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AN INEXACT MODIFIED QUASI-NEWTON METHOD FOR
NONSMOOTH REGULARIZED OPTIMIZATION

NATHAN ALLAIRE®, SEBASTIEN LE DIGABEL', AND DOMINIQUE ORBAN?

Abstract. We introduce method iR2N, a modified proximal quasi-Newton method for minimizing
the sum of a C' function f and a lower semi-continuous prox-bounded h that permits inexact
evaluations of f, Vf and of the relevant proximal operators. Both f and h may be nonconvex. In
applications where the proximal operator of h is not known analytically but can be evaluated via an
iterative procedure that can be stopped early, or where the accuracy on f and V f can be controlled,
iR2N can save significant computational effort and time. At each iteration, iR2N computes a step by
approximately minimizing the sum of a quadratic model of f, a model of h, and an adaptive quadratic
regularization term that drives global convergence. In our implementation, the step is computed using
a variant of the proximal-gradient method that also allows inexact evaluations of the smooth model,
its gradient, and proximal operators. We assume that it is possible to interrupt the iterative process
used to evaluate proximal operators when the norm of the current iterate is larger than a fraction of
that of the minimum-norm optimal step, a weaker condition than others in the literature. Under
standard assumptions on the accuracy of f and V f, we establish global convergence in the sense
that a first-order stationarity measure converges to zero and a worst-case evaluation complexity in
0(672) to bring said measure below € > 0. Thus, inexact evaluations and proximal operators do not
deteriorate asymptotic complexity compared to methods that use exact evaluations. We illustrate the
performance of our implementation on problems with £,-norm, £, total-variation and the indicator
of the nonconvex pseudo p-norm ball as regularizers. On each example, we show how to construct
an effective stopping condition for the iterative method used to evaluate the proximal operator that
ensures satisfaction of our inexactness assumption. Our results show that iR2N offers great flexibility
when exact evaluations are costly or unavailable, and highlight how controlled inexactness can reduce
computational effort effectively and significantly.

Key words. Nonsmooth optimization, nonconvex optimization, modified quasi-Newton method,
proximal quasi-Newton method, regularized optimization, composite optimization, proximal gradient
method, inexact proximal operator, inexact evaluations

AMS subject classifications. 65F22, 90C30, 90C53

1. Introduction. We consider the problem class

(1.1) minimize f(x) + h(z),
zeR

where f : R™ — R is continuously differentiable, h : R” — R U {+o0} is proper,
lower semi-continuous (lsc), and both may be nonconvex. In practice, h, called the
regularizer, is designed to promote desirable properties in solutions, such as sparsity.
We develop method iR2N, a variant of the modified proximal quasi-Newton algorithm
R2N of Diouane et al. [25] that allows for inexact evaluations of f and V f, as well as
of the relevant proximal operators. Among other applications, evaluations of f and
V f are inexact when they result from the discretization of a differential or integral
operator [8], from the sampling of a sum of a large number of terms, as in machine
learning applications [34], or from using multiple floating-point systems [31]. Like
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2 [ToC]

R2N, iR2N computes a step at each iteration by approximately minimizing the sum of
a quadratic model of f, a model of h, and an adaptive quadratic regularization term.
The subproblem is solved with method iR2, which is to method R2 of Aravkin et al. [3]
as iR2N is to R2N;, i.e., proximal operators are evaluated inexactly. Method R2 may be
viewed as a variant of the standard proximal-gradient method with adaptive step length,
and is a special case of R2N. We consider settings where proximal operators do not have
a closed-form expression, and one must thus rely on inexact evaluations. Specifically, we
focus on scenarios where proximal operators can be evaluated by running a convergent
algorithm that can be terminated early with appropriate guarantees detailed below.
Special cases that fit our assumptions include choices of convex and nonconvex h,
including the £,-norm total variation (TV), £,-norm regularizer and the indicator of the
nonconvex £,,-pseudo norm ball with 0 < p < 1. Method iR2N reduces to R2N when f,
V f and proximal operators are evaluated exactly. We establish global convergence of
iR2N under standard assumptions on the inexactness of f and V f, and provided the
inexact proximal operator yields a step whose norm is at least a fraction of the norm
of an optimal step. We also establish that worst-case evaluation complexity of iR2N is
of the same order as that of R2N. Thus, inexact evaluations do not degrade worst-case
complexity. Our remaining assumptions are standard. To emphasize our assumptions
on inexact evaluations, we simplify those assumptions of [25] that would complicate the
analysis. In particular, we assume that V f is Lipschitz continuous, but its Lipschitz
constant need not be known nor approximated. However, it should be clear that iR2N
remains convergent under the more general assumptions of [25] with its worst-case
complexity affected accordingly. It should also be clear that minor alterations of our
approach would establish that the proximal quasi-Newton trust-region algorithm of
Aravkin et al. [4, 5] remains convergent under inexact evaluations and its asymptotic
worst-case complexity is unchanged. Such minor alterations would also establish
convergence and complexity of Levenberg-Marquardt variants in the vein of [6] that
are useful when f is a least-squares residual.

We report computational experience with the proximal operator of the £, norm,
the total variation in £, norm, and the indicator of the nonconvex ¢,-pseudo norm
ball. Each of those proximal operators must be evaluated via an iterative procedure.
For each, we devise a stopping condition that ensures satisfaction of our assumption
on inexact proximal operator evaluations. Our results show that iR2N offers great
flexibility in settings where exact evaluations are costly or unavailable, and highlight
how controlled inexactness can be exploited to reduce computational effort effectively
and significantly. We provide an efficient Julia implementation of iR2N as part of the
open-source package RegularizedOptimization.jl [7].

Related Research. Most numerical methods for (1.1) require the evaluation of
one or more proximal operators [32] at each iteration. The proximal operator of h
with step size v > 0 at ¢ € R" is
(1.2) prox(q) := argmin 1 [|u — q|l> + vh(u) C R".

vh u€R™
For given h and ¢, (1.2) can be empty, a singleton or contain multiple elements, one of
which must be identified. Beck [11] and Chierchia et al. [19] summarize the closed-form
of (1.2) for a large number of choices of h relevant in applications. The standard
proximal-gradient method [26] along with most proximal methods in the literature
assume that obtaining an element of (1.2) ezactly is possible.

For certain choices of h, it is necessary to apply an iterative method to appoximate
an element of (1.2), e.g., the total variation (TV) with £, regularization h(x) = ||Dx||,,
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where p > 1 and D is the upper bidiagonal finite-difference operator with a diagonal
of negative ones and a superdiagonal of ones. Finding an element in (1.2) for the
TV-£, can be achieved via the taut-string method [9] or the fast TV denoising method
[20]. As in other methods in the literature for various choices of convex h [10, 24, 27],
the latter monitor the duality gap between a convex problem and its dual. Those
algorithms have guaranteed convergence properties and can be terminated early, i.e.,
short of optimality. In the above, the evaluation of (1.2) is inexact in the sense that a
convergent process to identify a global minimizer is applied and can be stopped short
of optimality according to an optimality criterion.

