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Abstract
The Shapley–Folkman Lemma, a foundational result in convex geometry, asserts
that the nonconvexity of a Minkowski sum of n-dimensional bounded nonconvex
sets does not accumulate once the number of summands exceeds the dimension n,
and thus the sum becomes approximately convex. This Lemma, originally pub-
lished by Starr is used to show quasi-equilibrium in nonconvex market models in
economics and equivalently used to estimate the duality gap of the Lagrangian
dual of separable nonconvex problems. Given its foundational nature, we pose
the following geometric question: Is it possible for the nonconvexity of the
Minkowski sum of n-dimensional nonconvex sets to vanish asymptotically, rather
than merely converge to a constant, as the number of summands increases? We
answer this question affirmatively. First, we provide an elementary geometric
proof of the Shapley–Folkman Lemma based on the facial structure of the convex
hull of each set under a pointedness assumption. This leads to a small refine-
ment on the classical error bound derived from the Lemma in the pointed case.
Building on this new geometric perspective, we next show that if the sets satisfy
a certain local smoothness condition, which naturally arises, for example, in the
epigraphs of smooth functions, then their Minkowski sums converge directly to
a convex set as the nonconvexity measure vanishes asymptotically. This result
has direct implications for optimization and economic theory. In particular, we
show that the Lagrangian dual of block-structured smooth nonconvex problems,
possibly subject to additional sparsity constraints, is asymptotically tight under
mild assumptions. This sharply improves upon classical Shapley–Folkman based
bounds, which generally predict a nonvanishing duality gap. Equivalently, from
an economic perspective, this result implies that, asymptotically as the size of the
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economy increases, competitive equilibrium exists with smooth utility functions,
notwithstanding underlying nonconvexities.

Keywords: Shapley–Folkman Lemma, Strong Lagrangian Dual, Competitive
Equilibrium
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1 Introduction
Consider a block-structured nonconvex program:

OPTpbq :“ inf
k
ÿ

i“1

A

cpiq, xpiq
E

(1a)

s.t.
k
ÿ

i“1
Bpiqxpiq ď b, (1b)

xpiq P X piq Ď Rn, @i P rks, (1c)

where X piq is a closed possibly nonconvex set of Rn, Bpiq P Rmˆn and b P Rm.
Although the objective and the coupling constraints in (1) are linear, this formulation
is general enough to capture many nonlinearities, by embedding these into the feasible
sets X piq, potentially through the introduction of suitable auxiliary variables.

An important relaxation of (1) is the Lagrangian dual of (1), obtained by dualizing
the coupling constraints (1b) across various blocks:

Lpλq :“ inf
x

˜

k
ÿ

i“1

A

cpiq, xpiq
E

`

A

λ, Bpiqxpiq
E

¸

´ xλ, by

s.t. xpiq P X piq Ď Rn, @i P rks,

(2)

and
DUALpbq :“ sup

λě0
Lpλq. (3)

The Lagrangian dual of the block-structured problem (1) plays a central role in both
optimization and economic theory. From an optimization perspective, dualizing the
coupling constraints yields a convex (possibly nonsmooth) program (3) regardless of
the nonconvexity of the feasible sets X piq, thereby providing a tractable and globally
valid lower bound on OPTpbq. Moreover, the dual formulation exploits the separable
block structure of the primal problem: for any fixed multiplier λ ě 0, the Lagrangian
Lpλq decomposes into independent subproblems across blocks, enabling scalable algo-
rithms based on decomposition, subgradient methods, and price-based coordination
[1–3]. From an economic viewpoint, the dual variables λ admit a natural interpretation
as equilibrium prices associated with the shared resource constraint

řk
i“1 Bpiqxpiq ď b
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[4]. In this interpretation, each block represents an individual agent or firm that
optimizes its own objective given prices λ, while the dual objective aggregates these
decentralized decisions and enforces market clearing. Consequently, the duality gap
between OPTpbq and DUALpbq quantifies the extent to which a competitive equilib-
rium exists or fails to exist in the presence of nonconvexities, making the Lagrangian
framework a unifying bridge between large-scale optimization and equilibrium analysis
in economic theory.

One of the most desirable properties one aims to establish for the Lagrangian dual,
in both optimization and economic theory, is strong duality. In optimization, strong
duality certifies that the optimal value of a (possibly relaxed) dual problem coincides
with that of the primal, thereby justifying convex relaxations, decomposition methods,
and price-based algorithms. In economic theory, strong duality corresponds to the
existence of supporting prices that decentralize a socially optimal allocation, that is,
establishing the existence of a competitive equilibrium.

Many textbooks state that strong duality, that is OPTpbq “ DUALpbq, holds
under certain regularity conditions when all X piqs are convex. However, strong duality
actually only requires the convexity of linear image of (1) onto the space of objective
and constraints [5]. More specifically, let

Ppiq :“
␣

pt, dq
ˇ

ˇ Dx P X piq, t “
@

cpiq, xpiq
D

, d “ Bpiqxpiq
(

,

P :“
k
ÿ

i“1
Ppiq,

where we overload standard sum for vectors with Minkowski sum for sets and P is
the Minkowski sum of all Ppiqs. Under suitable regularity conditions, strong duality
can be guaranteed whenever the image set P is convex [5]. In particular, when each
set X piq is convex, the overall set P remains convex because both linear mappings
and Minkowski sums preserve convexity. Therefore, the condition frequently shown
in textbooks can be viewed as a sufficient condition. Although this distinction may
appear subtle, it is in fact crucial—it underpins several nontrivial results concerning
the strong duality in Lagrangian relaxations of nonconvex programs [6, 7]. A notable
example is the celebrated S-Lemma [6], which establishes that the Lagrangian dual
of a quadratic program with a single quadratic constraint is tight. This result can
be interpreted as a direct consequence of Dines Lemma [8] that the image of two
homogeneous quadratic mappings is always convex.

In this paper, we adopt this perspective and investigate the convexity of P to
ensure the strong duality of the Lagrangian dual of (1). While each individual set Ppiq

may be nonconvex, it is possible that their Minkowski sum P closely approximates
its convex hull. This phenomenon is formally characterized by the Shapley–Folkman
Lemma [4]. In the setting where k ě n, the Shapley-Folkman Lemma states that

@x P convpPq, DI Ď rks, |I| ď n such that x P

¨

˝

ÿ

iPrkszI

Ppiq

˛

‚`

˜

ÿ

iPI

conv
´

Ppiq
¯

¸

.
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Here rks “ t1, . . . , ku. Intuitively, the Shapley-Folkman Lemma implies that every
point in convpPq is close to some point in P, up to at most n ‘nonconvex summands’.
If all Ppiqs are contained within a ball of radius R, then a quantitative measure of this
approximate convexity can be obtained. In particular, under the Hausdorff distance
with l2 norm, it has been shown [9] that

dHpP, convpPqq ď
?

nR.

This quantitative bound can be employed to derive an a priori estimate of the dual-
ity gap ∆ :“ OPTpbq ´ DUALpbq associated with problem (1) (see Theorem 3 in
Section 3).

The Shapley–Folkman lemma was originally introduced by Starr [4] in the study
of quasi-equilibria in nonconvex market models in economics. In this context, it
can be interpreted as an approximate form of strong duality for Lagrangian duals.
Its connection to optimization was later developed in works such as [10–12], which
used the lemma to quantify the duality gap of problem (1). More recently, several
works have focused on refining the quantitative bounds provided by the Shap-
ley–Folkman lemma, particularly on improving estimates of the Hausdorff distance
dHpP, convpPqq or similar notion of nonconvexity; see, for example, [13–15]. An ana-
log of the Shapley–Folkman lemma for discrete convex sets has also been developed
in [16].

