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Abstract

In convex geometry, the Shapley—Folkman Lemma asserts that the nonconvexity
of a Minkowski sum of nm-dimensional bounded nonconvex sets does not accu-
mulate once the number of summands exceeds the dimension n, and thus the
sum becomes approximately convex. Originally published by Starr in the con-
text of quasi-equilibrium in nonconvex market models in economics, the lemma
has since found widespread use in optimization, particularly for estimating the
duality gap of the Lagrangian dual of separable nonconvex problems. Given its
foundational nature, we pose the following geometric question: Is it possible for
the nonconvexity of the Minkowski sum of n-dimensional nonconvex sets to even
diminish instead of just not accumulating as the number of summands increases,
under some general conditions? We answer this affirmatively. First, we provide
an elementary geometric proof of the Shapley—Folkman Lemma based on the
facial structure of the convex hull of each set. This leads to refinement of the
classical error bound derived from the lemma. Building on this new geometric
perspective, we further show that when most of the sets satisfy a certain local
smoothness condition which naturally arises in the epigraphs of smooth func-
tions, their Minkowski sum converges directly to a convex set, with a vanishing
nonconvexity measure. In optimization, this implies that the Lagrangian dual of
block-structured smooth nonconvex problems—with potentially additional spar-
sity constraints—is asymptotically tight under mild assumptions, which contracts
non-vanishing duality gap obtained via classical Shapley-Folkman Lemma.



1 Introduction

Consider a block-structured nonconvex program:

k
OPT(b) :=inf Z <c(i), x(i)> (1a)
i=1

k

s.t. Z BWx® < b, (1b)
=1
x@ e x® c R, Vi€ [k], (1c)

where X is a closed possibly nonconvex set of R”, B() e R™*" and b € R™.
Although the objective and the coupling constraints in (1) appear linear, this formu-
lation is general enough to capture nonlinear problems. Indeed, all nonlinearities can
be embedded in the feasible sets X*) by introducing suitable auxiliary variables.

Another important program associated with (1) is the Lagrangian dual (also called
Lagrangian relaxation) of (1) by dualizing the coupling constraints (1b):

k
L(\) i=inf <; <c(’), x<’>>> + <>\, BOx( — b> o)
st xD e XD < R Vi e [k],

and

DUAL(b) := sup L(A). (3)

A=0

The Lagrangian dual is computationally promising because it is always a (non-smooth)
convex program and provides a valid dual bound of (1) regardless of convexity of (1):
OPT(b) > DUAL(b). On the other hand, the Lagrangian dual exploits the block-
structure of (1) so that its subgradient can be obtained by solving L()), which is fully
decomposed into k independent problems. That is, for each fixed A > 0,

B(i)ng) —b e dL(\), where x, := arginf, L()\).

Therefore, given an oracle that minimizing a linear function over each X9, one can
compute subgradient of L(A) and solve (3) via non-smooth optimization methods
[1-3]. This allows distributed algorithm to solve block-structure problems (1) and
it is also known as column generation or Dantzig—Wolfe decomposition [4, 5]. Aside
from computational advantages, Lagrangian dual of nonconvex problems also finds
other applications: sensitivity analysis of nonconvex problems [6], pricing in nonconvex
markets [7, 8], market equilibrium [9] and online algorithm [10, 11].

Many textbooks and notes state that the strong duality, that is OPT(b) =
DUAL(b), holds under certain regularity condition if all X(¥)s are convex. This brings
an impression that such level of convexity is needed for the existence of strong dual-
ity. However, the strong duality actually only requires the convexity of linear image



of (1) onto the space of objective and constraints. More specifically, Let

PO = {(1,d) | Ix e XD, ¢ = (e xO) d = BixD} |
k
P = Z 2
i=1

where we overload standard sum for vectors with Minkowski sum for sets and P is the
Minkowski sum of all P()s. Under suitable regularity conditions, strong duality can be
guaranteed whenever the image set P is convex [12]. In particular, when each set X ) is
convex, the overall set P remains convex because both linear mappings and Minkowski
sums preserve convexity. Therefore, the condition frequently shown in the textbooks
and notes can be viewed as a sufficient condition. Although this distinction may
appear subtle, it is in fact crucial—it underpins several nontrivial results concerning
the strong duality in Lagrangian relaxations of nonconvex programs [13, 14]. A notable
example is the celebrated S-Lemma [13], which establishes that the Lagrangian dual
of a quadratic program with a single quadratic constraint is tight. This result can
be interpreted as a direct consequence of Dines Lemma [15] that the image of two
homogeneous quadratic mappings is always convex.

In this paper, we adopt this perspective and investigate the convexity of P to
ensure the strong duality of the Lagrangian dual of (1). While each individual set P
may be nonconvex, it is possible that their Minkowski sum P closely approximates
its convex hull. This phenomenon is formally characterized by the Shapley—Folkman
Lemma [9]. In the setting where k > n, the Shapley-Folkman Lemma states that

LAY (i) (i)
Vx € conv(P), 3] € (n such that x € Z P+ Zconv(’P ) |-

€[k]\I el

Intuitively, the Shapley-Folkman Lemma implies that every point in conv(P) is close
to some point in P, up to at most n nonconvex summands. If all P(?) are contained
within a ball of radius R, a quantitative measure of this approximate convexity can
be obtained. In particular, under the Hausdorff distance, it has been shown [16] that

di(P,conv(P)) < v/nR.

This quantitative bound can further be employed to derive an a priori estimate of the
duality gap A := OPT(b) — DUAL(b) associated with problem (1) (see Theorem 3).