A somewhat more complicated scenario is the algorithm described by Yang
et al. [43] for the case where h is the indicator of the “ball” in pseudo-norm ¢, with
p € (0,1). The evaluation of the proximal operator requires solving a nonconvex
problem to global optimality in that case, and their algorithm is not guaranteed to
always succeed. We return to this problem in Section 4.

Other concepts of inexactness of the proximal operator appear in the literature. For
convex h, Rockafellar [36] requires that an approximate solution of (1.2) be a certain
distance from the optimal set. Still for convex h, Barré et al. [10] unveil multiple ways
to define inexactness by finding a primal-dual point in a certain relaxed subdifferential.
Salzo and Villa [38] define three approximations: they compute z such that either (7)
|z — prox,, (q)|| <, (i) v~ (g — =) lies in a relaxation of the subdifferential of h at z,
or (iii) z € prox,,(q—+e) with |le]| < e for some € > 0. Chen et al. [18] extend proximal
inexactness by introducing the concept of (v, §, €)-proximal-gradient stationary point
(PGSP) for convex h based on the Goldstein subdifferential. The PGSP generalizes
the three concepts of [38] by jointly relaxing spatial and functional exactness and
directly quantifying the first-order residual, thus also encompassing Rockafellar’s [36]
and relaxed subgradient formulations within a unified framework. For nonconvex h,
Gu et al. [27] say that an element is an inexact solution of (1.2) if its objective value
is within e of its optimal value.

To cope with inexact evaluations of the proximal operator, classical schemes must
be revised to preserve convergence guarantees. The seminal inexact proximal-point
algorithm (iPPA) of Rockafellar [36] allows summably controlled errors in the resolvant
computation of a maximal monotone operator and still ensures global convergence
with linear/superlinear behavior under suitable parameter growth. Building on the
accelerated estimate-sequence framework, Salzo and Villa [38] establish that the
accelerated iPPA retains O(1/k) decay under inexactness of type (i) above, and
optimal O(1/k?) decay under inexactness of type (ii). Schmidt et al. [39] establish
an O(1/k) rate for proximal-gradient and an O(1/k?) rate for an accelerated variant
under inexactness similar to (iii) above. Extensions include inertial, variable-metric
forward—backward schemes with relative inner accuracy and uniform symmetric positive
definite metrics [16]; nonconvex inexact (accelerate) proximal gradient with guarantees
matching the exact counterparts under calibrated error schedules [27]; adaptive,
implementable stopping rules that preserve 0(6_2) iteration complexity and enable
support identification [24]; and accelerated proximal gradient under relative error
criteria that maintain an O(1/k?) rate [13]. For nonconvex problems, the sequence
generated by an inexact proximal-gradient (or splitting) method can still be shown to
converge to a first-order critical point under an assumption of type (iii) above on the
approximation errors [41]. Finally, for weakly convex functions, recent results establish
global convergence for inexact proximal algorithms under inexactness of type (i) above,
allowing controlled inexactness in the proximal steps while maintaining convergence
[28].
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Notation. The Euclidean norm is || - |. When required, other norms are denoted
with different symbols. We use f, h, m, ¢, ¢, £ and v for functions. Other lowercase
Latin letters denote vectors in R". Exceptions are p and ¢, which are standard to
denote a pair of dual £, and £, norms, and r, which denotes a radius. Uppercase A
and B are matrices, L is a Lipschitz constant, and O is used for the Landau notation.
Lowercase Greek letters denote scalars. Calligraphic letters denote sets.

2. Background.

2.1. Variational Analysis Concepts. We say that A : R" — R U {400} is
proper if h(z) < 400 for at least one x € R™ and lower semi-continuous (Isc) at z if
liminf,_,; h(x) = h(Z). It is Isc if it is Isc at all z € R". We say that h is prox-bounded
at x if there is A > 0 such that w — h(w) + %)\_IHw — z||* is bounded below [37,
Definition 1.23]. The threshold of prox-boundedness of h at z is the supremum of all
such \ at z, and is denoted A,. We say that h is uniformly prox-bounded if there is
A € R, U {400} such that A\, > X for all z € R".

For ¢ : R" — R U {+o0} and & € dom(¢), the Fréchet subdifferential of ¢ at Z is

p(z) = {v eR"

i g 22) = 0(@) — Ve —3) 0} |

v [ —z|

The limiting subdifferential 9¢(Z) of ¢ at 7 is the set of elements v € R" such that
there exists a sequence {z,} — T with {¢(z})} — ¢(Z), and there exists v, € 5¢>(mk)
for all k such that {v,} — v. It always holds that 5¢(§:) C 0¢(Z).

If ¢ is proper, we say that T is stationary for ¢, or for the problem of minimizing
o, if 0 € 9¢(z). If ¢ is proper and has a local minimum at z, then Z is stationary
for ¢. In the special case where ¢ = f + h with f continuously differentiable and h
proper, then d¢(z) = V f(x) 4+ Oh(x) [37, Theorem 10.1]. We say that f : R" — R has
Lipschitz-continuous gradient with Lipschitz constant L > 0 if for all z and s € R",

(2.1) |[f(@+s) = flx) = Vf@)"s| < SL]Is||*.

2.2. Models. In this work, we focus on three sources of inexactness: the objective,
its gradient and the proximal operator evaluations. We denote f and V f the inexact
counterparts of f and V f. At each iteration, R2N computes a step s, defined below
that serves to define a stationarity measure and that results from a proximal operator
evaluation. Accordingly, in iR2N, we denote its inexact counterpart s.,. We follow
[3, 6, 25] and structure the iterations of an algorithm around two sets of models, but,
since the only information we have access to is inexact, those are based on fand v f-

For v > 0 and = € R", the first-order models

(2.2) Gep(s32) = fz) +Vf(2)"s
Y(s;x) ~ h(x+s)
(2.4) Mep (832,07 7) = op(5:2) + 2071 |1s|1? + ¥(s; 2)

serve to generalize the concept of Cauchy point, hence the subscript “cp”, where
we use the symbol “~” to mean that the left-hand side is an approximation of the
right-hand side. We will be more specific in Assumption 3.3 below. The dual role of
models (2.2)—(2.4) is to define a threshold for sufficient decrease at each iteration, and
to define a measure of approximate stationarity.
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For o >0, z € R” and B(z) = B(z)" € R™*", the second-order models

(2.5) o(s;2) = fla) + V@) s+ 15" B(a)s
(2.6) m(s;z,0) = @(s;x) + %O’HS”Q +Y(s;x),

are used to compute a step. Because ¢.,(-;x) is linear and ¢(-;z) is quadratic for
fixed z, both have globally Lipschitz-continuous gradient.