In this work, we seek to refine the quantitative characterization of the Haus-
dorff distance dHpP, convpPqq, given its central role in assessing the tightness of
Lagrangian duals. We begin by presenting a new and elementary geometric proof of
the Shapley-Folkman Lemma, which leverages the facial structure of each convpPpiqq.
This perspective enables us to refine the classical error bound under a pointedness
assumption (see Theorem 4 in Section 4). Building on this geometric insight, we fur-
ther demonstrate that the Minkowski sum of the sets Ppiq can directly converge to its
convex hull as the number of summands grows, i.e., dHpP, convpPqq Ñ 0 as k Ñ 8,
provided enough sets satisfy some mild “local smoothness” condition (see Theorem
5 in Section 4). To the best of our knowledge, this is the first result establishing an
asymptotically vanishing nonconvexity measure for Minkowski sums of nonconvex sets
within the framework of the Shapley–Folkman Lemma.

Such smoothness naturally arises in the epigraphs of smooth (possibly nonconvex)
functions, allowing us to establish that the following problem admits an asymptotically
tight Lagrangian dual as k Ñ 8:

inf
x

k
ÿ

i“1
f piqpxpiqq

s.t.
k
ÿ

i“1
Bpiqxpiq ď b,

}xpiq}0 ď spiq, @i P rks,

(4)
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where each f piq is a smooth (possibly nonconvex) function, Bpiqs satisfy some mild
conditions, and spiq is not too small, i.e., spiq ě m, @i P rks where Bpiq has m rows
(see Theorem 6 in Section 5) . To model problems without sparsity constraints, one
may simply drop these constraints, that is let spiq “ number of variables in xi, for all
i P rks.

Finally, we note here that this work focuses on Minkowski sum of Ppiqs with-
out averaging since its convexity directly reflects the duality gap of problem (1).
In the classical applications of the Shapley–Folkman Lemma, the analysis is typi-
cally performed on the Minkowski average of the sets Ppiq. This choice arises because
the error bound dHpP, convpPqq does not vanish in the classic analysis of Shapley-
Folkman Lemma but dHpP, convpPqq is both homogeneous and independent of k,
which immediately yields

dH

` 1
k P, 1

k convpPq
˘

ď
?

nR
k ,

implying a linear convergence of the averaged sum toward its convex hull as k
increases. In contrast, our analysis applies directly to the unnormalized Minkowski
sum. When averaging is applied, our result demonstrates a superlinear convergence
rate, thereby strengthening the classical result.

The remainder of the paper is organized as follows. In Section 2, we present stan-
dard notation and preliminary results. Section 3 establishes a connection between
dHpP, convpPqq and ∆ :“ OPTpbq ´ DUALpbq in Theorem 3. Section 4 presents a
new proof of Shapley-Folkman Lemma under the assumption of pointedness of the
convex hull of the non-convex sets (see Lemma 4 and discussion following it) which
allows us to establish a slightly better bound on dHpP, convpPqq, in Theorem 4. Our
main result of showing that dHpP, convpPqq goes to zero as k goes to 8 under the
presence of a local smoothness property, is presented in this section in Theorem 5.
Finally, in Section 5, we establish the strong duality result stated informally above,
formalized as Theorem 6.

2 Preliminary Results and Notation
In this section, we introduce several useful notation and results to study the Shapley-
Folkman Lemma and the Lagrangian dual of (1).

2.1 Notation
For a set A Ă Rd, we define its radius as RpAq :“ infxPRd tr ě 0 : A Ď Bpx, rqu, where
Bpx, rq :“ ty P Rd : }y´x}2 ď ru denotes the closed Euclidean ball of radius r centered
at x. Given two sets A, B Ă Rd, their Minkowski sum is defined as A`B :“ ta`b : a P

A, b P Bu. For any scalar λ ě 0, the Minkowski scaling of A is λA :“ tλa : a P Au.We
denote by convpAq :“ t

řm
i“1 λiai | ai P A, λi ě 0,

řm
i“1 λi “ 1u the convex hull of

A. The closed convex hull is defined as convpAq :“ clpconvpAqq, where clpAq denotes
the topological closure of A. The relative boundary and the recession cone of a closed
convex set C are denoted using relbdpCq and recpCq. The kernel of a linear map A is
denoted by kerpAq. We use epipfq to denote the epigraph of a function f .
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2.2 Nonconvexity measure and convex hull operator
For a given set A Ď Rn, there exists a rich body of literature on how to measure
non-convexity of A due to its wide-ranging applications in nonconvex optimization.
Throughout this paper, we will focus on two measures:

1. Hausdorff distance from the convex hull: Given a closed convex set K with 0 in
its interior, we define

ΦKpAq :“ inf tr ě 0 : convpAq Ď A ` rKu .

When K is omitted, we refer it as the Hausdorff distance from the convex hull
under l2 norm:

ΦpAq :“ inf tr ě 0 : convpAq Ď A ` rBp0, 1qu .

2. The inner radius of a nonconvex set [4]:

ΞpAq :“ sup
xPconvpAq

tinf RpT q : T Ď A, x P convpT qu .

Fig. 1: A and convpAq Fig. 2: two nonconvexity measures where
pink ball corresponds to ΦpAq and green
ball corresponds to ΞpAq.

The measure Ξp¨q, introduced in the seminal work by Starr [4], is used to estab-
lish the notion of quasi-equilibrium in nonconvex market models in economics. In this
paper, we focus primarily on Φp¨q, as it is more directly related to the duality gap in
Lagrangian dual (see Theorem 3). See Figure 1 and 2 for illustration of the Φp¨q and
Ξp¨q nonconvexity measure. Other nonconvexity measures, exhibiting distinct behav-
iors and intended for different analytical purposes, are not listed in this paper; for a
comprehensive overview, we refer readers to the survey [9]. We present next a standard
result on these non-convexity measures.

Lemma 1 [9, 17] Let A be a subset of Rn, then
ΦpAq ď ΞpAq ď RpAq.

The analysis in this paper relies heavily on the convex hull operator convp¨q.
Two structural properties of convex hulls are used repeatedly: commutativity with
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Minkowski sums and commutativity with linear projections. We restate these well-
known facts below for convenience.

Lemma 2 [9] (conv commutes with Minkowski sum) Let A1, . . . , Ak be nonempty sets of
Rn. Then it follows that

conv

˜

k
ÿ

i“1
Ai

¸

“

k
ÿ

i“1
conv pAiq

Lemma 3 [18] (conv commutes with linear projection)

conv
´

Ppiq
¯

“

!

pt, dq

ˇ

ˇ

ˇ
Dx P conv

´

X piq
¯

, t “

A

cpiq, xpiq
E

, d “ Bpiqxpiq
)

.

2.3 Shapley-Folkman Lemma
Theorem 1 (Shapley-Folkman Lemma) Let A1, . . . , Ak be nonempty closed sets of Rn with
k ě n ` 1. Let x P convp

ř

iPrks Aiq “
ř

iPrks convpAiq. Then there exists I Ď rks with
cardinality at most n such that

x P
ÿ

iPI
convpAiq `

ÿ

iPrkszI
Ai.