The Shapley—Folkman lemma was originally introduced by Starr in the study of
quasi-equilibria in nonconvex market models in economics. In this context, it can be
interpreted as an approximate form of strong duality for Lagrangian relaxations. Its
connection to optimization was later developed in works such as [17-19], which used
the lemma to quantify the duality gap of problem (1). More recently, several works
have focused on refining the quantitative bounds provided by the Shapley—Folkman
lemma, particularly on improving estimates of the Hausdorff distance dg (P, conv(P))



or similar notion of nonconvexity; see, for example, [20-22]. An analogue of the
Shapley—Folkman lemma for discrete convex sets has also been developed in [23]

In this work, we seek to refine the quantitative characterization of the Haus-
dorff distance dy(P,conv(P)), given its central role in assessing the tightness of
Lagrangian duals. We begin by presenting a new and elementary geometric proof of
the Shapley-Folkman Lemma, which leverages the facial structure of each conv(P®).
This perspective enables us to refine the classical error bound. Building on this geo-
metric insight, we further demonstrate that the Minkowski sum of the sets P(*)
can directly converges to its convex hull as the number of summands grows, i.e.,
dg (P, conv(P)) — 0 as k — oo, provided enough sets satisfy some mild “local smooth-
ness” condition (see Theorem 4). Such smoothness naturally arises in the epigraphs
of smooth (possibly nonconvex) functions, allowing us to establish that the following
problem admits an asymptotically tight Lagrangian dual as k — co:

k
inf Z FO(x)
* 4

k
st. >, BOx) <b,
i=1
|xD)o < s, Vie [k],

where each f(*) is a smooth (possibly nonconvex) function, and B and s(*) satisfy
some mild conditions (see Theorem 5). Note that we only requires that the sparsity
level s is not too small, i.e., s() > m 41, Vi € [k]. To model problems without spar-
sity constraints, one may simply let s = n,Vi € [k]. To the best of our knowledge,
this is the first result establishing an asymptotically vanishing nonconvexity measures
for Minkowski sums of nonconvex sets within the framework of the Shapley—Folkman
lemma.

This work focuses on Minkowski sum of P(*) without averaging since its con-
vexity directly reflects the duality gap of problem (1). In the classical applica-
tions of the Shapley—Folkman Lemma, the analysis is typically performed on the
Minkowski average of the sets P(). This choice arises because the the error bound
dy (P, conv(P)) does not vanish in the classic analysis of Shapley-Folkman Lemma
but dg (P, conv(P)) is both homogeneous and independent of k, which immediately
yields

du (£P, zconv(P)) < @7
implying a linear convergence of the averaged sum toward its convex hull as k
increases. In contrast, our analysis applies directly to the unnormalized Minkowski
sum. When averaging is applied, our result demonstrates a superlinear convergence
rate, thereby strengthening the classical result.

2 Preliminary

In this section, we introduce several useful notation and results to study Shapley-
Folkman Lemma and the Lagrangian relaxation of (1).



2.1 Notation

For a set A = RY, we define its radius as R(A) := inf cga {r = 0: A < B(x,7)}, where
B(z,7) := {y e R?: |[y—x| < r} denotes the closed Euclidean ball of radius r centered
at z. Given two sets A, B  R?, their Minkowski sum is defined as A+ B := {a+b:a €
A, be B}. For any scalar A = 0, the Minkowski scaling of Ais AA := {\a:a € A}. We
denote by conv(A) = {37", Nia; | a; € A, \; =0, X", \; = 1} the convex hull of
A. The closed convex hull is defined as conv(A) := cl(conv(A)), where cl(A) denotes
the topological closure of A.

2.2 Nonconvexity measure and convex hull operator

Given a set A < R", the exists a rich body of literature on how to measure
non-convexity of A due to its wide-ranging applications in nonconvex optimization.
Throughout this paper, we will focus on two measures:
1. (Hausdorff distance from the convex hull) Given a closed convex set K with 0 in
its interior, we define

OK(A):=inf{r > 0:conv(A) < A +7rK}.

When K is omitted, we refer it as the Hausdorff distance from the convex hull
under 5 norm:

®(A) :=inf{r > 0:conv(4) € A+ rB(0,1)}.

2. (The inner radius of a nonconvex set [9])

[1]

(A):= sup {infR(T):T < A,xeconv(T)}

xeconv(A)

e A
Fig. 1: A and conv(A) Fig. 2: two nonconvexity measures where

pink ball corresponds to ®(A) and green
ball corresponds to Z(A).

In the literature on the Shapley—Folkman Lemma, several measures of nonconvex-
ity have been proposed. The measure Z(-), introduced in the seminal work by Starr
[9], is used to establish the notion of quasi-equilibrium in nonconvex market models
in economics. In this paper, we focus primarily on ®(-), as it is more directly related
to the duality gap in Lagrangian dual (see Theorem 3). Other nonconvexity measures,



exhibiting distinct behaviors and intended for different analytical purposes, are not
listed in this paper; for a comprehensive overview, we refer readers to the survey [16].

Lemma 1 [16, 24] Let A be a subset of R™, then
D(A) < E(A) < R(A).

Claim 1 [16] Given a closed bounded convex set K, ®%(.) are subadditive and positive
homogeneous. That is for any A, B € R" and x > 0, it follows that

®% (A + B) < 5 (A) + ¥ (B);
5 (kA) = kT (A).

Similar results hold for Z2(-).

The analysis in this paper relies heavily on the convex hull operator conv(:).
Two structural properties of convex hulls are used repeatedly: commutativity with
Minkowski sums and commutativity with linear projections. We restate these well-
known facts below for convenience.

Claim 2 [16] (conv commutes with Minkowski sum) Let Aj,..., Ay be nonempty sets of
R"™. Then it follows that

k k

conv <Z AZ-> = Z conv (4;)
i=1 i=1

Claim 3 [25] (conv commutes with linear projection)

conv(P)) = {(t, d) ‘ Ix € conv (X(i)) = <C(i),x(i)>’d _ B(i)x(i)} .

3 Shapley-Folkman Lemma and duality gap of
Lagrangian relaxation

In this section, we state Shapley-Folkman Lemma formally and show how it is related
to duality gap of Lagrangian relaxation.

3.1 Shapley-Folkman Lemma

Theorem 1 (Shapley-Folkman Lemma) Let A1, ..., A} be nonempty closed sets of R™ with
k>=n+1 Let x € conv(Zie[k] A;) = Zie[k] conv(A;). Then there exists T < [k] with
cardinality at most n such that

X € Z conv(A;) + Z A;.

