the following, the prefix “A” will denote the
accelerated algorithms; subscript 1 or 2 will be used according to whether step [1D] or
[2D] is used. A primary objective of this numerical experiment is to verify the ability
of steps [1D] and [2D] to promote the balance between the linear and quadratic terms
of the objective function. It is therefore interesting to compare the practical behavior
of the two sequences {b'x;} and {x; Ax;}. In Figure 2 and Figure 3 is reported
the convergence history for the first iterations of the two sequences for the different
algorithms.

11

SD, k(A) = 10° A_SDy, k(A) =10° A 8Dy, k(A) = 10°

— [Azy — ¢
-~ e — o]

— [T Az, — &
~— [z — o]

— |z} Azy, — ¢*
- [z — ¢

0

20

107
1

Ll
] “‘l# q‘l"""‘"‘“ ~w,

R

o 20 40 60 80 100 20 40 60 80 100] 20 40 60 80 100
iterations iterations iterations

SD, k(A) = 10° A_SDy, k(A) = 10° . ASDy, k(4) =10°

“’Bi 8 10
] — |2T Axy, — ¢*| | — \ng:vk —¢* — |z Azy, — 47
., —— [pray, — ¢*| | - = [tz — 47|
10t i\’ Y I
N?‘,'vl\“:
Wit R
S e
i
i
10° - L. 10° g . : ’
20 40 60 80 100 o 20 40 60 80 100
iterations iterations iterations
RSD, k(A) =10° A_RSDy, k(A) =10° A_RSD;, k(A) =10
Wl sl] An—g]
il Skl - - bz —]
10%
T i
sy
wp He 11 \’”‘V”“.’.nuv\ﬁ“\‘\,\ 100
iy : v g A
I
10?2 - 102
o 20 40 60 80 100 o 20 40 60 80 100
iterations iterations iterations
) RSD, k(A) = 10° . ASRDy, k(4) = 10° . ARSD,, k(4) =10°
10%f 10 10°
f == lefAzk - ¢ = \wa:vk =igF = \w;Azk — ¢
' —— bz — " o —= bl ay — ¢ 0 - = bz — ¢
B
n
o Mg st !
b A L et PIRTTT RN 1
A
W Py
m"’
[20 40 60 80 100
iterations iterations iterations

Fig. 2 Convergence history for Linear and quadratic terms: Accelerated vs Standard algorithms,
starting point xar,

The impact of utilizing the [2D] and [1D] steps is quite significant, effectively
driving the reduction of the gap between the quadratic term and the linear term in very
few iterations. This is particularly evident in Figure 2, which refers to the case where
xa' is chosen as the starting point. In our view, this is the most significant case, as at
a randomly chosen point one would expect the quadratic term to dominate the linear

term. In this case, the gap between the two terms is quite evident, with the quadratic

12

09

07
06
05

0.4

03

02

SD, k(A) = 10° A_SDy, k(A) = 10° A_SDy, k(A) = 10°
—[o Azy, — 67| — [Amy - 4[] % — e} Az — ¢']
- = [p" @, — ¢ el Ui St A 0 - = [b"ay, — 47|
i 0.5
0.4
0.3
02
2 3 4 \ & 3 4 5 1 2 3 4
iterations iterations iterations
SD, k(A) = 10° A_SDy, k(A) = 10°

A_SDs, k(A) = 10°

09
0.8

06
05
04

03

02

)
— |aj Az — ¢

— |af Azy — 7|

T x| |] -
S “) T ¢ | |3 06
3 0.5
0.4
03
02
2 3 4 2 3 4 5 1 2 3 4
iterations iterations iterations

RSD, k(A) = 10°

A_RSDy, k(A) = 10°

A_RSDs, k(A) =10°

5 09 = —H 0. ===
— |zf Az — 97| o — |af Az, — ||} o — |af Azy — ¢
-]szk- — (15*‘ 06" S \bTIk — ¢*| ‘; 06 —_— |bTIk — ¢*]
05F 3 05
04: 0.4
n.aé 03
02r 02
2 3 4 2 3 4 5 1 2 3 4
iterations iterations iterations
RSD, k(A) = 10° A_SRDy, k(A) = 10° A_RSD,, k(A) = 10°
10° 10°
— |of Azy, — ¢*| — |2l Azy, — ¢*|
—— b — ¢ —— [Pz — |
2 3 4 2 3 4 5 ‘DV‘I 2 3 4
iterations iterations iterations

Fig. 3 Convergence history for Linear
starting point x .

term much larger, and both Algorithm SD and Algorithm RSD tend to reduce this

and quadratic terms: Accelerated

gap very slowly. As expected, ill-conditioning accentuates this phenomenon.

Regarding the convergence of the algorithms under consideration, with starting
point xa' to the solution, an overall picture is provided in Figure 4. It should be
noted that 0 was also tested as a starting point for the standard algorithms (denoted
by the suffix (0)). This is because this choice ensures a perfect balance between the

13

vs Standard algorithms,

quadratic and linear terms. In practice, however, it proves to be a poor choice. For
the problems under consideration, the use of acceleration steps significantly improves
the convergence compared to the underlying gradient method. However, a complete
picture of the performance of the different algorithms, also depending on the choice of
the starting point, will be given by the extensive numerical experiments in Section 4.

k(A) = 107 7 E k(A) = 106

===A_RSD,

i
~—,
~——,
~—, 1
—
~
——
——

o 100 200 300 400 500 600 700 800] 100 200 300 400 500 600 700 800

Iterations Iterations

Fig. 4 Convergence history (first 800 iterations): standard gradient methods vs accelerated gradient
methods.