Shapley-Folkman Lemma is a direct consequence of Carathéodory’s theorem and
there are many different ways to prove it [13, 14] and we defer our geometric proof in
Lemma 4, presented in Section 4.

Shapley-Folkman Lemma can be interpreted that the nonconvexity of the
Minkowski sum of nonconvex sets, once reaching certain cap depending on the dimen-
sion, will not accumulate as the number of nonconvex sets increase. This phenomenon
can be quantified by the following corollary. In general, estimating the nonconvex-
ity measures Φp¨q and Ξp¨q is challenging. Many applications of the Shapley–Folkman
Lemma therefore consider bounded nonconvex sets using the second part of Corollary
1.

Corollary 1 Let A1, . . . , Ak be nonempty sets of Rn with k ě n such that ΞpAiq ď β, @i P

rks. Then it follows that

Φ

¨

˝

ÿ

iPrks

Ai

˛

‚ď Ξ

¨

˝

ÿ

iPrks

Ai

˛

‚ď
?

nβ and therefore Φ

¨

˝

1
k

ÿ

iPrks

Ai

˛

‚ď

?
n

k
β.

If we further assume RpAiq ď γ, @i P rks, then it follows that

Φ

¨

˝

ÿ

iPrks

Ai

˛

‚ď Ξ

¨

˝

ÿ

iPrks

Ai

˛

‚ď
?

nγ and therefore Φ

¨

˝

1
k

ÿ

iPrks

Ai

˛

‚ď

?
n

k
γ.
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3 Shapley-Folkman Lemma and duality gap of
Lagrangian relaxation

A key quantity associated with the Lagrangian dual that reflects the tightness of the
relaxation is the duality gap (also called the additive gap) which is defined as:

∆ :“ OPTpbq ´ DUALpbq.

In this section, we present a result showing how to upper bound ∆ based on upper
bounds on ΦpPq.

To achieve this, we first use the following primal characterization [19, 20] of
Lagrangian dual (bi-conjugacy in convex analysis [21]) to reduce DUALpbq from
min-max optimization to a minimization problem in the original space. Consider

OPTLpbq :“ inf
k
ÿ

i“1

A

cpiq, xpiq
E

s.t.
k
ÿ

i“1
Bpiqxpiq “ b,

xpiq P convpX piqq Ď Rn, @i P rks.

(5)

Theorem 2 [20, 21] Under proper regularity condition, OPTLpbq “ DUALpbq.

Common regularity conditions required for Theorem 2 include the existence of a
Slater point or the assumption that each convpX piqq is a polyhedron [22, 23]. The
absence of such regularity may result in cases where OPTLpbq ą DUALpbq [23].
Throughout this paper, we exclude these pathological instances and directly assume
that the following equivalence holds:

Assumption 1 OPTLpbq “ DUALpbq.

We finally present the main result of this Section showing that the tightness of
Lagrangian dual of (1) directly relies on the convexity of P “

řk
i“1 Ppiq by quantifying

∆ in terms of ΦpPq. This theorem is similar to the gap formula in [24].

Theorem 3 Let E :“ Φ pPq. Under Assumption 1 and convpX piq
q being closed for all i P rks,

it follows that

OPTpb ` E1q ´ E ď DUALpbq ď OPTpbq,

and therefore

∆ ď E ` OPTpbq ´ OPTpb ` E1q.
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Proof Under Assumption 1, we know that DUALpbq “ OPTLpbq. Let xL be the ϵ-optimal
solution of (5). By weak duality, we know that

OPTLpbq ` ϵ “

k
ÿ

i“1

A

cpiq, xpiq

L

E

“ DUALpbq ` ϵ ď OPTpbq ` ϵ. (6)

Let ppiq

L :“
«

A

cpiq, xpiq

L

E

Bpiqxpiq

L

ff

P conv
´

Ppiq
¯

where the last containment is due to the fact that

convpX piq
q is closed (which implies xpiq

L P convpX piq
q) and using Lemma 3. By Lemma 2,

řk
i“1 ppiq

P
řk

i“1 conv
´

Ppiq
¯

“ convpPq. By the definition of Φ pPq, there exists some

x˚ P X piq and ppiq
˚ :“

«

A

cpiq, xpiq
˚

E

Bpiqxpiq
˚

ff

such that∥∥∥∥∥
˜

k
ÿ

i“1
ppiq

L

¸

´

˜

k
ÿ

i“1
ppiq

*

¸

∥∥∥∥∥
2

ď E . (7)

This means that x˚ is an feasible solution of OPTpb ` E1q and therefore

OPTpb ` E1q ď

k
ÿ

i“1

A

cpiq, xpiq
˚

E

ď

˜

k
ÿ

i“1

A

cpiq, xpiq

L

E

¸

` E ,

where the last inequality follows from (7). Now, using (6) with the above inequality, we obtain
that

OPTpb ` E1q ´ E ď DUALpbq ` ϵ

ñ∆ ď E ` OPTpbq ` ϵ ´ OPTpb ` E1q,

where the second inequality is obtained by subtracting OPTpbq on both sides. Letting ϵ Ñ 0
yields the desired statement. □

4 Error bounds via Shapley-Folkman Lemma
In this section (and for the rest of the paper), we make an additional assumption:

Assumption 2 Let Ai Ď Rn, i P rks be the sets that are the summands in the Shapley–
Folkman lemma. For all i P rks, we assume that convpAiq is closed and pointed.

Assumption 2 guarantees that each convpAiq has at least one extreme point.
Moreover, since convpAiq is closed, any such extreme point must lie in the original
set Ai. The pointedness assumption is subsequently used in Lemma 4 in the next
section to describe how the Minkowski sum of pointed closed convex sets decomposes
in terms of their facial structure. This decomposition provides a geometric proof of
the Shapley–Folkman Lemma.
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4.1 Geometric proof of Shapley-Folkman Lemma
In this section, we give a proof of Shapley-Folkman Lemma that utilizes the facial
structure of the convex hull of each nonconvex set.

For completeness, we begin by presenting the standard definition of a face of a
convex set and related notions.

Definition 1 Given a closed convex set C, we call a closed convex set F Ď C is a face of C
if for any line segment ra, bs Ď C such that pa, bq X F ‰ H, we have ra, bs P F . The dimension
of face F denoted by dimpF q is the dimension of its affine hull.

Note that a convex set C is a face of itself. Moreover a face of a face of C is also
a face of C. Finally, faces of closed convex sets are closed convex sets [21].

We begin some simple observations from linear algebra and convex analysis. The
first claim directly follows from a rank-nullity argument.

Claim 1 Let Li P Rn, i P rks be linear subspaces, such that
řk

i“1 dimpLiq ą n. Then there
exists di P Li for i P rks, with not all dis zero, such that

řk
i“1 di “ 0.

Claim 2 Let C Ď Rn be a closed convex set, and let F be a nonempty face of C. If
x P relbdpF q, then x is contained in a face of C of strictly smaller dimension than F .

Proof Since x P relbdpF q, there exists a hyperplane H in the affine hull of F such that (i) F
is contained in one of the half-spaces defined by H, (ii) x P H, and (iii) F Ę H. Therefore,
by definition of a face, F X H is a face of F , and thus a face of C. Moreover, piiiq implies
that the dimension of F is at least 1 more than the dimension of F X H. □

Lemma 4 Let A1, . . . , Ak be nonempty sets of Rn with k ě n ` 1 such that convpAiq is
closed and pointed. Then for every y P conv

´

řk
i“1 Ai

¯

, there exist faces Fi of convpAiq

such that

y P

k
ÿ

i“1
Fi and

k
ÿ

i“1
dimpFiq ď n.