=4 ie[k]\T

Shapley-Folkman Lemma is a direct consequence of Carathéodory’s theorem and
there are many different ways to prove it [20, 21] and we defer our geometric proof



in Lemma 2. Shapley-Folkman Lemma can be interpreted that the nonconvexity of
the Minkowski sum of nonconvex sets, once reaching certain cap depending on the
dimension, will not accumulate as the number of nonconvex sets increase. This phe-
nomenon can be quantified by the following corollary. The proof of a slightly improved
version is provided later in Lemma 4 under the pointedness assumption. In general,
estimating the nonconvexity measures ®(-) and Z(-) is challenging. Many applications
of the Shapley—Folkman Lemma therefore consider bounded nonconvex sets using the
second part of Corollary 1.

Corollary 1 Let Let Aj,...,Ag be nonempty sets of R™ with & > n such that Z(4;) <
B,Vi € [k]. Then it follows that

) ( D Al) <= ( > Ai> < +/nf and therefore @ (; .% Ai) < %ﬁ.

i€[k] i€[k] %
If we further assumes R(A;) < ~,Vi € [k], then it follows that

P ( Z Ai> <= ( Z Ai) < v/ny and therefore ® (
i€[k]

i€[k]

.

e
>3

.Z Ai) <

i€[k]

3.2 Duality gap of Lagrangian relaxation

In optimization theory, a key quantity associated with the Lagrangian dual that
reflects the tightness of the relaxation is the duality gap:

A := OPT(b) — DUAL(b).
In this subsection, we wish to obtain a priori bound on A based on ®(P). To achieve
this, we first use the following primal characterization [26, 27] of Lagrangian relaxation

(bi-conjugacy in convex analysis [28]) to reduce DUAL(b) from min-max optimization
to a minimization problem in the original space. Consider

k
OPTy,(b) :=min Z <c(i),x(i)>
i=1
k . .
s.t. Z BWx(®) = p,
i=1
x e conv(X) < R™, Vi € [k].
Theorem 2 [27, 28] Under proper regularity condition, OPTf(b) = DUAL(Db).

Common regularity conditions required for Theorem 2 include the existence of a
Slater point or the assumption that each conv(X()) is a polyhedron [29, 30]. The
absence of such regularity may result in cases where OPTy(b) > DUAL(b) [30].



Throughout this paper, we exclude these pathological instances and directly assume
that the following equivalence holds:

Assumption 1 OPTy,(b) = DUAL(b).

We finally requires two additional assumption on the geometry of X,
Assumption 2 conv{X )} = conv(X®), Vi e [k] .
Assumption 3 conv(X(i)) is pointed, Vi € [k]. That is, each conv(X(i)) contains no line.

We note that Assumption 2 and Assumption 3 are quite general. They are auto-
matically satisfied when X' is compact or X is an epigraph of a closed 1-coercive
function. Even if each set X® is closed, it is still possible that its convex hull
conv(X¥) is not closed. Therefore, the closed convex hull operator is required in (5)
in general. Since our goal is to compare (5) with (1), additional structures or Assump-
tion 2 are expected. On the other hand, Assumption 3 guarantees that each conv(X (i))
has at least one extreme point, and moreover any such extreme point must lie in the
original set X(¥. The pointedness assumption is subsequently used in Lemma 2 to
describe how the Minkowski sum of pointed closed convex sets decomposes in terms of
their facial structure. This decomposition provides a geometric proof of the Shapley—
Folkman Lemma. We remark that many results in this paper continue to hold—after
modest modifications—even without Lemma 2 and Assumption 3. Nevertheless, we
include Lemma 2 because it gives a clean geometric characterization of Minkowski
sums of pointed closed convex sets and conveys the central theme of this paper: the
local geometry around extreme points impacts the global behavior of Minkowski sums.

As we mentioned earlier, the tightness of Lagrangian dual of (1) directly relies on
the convexity of P = Zle P and we close this section by quantifying A in terms
of (P).

Theorem 3 Let £ := ® (P). Under Assumption 1 and Assumption 2, it then follows that
OPT(b + £1) — £ < DUAL(b) < OPT(b),
and therefore

A < € + OPT(b) — OPT(b + £1).

Proof Under the Assumption 1, we know that DUAL(b) = OPTy,(b).
Let x1, be the optimal solution of (5). By weak duality, we know that

k
OPTy(b) = ). <c<i>, x<Li>> — DUAL(b) < OPT(b). (6)
i=1



(Z) ¢ ')’Xg) ; i (4) (4) i
Let p;’ := .0’ | By Claim 3 and Assumption 2, p'* € conv(P'"). By Claim
BWx

2, Z§=1 p) e Z 1 conv(P(i)) = conv(P). By the definition of ® (P), there exists some

< v x* >] such that

BWx
k
(1) (1)
P - Px

This means that x* is an feasible solution of OPT(b + £1) and therefore

OPT(b + £1) < 7X*> <Z<(’L7XL>>+S.

Combining with (6), this yields that
A = OPT(b) — OPTL(b) < £ + OPT(b) — OPT(b + £1).

x5 € X and p

N

4 Error bounds via Shapley-Folkman Lemma

4.1 Geometric proof of Shapley-Folkman Lemma

In this section, we give a proof of Shapley-Folkman Lemma that utilized the facial
structure of the convex hull of each nonconvex sets.

Definition 1 Given a convex set C, we call a close convex set F' € C is a face of C if for
any line segment [a,b] € C such that (a,b) n F # ¢, we have [a,b] € F. If there exists a
supporting hyperplane H of C such that F' = C' n H, then we call F' an exposed face. The
dimension of face F' denoted by dim(F’) is the dimension of its affine hull.

Lemma 2 Let Aj,..., A, be nonempty sets of R™ with k > n + 1 such that conv(4;) is
closed and pointed. Then for every y € conv (Zi;l Ai)7 there exist faces F; of conv(A;)
such that

k k
yE Z F; and Z dim(F;) <n
i=1 i=1

Proof For any y € conv (Zf 1 Ai), consider y = Zle y; where each y; lies in the relative

interior some face F; of conv(A4;). If Zl 1 dlm(Fi) > n, we show how to find a different y/,
from conv(A4;) so that the total dimension ZZ-=1 dim(F;) is decrease. For each Fj, we can
find a set Vp, of dim(F;) linear independent vectors so that y; &+ ev € F; for all v € V, and
small enough € > 0. Now extending VF, in the space of A; x Ao x --- Ay, we construct

V=Av:=|v|eREI" xR x RFD" vy e Vi Vi€ [K]
0



Clearly, V includes Zle dim(F;) linearly independent vectors. If Zi—czl dim(F;) > n, there
exists d = [dy,d2, - ,dg] € span{V} that

di+do+---+d;p=0
Let [y1,¥5,¥%] = [¥1,¥2, -+, ¥k] + Ad. Since each conv(A;) is pointed, there exists
some choice of A, e such that at least one y; reaches the boundary of F; while keeping other
y/j in F;. In this case, the total dimension Zi;l dim(F;) is decreased and we still ensure that

y = Z‘le y’ for some y’ € conv(A4;). O

Since dim(F;) € {0,1,...,n} and Zi;l dim(F;) < n implies that at least k — n
faces have dimension 0 and are extreme points which lies in A;. Let Z = {i € [k] :
dim(F®) > 0}. It is straightforward to check that

y € Z conv(A4;) + Z A;.