3 The bound constrained case

We will now examine the application of acceleration steps in constrained optimiza-
tion problems. Specifically, we will focus on the bound-constrained convex quadratic
problem (BCQP)
min f(x) =1 x' Ax —b'x, ()
st.xeQ={l<x<u},
where A € R" " is symmetric positive definite, b € R™", 1 € {RU{-00}}", u €
{R U {+oc}}", and, without loss of generality, 1(i) < u(i) for all i. For any x € Q we
define the following index sets

Aij(x) == {i:x(@) =100)}, Au(x) := {i: x(1) = u(i)}, Ax) := A(x) U A, (x),
B(x):={i: (1€ A4(x)AVfi(x) >0) V (i € A,(x) A Vfi(x) <0)},
F(x):={1,...,n}\ A(x), W(x) :={1,...,n}\B.

A(x), B(x), F(x) and W(x) are called the active, the binding, the free and the working
sets at x, respectively.

The concept of binding, or strongly active variable, is of fundamental importance
for optimality conditions and has been generalized to the case of linearly constrained
quadratic problems in [42]. The optimality conditions for linearly constrained problems

14

can be stated componentwise in terms of binding components: x* is solution of (9) if
and only if Vf;(x*) = 0 for any ¢ € F(x*) and B(x*) = A(x*). In order to simplify
the notation, we also define

AT = AXY), A = A(x7), AL = A, (x7).

Given p,o € (0,1), a generic iteration of the Gradient Projection (GP) method for
problem (9), equipped with an Armijo linesearch rule, can be defined alternatively as

Xpp1 = XE[0,v,d] = Po(xy + Ovd), (10)

or

X1 = X2 [0,v,d] = x5, + (P (xx + vdy) — xz), (11)
where v > 0 is a steplength and 6 € (0,1) is the linesearch parameter. In particular,
6 is selected via a backtracking strategy as § = p”, where h is the first nonnegative
integer such that

F&ilp" v, di]) < f(xi) + oV f(xp) T (Rilp", v, di] — xi).

The projected-search in (10) explores a path that is piecewise-linear and contin-
uous. This path is generated by projecting the search direction dj onto the feasible
region €. In contrast, the line search method in (11) searches along the direction given
by di = Pq(xx + vdi) — xi. For the Gradient Projection (GP) method, convergence
can be assured regardless of which of these two strategies is implemented [43]. However,
if a descent direction dy is selected that differs from the antigradient, the situation
becomes considerably more complex. In such cases, achieving even a simple decrement
along the search path is not straightforward. The two examples illustrated in Figure 5
provide a clearer insight into this issue. In the case shown on the left, the linear path
does not allow for any decrease in the objective function, while the piecewise path
does. In the case depicted on the right, neither path permits any displacement from x.

d E Vi)

P(x+d)

\V x=P(x+d)
~vie

Fig. 5 Sketch of projected paths.

15

Algorithm 2, called APGM, is a variant of the AGM algorithm adapted to convex
quadratic problems with bound constraints. Specifically, APGM is a very general GP
method, where acceleration steps are computed at selected iterations and involve only
those variables whose indices belong to the current working set.

Algorithm 2 Accelerated Projected Gradient Method (APGM)
1: Initialization: xo € R"; &k = 0; v,0 € (0,1); 0< qmin < Qmax; M > 1;
maxiter, u € N; tol > 0;
2: 8o — AXO — b7
3. while ||gi| > tol- ||go|| and & < maxiter do

4: k‘ =]’(’ —+ 1,
e () TgrY — — WHT W
5 if TV = 7 OF mod(k,) =0 or (k=1 and (x;") "' g/’ > 0) then
k k
6 Either:
7 X1 = Xk — 8k — BeXp
8 where (g, Bx) = argmin,, 4 f(xx — ag)’ — x)) [2D]
9 di = Xp+1 — Xk
10: Xk+1 = PQ(Xk + phdk)
11: where h is the first nonnegative integer such that
12: f(Pa(xk + pdy)) < f(xx)
13: Or:
14: Xpt+1 = Xk — BpXp o
. . b
15: where (ag, k) = (0,argmin,, 4 f(x; — 8x)Y)) =1 — (ka,V);chgv [1D]
16: dk = 5(]@4_1 — Xk
17: Xp+1 = Po (Xk + phdk)
18: where h is the first nonnegative integer such that
19: f(Po(xk + phdk)) < f(Xk)
20: else
21:) € [min, Omax] 18 computed by any stepsize rule
22: ikJrl = X — L8k
23: dk = PQ (ik+1) — Xk
24: Xp+1 = Xk + prdg
25: where the steplength py satisfies the generalized Armijo condition [44]:
26: f(xx + prdr) < maxo<j< e a1y f(Xe—j) + oped) gk
27: end if

28: end while

We note that, in the acceleration steps, Xx41 is computed via a line search along
the piecewise-linear path x1 [p], rather than the linear path x[p]. This is because the
latter is not guaranteed to satisfy a descent condition, whereas for sufficiently small
p > 0 one has f(x/][p]) < f(xx), as established in the following proposition.

Proposition 6 Let x € Q,d € R", d # 0 with d(i) = 0 if i € B(x). If f(x+d) < f(x),
then there exists p > 0 such that f(x[p]) < f(x) for p € (0,p), where x[p] := Pqo(x + pd).

16

Proof 1f we define the index set Z(x) as follows:

) . x(1) € (1(i),u(s)) and i € W(x),
1 € Z(x) if one of the
ollowing conditions holds x(i) =1(i), d(i) >0 and i € W(x),
foll g condit hold x(i) = u(i), d(i) <0 and i€ W(x),

then, for p > 0 sufficiently small

) x(1) + pd(z) ifi € I(x),
x[pl(3) = { x(i) i ¢ T(x).
Note that, because of the convexity of the objective function one has
0>Vfx) d= > gid@)+ Y g@d()
i€Z(x) 1EW(x)\Z(x)
where g = V f(x), and since 3~)y (x)\7(x) 8(1)d (i) > 0, it follows

> gli)d(i) < 0. (12)

1€Z(x)
Observe that
— Z(x)
and because of (12) the thesis follows. O

As in the uncostrained case, the convergence of the APGM scheme is ensured by
the convergence of the GP iterations (steps 22-26 of Algorithm 2) to a constrained
stationary point and by the result established in Proposition 6 . In particular, using
similar arguments to [45, Thm. 5.1], we can prove the following proposition.