We follow [3, 6, 25] and require that all models that we consider satisfy the
following assumption.

ASSUMPTION 2.1. For all x € R", 4(-;2) is proper, Isc and uniformly prox-
bounded. In addition, (0;z) = h(x) and 0Y(0;z) C Oh(x).

2.3. The Proximal-Gradient Method. The direct generalization of the gradi-
ent method to nonsmooth regularized optimization is the proximal-gradient method
[26]. For (1.1), the proximal-gradient iteration can be written

(27) Tyl = Tk + Sk,cp

Sk.ep € argmin 2v, s + vV (2)|* + 9 (s; 24
(2.8) = argmin Vf(z)"s + St s|® + (s 20)

. -1
= argminme, (s; y, vy, ),
S
where v, > 0 is an appropriate step length, though it is typically used with 1 (s; ;) ==
h(zx), + s). We call s ., a Cauchy step. It turns out that s, ., exists provided v, is
sufficiently small.

PROPOSITION 2.1 (37, Theorem 1.25). Let ., (-;x) be as in (2.2), and ¢(-;x) be
proper, lsc, proz-bounded with threshold A, > 0 and such that 1¥(0;x) = h(x). For any
0 < v <A, the set argmin, m,(s;z, V_l) 18 nonempty and compact.

We denote s, an element of argmin, m,(s; x, v~ 1) when one exists. When Sep 18
well defined, the quantity

gcp(scpwra V_l) = ((pcp + ¢)(07$) - ((pcp + 1p)(scp;l')
= (f+ h)(ZE) - (Socp + d))(scp; l‘)

is central to the algorithm and the analysis, as it is in [3, 6, 25], where it plays the dual
role of defining Cauchy decrease and serving as stationarity measure. Indeed, under
standard assumptions, x is stationary for (1.1) if &, (scp; 7, v~ =0 [25, Lemma 3.5].
We diverge slightly from those references and, for reasons that become clear later, note

that v !||s., || can equally be used as stationarity measure.

(2.9)

|
cp

PROPOSITION 2.2. Let x € R"™ and (-;x) be proper, lsc, proz-bounded with
threshold X, > 0 and such that 0(0;2) C Oh(z). Let 0 < v < X\, and 5., €
argminsmcp(s;m,l/_l). If 8¢, = 0, then 0 € Vf(z) + Oh(z). If, in addition,
@f(x) =V f(x), then x is stationary for (1.1).

Proof. If s., = 0, then fcp(scp;x,l/_l) = 0 by (2.9). The rest of the proof is

identical to that of [25, Lemma 3.5]. 0

In the special case h = 0, i.e., smooth optimization, s., = —vV f(z). Thus, we

. —1 . .
normalize and use v~ " ||s., || as stationarity measure.

ep|
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The identification of an s.,, when one exists, coincides with the identification of an

cp?
element in the image of a proximal operator (1.2), i.e., 5., € proxw(,;x)(fy§f(x)). It
is the computation of an element in such a set that represents the main computational
challenge in problems for which the set is not known analytically, so that one must
resort to an iterative numerical method. In that case, the s, computed is inexact,
and we refer to this situation as an inexact evaluation of the proximal operator.

The following result is hidden inside the proof of [15, Lemma 2].

PROPOSITION 2.3. Let f have Lipschitz-continuous gradient with Lipschitz con-
stant L > 0 and let h be proper, lsc and proz-bounded at x € R"™ with threshold A, > 0.
Let 0 < v <min(1/L, \,), and let s € R" be such that

(2.10) F@) + V@) s+ v |2+ bz +s) < (f +R) ().
Then,
(2.11) (f+h) (@)= (f+h)(@+s) >3 —L)s|*

Proof. We inject f(z) + Vf(z)'s > flx+s)— %L||s||27 which follows from (2.1),
into (2.10) and obtain (2.11). d

Proposition 2.3 applied to ., (+;2), ¥(-;x) and s, € proxuw(,;z)(—u§f(x)), yields

(212) €cp(scp;w77/_1) > %V_1||5cp”27

because the Lipschitz constant of V., (-; x) is zero.

By contrast, we denote an approximate Cauchy step resulting from an inezact
minimization of (2.4) as 5.,. We will be more specific about the meaning of inexactness
in that context in Assumption 3.5. Accordingly, we define

(2.13) EopGep; 7,0 = (Pep + 0)(0;2) — (pep + 1) Bep; T)-

Proposition 2.3 states that (2.11) also holds for any s that produces simple decrease
in (2.4); s need not be an exact minimizer. Thus, if we apply a descent procedure to
minimize (2.4) starting from s = 0, any iterate, denoted generically as 5, generated
by that procedure will satisfy (2.11), i.e.,

(2.14) (Pep +)(0;2) = (Pep + %) (Beps @) = 307 [[5epI”.

Thus, an exact minimizer in (2.8) would produce a Cauchy step s ., that
satisfies (2.12). For brevity, we write & o, = §Cp(sk’cp;zk,ykfl) and E,mp instead
of ap(gkycp;xk,uk_l). The above shows that & ., > %u,c_lekycpHQ and gk,cp >
%Vk_l H?;%CPH2 provided 5y, ., results in simple decrease in (2.4) from s = 0.

Proposition 2.2 indicates that one role of the first-order models (2.2)—(2.4), and
hence of 5 ., and E,mp is to determine approximate stationarity. The role of the
second-order models (2.5)—(2.6) is to allow us to compute a step that improves upon the
(inexact) Cauchy step. Minimizing the second-order model is a well-defined problem
for all sufficiently large oy,.

PROPOSITION 2.4 (25, Proposition 3.3). Let ¢(-;x) be defined as in (2.5), and
let ¢(-;x) be proper, lsc and proz-bounded with threshold A\, > 0 and such that
V(0;2) = h(z). For any o > X, ' —Anin(B(z)), the set argmin, m(s; xz, o) is nonempty
and compact, where X\, represents the smallest eigenvalue.
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3. Algorithm and Convergence Analysis. Our algorithm is a modification of
method R2N of Diouane et al. [25]. At a general iteration k, an approximate Cauchy
step 5y, op is computed together with the corresponding value of 3 k,cp DY minimizing (2.4)
inexactly. If z;, is not approximately stationary, a step s;, is computed by approximately
minimizing (2.6). Because only f, and not f, is available, we compute the ratio of
achieved versus predicted decrease

fzy) + hzy) — (f(z + sg) + bz + s1))
(03 21) + (05 2) — (p(sks k) + (s )

to accept or reject s;,. Acceptance of sj, occurs when pj, > 7); > 0, which indicates that
sufficient decrease occurs in f + h. The parameters of the algorithm, specifically o,
together with assumptions on the accuracy of f, are chosen so that acceptance of s,
also implies that sufficient decrease occurs in f 4+ h. We then update o}, accordingly, as
in R2N. All that is required of s;, is that it satisfy a sufficient decrease condition—see
Assumption 3.4 below. That can be achieved, for instance, by computing 5y, ., from a
single (inexact) proximal-gradient iteration on (2.6) with a well-chosen step length v,
starting from s = 0, and computing s; by continuing the (inexact) proximal-gradient
iterations from 5y .,. Should ||sy || be much larger than |5 .||, we reset s; to 5 ., as
in R2N. The procedure is formally stated as Algorithm 3.1. We refer the reader to
[25] for more background.