€T i€[k]\T

and therefore Lemma 2 recovers the class Shapley-Folkman Lemma (Theorem 1) under
the pointedness condition.

Moreover, one can further use Lemma 2 to strength the refined Shapley-Folkman
Lemma recently proposed in [20] where the notion of r-th convex hull in [20] cor-
responds to dimension of face F; in Lemma 2 but we additionally requires that the
points used to construct r-th convex hull lie in a r-dimension face Fj.

4.2 Error bounds via randomized rounding

Let A, As,...,Ar be nonempty set of R™ such that conv(A;) is pointed. In
this subsection, we adopt the geometric perspective introduced in Lemma 2 to
refine the classical bound of & (Zle Ai) stated in Corollary 1. For any y €

conv (Zle AZ->, Lemma 2 implies the existence of faces F; of conv(A4;) such that
y = Zle yiwhere y; € F;, Vi € [k]. By definition, ® (Zi;l Ai) quantifies how close

y € Zle conv(A;) is to some point y’ € Zle A; in the Euclidean norm, that is,
ly —=¥'|2 < @(Zi;l A;). We observe that a good y’ can be constructed via randomly
sampling some points from F;. We first establish some results that is used to obtain
such sampling.

Claim 4 Let C be a convex set and F' be its face. For any x € F, if x = }}, \;x; for some
Ai > 0,x;€C,Viand Y,_; A\; = 1. Then x; € F, Vi.

Proof Fix some index j. Write

T = (1 — )\j) (7171&‘ E )\ixi> + )\j:rj.
i#j
[ —
=y

10



By convexity of C, we have y € C' and x; € C. Since 0 < A\; < 1 and x € F', the point z is
a strict convex combination of y and z;. By the definition of a face, we conclude y € F' and
x; € F. As this holds for each j, all z; € F. |

Claim 5 Let A be a nonempty set of R". If Z(A) < oo, then for every face F of conv(A),
E(AnF) <E(A).

Proof Consider any x € F' € conv(A), by the definition of Z(A), there exists T' £ A such
that R(T) < E(A) and x is a strict convex combination of some points x; from 7. Since F’
is the face of conv(A), Claim 4 implies that x; S F. Since x is an arbitrary point in F" and
conv(A n F) € F, this further implies that 2(A n F) < Z(A). O

Lemma 3 Let A be a set of R™. Then for every x € conv(A), there exists a finite distribution
D such that D is supported on A, Eyp(Z) = x and E(||Z — IE(Z)H%) <E%(A) .

Proof For any x € conv(A), by the definition of Z(A), there exist some T & A such that
x € conv(T) and R(T) < Z(A). Since the statement of the Lemma is invariant under

translation, we may translate A so that ||y|ly < Z(A) for all y € T. By Carathéodory’s
theorem, x can be written as
X = Z Aip; where \ € A" and pieT.
i€[n+1]

We define random variable Z ~ D that Z = p; with probability A;. It is clear that Ez . p(Z) =
x and

2 2 2 2 =2
E(I1Z = E(2)]l2) = E(12]l2) = [EZ]lz < E([Z]l2) < E7(A).
where the last line uses that fact that ||p|l, < Z(A) O

Lemma 4 Let Ay, As, ..., Ag be nonempty subsets of R™. Let F; be a face of conv(A;),Vi €
[k] and let Z := {i € [k] : dim(F;) > 0}. Then it follows that

k
0] (2 AlﬁFl> < ZEQ(Fl) < 252(141)
i=1

€L i€l

Proof For every x € conv (2?:1 A;n Fz) = Zle conv(A; N F;), there exits some x; such

that x = Zle x; and x; € conv(A4; n F;). We aim to construct y; such that y; € A; and

(2?21 xi) — (Z§:1 yi) ’ < V/Diez 22(F;). For any i ¢ Z, dim(F;) = 0 and therefore it
2

is a extreme point so that x; € A; n F;. For ¢ € I, by Lemma 3, there exists a distribution

Z; ~ D; such that Ez, .p,(Z;) = x; and D; is supported on F; n A; and E(||Z; — yZHg) <

=2 (4; " F;) < 2. Then we (randomly) construct y = y1 +y2 + ...y in the following way:

v {xi if i € [k]\Z,

Zi ~ Di ifiel s
Therefore, it follows that
2

E(Ix-yl3) = E

D (xi = Zi)

i€l

2

11



= 2 E (I - Z0)13)

€L

=2
< Y EN(R).
i€Z
Therefore there exists a choice of y such that

() (2)

Since x is arbitrary and by Claim 5, this implies that ® (Zle A n FZ) < Ve 22 (F) <
Dier E2(4;). 0

2 1€l

4.3 Improved error bounds via local geometry

In this subsection, we seek sharper bounds on ® (Zle Ai) by leveraging the geometric

structure of the summands A4;. Our goal is to identify sufficient conditions under which

k
(I)<2Ai) —> 0 as k — o,
i=1

that is, the Minkowski sum becomes asymptotically convex.
For each y = Zle yi € conv(Zf=1 AZ-)7 Lemma 2 implies that each y; lies in
the Minkowski sum of certain faces F; of conv(A4;). The error bound presented in

Lemma 4 can be interpreted as follows: we attempt to round y as a whole to a point
in Zle(Fi N A;). This perspective naturally suggests a potential further refinement

of Lemma 4, wherein we aim to round y directly to a point in Zi;l A;. However, this
ambitious idea encounters a significant challenge, as it requires full characterization
of the nonconvex sets A;, which is typically unavailable in practice. To address this
limitation, we instead focus on exploiting only the local geometric properties of each
A;.