Proposition 7 Let z* be solution to problem (9) and let {xp} be an infinite sequence
generated by Algorithm 2. Then {x;} converges to x*.

Proof First of all, we notice that the line search condition at step 26 of Alg. 2 guarantee
that the sequence {xj} remains in {x : f(x) < f(xg)} (see [44, Thm.-Sec. 3]), which is a
bounded set due to the strict convexity of the objective function f; then {x;} is a bounded
sequence. If Cqp is the set of indices corresponding to the iterates generated by the gradient
projection method, Kgp is infinite, the subsequence {x}, : k € Kgp} is bounded and it admits
at least one limit point. When a monotone version of the Armijo-like condition is considered,
Theorem 5.2 in [46] guarantees that every limit point of the subsequence {xj : k € Kgp}
is a constrained stationary point for problem (4). On the other hand, for M > 1, the same
result can be ensured by [18, Thm. 2.4] combined with Proposition 6. In both cases, since f is
strictly convex, the solution x* is the only stationary point of problem (1). As a consequence,
there is a subsequence of {x} that converges to x* and {f(x;)} converges to {f(x*)}. In
particular, we have

Fxi) = F(x) = Vi) T (g —x7) + %(Xk —xN) TV () (xp — x¥) >)\L;HX/@ -x*|%,
where the inequality is guaranteed by the stationarity condition

Vix")(x—-x")>0, vxeQ.
Since {f(x)} converges to {f(x™)}, the thesis follows. O

17

A complexity result about Algorithm 2 can be obtained for the case M = 1, under the
assumption of Lipschitz continuity of the gradient of the objective function. Indeed,
when Vf is Lipschitz continuous and a monotone Armijo linesearch is performed at
step 26, Theorem 3.2 in [47] is applicable, yielding the convergence rate O(1/k) on the
objective function value. Let observe that V f is Lipschitz continous when f is a twice
continuously differentiable function over a bounded set. Then, the Lipschitz condition
assumption of Vf on Q for problem (4) is satisfied.

Proposition 8 Let z* be the solution of problem (9), and let {x}} be the sequence generated
by Algorithm 2 with M = 1. Then we have

o) = 1) =0 (1)

Proof Let xj41 be the point generated from xj, via the acceleration step [2D] (or equiv.
[1D]), and let denote by Xj41 the point generated from xj, via the monotone Armijo rule at
the step 26 of Algorithm 2 (case M = 1). By observing that

f&nkt1) < f(Rit1)
the proof of the statement follows from [47, Theorem 3.2]. O

As in the quadratic case, when the prior theoretical result fails to hold, applying
only a finite number of acceleration steps suffices to recover the standard convergence
behavior of the underlying gradient projection methods.

4 Numerical experiments

We evaluated the performance of the AGM using three gradient step options: BB1,
BB2, and ABB,,i, [9], comparing them via performance profiles [48, 49]. The numer-
ical tests were designed to assess how the embedded acceleration steps influence the
behavior of these gradient methods. To this end, we examined randomly generated
QP and BCQP test problems, varying features such as matrix dimensions, condition
numbers, and initialization strategies. This experimental setup allows for a compre-
hensive analysis of the efficiency and robustness of the acceleration strategy across
different scenarios.

The experiments were performed in the MATLAB R2024b environment on a 14-
inch MacBook Pro equipped with an Apple M3 Pro chip and 18 GB of RAM, running
on macOS Sequoia (Version 15.6.1).

4.1 Unconstrained convex QP

We considered test problems of type (1) that were randomly generated using Mat-
lab functions, with dimensions 1000,5000,10000 and condition number x(A) €
{10*,10%,10%,107}. The problems were designed to vary both the features and prop-
erties, altering not only the conditioning but also the method used to generate the
vector b. The aim was to create variability in the relationship between the linear term

18

and the quadratic term. In the first set of problems, the eigenvalues were designed
to follow a uniform bimodal distribution. Specifically, half of the eigenvalues were
uniformly sampled within the range [0, 0.2], while the other half were uniformly sam-
pled in [0.8,1.0]. These values were then rescaled to span the interval [1,x(A)]. In
the second scenario, the eigenvalues were logarithmically distributed over the inter-
val [1,x(A)]. This distribution was achieved using the logspace function in Matlab,
which produces values equally spaced on a logarithmic scale. In the third scenario,
the eigenvalues were linearly distributed between 1 and x(A) through the linspace
function in Matlab, offering a smooth and uniform progression of eigenvalues, thereby
representing a distinct structure of the Hessian matrix compared to the previous cases.
The algorithm parameters were set to v = 0.5, tol = 10~7 and maxiter = Sn. We
then considered two different ways to generate the right-hand side vector b and the
solution x*. In the first way, b was computed as b = A - x*, where x* was randomly
generated with unit infinity norm. To introduce variability into the problem setup,
x* was generated in three different ways, using the MATLAB functions rand, randn,
and finally using sprandn with a sparsity of 0.4. The initial guess for the solution,
Xp, was randomly generated with components in [—5, 5] for each trial. Each test case
was run 5 times, with a different random seed for each run to account for randomness
in initialization and step size selection. This approach allowed a thorough evaluation
of the robustness of the methods under different initial conditions. For the first simu-
lation, we ran a total of 540 problems. In the second strategy, b was set as a vector
of ones and we have a total of 180 problems. The initial guess xo was also generated
randomly with components in the interval [—5, 5]. For BB1, BB2 and ABB,;, we also
considered xg = 0 as the starting point (reported as BB1(0), BB2(0) and ABB,,,;,(0)
in the performance profiles).