Proof For any y P conv
´

řk
i“1 Ai

¯

, consider y “
řk

i“1 yi where each yi lies in the relative

interior some face Fi of convpAiq. If
řk

i“1 dimpFiq ą n, we show how to find a different y1
i

from convpAiq so that the total dimension
řk

i“1 dimpF 1
i q, where F 1

i is a face of convpAiq

containing y1
i, decreases while ensuring y “

ř

y1
i. Let Gi be the linear subspace obtained

by translating the affine hull of Fi to the origin. If
řk

i“1 dimpGiq “
řk

i“1 dimpFiq ą n,
applying Claim 1, we can find di P Gi, not all zero, such that d1 ` d2 ` ¨ ¨ ¨ ` dk “ 0. Let
y1

ipλq :“ yi ` λdi for i P rks. Since each convpAiq is pointed, there exists some choice of
λ such that for at least one i˚ P rks we have that y1

i˚pλq belongs to the relative boundary
of Fi˚ while keeping other y1

jpλq in Fj for all j P rks. By Claim 2, y1
i˚pλq P F 1

i˚, a face of
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convpAiq such that dimpF 1
i˚q ă dimpFi˚q. Letting F 1

j “ Fj for all j ‰ i˚, the total dimension
řk

i“1 dimpF 1
i q decreases and we still ensure that y “

řk
i“1 y1

i for some y1
i P convpAiq. □

Proof of Shapley–Folkman Lemma using Lemma 4 For every y P conv
´

řk
i“1 Ai

¯

,
Lemma 4 implies that there exist faces Fi of convpAiq for i P rks, such that y P
řk

i“1 Fi and
řk

i“1 dimpFiq ď n. Since dimpFiq P t0, 1, . . . , nu and
řk

i“1 dimpFiq ď n, it
implies that at least k´n faces have dimension 0. These dimension-0 faces are extreme points
of corresponding convpAiqs, therefore must lie in Ai. Let I “ ti P rks : dimpFiq ą 0u where
from the above we have that |I| ď n. Moreover, we have,

y P
ÿ

iPI
convpAiq `

ÿ

iPrkszI
Ai.

□

We note here that Lemma 4 can be used to strengthen the refined Shapley-Folkman
Lemma recently proposed in [13].

4.2 Error bounds via randomized rounding
Let A1, A2, . . . , Ak be nonempty set of Rn such that convpAiq is closed and pointed.
For any y P conv

´

řk
i“1 Ai

¯

, Lemma 4 implies the existence of faces Fi of convpAiq

such that y “
řk

i“1 yi where yi P Fi, @i P rks. By definition, Φ
´

řk
i“1 Ai

¯

quantifies

how close y P
řk

i“1 convpAiq is to some point y1 P
řk

i“1 Ai in the Euclidean norm,
that is, }y ´ y1}2 ď Φp

řk
i“1 Aiq.

The central idea of this section is that a suitable y1 can be constructed by randomly
sampling points from each Fi. We first establish some preliminary results that facilitate
this sampling approach.

Claim 3 Let C be a closed convex set and let F be a face of C. For any x P F , suppose
x is a strict convex combination of xis, that is, x “

ř

i λixi, with λi ą 0 and
ř

i λi “ 1. If
xi P C for all i, then xi P F for all i.

Proof Directly follows from the definition of a face. □

Claim 4 Let A be a nonempty set of Rn. If ΞpAq ă 8, then for every face F of convpAq,
ΞpA X F q ď ΞpAq.

Proof Consider any x P F Ď convpAq, by the definition of ΞpAq, there exists T Ď A such
that RpT q ď ΞpAq and x is a strict convex combination of some points xi from T . Since F
is the face of convpAq, Claim 3 implies that xi Ď F . Since x is an arbitrary point in F and
convpA X F q Ď F , this implies that ΞpA X F q ď ΞpAq. □

The above claim is interesting because, in general ΞpA X Bq may not be smaller
than ΞpAq or ΞpBq.
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Lemma 5 Let A Ď Rn. Then for every x P convpAq, there exists a finite distribution D
such that D is supported on A, EZ„DpZq “ x and Ep∥Z ´ EpZq∥2

2q ď Ξ2
pAq .

Proof For any x P convpAq, by the definition of ΞpAq, there exist some T Ď A such that x P

convpT q and RpT q ď ΞpAq. Since the statement of the Lemma is invariant under translation,
we may translate A so that ∥y∥2 ď ΞpAq for all y P T . By Carathéodory’s theorem, x can
be written a convex combination of pi and each pi P T , that is x “

řn`1
i“1 λipi where pi P T

and λ belongs to the n ` 1 dimensional standard simplex. We define random variable Z „ D
that Z “ pi with probability λi. It is clear that EZ„DpZq “ x and

Ep∥Z ´ EpZq∥2
2q “ Ep∥Z∥2

2q ´ ∥EZ∥2
2 ď Ep∥Z∥2

2q ď Ξ2
pAq,

where the last line uses that fact that Z only has support over T and ∥y∥2 ď ΞpAq for all
y P T . □

Lemma 6 Let A1, A2, . . . , Ak be nonempty subsets of Rn. Let Fi be a face of convpAiq for
all i P rks and let I :“ ti P rks : dimpFiq ą 0u. Then it follows that

Φ
˜

k
ÿ

i“1
Ai X Fi

¸

ď

d

ÿ

iPI
Ξ2pAi X Fiq ď

d

ÿ

iPI
Ξ2pAiq.

Proof For every x P conv
´

řk
i“1 Ai X Fi

¯

“
řk

i“1 convpAi X Fiq (the equality follows from

Lemma 2), there exits some xi such that x “
řk

i“1 xi and xi P convpAi X Fiq. We aim to
construct yi such that yi P Ai X Fi and

∥∥∥´řk
i“1 xi

¯

´

´

řk
i“1 yi

¯

∥∥∥
2

ď
a

ř

iPI Ξ2pAi X Fiq.
For any i R I, dimpFiq “ 0 and therefore xi is an extreme point of convpAiq, so xi P

AiXFi. For i P I, by Lemma 5, there exists a distribution Zi „ Di such that EZi„Di
pZiq “ xi

and Di is supported on Ai X Fi and Ep∥Zi ´ yi∥2
2q ď Ξ2

pAi X Fiq Then we (randomly)
construct y “ y1 ` y2 ` . . . yk in the following way:

yi “

#

xi if i P rkszI,

Zi „ Di if i P I,

Therefore, it follows that

E
´

∥x ´ y∥2
2

¯

“ E

¨

˝

∥∥∥∥∥ÿ
iPI

pxi ´ Ziq

∥∥∥∥∥
2

2

˛

‚

“
ÿ

iPI
E
´

∥pxi ´ Ziq∥2
2

¯

ď
ÿ

iPI
Ξ2

pAi X Fiq.

Therefore there exists a choice of y such that∥∥∥∥∥
˜

k
ÿ

i“1
xi

¸

´

˜

k
ÿ

i“1
yi

¸

∥∥∥∥∥
2

ď

d

ÿ

iPI
Ξ2pAi X Fiq.