Definition 2 Let A be an nonempty set. For any Q < conv(A), we call H € A a hidden
convex component associated with @ if

1. H € A is a closed convex set;

2. Q<€ H,;

The definition above is illustrated in figure 3. Such hidden convex component
may not be defined for general (). On the other hand, for each extreme point v;
of conv(A4;), there always exists a trivial hidden convex component—namely the
singleton set H; = {v;}. It is immediate that the existence of such trivial hidden convex

components does not drive ® (Zle Ai> to zero. For instance, take A; = {0, 1}" for all
i € [k]. Their Minkowski sum Zi;l A; is contained in the integer lattice {0, 1,. .., k}™,

12



Fig. 3: Epigraph of y = 2* — 22 and the star point associates a Il ball as a hidden
convex component.

and clearly @(Zle Ai) does not vanish. A natural next attempt is to require each

hidden convex component H; to have nonempty interior. However, as illustrated in
Figure 4, the mere existence of hidden convex components with non-vanishing interior
still does not guarantee any improvement in the convexification of the Minkowski

sum. In fact, diminishing the nonconvexity measure ® (Zle Ai) requires smoothness

condition of H;.

Definition 3 A differentiable function f(-) : R™ — R is called L-smooth if f(y) < f(x) +
L
&y =% V) + 5 lly = xl3, vy e R™.

Definition 4 Let C < R" be a nonempty closed convex set with 0 with its interior. The
gauge function associated with C' is

|x]| :=inf{A > 0:z € AC}, zeR".

For a hidden convex component H with O in its interior, we quantify its smoothness
by the smoothness of the square gauge function ||H?{, which is related to the concept
of (2, D)-smooth in functional analysis [31].

To utilize the local geometry, we first overload the definition of ®¥(.): given a
closed convex set K with 0 in its interior, we let

@5 (A, D) :=sup inf ||x -yl -
x€AYED

It is therefore straightforward to see that ®%(A4) = ®¥ (conv(A), A). Moreover, it is
worth mentioning that both ®(A) and Z(A) are invariant under translating A.

Lemma 5 Let Aj, As, ..., Ax be nonempty subsets of R" and Z(A;) < §,Vi € [k]. Let F;

be a face of conv(4;),Vi € [k] and Z := {i € [k] : dim(F};) > 0}. Let H; be a hidden convex

component associated with F; for all i € [k]\Z and H = >, H;. Suppose H has nonempty
i€[k]\T

interior, let H be a translation of H that contains 0 in its interior and if we have ||H§_L is

13



L-smooth, then

k
CDH (Z F;, Z Az> <
1=1 =1

Proof ®M (Zle F;, Zle Ai) is equivalent to the maximum possible distance (under ||-|4,)
from points in Zi;l F; to Zi;l A;. If Zi;l F; < F for some F < R", it is clear that
oM (Zle Fi,Zle Ai) < oM (.F, Zle Ai). We derive an upper bound of this quantity
by choosing F := (Z Fz> + ( > Hi>. We try to show that any point in (Z Fl) +

€T ie[k\T €T

> Hj; | can be rounded to some point in [ Y] F; n A; | + > H;|c Zle A; with
ie[k\T ieT ie[k\T
a desired distance.

Since the target statement is invariant under translation, we first translate A; and H;

so that Y, H; = H. Therefore, any point p in (Z F; | + ( > Hi), can be written

i€[k\T i€l ie[k\T
as p = | >, pi| + v where p; € F; and v € H. By Lemma 3, we can equip each F;
ieT

with a distribution Z; ~ D; with support on A; n F; such that Ez,.p,(Z;) = p; and
E(||Z; — E(Zi)||3) < E2(F;). Now we try to bound
(Z Zi = Pi) -V
i€l

(57),

Let g:=V Hv||§_t and applying the definition of L-smoothness, this further yields that

2

IE‘ =E

H H

2
E <2 Zi_Pi> -V SE(HVH%) ‘HE( Z(Zi—Pi),g>> +§]E ‘ <2 Zi_Pi>
i€l H i€l i€l
2
—E(IvIZ,) + TE (2 Zi - pz»)
i€l 2
= E(IMI3) + 5 X E01Z - pil)
i€l

L 2
<l+3 Z =2 (F;).
i€l
This implies there exists some point in ;.7 A; N F; whose distance defined by ||-||,; to p
is at most |1 + % Y. Z2(F;). Therefore, by the positive homogeneousness of ||-||,;, the ||-||4
i€l

distance of p to (Y;c7 A; N F;) + H is at most /1 + % 3 E2(F) - 1. O
ieZ

Theorem 4 Let Ay, Aa, ..., A be nonempty subsets of R"™ and =(4;) < B,Vi € [k] such
that conv(A;) is pointed and closed. If every extreme point of A; has a la ball with radius

14
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r; (ri can be zero) as hidden convex component, let rs = infrcir):izi=n Zie[k]\I ri. Then it

follows that
k 1
o <i21Ai> <A/r2 + Qnﬂz — Tx.

If there exists some r > 0 such that r; = r for all i € [k], then

k
1
® A | <4/(k—n)2r2 + -np2 — (k—n)r.
(Ze) = :

As k — o0, it is clear the above ® (Zle Ai) — 0.

Proof To bound ® (Zi—c:l AZ-), it suffices to show that for any p € Zi;l conv(A4;), we have

P (p, Zle Ai) <afr2+ %n/BQ —rs. By Lemma 2, there exists face F; of conv(A;) such that

pc Zle F; and Zle dim(F;) = n. By the hypothesis, we can find H; = B(0,r;) as hidden
convex component associated with F; for all ¢ € [k]\Z such that H = >, H; = B(0,7%).
ie[k\Z

1 1
Then ||x||;, = - || and [|-[|3, is —5-smooth. Lemma 5 implies that
*

n
oMt (Z Fi,ZAi) < 1+$ZEZ(FZ»)—1.
i *

€L

This implies that

N
3
%10
+
|
[+
=
o
|
<
*

where the last inequality uses Claim 5. Since p is arbitrary, this implies that ® (2?:1 Ai> <

ATZ + %nﬁ2 — 7%.. The rest of statement directly follows that rx < (k — n)r. O

We end the section with serval examples and remarks.