It is important to note that for quadratic problems where ||b|| is very small, the
results might be misleading. In such cases, only a few acceleration steps — just one
if |b|]| = 0 — may lead directly to the solution. In contrast, gradient methods do not
gain significant advantages when applied to purely quadratic problems, like those in
[41]. For this reason problems with such characteristics were removed before making
our performance profiles.

TOL=10"7,v=0.5,7=0.1

£

Fig. 6 Comparison of BB1, BB2, ABB,iy: standard and accelerated versions.

Figure 6 illustrates a comparison of the three selected algorithms across the three
versions analyzed. The performance profile on the left shows how ABB,,;, outperforms

19

both BB1 and BB2 algorithms. We also note that using 0 as a starting point does not
seem to offer any advantage over random selection. Therefore, we consider only the
latter in subsequent comparisons.

We include all three steplength strategies in our numerical experiments, since our
goal was not to design a specific algorithm but rather to understand the effect of
acceleration steps within different gradient strategies. Notably, the hierarchy among
BB1, BB2, and ABB,,;, shifts when moving to the accelerated versions. In particu-
lar, the advantage of ABB,,;, is strongly reduced in comparison to BB2. The ABB,,,i,
strategy avoids stagnation in BB2 algorithm by occasionally incorporating BB1 steps.
The performance profiles in Figure 6 suggests that adding acceleration steps to BB2
is sufficient to prevent this problem, making the use of BB1 steps unnecessary, if
not counterproductive. Figure 7 illustrates the performance profiles of the algorithms
BB1, BB2, and ABB,,j,, in comparison to A_BB1; and A_BB1;, A_LBB2; and A_BB2,,
A_ABB,in1 and A_ABBiu2 respectively. The performance profiles show that accel-
eration clearly improves the performance of the gradient methods, without showing a
significant difference between the use of the [1D] or [2D] steps.

To better understand the effectiveness of our acceleration strategy in relation to
the conditioning of the problems, in Figure 8 we compare the scenarios where x(A) =
10* and x(A) = 107. The results clearly show that the impact of acceleration is
greatest in the most poorly conditioned problems. This supports our conjecture that
in ill-conditioned problems far from the solution, the linear and quadratic terms are
typically badly scaled. Consequently, the effect of restoring balance between them is
more pronounced.

TOL=10"",v=0.5,7=0.1
1

Fig. 7 Standard vs accelerated BB algorithms.

20

k(A) = 104, TOL = 107,y = 0.5, 7 = 0.1

1 1 = 1
e ’
9 ¢ 09 - ’ l 09
.) £
f.-f' 08¢ & 08
orf! ; 07
! o
!_,,-"" 08! f,”' 086 _
v ; -
o Sosf & Sos !."
& & o 5 F.
F — ABBI1, | —ABB2 o4 :
..... BB1 03 _;-—* e ERD: 03
BB1(0) 02| ‘ BB2(0) 02
— -ABBI, i - -A_BB2,
01 | I ——, 0.1
0 o
4 T 1 4 7 1 4 7
p P P
1
= — A BBl,
08 g e BB1
o7y BB1(0)
- -A_BB1;
0.6
—_
Ses I g
04 __,f.r e
-
-
03 — it
o g
02 = o
3 #
0.1 e 0.1 4 0.1 F
0) o
1 4 7 1 4 7 1 4 7
P P p

Fig. 8 Performance profiles: problems with x(A) = 10* and x(A) = 107.

A comparison between the [1D] and [2D] acceleration steps reveals that the latter
is generally more reliable. We conjecture that when the quadratic and linear terms
are well balanced, a step focused solely on the quadratic term may not be entirely
appropriate. In other words, if the quadratic term szx;.C is very large with respect
to the linear term b 'xy. minimizing in the affine subspace generated by x; can be
extremely useful; this is what happens at the first iterations when usually the two
terms are very unbalanced. Otherwise, minimizing in the subspace generated by x
and gj may prove to be a safer choice. Therefore, [2D] steps in the AGD framework
may give more robustness to the overall strategy.

4.2 Bound constrained convex QP

We analyzed test problems of type (9), which are based on those introduced in [50].
Each problem is defined by the following parameters: the dimension of the problem
n € {10000,20000} and the condition number x(A) € {10%,10°,10%}. The components
of the optimal solution x* are sampled from a uniform distribution in (—1,1) and
b = Ax*. The Hessian matrix A is defined as follows:

A=GDGT,
where D is a diagonal matrix, and G is constructed as

G = (I-2psp3)(I—2p,p;)(I —2p1py),

with p;, j € {1,2,3} being unit vectors randomly generated.

21

The diagonal elements of matrix D are specified as follows: for every i, the element
d;; is determined by 1071 (0810(x(4)) The set A* is partitioned into subsets A7 and
A in the following manner: for each i € A*, a random variable v; € (0,1) is produced.
The index i is allocated to A} if v; < 0.5, and to A}, otherwise. The lower and upper
bounds | and u are defined as:

—1, i¢ A, 1, i¢ A",
1(6) = < x*(i), i€ A, and u(l) =<1, i€ A,
-1, 1e A, x*(i), i€ Af.

We thus generated a total of 54 strictly convex constrained problems with nonde-
generate solutions. The algorithm parameters were set as follows: v = 0.5, p = 100,
tol = 1077, and maxiter = 8n. We additionally set ain = 107'°, amax = 109, and
M, = 10, which are typical values from the literature (see, e.g., [9, 24, 41]).

k(A) =10* — 105, TOL =107,y = 0.5
F

Fig. 9 Comparison of BB1, BB2, ABB,i,: standard and accelerated versions.

As a preliminary analysis, Figure 11 shows the convergence history for three rep-
resentative problems with n = 20000 variables, corresponding to condition numbers
k(A) = 10%,10°, and 10°. These examples illustrate the overall behavior of the algo-
rithms under consideration. The gap between standard and accelerated algorithms
appears less pronounced compared to the unconstrained case, but it remains signif-
icant. The computational results for the entire set of test problems are summarized
in the performance profiles in Figures 9 and 10. The performance profile on the left
of Figure 9 shows that, as in the unconstrained case, ABB i, is the best performing
algorithm, followed by BB2. In contrast, BB1 is noticeably the least competitive of
the three algorithms under consideration. Interestingly, when we move to the accel-
erated algorithms, the ranking remains consistent among the three, unlike in the
unconstrained case.