Since x is arbitrary and by Claim 4, this implies that Φ
´

řk
i“1 Ai X Fi

¯

ď
a

ř

iPI Ξ2pAi X Fiq ď
a

ř

iPI Ξ2pAiq. □

12



Applying Lemma 4 and Lemma 6 directly yields the following theorem.

Theorem 4 Under conditions that each convpAiq is closed and pointed for all i P rks, we
have that,

Φ
˜

k
ÿ

i“1
Ai

¸

ď sup

$

&

%

g

f

f

e

k
ÿ

i“1
Ξ2pAi X Fiq : Fi is a face of Ai and

k
ÿ

i“1
dimpFiq “ n

,

.

-

.

Theorem 4 is a refinement on the classical error bounds, due to the fact that
ΞpAi X Fiq can be significantly smaller than ΞpAiq unless Fi is a high-dimensional
face. However, due to the global dimension-sum constraints, the number of such high-
dimensional faces is limited.

A more concrete illustration is as follows. Consider any full-dimensional convex
body C P Rn with RpCq “ R, and define Ai “ Cz intpCq for all i P rks. In this case,
every face Fi of convpAiq that is not convpAiq itself, satisfies ΞpAi X Fiq “ 0 because
each Fi X Ai is a convex set. Therefore, ΞpAi X Fiq ď R, where ΞpAi X Fiq ‰ 0, only
when Fi “ convpAiq and in this case dimpFiq “ n. Now applying Theorem 4 implies
that Φ

´

řk
i“1 Ai

¯

ď ΞpA1q ď R, which is significantly smaller than the
?

nR bound
predicted by the classical error estimates derived from the Shapley–Folkman lemma.

4.3 Improved error bounds via local geometry

In this subsection, we seek sharper bounds on Φ
´

řk
i“1 Ai

¯

by leveraging the geometric
structure of the summands Ai. Our goal is to identify sufficient conditions under which

Φ
˜

k
ÿ

i“1
Ai

¸

ÝÑ 0 as k Ñ 8,

that is, the Minkowski sum becomes asymptotically convex.
For each y “

řk
i“1 yi P conv

´

řk
i“1 Ai

¯

, Lemma 4 implies that each yi lies in
the Minkowski sum of certain faces Fi of convpAiq. The error bound presented in
Lemma 6 can be interpreted as follows: we attempt to round y as a whole to a point
in

řk
i“1pAi X Fiq. This perspective naturally suggests a potential further refinement

of Lemma 6, wherein we aim to round y directly to a point in
řk

i“1 Ai. However, this
appealing idea encounters a significant challenge, as it requires full characterization
of the nonconvex sets Ai, which is typically unavailable in practice.

The key insight of our main result is the following: We do not need to under the
global structure of the nonconvex sets Ai. It is sufficient to instead focus on exploiting
only the local geometric properties of each Ai.

We next introduce a definition that plays a key role in identifying the required
local geometry.

Definition 2 Let A be a nonempty set. For any Q Ď convpAq, we call H Ď A is a hidden
convex component associated with Q if

13



1. H Ď A is a closed convex set;
2. Q Ď H;

Fig. 3: A is the epigraph of the function y “ x4 ´ x2. The star point is the set Q.
The l2 ball contained in the epigraph is a hidden convex component.

The definition above is illustrated via an example in Figure 3.
Such hidden convex component may not exist for general Q. On the other hand,

for each extreme point vi of convpAiq, there always exists a trivial hidden convex
component—namely the singleton set Hi “ tviu. It is immediate that the existence
of such trivial hidden convex components does not drive Φ

´

řk
i“1 Ai

¯

to zero. For

instance, take Ai “ t0, 1un for all i P rks. Their Minkowski sum
řk

i“1 Ai is contained
in the integer lattice t0, 1, . . . , kun, and clearly Φ

´

řk
i“1 Ai

¯

does not vanish. A nat-
ural next attempt is to require each hidden convex component Hi to have nonempty
interior. However, as discussed in Remark 2 the mere existence of hidden convex com-
ponents with non-vanishing interior still does not guarantee any improvement in the
convexification of the Minkowski sum. In fact, diminishing the nonconvexity mea-
sure Φ

´

řk
i“1 Ai

¯

requires an appropriate smoothness condition of the hidden convex
component His.

Definition 3 [5] A differentiable function fp¨q : Rn
Ñ R is called L-smooth if fpyq ď

fpxq ` xy ´ x, ∇fpxqy `
L

2 ∥y ´ x∥2
2 , @y P Rn, where ∇fp¨q is the gradient.

Definition 4 [21] Let C Ď Rn be a nonempty closed convex set with 0 with its interior. The
gauge function associated with C is

∥x∥C :“ inftλ ą 0 : x P λCu, x P Rn.

For a hidden convex component H with 0 in its interior, we quantify its smoothness
by the smoothness of the square gauge function ∥¨∥2

H , which is related to the concept
of p2, Dq-smooth in functional analysis [25].

14



To utilize the local geometry, we first overload the definition of ΦKp¨q: given a
closed convex set K with 0 in its interior, we let

ΦKpA, Dq :“ sup
xPA

inf
yPD

∥x ´ y∥K .

It is therefore straightforward to see that ΦKpAq “ ΦKpconvpAq, Aq. Moreover, we
note that ΦKpA, Dq is invariant under translation of A and D by the same vector.

Lemma 7 Let A1, A2, . . . , Ak be nonempty subsets of Rn and ΞpAiq ď β, @i P rks. Let Fi

be a face of convpAiq, for all i P rks and let I :“ ti P rks : dimpFiq ą 0u. Let Hi be a hidden
convex component associated with Fi for all i P rkszI and H “

ř

iPrkszI
Hi. Suppose H has

nonempty interior, let H be a translation of H that contains 0 in its interior. If we have ∥¨∥2
H

is L-smooth, then

ΦH
˜

k
ÿ

i“1
Fi,

k
ÿ

i“1
Ai

¸

ď

d

1 `
L

2
ÿ

iPI
Ξ2pAi X Fiq ´ 1.

Proof ΦH
´

řk
i“1 Fi,

řk
i“1 Ai

¯

is equivalent to the maximum possible distance (under ∥¨∥H)

from points in
řk

i“1 Fi to
řk

i“1 Ai. If
řk

i“1 Fi Ď F for some F Ď Rn, it is clear that
ΦH

´

řk
i“1 Fi,

řk
i“1 Ai

¯

ď ΦH
´

F ,
řk

i“1 Ai

¯

. We derive an upper bound of this quantity by

choosing F :“
˜

ř

iPI
Fi

¸

`

˜

ř

iPrkszI
Hi

¸

. We will show that for any point in
˜

ř

iPI
Fi

¸

`

˜

ř

iPrkszI
Hi

¸

there exists a point in
˜

ř

iPI
Ai X Fi

¸

`

˜

ř

iPrkszI
Hi

¸

Ď
řk

i“1 Ai within the

desired distance.
Since the target statement is invariant under equal translation of

řn
i“1 Fi and

řn
i“1 Ai, we

first translate Ai so that
ř

iPrkszI
Hi “ H. Therefore, any point p in

˜

ř

iPI
Fi

¸

`

˜

ř

iPrkszI
Hi

¸

,

can be written as p “

˜

ř

iPI
pi

¸

` v where pi P Fi and v P H. By Lemma 5, we can equip

each Fi with a distribution Zi „ Di with support on Ai X Fi such that EZi„Di
pZiq “ pi and

Ep∥Zi ´ EpZiq∥2
2q ď Ξ2

pAi X Fiq. Now we try to bound

E

¨

˝

∥∥∥∥∥
˜

ÿ

iPI
Zi

¸

´ p

∥∥∥∥∥
2

H

˛

‚“ E

¨

˝

∥∥∥∥∥
˜

ÿ

iPI
Zi ´ pi

¸

´ v

∥∥∥∥∥
2

H

˛

‚.