(3.1) Pr =

3.1. Assumptions. Intentionally, our assumptions are not the most general
under which convergence of Algorithm 3.1 can be shown to occur. We have done so in
order to highlight the influence of our assumptions on the inexactness of the objective,
gradient and proximal operators evaluations on the analysis. We refer the interested
reader to [25] for the current most general assumptions. Nonetheless, we expect that
our convergence guarantees remain valid under the weaker assumptions, at the cost of
a more intricate analysis.

Our first assumption concerns Lipschitz-continuity of the gradient. Technically,
this assumption is only necessary for the complexity analysis; convergence can be
guaranteed under continuous differentiability only.

ASSUMPTION 3.1. Vf is Lipschitz-continuous with constant L > 0—see (2.1).

We assume that {Bj,} is bounded; a common assumption in the literature. Under
appropriate growth conditions, convergence is preserved even if {B,} is allowed to
grow unbounded [25].

ASSUMPTION 3.2. There exists kg > 0 such that || B|| < kp for all k.

Assumption 3.2 is trivially satisfied when B;, = 0, as in [3, Algorithm 6.1]. It is
also satisfied in [12] where the objective is strongly convex and the model Hessian is
defined by a positive definite limited-memory quasi-Newton update. Under standard
assumptions, the LBFGS and LSR1 updates satisfy Assumption 3.2 [5, 17].

Our next assumption bounds the discrepancy between h and its model .

ASSUMPTION 3.3. There exists rj, > 0 such that [{(x, s) — h(z 4 5)| < k][5 for
allz and s € R".

The bound ||s||* in Assumption 3.3 can be relaxed to o(||s||) [25]. Assumption 3.3
is satisfied when v¥(s;z) = h(x + s), and when h(z) = g(c(z)) where ¢ is twice
continuously differentiable with bounded second derivatives and g is globally Lipschitz
continuous if we select 1(s; ) = g(c(x) + Ve(z) " s).
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Algorithm 3.1 iR2N
1: Given ky > 0, Ky > 0, choose constants 0 < 3 <1 <7y <79, 0 <7y <7 < 1.
2: Choose 0 < 6; <1 < 6,.
3: Choose 0y > 4k 00105/ (7, (1 — 01)) and 0 > -
4: for k=0,1,... do

5: Choose By := B(xy,) € R"*" such that B, = By .

6: Set vy =0, /(||Byll + oy)-

7: repeat N

8: Compute 5y, ., an approximate solution of ming m.,(s; zy, vy ') and Ek.cp-
9: Compute a step sj, such that m(sy;xy,0) < M(8g cps Ty O )-

10: if ||sgl| > 055 cpll then

11: Reset 55, = 5j, cp-

12: end if

13: until fand @f satisfy Assumption 3.6.
14: Compute the ratio p;, as in (3.1).
15: if p, > 7, then

16: Set xp11 = T + Sp-

17: else

18: Set Tpy1 = Ty

19: end if

20: Update the regularization parameter according to
[Y30%, 0] if py, > 1, very successful iteration

Opi1 €1 ok, Y104 if 9y < pr < 1o, successful iteration

[V10k, Y20, i P, <y unsuccessful iteration

21: Reset 0,1 = max (g1, Omin)-

22: end for

The next assumption drives the convergence analysis and states that the step
s;, computed at iteration k should result in a decrease at least comparable to that
induced by the approximate Cauchy step in the first-order model.

ASSUMPTION 3.4. There is 0; € (0,1) such that p(0;2) + ¢¥(0; ) — (p(si; ) +
W(si@)) = (1= 01)ycp for all k.
As we now show, Assumption 3.4 holds for s, computed as stated in Algorithm 3.1.
LEMMA 3.1. For 6, € (0,1) and s, as in Algorithm 3.1, Assumption 3.4 holds.

Proof. The proof of [25, Proposition 3] applies with s = s, and 5y, ., in place of
Sep- Indeed, it remains valid for any s € R" and s., € R" as long as m(s;z,0) <

m(Sep; ,0), which is guaranteed by step 7 of Algorithm 3.1. d

We ensure that Step 7 in Algorithm 3.1 holds because the inexact Cauchy step
S),cp coincides with the first (inexact) step of the proximal gradient method applied to
m(s;xy, o) from s = 0 with an appropriate step length v,,. Therefore, computing s;, by
continuing the proximal iterations from 5y ., leads to further decrease in m(s; zy, oy).

The next assumption requires the norm of the computed step sy, ., to be at least
a fraction of that of an exact step sy -
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ASSUMPTION 3.5. There exists kg € (0,1] such that, for all k,

[Sk,cpll = rs minglsy cpll | sp,cp € prox (=4 Vf(zg))}
v ()

In the experiments of Section 4, ¥(+; x},) satisfies the assumptions of Proposition 2.1
and, therefore, the minimum in Assumption 3.5 is well defined.

Assumption 3.5 holds when sy, ., is computed exactly, i.e., 5 o, = Sy cp- Indeed,
let |k min|| be the smallest norm across all possible choices of sy, .,. Several cases
can occur. Firstly, if |[sg minll > 0, then [|s; o, || > 0 necessarily, and Assumption 3.5
holds with xg == min(1, ||sg.cpll/||Sk.minll). If, on the other hand, [|s; yin| = 0, the
same holds if we compute sy, ., # 0 but, should we compute s, ., = 0, Proposition 2.2
would imply that z,, is stationary and the iterations would stop. This case will be
clarified in Lemma 3.5.

Details on how we satisfy Assumption 3.5 when sy, ., # sj, ¢, in certain situations
relevant in practice can be found in Section 4. We further comment on Assumption 3.5
in Section 6.

In the same fashion as [31], we bound evaluation errors in terms of the step.
Similar assumptions are made in [22] in a trust-region context.

ASSUMPTION 3.6. There exist ky > 0 and ky > 0 such that, for all k € N,

(3.2) |f (@) = Fan)] < rpllsill?,
(3.3) |F(r + i) = Flaon + sl < rgllsill?,
(3.4) IV f(@r) = V@)l < rollskll

Finally, we assume that the objective is bounded below, which is only required in
the complexity analysis.