About the comparison between standard algorithms and their respective acceler-
ated versions, the performance profiles in Figure 10 confirm the effectiveness of the
acceleration strategy, particularly for problems with higher condition numbers.

22

k(A) =10 —10°, TOL =10"7,v=0.5 k(A)=10° TOL=10"",v=0.5

[— A_ABB o | — A_ABBinz
........ A_ABBpim . s A_AB By
- ABBw ABB
2 3 017 2 3
P 4
A BB2, — A_BB2,
A_BB2; o N = AR A_BB2;
: BB2
3 4 5 o 2 3 4 5

4| — A BB1,
ol e A_BB1,
| BB1
o' 0!
1 2 3 1 - 3
P P

Fig. 10 BCQP problems. BB Gradient methods vs accelerated versions.

@) - 1@
fa®) - 1(a*)

iterations iterations

iterations

Fig. 11 A_ABBpnin vs ABBpyin: BCQP test problem with 20000 variables. Convergence history.

Although less pronounced than in the unconstrained case, the benefits of using
acceleration steps still justify their use. As for the unconstrained case, the option [2D]
appears to be more reliable than [1D] for the acceleration steps.

23

5 General unconstrained minimization

We now discuss the extension of our acceleration strategy to the general unconstrained
optimization problem:

min f(x),

where f : R™ — R is a differentiable objective function. It is not straightforward to
directly extend the 2D minimization phase. For a general nonquadratic function, in
fact, the 2D minimization subproblem min, g f(xx —agr — /%)) does not have a closed-
form solution. Our aim is to capture the central idea of the 2D acceleration strategy
by combining the steepest descent direction g; with a second direction dj in selected
iterations of a generic gradient method. As for the quadratic case, because we want a
search direction to be a linear combination of g and dj, we consider the problem

argmin ¢ (o, 8) = f(x — ad; — Sdy) (13)
where d
~ gk ~ k
1= and d2 = — . (14)
gkl ([dll

We propose to compute an approximate solution of (13) performing a single line
search step from 0 € R? along its steepest descent direction. Notice that

o (~VFe) @Y _ (el
VW(O) - <Vf(Xk)T(a2)> = (_%kd;j_lk) .

A steplength 7, > 0 is computed that satisfies the Wolfe conditions [51] for Uy, which
ensure sufficient decrease and curvature:

Vi (0 — 1, Vi (0)) < P (0) — camy, || Vi (0|2

= ¢k(0) — cam (||gk||2 + (igjky) (15)

—a ||V (0)]?

= —aa(ll? + () (16

Vi, (0 — leVZZJk(O))T — Vi(0))

Y

where 0 < ¢; < ¢o < 1 are two constants. It is interesting to note that conditions
(15-16) can be reformulated as Wolfe conditions for f(x) as follows:

F(xi —mepr) < f(Xk) — 1Tk, P
Vf(xr — mPr) Pr < cog) Pi

where

d;gk ~ v
Pr = 8k +dkw = ||ng (gk +dg COSQk) . (17)

24

In order to justify the use of the normalized directions (14), let us consider

= f(xk — age — Bdy) (18)

instead of ¢. The Wolfe conditions for (18) implie Wolfe conditions for f(x) along:

R d,"’
br. = llgxl e + drgl di = [lgill? (gk + ﬁd) - (19)

It is straightforward to show that the direction (17) is invariant with respect to the
scaling of the objective function f(x), as long as dj is also invariant, contrary to
what happens for (19). Furthermore, the search direction py satisfies other important
theoretical properties. Specifically, the descent direction —pj, satisfies the direction
assumptions required by Dai in [52, eq. (16)-(17)] and by Hager and Zhang (2004) in
their nonmonotone line search algorithm (2.4 and 2.5 in [53]):

(dg)
_pggk - _gl;rgk - ||zk||2 S _”ngQ,
(d) gr)?

PLPk =&, 8+ 3 < (1+30)lgx

ISl

We are now able to present the G_LAGM (Generalized AGM) for general nonlinear
optimization problems.

Algorithm 3 G_AGM (Generalized AGM)
1: Initialization: xg € R"; k = 0; v,0 € (0,1); 0 < qmin < Qmax; M > 1; maxiter;

e N;
2. go = Vf(x0);
3: while stop_condition do
4: k = k + 1
5: compute dj
6: if acceleration_condition then
7: Pk:—(ngrdkﬁijﬁ)
8: else
9: Q) € [min, Omax] 18 computed by any stepsize rule
10: Pr = —k8k
11: end if
12: Xk4+1 = Xk + PkPk
13: where the steplength pj, satisfies the generalized Armijo condition [44]:

14: F(Xk + pePr) < Maxo<j<min(e,m—1) f (Xp—j) + apkngk
15: gkt1 = VI (Xpt1)
16: end while

25

The R-linear convergence of the scheme can be guaranteed assuming that f is uni-
formly convex. Indeed, in this case, given that py satisfies conditions (16) and (17) in
[52], the result is ensured by [52, Theorem 3.1]. G_AGM provides a very generic scheme,
allowing considerable freedom both in the choice of the auxiliary direction dj and in
the choice of the steplength rule adopted in the gradient method strategy. Another
crucial point is to establish an appropriate criterion (acceleration_condition in
Algorithm 3) for activating the acceleration strategy that does not adversely affect
the convergence properties of the underlying gradient method. All these issues will
be explored in depth in future work, comparing different choices and strategies. Note
that with this choice the search direction s, = agjp + Bdy can be interpreted as the
gradient of the function

1
af(x) + 5B,

which brings us back to the observation made previously for the quadratic case
concerning (7).