Let g :“ ∇ ∥v∥2
H and applying the definition of L-smoothness, this further yields that

E

¨

˝

∥∥∥∥∥
˜

ÿ

iPI
Zi ´ pi

¸

´ v

∥∥∥∥∥
2

H

˛

‚ď E
´

∥v∥2
H

¯

` E

˜C

ÿ

iPI
pZi ´ piq, g

G¸

`
L

2 E

¨

˝

∥∥∥∥∥
˜

ÿ

iPI
Zi ´ pi

¸

∥∥∥∥∥
2

2

˛

‚

“ E
´

∥v∥2
H

¯

`
L

2 E

¨

˝

∥∥∥∥∥
˜

ÿ

iPI
Zi ´ pi

¸

∥∥∥∥∥
2

2

˛

‚
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“ E
´

∥v∥2
H

¯

`
L

2
ÿ

iPI
Ep∥Zi ´ pi∥2

2q

ď 1 `
L

2
ÿ

iPI
Ξ2

pAi X Fiq.

This implies there exists some point in
ř

iPI Ai X Fi whose distance defined by ∥¨∥H to
p is at most

c

1 ` L
2
ř

iPI
Ξ2pAi X Fiq. Therefore, by the positive homogeneousness of ∥¨∥H,

the ∥¨∥H distance of p to
`
ř

iPI Ai X Fi

˘

` H is at most
c

1 ` L
2
ř

iPI
Ξ2pAi X Fiq ´ 1. □

Theorem 5 Let A1, A2, . . . , Ak be nonempty subsets of Rn and ΞpAiq ď β, for all i P

rks such that convpAiq is closed and pointed. Suppose every extreme point of Ai has an
associated l2–ball with radius ri (ri can be zero) as a hidden convex component. Let r˚ “

minIĎrks:|I|“n

ř

iPrkszI ri. Then it follows that

Φ
˜

k
ÿ

i“1
Ai

¸

ď

c

r2
˚ `

1
2nβ2 ´ r˚.

If there exists some r ą 0 such that ri ě r for all i P rks, then

Φ
˜

k
ÿ

i“1
Ai

¸

ď

c

pk ´ nq2r2 `
1
2nβ2 ´ pk ´ nqr.

As k Ñ 8, it is clear the above Φ
´

řk
i“1 Ai

¯

Ñ 0.

Proof To bound Φ
´

řk
i“1 Ai

¯

, it suffices to show that for any p P
řk

i“1 convpAiq, we have

Φ
´

p,
řk

i“1 Ai

¯

ď

c

r2
˚ `

1
2nβ2 ´ r˚. By Lemma 4, there exists face Fi of convpAiq such

that p P
řk

i“1 Fi and
řk

i“1 dimpFiq ď n.
By the hypothesis, after suitable translation of all the sets, we can find Hi “ Bp0, riq as

hidden convex component associated with Fi for all i P rkszI such that H “
ř

iPrkszI
Hi “

Bp0, r˚q.
Then ∥x∥H “

1
r˚

∥x∥ and ∥¨∥2
H is 1

r2
˚

-smooth. Lemma 7 implies that

ΦH
˜

k
ÿ

i“1
Fi,

k
ÿ

i“1
Ai

¸

ď

d

1 `
1

2r2
˚

ÿ

iPI
Ξ2pAi X Fiq ´ 1.

This implies that

Φ
˜

k
ÿ

i“1
Fi,

k
ÿ

i“1
Ai

¸

ď

d

r2
˚ `

1
2
ÿ

iPI
Ξ2pAi X Fiq ´ r˚

ď

d

r2
˚ `

1
2
ÿ

iPI
β2 ´ r˚,

where the last inequality uses Claim 4. Since p is arbitrary, this implies that Φ
´

řk
i“1 Ai

¯

ď
c

r2
˚ `

1
2nβ2 ´ r˚. The rest of statement directly follows that r˚ ě pk ´ nqr. □
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We end the section with several examples and remarks.

Remark 1 Lemma 7 can be generalized by quantifying the smoothness of the hidden convex
components through the smoothness (possibly with respect to a different norm) of the p-th
power of a gauge function }¨}

p
H for some p ą 1, following the same probabilistic argument. We

do not pursue this extension here, as it naturally requires alternative notions of nonconvexity
beyond those considered in this work. For simplicity, we therefore focus on the classical
nonconvexity measures Φp¨q and Ξp¨q that appear in the literature on the Shapley–Folkman
lemma, due to their direct relevance in estimating the duality gap ∆.

Remark 2 In general, the smoothness of hidden convex component is required for estab-
lishing the vanishing of nonconvexity. To illustrate this phenomenon, consider the simple
example A0 `

řk
i“1 Bpp0, 1q “ A0 ` Bpp0, kq where A0 :“ tp0, 0q, p0, 1qu Ď R2 is a noncon-

vex set and Bpp0, 1q denotes the unit p-norm ball. Figures 4, 5 and 6 depict the resulting
Minkowski sums for k “ 1, 3, and 6, respectively. We observe that the “nonconvex hollow” in
the set gradually vanishes as the number of summands increases when p “ 1.5, 2. In contrast,
this hollow persists for all k in the case p “ 1. The underlying reason is that ∥¨∥f

B1p0,1q
is not

smooth for any choice of f ą 1.

Fig. 4: p “ 1 Fig. 5: p “ 1.5 Fig. 6: p “ 2

Remark 3 To ensure that the Minkowski sums converge to a convex set, it is sufficient
that smooth, hidden convex components exist only in neighborhoods of the extreme points
of convex hull of each nonconvex set. Such components need not exist around non-extreme
points of the convex hulls. To illustrate this, consider the R2 examples T1 and T2 shown in
Figures 7, 8, 9 and 10. Both sets contain some points on which no smooth hidden convex
components are associated with. Nevertheless, one can verify that

řk
i“1 T1 converges to a

convex set as k Ñ 8, whereas
řk

i“1 T2 does not. The difference arises from the behavior at
extreme points: every extreme point of convpT1q admits a smooth hidden convex component
(e.g., a ball contained in T1 in a neighborhood of that point), while convpT2q possesses five
extreme points for which no such smooth hidden convex component exists.
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Fig. 7: T1 Fig. 8: convpT1q Fig. 9: T2 Fig. 10: convpT2q

5 Asymptotically tight Lagrangian dual of smooth
nonconvex problems

In this section, we aim to leverage Theorem 4 and Lemma 7 to establish the asymptotic
tightness of problem (4). The key insight is that the smooth hidden convex components
naturally emerge at the extreme points of the convex hull of the epigraphs of smooth
functions. Under mild assumptions on the constraint matrices Bpiq, the smoothness of
these hidden convex components is approximately preserved under projection, thereby
implying that ΦpPq vanishes as k increases. We rewrite (4) as:

OPTspbq :“ inf
k
ÿ

i“1
ti

s.t.
k
ÿ

i“1
Bpiqxpiq ď b,∥∥∥xpiq

∥∥∥
0

ď si, ti ě f piqpxpiqq, @i P rks.