ASSUMPTION 3.7. There exists (f 4+ h)iow € R such that (f + h)(x) > (f + h)jow
for all z € R"™.

3.2. Convergence Analysis. Our first result relates the decrease predicted by
the model to the step size.

LEMMA 3.2. Let Assumption 3.4 hold. Then,
Q(0;25) + 0(0;24) — (P55 2x) + (53 2) > 5(1—01)05 vy sl
Proof. Assumption 3.4, (2.14) and line 10 of Algorithm 3.1 yield
0(0521) + (05 21) — (@(sps 1) + Y (sps2r)) > (1= 01)E e
—1ya 2
1 =01y, ||5k,cpH

1—6,)05 v Isi . 0

v

3
2

Y

Our next result mirrors [6, Theorem 4.1] and shows that whenever o), exceeds a
threshold oy, iteration k is very successful and oy, decreases.

LEMMA 3.3. Let Assumptions 3.1 to 3.4 and 3.6 be satisfied and define

0,02 (L 2 4 2
Oguce '= Max 105(L + i + 2, +,\Hf L KV), A >o.
(1=0)(1—=13)

If, at iteration k of Algorithm 3.1, s;, # 0 and oy, > Ogyce, then py > 7y, and iteration
k is very successful.
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Proof. As in the proof of [6, Theorem 4.1], o}, increases as long as it is below /\g;k1

Thus, we assume that o, > A~!. The definitions of P and ¢, Assumption 3.4, the
triangle inequality and Lemma 3.2 yield

Ipe — 1

_ ‘f(xk + 5) — f(%) Y (-Tk)TSk - SZBkSk +h(xg + si) — (s )]

@(0;7) +9(0;2) — (¢ (5k§33k) + (s 71))

|flag + ) — fl@) — V() sl + |25k Bk3k| + [h(zy + s1) — V(s 7))
; .
5(1 *91)92 Vi, ||5k||

The triangle inequality along with Assumptions 3.1 and 3.6 bound the first term
in the numerator as

~

|Flag + si) — Flag) — V() syl
< | f (g + ) — flag) — V() sl + 2“}"”516”2 + gl sell®
< (3L + 265 + mg) skl

Assumption 3.2 bounds the second term in the numerator by 1| By llsell® < 1kp sell?.

Assumption 3.3 bounds the last term in the numerator by ry||s||?. After simplifying
by ||s,€||2 and using vy, < 0, /0;, by definition in Algorithm 3.1, those observations give

0:105(L + kg + 26, + 4k p + 2ky)
(1—0)ox .

ok — 1] <

Therefore, 0}, > 0gyce implies that p, > 7. |

In Lemma 3.3, we showed that o), > 04 == pj > 72, which means that
there is a decrease in f + h. Next, we show that there exists n; > 0 such that
P >0 = pp > M, and similarly for 5. Therefore, a decrease also occurs in f + h
every time a step is accepted.

LEMMA 3.4. Let Assumptions 3.4 and 3.6 hold. At iteration k, denote

fzp) + h(zy) — (f (2 + s1) + h(xg + 51))
(05 21) + (05 24) — (p(sk528) + V(sS85 21))

the measure of agreement between the actual and predicted decrease in f + h. Let o,
be as in Algorithm 3.1 and

Pk =

4t ;16,03
(1 - el)amin

Then, py =1 = px =M and py = 1y = py, = 1.

At 16,03
(1 - Hl)amin

o~

m=mn — > 0.

>0, Ny =Ty —

Proof. By definition of p;, and py,

o (f = N)(x) + (f = Py + sx)
Ph = P ) O am) — (o + ) (5wr )

Because Algorithm 3.1 enforces o), > o5, > 0, we obtain vy, < 6,/0), < 01/0min-
Thus, Lemma 3.2 and Assumption 3.6 give
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2% || s]? _ At ;0,05
(1—60)05 2w  Ispll? = (1= 61)0min

P — prl < 7
2

NOW, if ﬁk > ﬁla
R At 16,03

> _— e = .
Pl =T (1 - el)omin h

The lower bound on o, ensures 1; > 0. The same holds for n, because 175, > 7;,. O

Lemmas 3.3 and 3.4 together imply that p,, > 7); guarantees a decrease in f + h.
The next result is classic and considers the case where only a finite number of
successful iterations occur.

LEMMA 3.5. Let Assumptions 3.1 to 3.4 and 3.6 be satisfied. Suppose Algorithm 3.1
generates finitely many successful iterations. Then x;, = x, for all k sufficiently large
and x, is first-order stationary.

Proof. By assumption, there is ky € IN such that z;, = =, for all &k > k. If x, is
not stationary, as of iteration kg, Algorithm 3.1 repeatedly computes nonzero steps
sy, all of which are rejected, i.e., py, < n;. Thus, for all k > kg, o1 > o). Hence, for
sufficiently large k, o), > 04, Wwhich triggers a successful iteration, and is absurd. O

Lemma 3.3 implies that there exists o, = min(og, Y20 uce) Such that oy, < oy
for all £ € IN. Consequently, Assumption 3.2 yields that for all k € IN,

(35) Vmin S Vg S Vmax» Vmin ‘= 91/(HB + Jmax), Vmax ‘= gl/amin'

Let € > 0. We seek a bound on k. := min{k € N | v, '[[3.cpl < €} = [S(e)| +
|U(€)| + 1, where

S(e):={keN|p,>n and k < k.}, U(e) ={keN|p, <n and k < k}.

LEMMA 3.6. Let Assumptions 3.1 to 3.4, 3.6 and 3.7 be satisfied. Assume that
Algorithm 3.1 generates infinitely many successful iterations. Then,

|S(€)| < (f+h)(.’£0) — (f+h)low 6_2 ::Wf—27

%771(1 = 01)Vmin

where Vi, is defined in (3.5).

Proof. Let k € S(e). By definition, p,, > 7;, which, by Lemma 3.4, implies that
pr > np. Assumption 3.4, (3.5), (2.14) and the fact that k < k. then imply

(f + 1) () = (f + 1) (g, + s) = m((p + ) (0;25) — (@ + ) (sg5 1))
> (1= 01)cp
> 2m (1= 0w |Sepl®
> %771(1 - 91)Vk€2
>ip(1- 01)Vmin€”-
The rest of the proof is classic and identical to, e.g., [6, Lemma 4.3]. O
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It is remarkable that the bound in Lemma 3.6 is identical to that of the standard
R2N, which is more apparent when comparing with [6, Lemma 4.3] than with [25,

Theorem 6.4]. The extra factor 3 in the denominator of our bound on |S(e)| is due to

the fact that we use vy ' |5 cpll as stationarity measure instead of v, Y 2&1/3})7 as in [6].

Finally, we recover a worst-case complexity bound of the same order as in the
analysis with exact proximal operator evaluations. The proof is identical to that of,
e.g., [6, Theorem 4.5], and is omitted.