Remark 1 Lemma 5 can be generalized by quantifying the smoothness of the hidden convex
components through the smoothness (possibly with respect to a different norm) of the p-th
power of a gauge function | -[%, for some p > 1, following the same probabilistic argument. We
do not pursue this extension here, as it naturally requires alternative notions of nonconvexity
beyond those considered in this work. For simplicity, we therefore focus on the classical
nonconvexity measures ®(-) and =Z(-) that appear in the literature on the Shapley—Folkman
lemma, due to their direct relevance in estimating the duality gap A.

15



Remark 2 In general, the smoothness of hidden convex component is required for estab-
lishing the vanishing of nonconvexity. To illustrate this phenomenon, consider the simple
example Ay + Zle Bp(0,1) = Ag + Byp(0, k) where Ag := {(0,0),(0,1)} < R? is a noncon-
vex set and Bp(0,1) denotes the unit p-norm ball. Figures 4, 5 and 6 depict the resulting
Minkowski sums for k = 1, 3, and 6, respectively. We observe that the “nonconvex hollow” in
the set gradually vanishes as the number of summands increases when p = 1.5, 2. In contrast,
this hollow persists for all k£ in the case p = 1. The underlying reason is that [|-|| gl ©.1) is not

smooth for any choice of f > 1.

Fig. 4:p=1 Fig. 5: p=1.5 Fig. 6: p=2

Remark 3 It requires the existence of smooth hidden convex components only around the
extreme points of each nonconvex set in order to ensure that their Minkowski sums converge
to a convex set. Such smooth hidden components need not exist around non-extreme points.
To illustrate this, consider the R? examples 77 and T shown in Figures 7 and 9. Both sets
contain some points on which no smooth hidden convex components are associated with.
Nevertheless, one can verify that Zf;l Ty converges to a convex set as k — 00, whereas
Zi;l T does not. The difference arises from the behavior at extreme points: every extreme
point of conv(T}) admits a smooth hidden convex component (e.g., a ball contained in T
in a neighborhood of that point), while conv(7%) possesses five extreme points for which no
such smooth hidden convex component exists.

S

Fig. 7: T Fig. 8: conv(T}) Fig. 9: T Fig. 10: conv(7Ty)

5 Asymptotically tight Lagrangian dual of smooth
nonconvex problems

In this section, we aim to leverage Theorem 4 and Lemma 5 to establish the asymptotic
tightness of problem (1). The key insight is that the smooth hidden convex components
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naturally emerge at the extreme points of the convex hull of the epigraphs of smooth
functions. Under mild assumptions on the constraint matrices B(*), the smoothness of
these hidden convex components is approximately preserved under projection, thereby
implying that ®(P) vanishes as k increases. We rewrite (4):

k
OPTJb);:mfzjm
=1

k
st. 3 BOXO < b, @
i=1

Oé%m>fm@m)WeM]

#m

In this case, we have
KO 1= ({130 R |0, < 500 3 70 (<))

and the projected set P(®) for (7) is

%“:{mmewwl

3¢, xM) that ||x@ | < s;,t@ = fO(x®)
t =10 d= BOx®
Ix® that ||x(i)H0 < sy, }

. m+1
= {(t, d)eR t> O (x@),d = BOx®

Note that we can simply choose s; = n in (7) to model the block-structured smooth
nonconvex problem without sparsity constrained. On the other hand, f is a function
from R™ to R and therefore is proper.

Definition 5 (1-coercive function) A function f : R"™ — (—o0, +o0] is called I-coercive if

% — +®© as ||z — co.
x

Equivalently, for every M > 0 there exists R > 0 such that
lzllz > R = f(z) > M|z|s.

1-coercive function is commonly used in analysis and optimization. Standard exam-
ple includes strictly convex quadratic functions and univariate polynomial with a
positive leading coefficient. The existence of asymptotically tight Lagrangian dual
requires two additional assumption. Assumption 4 requires the nonconvexity of each
block in (4) is bounded. Assumption 5 implies that conv(XS(l)) is closed and pointed
in Lemma 6, which ensures Assumption 2 and Assumption 3.

Assumption 4 There exists some 3 such that E(Péi)) < B,Vie€ [k].

17



Assumption 5 Each f(i)(-) is 1-coercive and closed.

Lemma 6 Under assumption 5, conv(XS(i)) is closed and pointed.

oo if

‘Xm

> s o ,
0” " Let FD(x) := £ (x)+xs, (x). By the definition
0  if otherwise

Proof Let xs,(x) :=

of 1-coercive, it is straightforward that f(i)(x) is 1-coercive and closed. Moreover, it is clear
that epi f(i)(x) = XSSZ). It is well known that the convex hull of epigraph of proper, 1-

coercive and closed function is closed and therefore conv (Xs(i)> is closed [25]. Suppose
that conv (Xs(i)) is not pointed, we seek contradiction. We first observe that the definition

of 1-coercive implies that there exists some Ib such that Ib < f(i)(x)A This implies that
t=1b,V(t,x)e conv(XS(i)). Therefore, any line contained in conv(XS(i)) must take form of
I(t) := (to,x0) + t(0,T)Vt € R™ for some nonzero r. Since f(*)(x) is 1-coercive, there exists
some R > 1 such that |[x||, > R — FD(x) = (|ib] + |to] + 1) ||x]|. Choose ¢ sufficiently
large so that ||xo + tr||, = (n + 2)R, since (tg,xo + tr) € conV(Xs(i)), this implies that
X0 +1tr = 3} cx Ai(ti, x;) for some (t;,%;) € Xs(i) and A from a simplex of dimension ||. Since
|I|| is subadditive and positive homogeneous, this implies that ||xq + tr| < > Ai [|%ill-
By Carathéodory’s Theorem, we have |K| < (n + 2). Since ||xo + ¢r| = (n + 2)R, a simple
pigeonhole argument implies that there exists some j € K, such that \; ij || > R. Finally,
this show that

R

Hthj = R(|1b] + |to| + 1) = [Ib] + |to] + 1.

x| = R = Nt; =

This implies that
DiAiti = Njtg+ > Aity = [Ib] + [to] + 1+ 1b > to,
ek iek\{5}

which leads to contraction. O

The last ingredient for applying Lemma 5 is to show that there exists a smooth
hidden convex component associated with each extreme point of conv(Ps(l)). We

obtain this from the following observation. The set ’Ps(l) can be viewed as a linear
projection of a union of epigraphs of certain smooth functions. By the definition of
smoothness, for any point in such an epigraph we can find a ball that lies entirely in
the epigraph and contains this point by Claim 6. Under the linear projection induced
by the coupling matrix B, this ball is mapped to an ellipsoid in ”Ps(i), which serves
as the smooth hidden convex component we are looking for. The maximal distortion
under this linear projection is quantified by £,(B®), defined below.