(8)

In this case, we have

X piq
s :“

␣

pt, xq P Rm`1 ˇ

ˇ

∥∥xpiq
∥∥

0 ď si, tpiq ě f piqpxpiqq
(

and the projected set Ppiq for (8) is

Ppiq
s :“

"

pt, dq P Rm`1
ˇ

ˇ

ˇ

ˇ

Dptpiq, xpiqq that
∥∥xpiq

∥∥
0 ď si, tpiq ě f piqpxpiqq

t “ tpiq, d “ Bpiqxpiq

*

“

"

pt, dq P Rm`1
ˇ

ˇ

ˇ

ˇ

Dxpiq that
∥∥xpiq

∥∥
0 ď si,

t ě f piqpxpiqq, d “ Bpiqxpiq

*

.

Note that we can simply choose si “ n in (8) to model the block-structured smooth
nonconvex problem without sparsity constraints.

Definition 5 (1-coercive function) [21] A function f : Rn
Ñ p´8, `8s is called 1-coercive if

fpxq

}x}2
ÝÑ `8 as }x}2 Ñ 8.

Equivalently, for every M ą 0 there exists R ą 0 such that
}x}2 ą R ùñ fpxq ą M}x}2.
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The notion of 1-coercive functions is commonly used in analysis and optimiza-
tion [24]. Some example includes strictly convex quadratic functions and univariate
polynomials of even degree with a positive leading coefficient.

The existence of an asymptotically tight Lagrangian dual requires two additional
assumptions. Assumption 3 requires the nonconvexity of each block in (4) is bounded.
Assumption 4 implies that conv

´

Ppiq
s

¯

is closed and shown in Lemma 10.

Assumption 3 There exists some β such that ΞpPpiq
s q ď β, @i P rks.

A function fpxq : Rn Ñ p´8, `8s is called proper if there exists some x0 such
that fpx0q ă 8.

Assumption 4 Each f piq
p¨q is 1-coercive, closed and proper and f piq

p0q ă 8.

Lemma 8 Under Assumption 4, conv
´

X piq
s

¯

is closed and pointed. Moreover,

rec
´

conv
´

X piq
s

¯¯

“ tpt, 0q : t ě 0u.

Proof Let χsi pxq :“

$

&

%

8 if
∥∥∥xpiq

∥∥∥
0

ě si`1

0 if otherwise
. Let f̃ piq

pxq :“ f piq
pxq ` χsi pxq. By the

definition of 1-coercive, it is straightforward that f̃ piq
pxq is 1-coercive and closed. Since

f piq
p0q ă 8, f̃ piq

pxq is also proper. Moreover, it is clear that epi f̃ piq
pxq “ X piq

s . It is well
known that the convex hull of the epigraph of a proper, 1-coercive and closed function
is closed and therefore conv

´

X piq
s

¯

is closed [18]. Suppose, for the sake of contradiction,

that conv
´

X piq
s

¯

is not pointed. We first observe that the definition of 1-coercive-ness

implies that there exists some lb such that lb ď f̃ piq
pxq. This implies that t ě lb, for all

pt, xq P conv
´

X piq
s

¯

. Therefore, any line contained in conv
´

X piq
s

¯

must take the form of
lpγq :“ pt0, x0q ` γp0, rq, γ P Rn for some nonzero r. To also establish the properties of
rec

´

conv
´

X piq
s

¯¯

, we show the stronger statement that conv
´

X piq
s

¯

does not contain any
ray taking the form of l`

pγq :“ pt0, x0q ` γp0, rq, γ P R` for some nonzero r. This implies
that conv

´

X piq
s

¯

is pointed. Combined with the fact that the function is also lower bounded

by some constant, this also implies that rec
´

conv
´

X piq
s

¯¯

“ tpt, 0q : t ě 0u. The argument
is as follows.

Suppose such ray l`
pγq exists, since f̃ piq

pxq is 1-coercive, there exists some R ą 1 such
that ∥x∥2 ě R ùñ f̃ piq

pxq ě p|lb| ` |t0| ` 1q ∥x∥2. Choose |γ| sufficiently large so that
∥x0 ` γr∥2 ě pn ` 2qR, since pt0, x0 ` γrq P conv

´

X piq
s

¯

, this implies that x0 ` γr “

ř

jPrn`2s λjptj , xjq for some ptj , xjq P X piq
s and λ belongs to a simplex of dimension n `

2. Since ∥¨∥2 is subadditive and positively homogeneous, this implies that ∥x0 ` γr∥2 ď
ř

iPrn`2s λj

∥∥xj

∥∥
2. Since ∥x0 ` γr∥2 ě pn ` 2qR, a simple pigeonhole argument implies that

there exists some j˚ P rns, such that λj˚

∥∥xj˚

∥∥
2 ě R. Since λj˚

P r0, 1s, this further shows
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that
∥∥xj˚

∥∥
2 ě R and by the choice of R, this implies that tj˚

ě p|lb| ` |t0| ` 1q
∥∥xj˚

∥∥
2. This

shows that

λj˚

∥∥xj˚

∥∥
2 ě R ùñ λj˚

tj˚
ě

R∥∥xj˚

∥∥
2

tj˚
ě Rp|lb| ` |t0| ` 1q ě |lb| ` |t0| ` 1.

This implies that
ÿ

jPrn`2s

λjtj “ λj˚
tj˚

`
ÿ

jPrn`2sztj˚u

λjtj ě |lb| ` |t0| ` 1 ` p1 ´ λj˚
qlb ą t0,

which leads to contraction. □

Lemma 9 (Theorem 9.1 in [26]) Let C be a closed pointed convex set of Rn. For any linear
map A : Rn

Ñ Rm, if recpCq X kerpAq “ t0u, then ApCq is closed and pointed.

Lemma 10 Under assumption 4, conv
´

Ppiq
s

¯

is closed and pointed.

Proof By Claim 3, conv
´

Ppiq
s

¯

can be viewed as the image of conv
´

X piq
s

¯

under the follow-

ing linear map A: pt, xq Ñ

„

1
B

ȷ

pt, xq. In this case, we have rec
´

conv
´

X piq
s

¯¯

X kerpAq “

t0u because any non-zero v P rec
´

conv
´

X piq
s

¯¯

has form of pr, 0q for some r ą 0 by Lemma
8 and it is clear that Av ‰ 0 in this case. Applying Lemma 9 and Lemma 8 yields the desired
statement. □

The last ingredient for applying Theorem 5 is to show that there exists a smooth
hidden convex component (l2-ball) associated with each extreme point of conv

`

Ppiq
s
˘

.
We obtain this from the following observation. The set Ppiq

s can be viewed as a linear
projection of a union of epigraphs of certain smooth functions. By the definition of
smoothness, for any point in such an epigraph we can find a ball that lies entirely
in the epigraph and contains this point, as established in Claim 5 below. Under the
linear projection induced by the coupling matrix Bpiq, this ball is mapped to an
ellipsoid in Ppiq

s . This ellipsoid provides a desired smooth hidden convex component.
We then extract an l2-ball contained within this ellipsoid, which ultimately serves
as the hidden convex component used in our proof. The maximal distortion under
this linear projection and the choice l2-ball contained in this ellipsoid is quantified by
LspBpiqq, defined below.