THEOREM 3.7. Let Assumptions 3.1 to 3.4, 3.6 and 3.7 be satisfied. Then,

‘S(E)‘ + |u(€)‘ = (1 + |10g'yl (73>|) ws€_2 + lOg,yl (Umax/00> = 0(6_2)?

where w, is defined in Lemma 3.6.

Theorem 3.7 shows that iR2N brings the measure 1/,;1H§,C,Cp|| below € in O(e?)
iterations. That measure is not a stationarity measure because it includes the inexact-
ness on 8y, o, By Assumption 3.5, there exists an exact Cauchy step s;,_, such that

(3.6) Ve sk, epll < ks Bk, epll < 5 e

Thus, if Vk_1||§k€,cp|| is small, vy, ' |8k, cpll is comparably small. The next result shows
that when the latter occurs, we have identified a near stationary point, and marks the
impact of k, on the analysis.

THEOREM 3.8. Let Assumptions 3.5 and 3.6 be satisfied. Let € > 0 and assume
l/k_l||’s\k’cp|| < €. There exists Sy ¢, € PrOX,y(.i5,) (—VkV f(21)) that satisfies Assump-
tion 3.5 such that ||sy .| < Ky Vmax€s and uy, € Vf(zy,) + OV (8 cps Ti) such that

-1
(37) ||uk|| < (HV02Vmax + K ) €.
Proof. By definition, sy, ., is an exact minimizer of (2.4), thus

0e 6f(xk) + Vk_lsk,cp + aw(sk,cp;xk)
(3.8) =V (k) + gk + Vi "Skoep + OU(Sk.cpi T,

where gj, = V() =V f(z) and ||gx || < mv sl < kg0 |5k cp | from Assumption 3.6
and line 10 of Algorithm 3.1. By (3.5) and 1/,;1||§k7cpH <€ ||Skepll < Vk€ < Vpaxe-
Thusa Hng < KJVGQVmaxe'

On the other hand, Assumption 3.5 gives

o sk epll < 5w B epll < #5e

Now, (3.8) implies that
uy = —(g + Vl;15k,cp) € Vf(xy) + 0 (sp,cp; Ti)-

Because |Jug] < ||lgkll + Huk_lsk,cp||7 (3.7) holds. Finally, the same reasoning as above
shows that [|s, o, is bounded as announced. 0

The following results directly from Theorem 3.7 and mirrors [29, Lemma 3].
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LEMMA 3.9. Under the assumptions of Theorem 3.7 and Assumption 3.5, there
exists an infinite index set N C IN and {sy ¢, } where sp c, € ProxX,, .0, ) (=i V f (7))
for all k such that

L {/s\k,cp}N — 0 and {Sk,cp}N — 0,
2. {sp}n—0
3. there exists uy, € V f(xy) + O (S cps k) such that {uy}n — 0.

Proof. Claim 1 follows directly from Theorem 3.7, (3.5) and (3.6). Claim 2 follows
from Line 10 of Algorithm 3.1. Claim 3 results from Theorem 3.8. ]

We close this section with a result stating that every limit point of the sequence
{z,} N generated by Algorithm 3.1 is stationary, where N is defined in Lemma 3.9,
under an assumption on the subdifferential of the models 9 (-; z},).

Recall that for a sequence of sets {A;} with A4, C R" for all k& € IN, the set
lim sup .A;, is the set of limits of all possible convergent sequences {a,} with N C IN
infinite and a;, € A;, for all kK € N.

THEOREM 3.10. Under the assumptions of Theorem 3.7, Assumptions 2.1 and 3.5,
let N CIN be as in Lemma 3.9. Assume that {x,}y — T and that

(3.9) lim sup OV (s, cp; 1) € OP(0;T).
keN

Then T is stationary for (1.1).

Proof. By our assumptions, Lemma 3.9, continuity of Vf and Assumption 2.1,

0 € V() + lnsup 00 (st pi 24) © V(@) +00(0:7) € V(@) +0h(@).
S

Thus, Z is stationary for (1.1). 0

As Leconte and Orban [29] explain, (3.9) holds in several relevant cases, e.g.,
1. each ¢(;x) and ¥(+; &) are proper, Isc and convex with ¥(-;x;,) — ¥ () in
the epigraphical sense, and 0 € dom ¥ (+; Z);
2. Y(s;x) == h(x +s) and h(zy, + s5,.c,) — h(Z) as would occur, in particular but
not exclusively, when h is continuous.

4. Evaluation of inexact proximal operators. In this section, we discuss the
practical implementation of Algorithm 3.1 with focus on computing an approximate
solution of (2.8) that satisfies Assumption 3.5. Our approach is simple: assume that
an upper bound M, > 0 on |[[sy, .,,|| can be determined based on properties of (-; xy,).
Assume also that a descent procedure is applied to (2.8) starting from s = 0 that
generates iterates 5;, j > 0. Then, stopping the procedure as soon as [[5;|| > kM
ensures that Assumption 3.5 holds.

We consider three regularizers whose proximal operators (1.2) are not known
analytically and must be computed inexactly:

@) b = ) = [, (1<p <o)
(42 b)) = TV,@) = (3 fos = 2ia)” (1<p <o)

(4.3) h(z) = xpr(x) = (0<p<1,

oo otherwise

{o if [J|f <

where TV, is the one-dimensional total-variation operator, and x,, ,. is the indicator of
the £,-pseudo norm “ball” of radius /P for r > 0.
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The next lemmas derive bounds on the norm of solutions to the proximal problems
associated with those regularizers.

LEMMA 4.1. Let h be given by (4.1) and v (s;xy,) == h(zy, + s) with s € R". The
unique solution sy ., of (2.8) is such that

(4.4)

™ H<{%W§ﬂmﬂ+nyp”% 1<p<2)
P V@) + 1) (v>2)

Proof. Since 9 (-;x;,) is convex, (2.8) is strongly convex and, therefore, has a
unique solution s;, ., The necessary optimality conditions read

Vf(xk) + Vk_lsk,cp + U = Ov U € aw(sk,cp;xk)'

T
Here, a¢(5k,cp;xk) = {u eR" ‘ ”u”q <landu (Sk,cp +xk) = ”Sk,cp +IHp}a where ¢
is such that 1/p + 1/q = 1. By equivalence of norms,

g ] < 0279 g |, < 0?2 = P2

When 1 < p < 2, the latter bound is attained for u,, := (nil/q,nfl/q, . ,nil/q) with
llugll, = 1. When p > 2, the bound simplifies to |lu,| < 1, which is attained for

up = (1,0,...,0). Thus, [[s.epll = & |V (22) + ugll < v IV f (@) + ), which
yields (4.4). O

The next result helps bound solutions of (2.8) when h is given by (4.2), but is
more general, which is why it is stated separately.