5.1 Numerical experiments

We present some very preliminary computational results that provide an initial
overview of the potential of our approach. Motivated by experiences gained with the
algorithm in the quadratic case, in our computational experiments we set

dk = Xk-

We used the same acceleration condition and stop_condition as in Algorithm 1
(line 5), with tol, = 1077, toly = 10710, maxiter = 10%. In addition we set a maximum
number of acceleration steps equal to 5, and an additional stopping criterion on the
stagnation of the objective function:

|f(xx) — f(xk—1)| < tolsy [f(xx)l,

with tolsy = 10™*. For the steplength selection in the gradient iteration we considered
the ABB,i,, with parameters setting as in the previous experiments.

Alternatives for dj and more effective rules to be used in the acceleration
condition are currently being studied and will be the subject of a forthcoming work.

First, to illustrate the previously discussed property of scale invariance of (17) with
respect to (19), we made some computational experiments with the tridiagonal?2
function f(x) with 500 variables from the CUTEst [54] collection. Namely, we run
Algorithm 3 on the function f“(x) = wf(x) for various values of the scaling factor w.
The results shown in Table 1 demonstrate the clear superiority of py vs py in terms
of stability.

In order to obtain a preliminary but, in our opinion, useful idea of the effective-
ness of G_LAGM, we run it on a set of 100 unconstrained optimization problems from
the CUTEst collection by Andrei [54]. The results are presented in Table 2, which
compares G_LAGM equipped with ABB,,;,, rule and the corresponding gradient scheme
without acceleration steps. Our analysis excludes instances where the algorithms either

26

w iterations

Pr Pk

10—3 31 48

10~2 30 39

101 30 48

1 30 84

10t 29 39

102 31 49

103 31 34
Table 1 pj vs P on the tridiagonal?2

problem.

converged to distinct local minimizers (indicated by *) or exceeded the maximum iter-
ation limit without converging (indicated by -). On the remaining 84-problem subset,
the accelerated algorithm required fewer iterations in 58.3% of cases. For the remaining
instances, it performed worse in 28.6% of cases and equally in the rest. We also note
that the test set includes quadratic problems, where the acceleration strategy again
demonstrates its efficiency, corroborating the findings from the AGM experiments in
Section 4. About the non quadratic problems, the results appear quite promising,
although not yet completely consistent. Our initial experiences show that, compared
to the quadratic case, the accelerated algorithm appears to be much more sensitive
to the choice of parameters. We also believe that an appropriate alternative choice of
direction dj should be considered very carefully.

6 Conclusion

Gradient methods remain a cornerstone of numerical optimization, warranting the
continued exploration of performance-enhancing variations.

The introduction of acceleration steps within gradient methods, presented in this
paper, appears as a possible strategy with promising prospects. In particular, for con-
vex quadratic problems, considering the contribution of the linear and quadratic parts
of the objective function could be useful in designing line searches in acceleration steps.
Numerical experiments on convex QP test problems indicate that BB gradient meth-
ods, modified with our acceleration strategy, show improved convergence performance.
While our analysis is preliminary and requires further investigation on more general
and challenging problems, this work represents a first step in that direction through
an initial extension of the accelerated algorithm to general nonlinear minimization.

Motivated by the encouraging numerical results, we are currently working on
further developing the approach proposed in this work, with the aim of designing effec-
tive methods for nonquadratic problems, including within the broader framework of
constrained optimization.

Acknowledgments

This work has greatly benefited from discussions with Valeria Ruggiero and Luca
Zanni. Their comments and suggestions allowed us to deepen and focus on many

27

issues, particularly those related to problem (4). The authors would like to thank
the anonymous referees for their helpful comments, which helped to improve the
manuscript.

Funding

This work was partially supported by the Italian Ministry of University and Research
(MIUR) through the PRIN 2022 project “Numerical Optimization with Adaptive
Accuracy and Applications to Machine Learning” (Grant No. 2022N3ZNAX) and
the PNRR PRIN 2022 project “A multidisciplinary approach to evaluate ecosystem
resilience under climate change” (Grant No. P2022WC2Z7Z).

References

[1]

Dai, Y.H., Fletcher, R.: Projected Barzilai-Borwein methods for large-scale box-
constrained quadratic programming. Numerische Mathematik 100(1), 21-47
(2005)

Loris, 1., Bertero, M., De Mol, C., Zanella, R., Zanni, L.: Accelerating gradi-
ent projection methods for ¢;-constrained signal recovery by steplength selection
rules. Applied and Computational Harmonic Analysis 27(2), 247-254 (2009)

Serafini, T., Zanghirati, G., Zanni, L.: Gradient projection methods for quadratic
programs and applications in training support vector machines. Optimization
Methods and Software 20(2-3), 353-378 (2005)

Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by sepa-
rable approximation. IEEE Transactions on Signal Processing 57(7), 2479-2493
(2009)

Zanella, R., Zanghirati, G., Cavicchioli, R., Zanni, L., Boccacci, P., Bertero, M.,
Vicidomini, G.: Towards real-time image deconvolution: application to confocal
and sted microscopy. Scientific Reports 3(1), 2523 (2013)

Zhu, M., Wright, S.J., Chan, T.F.: Duality-based algorithms for total-variation-
regularized image restoration. Computational Optimization and Applications
47(3), 377400 (2010)

Akaike, H. Annals of the Institute of Statistical Mathematics 11(1), 1-16 (1959)
https://doi.org/10.1007/BF01831719

Fletcher, R.: A limited memory steepest descent method. Mathematical Program-
ming, Series A 135, 413-436 (2012)

Frassoldati, G., Zanni, L., Zanghirati, G.: New adaptive stepsize selections in

gradient methods. Journal of Industrial and Management Optimization 4(2), 299—
312 (2008)

28

[10]

[11]

[12]

[13]

[14]

15]

[16]

[17]

[18]

[19]

[20]

[23]