Definition 6 Given a matrix B P Rmˆn and let B̃S P Rpm`1qˆp|S|`1q :“
„

1 0
0 BS

ȷ

be a

matrix where BS is the submatrix of B that consists of columns of B with indices in S. We
define the projection factor with respect to sparsity level s as

LspBq :“ inf
SĎrns:|S|“s

σ˛

´

B̃SpB̃Sq
J
¯
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where σ˛pAq :“

$

&

%

0 if A is not positive definite;
?

σminpA´1{2q

σmaxpA´1{2q
otherwise;

and σminp¨q, σmaxp¨q are the

minimal singular value and maximal singular value, respectively. A1{2 denotes the principal
square root of a positive definite matrix A.

Remark 4 To obtain a nondegenerate hidden convex component, we require LspBpiq
q ą 0.

This condition is equivalent to the existence of m linear independent columns among every
possible collection of spiq columns of Bpiq. A necessary condition for this is spiq

ě m. Apart
from this simple dimensional requirement, the condition LspBpiq

q ą 0 is not very restrictive:
it holds generically and can be ensured almost surely by adding an arbitrarily small smooth
random perturbation to Bpiq whenever spiq

ě m.

Claim 5 For any L-smooth function fp¨q and any x P Rn, there exists a l2-ball B with radius
1
L such that B Ď epi f and px, fpxqq Ď B.

Proof For any x P Rn, let g “ ∇fpxq. We construct the center of the ball B with radius
r :“ 1

L by

pxc, tcq “ px, fpxqq `
1
L

1
b

∥g∥2
2 ` 1

p´g, 1q .

Clearly, px, fpxqq P B and it remains to prove that B Ď epi f . For every point py, tq Ď B, the
lowest possible value of t is

tinfpyq :“ tc ´

b

r2 ´ ∥y ´ xc∥2
2.

Therefore, it suffices to prove fpyq ď tinfpyq for all y such that ∥y ´ xc∥2
2 ď r2. Note that

fpyq ď tinfpyq can be further simplified to prove that
r2

ď pfpyq ´ tcq
2

` ∥y ´ xc∥2
2 .

Since fp¨q is a smooth convex function, it admits a quadratic upper bound

fpyq ď fpxq ` xy ´ x, gy `
L

2 ∥y ´ x∥2
2 , @y P Rn. (9)

Let α :“ 1
b

∥g∥2
2 ` 1

, ∆x :“ y ´ x and s :“ fpyq ´ fpxq ´ xg, ∆xy. In this case, it follows

that
pfpyq ´ tcq

2
` ∥y ´ xc∥2

2 “ pfpyq ´ fpxq ´ rαq
2

` ∥y ´ x ` rαg∥2
2

“ ps ` xg, ∆xy ´ rαq
2

` ∥∆x ` rαg∥2
2

“ ps ` xg, ∆xyq
2

` r2α2
´ 2rαps ` xg, ∆xyq ` ∥∆x∥2

2 ` ∥rαg∥2
2 ` 2 xrαg, ∆xy

“ ps ` xg, ∆xyq
2

` r2α2
´ 2rαs ` ∥∆x∥2

2 ` ∥rαg∥2
2

“ ps ` xg, ∆xyq
2

´ 2rαs ` ∥∆x∥2
2 ` r2

ě ´2rαs ` ∥∆x∥2
2 ` r2

ě p´α ` 1q ∥∆x∥2
2 ` r2

ě r2

where the first inequality just drops ps ` xg, ∆xyq
2 term; the second inequality uses (9); the

third inequality uses the fact that α ď 1.
□
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Lemma 11 [27] Let E :“ tx : ∥Ax ´ k∥2 ď 1u be an ellipsoid, where A is an invertible
matrix. Then, for every p P E, there exists a l2-norm ball containing p that is subset of E

and has a radius of
?

σminpAq

σmaxpAq
.

Claim 6 For every extreme point v (0-dimensional face) of conv
´

Ppiq
¯

, there exists a l2-ball

B with radius LspBpiq
q

L such that v P B Ď Ppiq.

Proof For a fixed support set S Ď rns, we define

Ppiq

S :“

$

&

%

pt, dq P Rm`1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Dx, xi “ 0, @i R S;
d “ Bpiqx;
t ě fpxq;

,

.

-

, (10)

It is clear that
Ppiq

“
ď

SĎrns,|S|“si

Ppiq

S .

Let v :“ ptv, dvq be any extreme point of convpPpiq
q. In this case, there must exist some

S Ď rns, with |S| “ si, such that v P P
piq

S . By construction of P
piq

S , there exists some xv P Rn

such that
dv “ Bpiqxv, tv ě f piq

pxvq,

pxvqi “ 0, @i R S.

Since v is a extreme point, we can further assume that tv “ f piq
pxq. Consider the following

function f
piq

S pyq : RS
Ñ R which is constructed from f piq

pxq by fixing the variables outside
of S to be zero. Clearly, f

piq

S is a L-smooth convex function. Applying Claim 5, there is a ball
BS with radius 1

L with dimension |S| ` 1 that ppxvqS , fpxvqq Ď BS Ď epi f
piq

S . Now consider
the linear map:

pxS , tq Ñ

«

1 0
0 B

piq

S

ff

pxS , tq

Let Q :“
«

1 0
0 B

piq

S

ff

. If QQJ is not invertible, we have LspBpiq
q “ 0 and the lemma directly

holds. Therefore, we assume that QQJ is invertible. It is well known that a linear map
transforms a ball into an ellipse. In particular, BS is mapped to an ellipse E (up to translation)

with form:
#

y : yJ
pQQJ

q
´1y ď

ˆ

1
L

˙2
+

“

"

y : ∥Uy∥ ď

ˆ

1
L

˙*

where U “ pQQJ
q

´1{2. By

Lemma 11 and the definition of LspBpiq
q, we can find a l2-ball with radius LspBpiq

q

L that both
contains v and is included in E and therefore included in Ppiq.

□

Theorem 6 Consider problem (4), assume that each f piq
p¨q is L-smooth and under the

Assumption 1, Assumption 3 and Assumption 4 that there exists some β such that ΞpPpiq
q ď

β. Then it follow that

E :“ Φ
˜

k
ÿ

i“1
Ppiq

¸

ď

c

L2 1
L2 `

1
2 pm ` 1qβ2 ´ L2 1

L2 ,
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OPTspb ` E1q ´ E ď DUALspbq ď OPTspbq,

where L “ inf
IĎrks:|I|“m`1

ř

iRI LpBpiq
q. If there exists some ω such that LpBpiq

q ě ω, @i P rks,

then it follows that
L Ñ 8 as k Ñ 8,

E Ñ 0 as k Ñ 8.

Proof Using Claim 6 and Theorem 5, we obtain

E “ Φ
˜

k
ÿ

i“1
Ppiq

¸

ď

c

L2 1
L2 `

1
2 pm ` 1qβ2 ´ L2 1

L2 .

On the other hand, if there exists some ω such that LpBpiq
q ě ω, @i P rks, then L ě

pk ´ m ´ 1qω Ñ 8 as k Ñ 8 and therefore E Ñ 0. □

Remark 5 The smoothness assumption in Theorem 6 can be relaxed. Instead of requiring
that f be globally smooth, that is, globally upper bounded by a convex quadratic function,
it suffices to assume that f is locally upper bounded by a convex quadratic function at each
point x. In particular, as long as this local smoothness condition guarantees the existence of
an l2 -ball with nontrivial radius, the conclusion of Theorem 6 remains valid.
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