LEMMA 4.2. Let A € R™*", h(z) = ||Az|, where || - ||o is a norm on R™, and
Y(s;xy) = h(xy, + 5). The unique solution sy, ., of (2.8) satisfies

(45) Iskepll < v (19 £ @I+ AN uell)

where uy, € 0| A(xy, + sg.cp)le-
Proof. Here again, s, ., is unique by strong convexity of (2.8). For n(y) := [|yll.,

on(y) = {u € R™ | ull, < 1and u"y = ||y},

where ||-||, is the dual norm of || -||,. By [35, Theorem 23, 9], 8 (s; ) = AT On(A(zy +
s)). Thus, the first-order optimality conditions of (2.8) imply

0€ 6f(xk:) + Vlc_lsk,cp + ATukv

where uy, € On(A(zy+ 5k cp)). We extract sy o, = —v(Vf () +ATuy), and 5k cpll <
vie(IV ()| + AT u]), which is (4.5) since [| Al = [|A™]]. 0
Lemma 4.2 does not state a bound on ||uy|| as one would depend on || - ||, and the

bound |luy|l, < 1. The next corollary applies Lemma 4.2 to (4.2).

COROLLARY 4.3. Let h be as in (4.2) and ¢(s;xy) = h(zy + s). The unique
solution sy, ., of (2.8) satisfies

v (9 (@)l +2sin (252 ) n!P712) (1<p<2)

2n
v (19 (@)l + 2sin (7472 )) (v>2).
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Proof. Apply Lemma 4.2 with || - ||, = || - ||, and

p

-1 1
A:: .. .. GR(nfl)Xn.
-1 1

Note that AT A is the centered finite-difference operator for second derivatives, which
is symmetric, tridiagonal and Toeplitz. Its eigenvalues are thus known in closed form,
hence the value of || A]| [40, p. 54]. Finally, |lug|| can be bounded as in the proof of
Lemma 4.1. 0

The final lemma derives a bound on the solution of the proximal problem associated
to the indicator function in (4.3).

LEMMA 4.4. Let h be as in (4.3) and ¢(s;xy) = h(zy, + s). Any solution sy, .,
of (2.8) satisfies

1
(4.7) I8k .epll < 777 + [lagll.

Proof. Because 0 < p < 1, t — t? is concave for ¢ > 0, and thus subadditive,
ie., (a+b)” < a” + V" for any a, b > 0. Let u € R". By recurrence on n, [lull, =
Yoy Jug|” > (307 |ui])?, which states that |[ul|, > [|ull;. This implies that the unit
“ball” in £)-pseudo-norm is a subset of the unit £;-norm ball. In turn, the latter is a
subset of the unit £,-norm ball. A scaling argument shows that the same holds with balls
of radius 7 > 0. Therefore, because ||z + sy cpll, < /P we have ||z + Sg.epll < Pt/
The triangle inequality yields sy cpll < |25 4 Sk cpll + |25 ]| < Py IEFAIR O

In (4.4), (4.6) and (4.7), the bound on ||s, ., || depends only on known quantities
at iteration k. Thus, we can enforce Assumption 3.5 by stopping the inexact proximal
procedure as soon as ||§§€J sz exceeds a fixed fraction of said bound.

5. Numerical experiments. In this section, we present numerical experiments
indicating that exploiting inexact objective values, gradients and proximal operators
can reduce computational cost substantially. We implement Algorithm 3.1 in the Julia
language [14] as a modification of the R2N solver [25] in [7].

The implementation of the proximal operator of (4.1) and (4.2), which are both
convex, is available from the Julia interface [2] to the proxTV library [9]. Both
implement iterative methods. The method for (4.1) computes projected quasi-Newton
search directions, and performs a backtracking line search to determine the step
size. That for (4.2) alternates between gradient projection into the £,-norm ball and
Frank-Wolfe steps. After each update, the primal solution is reconstructed from the
dual variable, and a new gradient is computed.

Our implementation of the proximal operator of (4.3) is based on the Iteratively
Reweighted /,-Ball Projection (IRBP) scheme of [43]. At each iteration, IRBP
approximates the £,-“ball” norm via a weighted linearization of the nonconvex set
around the current iterate. This results in a convex subproblem describing a projection
into a weighted ¢;-norm ball, which can be solved efficiently [21]. A smoothing vector
is maintained and adaptively updated to avoid numerical instability and improve
convergence. The nonconvex nature of x,, implies that there may be non-global
minima or saddle points [43]. Therefore, the step output by x,, may not even

induce E k.cp = 0. To the best of our knowledge, there is currently no procedure that
is guaranteed to determine a global minimum. In order to mitigate the issue, we
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implement a multi-start strategy to increase the odds that 5 ., be a global solution.
Our strategy is not always successful, but nevertheless often results in acceptable steps.
Part of future work is to find a procedure that identifies a global minimizer. Our
implementation is available from [1].

In each case, inexactness in the proximal operator evaluations is controlled by
0 < ks < 1in Assumption 3.5. For kg = 0, the expectation on the quality of 5 ., is at
its lowest, i.e., Assumption 3.5 is easiest to satisfy, but (5.1) is harder to reach. Thus
the solver may spend less time inside each (cheap) proximal operator evaluation at
the cost of potentially performing more (costly) outer iterations. On the other hand,
when g =~ 1, the 5, o, should be close to an exact solution. In this case, the solver
may spend more time than necessary inside each proximal operator evaluation, which
may adversely affect the total solution time. In our experiments, we vary the value of
K, to assess the impact of the inexactness on the performance of iR2N.

Step 9 in Algorithm 3.1 is performed by a special case of Algorithm 3.1 with
B =0 in which the proximal step computation is the only subproblem. In effect, that
is a variant of the R2 algorithm [3, Algorithm 6.1] extended to the inexact proximal
framework. We refer to this variant as iR2. Although iR2 is also allowed to perform
inexact evaluations of its smooth objective and gradient, we evaluate the quadratic
model ¢(s;x;,) exactly in our experiments.

Each procedure to solve (4.1)—(4.3) comes with its original stopping condition.
We say that we run iR2N in ezact mode when we use this original stopping condition,
independently of Assumption 3.5, and we consider that the resulting proximal operator
is then evaluated exactly. By contrast, we run iR2N in inezact mode when the
iterations of the proximal operator evaluation are terminated as soon as either (i)
5% cpll > s My, where My, is the upper bound on ||sy .|| given in (4.4), (4.6), or (4.7),
or (ii) the original stopping condition of the proximal operator evaluation is met. In
proximal operator evaluations, iR2 uses the same value of k, as iR2N.