- T
Definition 6 Given a matrix B € R™*" and let B e RmTDxn . [13] be a matrix with
appending a row of all ones. We define the projection factor with respect to sparsity level s as
Lo(B):= inf o (B‘ B T)
9( ) Sc[n]:|S|=s inf S( S)
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where oj,¢(+) is the minimal singular value and Bg e R+ XIS ig the submatrix of B that
consists columns of B with indices in S.

Remark 4 To obtain a nondegenerate hidden convex component, we require Ls(B (i)) > 0.
This condition is e(%ulvalent to the existence of m + 1 affinely independent vectors among
every collection of s'*/ columns of B (. A necessary condition for this is s >m+1. Apart
from this simple dimensional requirement, the condition Ls(B (i)) > 0 is not very restrictive:
it holds generically and can be ensured almost surely by adding an arbitrarily small smooth
random perturbation to B whenever s() > m + 1.

Claim 6 For any L-smooth function convex f(-) and any x € R", there exists a la-ball B
with radius 7 such that B C epi f and (x, f(x)) € B.

Proof For any x € R" let g = V f(x). We construct the center of the ball B with radius
=1 by
1 1

(Xeste) = (x, f(x )+ e
\/ Hg||2 +1

Clearly, (x, f(x)) € B and it remains to prove that B < epi f. For every point (y,t) € B, the
lowest possible t is

(_ga 1) .

2
ting(y) 1= te — /72 = [ly — x¢) |5

Therefore, it suffices to prove f(y) < tin¢(y) for all y such that (y — xc)? < 2. Note that
F(y) < tint(y) can be further simplified to prove that

2 < (fy) = te)® + |ly — xcll3-

Since f(-) is a smooth convex function, it admits a quadratic upper bound

F¥) < 160 4y~ %8+ 2 lly — x|Z vy < B". ()

Let o := _ Ax:=y—xand s:= f(y) — f(x) — (g, Ax). In this case, it follows

2 b
\llellz +1
that

(f) = te) + ly = xcll3 = (F(y) = F(x) =ra)® + |y = x + rag]l3

s +{g, Ax) — ra) + [|Ax + rozg||§

(f
= (
= (s + (g, Ax))* + r?a® — 2ra(s + (g, Ax)) + || Ax|[3 + |[rag|)3 + 2 (rag, Ax)
= (s + (g, Ax))* + r?a® — 2ras + | Ax|[3 + |rag|)3

= (

s +<g, Ax>) —2ras + ||Ax||§ +r?
—2ras + || Ax|3 + r?

Vv

> (—a+ 1) [|Ax]3 + 72
2

Vv
<

where the first inequality just drops (s + (g, Ax))? term; the second inequality uses (8); the
third inequality uses the fact that o < 1.
]
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Claim 7 For every extreme point v (0-dimensional face) of conv(P(i)), there exists a ball

() .
ly-ball B with radius £2Z7) such that ve B < PO,

Proof Fixed any support set S € [n], we define
' Ix,z; =0,Vi ¢ S,
P = { (t,d) e R™! | g = Bl : (9)
t= f(x);
It is clear that
(1) _ (1)
PV~ | Py
se(@)
Let v := (tv,dv) be any extreme point of conv(P(i)). In this case, there must exist some
S c ([S"i]) such that v e Pél). By construction of P(l), there exists some xyv € R™ such that

dy = BYxy,ty = £ (xy),
(xv); = 0,¥i ¢ S.

Since v is a extreme point, we can further assume that tv = f Q) (x). Consider the following
function fg) (y) : R® - R which is constructed from f(i)(x) by fixing the variables outside
of S to be zero. Clearly, fg) is a L-smooth convex function. Applying Claim 6, there is a ball
Bg with radius % with dimension |S| + 1 that ((xv)g, f(xv)) € Bg < epi fg). Now consider
the linear map:

T

(XSJ)’[ ](Xsi)

(%)
BS
-

o |. It is well known that a linear map transforms a ball into an

BY

ellipse. In particular, Bg is mapped to an ellipse E (up to translation) with form:

-
{y vy Q) ly < (%)2} This ellipse includes a ball with radius % and by

Let Q :=

()
the definition of projection factor, this ellipse includes a ball with radius %‘ Since
Ec Pg) < P(i)7 this implies that there exists a ball with the desired statement. O

Theorem 5 Consider problem (4), assume that each f(i)(~) is L-smooth and under the

Assumption 1, Assumption 4 and Assumption 5 that there exists some 3 such that E(P(i)) <
B. Then it follow that

k
o (4) <\/2L 1 2,21
£: @(2}173 ) <ALz 5m+ 12— L5,
OPT4(b + £1) — € < DUALs(b) < OPT4(b),
where L = inf 2igT L(BW). If there exists some w such that L(BY) > w, Vi € [k],
1

IC[k):|Z|=m+
then it follows that

L — 0 as k — o0,

E—->0ask— o0.
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Proof Using Claim 7 and Theorem 4, we obtain

k
i 1 1 1
£E=a <Z P! >> < \/EQﬁ +5(m+1)82 - .c2ﬁ.
i=1

On the other hand, if there exists some w such that [,(B(i)) > w,Vi € [k], then £ >
(k—m —1)w — o0 as k — o and therefore £ — 0. O

Remark 5 The smoothness assumption in Theorem 5 can be relaxed. Instead of requiring
that f be globally smooth—i.e., globally upper bounded by a convex quadratic function—it
suffices to assume that f is locally upper bounded by a convex quadratic function at each
point x. In particular, as long as this local smoothness condition guarantees the existence of
an l9 -ball with nontrivial radius, the conclusion of Theorem 5 remains valid.