Zhou, B., Gao, L., Dai, Y.H.: Gradient methods with adaptive step-sizes.
Computational Optimization and Applications 35(1), 69-86 (2006)

Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA Journal
of Numerical Analysis 8(1), 141-148 (1988)

Fletcher, R.: On the Barzilai-Borwein method. In: Optimization and Control with
Applications, pp. 235-256. Springer, Boston (2005)

Ferrandi, G., Hochstenbach, M.E., Kreji¢, N.: A harmonic framework for step-
size selection in gradient methods. Computational Optimization and Applications
85(1), 75-106 (2023)

Friedlander, A., Martinez, J.M., Molina, B., Raydan, M.: Gradient method with
retards and generalizations. SIAM Journal on Numerical Analysis 36(1), 275-289
(1999)

di Serafino, D., Ruggiero, V., Toraldo, G., Zanni, L.: On the steplength selection
in gradient methods for unconstrained optimization. Applied Mathematics and
Computation 318, 176-195 (2018) https://doi.org/10.1016/j.amc.2017.12.019

Bonettini, S., Zanella, R., Zanni, L.: A scaled gradient projection method for
constrained image deblurring. Inverse Problems 25(1), 015002 (2009)

Antonelli, L., De Simone, V.. di Serafino, D.: On the application of the spectral
projected gradient method in image segmentation. Journal of Mathematical Imag-
ing and Vision 54(1), 106116 (2016) https://doi.org/10.1007/s10851-015-0588-3

Birgin, E.G., Martinez, J.M., Raydan, M.: Nonmonotone spectral projected gra-
dient methods on convex sets. STAM Journal on Optimization 10, 1196-1211
(2000)

Birgin, E.G., Martinez, J.M., Raydan, M.: Inexact spectral projected gradient
methods on convex sets. IMA Journal of Numerical Analysis 23(4), 539-559
(2003)

Pospisil, L., Dostal, Z.: The projected Barzilai-Borwein method with fall-back
for strictly convex QCQP problems with separable constraints. Mathematics and

Computers in Simulation 145, 79-89 (2018)

Gonzaga, C.C., Schneider, R.M.: On the steepest descent algorithm for quadratic
functions. Computational Optimization and Applications 63, 523-542 (2016)

Nocedal, J., Sartenaer, A., Zhu, C.: On the behavior of the gradient norm in the
steepest descent method. Computational Optimization and Applications 22(1),
5-35 (2002)

Crisci, S., Rebegoldi, S., Toraldo, G., Viola, M.: Barzilai-Borwein-like rules in

29

[32]

[33]

[34]

[35]

[36]

proximal gradient schemes for /;-regularized problems. Optimization Methods
and Software 39(3), 601-633 (2024)

Crisci, S., Ruggiero, V., Zanni, L.: Steplength selection in gradient projec-
tion methods for box-constrained quadratic programs. Applied Mathematics and
Computation 356, 312-327 (2019)

Crisci, S., Porta, F., Ruggiero, V., Zanni, L.: Spectral properties of barzilai—
Borwein rules in solving singly linearly constrained optimization problems subject
to lower and upper bounds. SIAM Journal on Optimization 30(2), 1300-1326
(2020)

Birman, M.S.: Nekotorye ocenki dlja metoda naiskoreisego spuska. Uspehi Matem.
Nauk (N.S.) 5, 152-155 (1950)

Forsythe, G.E.: On the asymptotic directions of the s-dimensional optimum
gradient method. Numerische Mathematik 11, 57-76 (1968)

Pronzato, L., Wynn, H.P., Zhigljavsky, A.: In: Pronzato, L., Zhigljavsky, A. (eds.)
A Dynamical-System Analysis of the Optimum s-Gradient Algorithm, pp. 39-80.
Springer, New York, NY (2009)

Powell, M.J.D.: A new algorithm for unconstrained optimization. In: Rosen, J.B.,
Mangasarian, O.L., Ritter, K. (eds.) Nonlinear Programming, pp. 31-65 (1970)

Bartholomew-Biggs, M.: A Newton method with a two-dimensional line search.
Advanced Modeling and Optimization 5(2), 109-127 (2003)

di Serafino, D., Toraldo, G., Viola, M.: Using gradient directions to get global
convergence of Newton-type methods. Applied Mathematics and Computation
409, 125612 (2021)

Bardsley, J., Vogel, C.: A nonnegatively constrained convex programming method
for image reconstruction. SIAM Journal on Scientific Computing 25(4), 1326—
1343 (2004)

Bartholomew-Biggs, M.C., Forbes, A.B.: A two-dimensional search used with a
non-linear least squares solver. Journal of Optimization Theory and Applications
104(1), 181-198 (2000)

Dennis, J.E., Mei, H-H.W.: An unconstrained optimization algorithm which uses
function and gradient values. Journal of Optimization Theory and Applications
28(4), 453-482 (1979)

Polyak, B.T.: Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics 4(5), 1-17 (1964)

Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont, MA, USA

30

[37]

[38]

[39]

[48]

[49]

[50]

(1999)

Chronopoulos, A.T., Gear, C.W.: s-step iterative methods for symmetric linear
systems. Journal of Computational and Applied Mathematics 25, 153-168 (1989)

Lara, H., Aleixo, R., Oviedo, H.: Delayed weighted gradient method with simul-
taneous step-sizes for strongly convex optimization. Computational Optimization
and Applications 89(1), 151-182 (2024)

Andreani, R., Oviedo, H., Raydan, M., Secchin, L.D.: An extended delayed
weighted gradient algorithm for solving strongly convex optimization problems.
Journal of Computational and Applied Mathematics 416, 114525 (2022) https:
//doi.org/10.1016/j.cam.2021.114525

Oviedo, H., Andreani, R., Raydan, M.: A family of optimal weighted conjugate-
gradient-type methods for strictly convex quadratic minimization. Numerical
Algorithms 90(3), 1225-1252 (2022)