Acknowledgments

We would also like to thank Diego Cifuentes and Greg Blekherman for the various
wonderful discussions.

21



References

1]

8]

[12]

[13]

[14]

Bagirov, A., Karmitsa, N., Makeld, M.M.: Introduction to Nonsmooth Opti-
mization: Theory, Practice and Software vol. 12. Springer, New York, USA
(2014)

Frangioni, A.: Standard bundle methods: Untrusted models and duality. Numer-
ical nonsmooth optimization: state of the art algorithms, 61-116 (2020)

Van Ackooij, W., Frangioni, A.: Incremental bundle methods using upper models.
SIAM Journal on Optimization 28(1), 379-410 (2018)

Liibbecke, M.E.: Column generation. Wiley encyclopedia of operations research
and management science 17, 18-19 (2010)

Desaulniers, G., Desrosiers, J., Solomon, M.M.: Column Generation vol. 5.
Springer, New York, USA (2006)

Guo, L., Ye, J.J., Zhang, J.: Sensitivity analysis of the maximal value function
with applications in nonconvex minimax programs. Mathematics of Operations
Research 49(1), 536-556 (2024)

Disfani, V.R., Fan, L., Piyasinghe, L., Miao, Z.: Multi-agent control of community
and utility using lagrangian relaxation based dual decomposition. Electric Power
Systems Research 110, 45-54 (2014)

Yang, Z., Zheng, T., Yu, J., Xie, K.: A unified approach to pricing under
nonconvexity. IEEE Transactions on Power Systems 34(5), 3417-3427 (2019)

Starr, R.M.: Quasi-equilibria in markets with non-convex preferences. Economet-
rica: journal of the Econometric Society, 25-38 (1969)

Balseiro, S., Lu, H., Mirrokni, V.: Dual mirror descent for online allocation prob-
lems. In: International Conference on Machine Learning, pp. 613-628 (2020).
PMLR

Argue, C., Gupta, A., Molinaro, M., Singla, S.: Robust secretary and prophet
algorithms for packing integer programs. In: Proceedings of the 2022 Annual
ACM-STAM Symposium on Discrete Algorithms (SODA), pp. 1273-1297 (2022).
SIAM

Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis,
Algorithms, and Engineering Applications. STAM, Philadelphia, USA (2001)

Polik, I., Terlaky, T.: A survey of the s-lemma. STAM review 49(3), 371-418
(2007)

Chandrasekaran, V., Duff, T., Rodriguez, J.I., Shu, K.: Lagrangian dual sections:

22



[20]

[21]

[22]

[23]

[24]

[25]

[26]

A topological perspective on hidden convexity. arXiv preprint arXiv:2510.06112
(2025)

Dines, L.L.: On the mapping of quadratic forms. Bulletin of the American
Mathematical Society 47(6), 494-498 (1941)

Fradelizi, M., Madiman, M., Marsiglietti, A., Zvavitch, A.: The convexification
effect of minkowski summation. EMS Surveys in Mathematical Sciences 5(1),
1-64 (2018)

Bertsekas, D., Lauer, G., Sandell, N., Posbergh, T.: Optimal short-term schedul-
ing of large-scale power systems. IEEE Transactions on Automatic Control 28(1),
1-11 (1983)

Aubin, J.-P., Ekeland, I.: Estimates of the duality gap in nonconvex optimization.
Mathematics of Operations Research 1(3), 225-245 (1976)

Udell, M., Boyd, S.: Bounding duality gap for separable problems with lin-
ear constraints. Computational Optimization and Applications 64(2), 355-378
(2016)

Bi, Y., Tang, A.: Duality gap estimation via a refined shapley—folkman lemma.
SIAM Journal on Optimization 30(2), 1094-1118 (2020)

Kerdreux, T., Colin, I., d’Aspremont, A.: Stable bounds on the duality gap of sep-
arable nonconvex optimization problems. Mathematics of Operations Research
48(2), 1044-1065 (2023)

Nguyen, T., Vohra, R.: (near) substitute preferences and equilibria with indivis-
ibilities,” working paper (2022)

Murota, K., Tamura, A.: Shapley—folkman-type theorem for integrally convex
sets. Discrete Applied Mathematics 360, 42-50 (2025)

Wegmann, R.: Einige mafizahlen fiir nichtkonvexe mengen. Archiv der Mathe-
matik 34(1), 69-74 (1980)

Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex analysis and minimization algo-
rithms ii. Grundlehren der mathematischen Wissenschaften (1993)

Boland, N., Christiansen, J., Dandurand, B., Eberhard, A., Linderoth, J.,
Luedtke, J., Oliveira, F.: Combining progressive hedging with a frank—wolfe
method to compute lagrangian dual bounds in stochastic mixed-integer program-
ming. STAM Journal on Optimization 28(2), 1312-1336 (2018)

Geoffrion, A.M.: Lagrangean relaxation for integer programming. In: Approaches
to Integer Programming, pp. 82-114. Springer, Amsterdam, Netherlands (2009)

23



[28] Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis.
Springer, New York, USA (2004)

[29] Dey, S.S., Meunier, F., Ramirez, D.M.: Geoffrion’s theorem beyond finiteness and
rationality. arXiv preprint arXiv:2510.10966 (2025)

[30] Lemaréchal, C., Renaud, A.: A geometric study of duality gaps, with applications.
Mathematical Programming 90(3), 399427 (2001)

[31] Molinaro, M.: Strong convexity of feasible sets in off-line and online optimization.
Mathematics of Operations Research 48(2), 865-884 (2023)

24



	Introduction
	Preliminary
	Notation
	Nonconvexity measure and convex hull operator

	Shapley-Folkman Lemma and duality gap of Lagrangian relaxation
	Shapley-Folkman Lemma
	Duality gap of Lagrangian relaxation

	Error bounds via Shapley-Folkman Lemma
	Geometric proof of Shapley-Folkman Lemma
	Error bounds via randomized rounding
	Improved error bounds via local geometry

	Asymptotically tight Lagrangian dual of smooth nonconvex problems