Raydan, M., Svaiter, B.F.: Relaxed steepest descent and Cauchy-Barzilai-Borwein
method. Computational Optimization and Applications 21(2), 155-167 (2002)

di Serafino, D., Hager, W.W., Toraldo, G., Viola, M.: On the stationarity
for nonlinear optimization problems with polyhedral constraints. Mathematical
Programming 205, 107-134 (2024)

De Angelis, P.L., Toraldo, G.: On the identification property of a projected
gradient method. STAM Journal on Numerical Analysis 30(5), 1483-1497 (1993)

Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for
Newton’s method. STAM Journal on Numerical Analysis 23, 707-716 (1986)

Moré, J.J., Toraldo, G.: On the solution of large quadratic programming problems
with bound constraints. STAM Journal on Optimization 1(1), 93-113 (1991)

Calamai, P.H., Moré, J.J.: Projected gradient methods for linearly constrained
problems. Mathematical Programming 39(1), 93-116 (1987)

Bonettini, S., Prato, M.: New convergence results for the scaled gradient
projection method. Inverse Problems 31(9), 095008 (2015)

Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Mathematical Programming, Series A 91, 201-213 (2002)

Gould, N., Scott, J.: A note on performance profiles for benchmarking software.
ACM Transactions on Mathematical Software 43(2), 15 (2016)

di Serafino, D., Toraldo, G., Viola, M., Barlow, J.: A two-phase gradient method
for quadratic programming problems with a single linear constraint and bounds

31

on the variables. STAM Journal on Optimization 28(4), 2809-2838 (2018)

[51] Wolfe, P.: Convergence conditions for ascent methods. STAM review 11(2), 226
235 (1969)

[52] Dai, Y.H.: On the nonmonotone line search. Journal of Optimization Theory and
Applications 112(2), 315-330 (2002)

[63] Zhang, H., Hager, W.W.: A nonmonotone line search technique and its application
to unconstrained optimization. STAM journal on Optimization 14(4), 1043-1056
(2004)

[54] Andrei, N.: An unconstrained optimization test functions collection. Advanced
Modeling and Optimization 10(1), 147-161 (2008)

32

Table 2 Performance comparison for ABBy,in with acceleration (acc) and without (noacc);
Aitns = itns(noacc) — itns(acc), ” *” ABBuin(acc) and ABBuin(noacc) went to different

solutions, ” —” method failed to reach the solution. Quadratic problems are in bold.
Aitns iterations Ajitns iterations
Problem acc noacc || Problem acc noacc
APEQUAD 20 169 189 || EXTTET 0 8 8
ARGLINB 0 1 1 || EXTRID1 -17 31 14
ARGLINC 0 1 1 || EXTRID2 0 23 23
ARWHEAD -5 13 8 || EXTRIGONO 13 4 17
BDEXP -3 23 20 || EXWHIHOLST -53 89 36
BDQRTIC 9 73 82 || EXWOOD 454 25 479
BIGGSB1 -216 1861 1645 || EXPENALTY * 3 13
BROTRIDIAG 8 31 39 || EXPLIN1 * 7857 -
COSINE * 60 45 || EXPLIN2 - - -
CUBE -132 1190 1058 || FLETCHCR -564 4272 3708
CURLY?20 530 1442 1972 || FLETCBV3 - - -
DIAGONALI1 5 103 108 || FULLFH1 -9 243 234
DIAGONALS3 12 83 95 || FULLFH2 -598 4448 3850
DIAGONAL4 -7 11 4 || FULLFH3 1 2 3
DIAGONALS -4 9 5 || GENHUMPS -14 1121 1107
DIAGONAL®G - - - || GENPSC1 6 13 19
DIAGONAL7 1 5 6 || GENROSENBR - - -
DIAGONALS 1 6 7 || GENWHIHOLST - - -
DIAGONAL9 11 95 106 || GEQUARTIC 3 9 12
DIAGONAL2 -23 188 165 || HAGER 1 28 29
DIXMAANA 0 6 6 || HARKERP2 19 73 92
DIXMAANB 1 4 5 || HIMMELBG -3 28 25
DIXMAANC 1 5 6 || HIMMELH - - -
DIXMAAND 2 5 7 || INDEF * 36 50
DIXMAANE 8 117 125 || LTARWHD -8 48 40
DIXMAANF 21 79 100 || MCCORMCK - - -
DIXMAANG 89 24 113 || NONDIA -9 16 7
DIXMAANH 72 40 112 || NONSCOMP 0 29 29
DIXMAANI 129 430 559 || NONQUAR 34 113 147
DIXMAANJ 83 108 191 || PERQUAD 17 180 197
DIXMAANK 92 52 144 || PERQUADIAG 2 17 19
DIXMAANL 28 71 99 || PERTRIDQUAD 20 172 192
DIXON3DQ 43 1813 1856 || POWER 943 1295 2238
DQDRTIC -1 14 13 || PPQUADRATIC 19 21 40
EDENSCH 0 18 18 || QF1 12 193 205
EG2 * 165 72 || QF2 28 187 215
ENGVAL1 -3 23 20 || QP1 -7 13 6
EP1 1 3 4 || QP2 7 123 130
EPSC1 1 13 14 || QUARTC 0 1 1
EXBD1 0 15 15 || RAYDAN1 11 87 98
EXBEALE 4 28 32 || RAYDAN2 1 6 7
EXCLIFF * 1 1 SINCOS 1 13 14
EXSCHNB -7 10 3 || SINE 337 871 1208
EXSCHNF 0 15 15 || SINQUAD -6 207 201
EXFREROTH 1 26 27 || STAIRCASE1 107 397 504
EXHIEVERT * 2 11 STAIRCASE2 -85 526 441
EXHIMMBLA 0 14 14 || TDIAGONAL1 -2 18 16
EXMARATOS -50 170 120 || TDIAGONAL2 * 63 78
EXPOWELL 13 92 105 || TRIDIA 44 374 418
EXROSENBR 74 24 98 || VARDIM - - -

33