Inequalities (3.6) suggest using u,;1||§k7cp|| < Kk4€ as stopping criterion in Algo-
rithm 3.1, since it guarantees that vy 1||3k,cp|| < e. However, we will see that small
values of K, yield the best performance but make that stopping condition overly
stringent. In addition, the bound M, given in Lemmas 4.1, 4.2 and 4.4 need not be
tight, and could indeed be quite loose. For those reasons, all our experiments use the
simple stopping condition

(5.1) v Bkl < e

In the next sections, we report the performance of iR2N on problems that use
the inexact proximal operators described above. In Subsections 5.1 to 5.3, both the
objective and gradient are assumed to be evaluated exactly, i.e., only subject to the
limits of floating-point operations. In Subsection 5.4, we consider inexact evaluations
of the objective and gradient. All our tests are performed in double precision on a
2020 MacBook Air with an M1 chip (8-core CPU, 8 GB unified memory).

Because f in our test problems is based on randomly-generated data, we average
the statistics over 10 runs. It is useful to keep in mind that each iR2N and iR2 iteration
evaluates a single proximal operator—see Line (8) of Algorithm 3.1. Tables in the
next sections use the following headers: “k,” is the value of the inexactness parameter
in Assumption 3.5, “iR2N” is the average number of outer iterations, “iR2” is the
average number of inner iterations per outer iteration, “prox” is the average number
of iterations per proximal operator evaluation, and “time (s)” is the average CPU
solution time in seconds.
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5.1. Basis pursuit denoising problem (BPDN). The BPDN problem is
stated as

(5.2) min 4| Az — b3 + pul]],.
z€R

where = 10_17 A € R?™*%12 i random with orthonormal rows, b = AZ + ¢, T has
10 nonzeros, and ¢ is a noise vector from a normal (0,1) distribution. We use p = 1.1
to attempt to recover a sparse solution. In (5.1), we set € = 107°.

TABLE 5.1
Statistics on (5.2) for several values of k.

Kg iR2N iR2 prox time (s)
1.00e—07 1.61le4+01 1.21e4+02 1.02e+02 5.03e+00
1.00e—05 1.57e4+01 1.63e4+02 1.90e+02  9.80e+00
1.00e—03  1.49e4+01 1.33e+01 4.02e+02 1.55e+01
1.00e—02 1.49e4+01 1.78e+01 6.02e+02 1.77e+01
1.00e—01 1.45e401 1.39e+01 5.81e+02 1.32e+01
5.00e—01  1.45e+01 1.37e+01 5.90e+02 1.28e+01
9.00e—01 1.45e+01 1.39e4+01 5.80e+02 1.25e+01
9.90e—01 1.46e+01 1.37e4+01 5.90e4+02 1.38e+01

exact mode 1.45e+01 1.35e+01 5.68e+02  1.20e+401

Table 5.1 shows that the average number of iR2N/iR2 iterations decreases globally
as K, increases. The proximal operator iterations increase as k, increases, as expected.
For small values of k,, inexact mode yields a substantial reduction in the number of
proximal iterations and solution time compared with exact mode at the expense of
a modest increase in outer iterations. For large values of x, the behavior of iR2N is
close to that of exact mode.

Figure 5.1 shows that the solutions produced in exact and inexact mode are
essentially identical, and that both recover the sparse support of Z.

Inexact mode (k, = 1077) Exact mode

1 : T : T : T 1 : T : T T : i T
\ 1 1 1 1 1 |
; : : ; ! a
05| : : | 05| : : :
| | | |
5 0 | 5 0 '
—0.5| ; . —0.5| : |
— iR2N i — iR2N \
- - - true solution i - - - true solution i
-1 T T | | I -1 T T | H I
100 200 300 400 500 100 200 300 400 500
index index

Fic. 5.1. Components of the solution of (5.2) found by iR2N and of T.

5.2. Matrix completion problem. The problem is stated as

6.3 iy 3 [P(o — )2+ 4TV, (0),
z€R"
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where p=10"", p=1.1and A € R'""*" is a fixed matrix representing an image and
the operator P only retains a subset of pixels. In (5.1), e = 1072,

Table 5.2 gathers our results on (5.3). The benefits of choosing x, small are similar
to those in Table 5.1. Figure 5.2 shows that the reconstruction error with the solutions
of exact and inexact mode are close, as is the discrepancy between the two solutions.

TABLE 5.2
Statistics on (5.3) for several values of k.

Kg iR2N iR2 prox time (s)
1.00e—07 3.69e4+01 3.41e+02 5.88e+02 9.46e+01
1.00e—05 3.72e4+01 3.03e+02 8.7le+02 1.42e+02
1.00e—03  3.69e+01 2.09e+02 3.76e+03  3.54e+02
1.00e—02 3.77e4+01 2.12e4+02 4.06e+03  3.73e+02
1.00e—01 3.41e4+01 1.90e+02 4.37e+03  3.25e+02
5.00e—01  3.56e+01 2.19e+02 4.31e4+03  3.54e+02
9.00e—01 3.77e+01 1.81e4+02 4.49e+03 3.57e+02
9.90e—01  3.55e+01 2.0le4+02 4.27e+03  3.54e+02

exact mode  3.18e+01 1.67e4+02 4.49e+03  3.36e+02

Xinexact — Al (k5 = 107" [ Xexact — [Kinexact = Xesact|

o

FiG. 5.2. Left: Heatmap of the difference between the solution X found by iR2N in inexact and
exact mode, and A. Right: Difference between the two solutions. The values masked by P are set to
zero and shown in black.

1073

0.5

5.3. Fitzhugh-Nagumo inverse problem. The FitzHugh—Nagumo system is
a simplified representation of a neuron’s action potential modeled by the system of
differential equations

(54) V(1) =23 (V() =3V @) =W () +z1), W) = 2a(a3V (1)~ W () +a5).

We use initial conditions V(0) = 2 and W(0) = 0, and generate data v(z),w(x) by
solving (5.4) with z = (0,0.2,1,0,0), which corresponds to the Van der Pol oscillator,
to which we add random noise. We then aim to recover Z by minimizing the misfit
while encouraging a sparse solution:

. 2
(5.5) it g [ ()]l + Xp.r (2).
xre

where p = 0.5, r = 2, F : R> — R**?, F(z) = (v(z) — 0(x), w(z) — w(z)), and
v(x) = (v1(x),...,v41(x)) and w(z) = (wi(x),..., wnH x)) are sampled values of
V and W at n + 1 discretization points. We set e = 107> in (5.
our results.

The small number of iterations per proximal call arises from the fact that ,, , is
an indicator; the projection of a point that already belongs to the set requires zero

1). Table 5.3 reports
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TABLE 5.3

Statistics on (5.5) for p = % and r = 2 with several values of k.

K iR2N iR2 prox time (s)
1.00e—07 5.14e+02 4.90e+02 3.51le—01  5.28e4-00
1.00e—05 5.72e4+02 4.64e+02 4.62e—01 5.21e+00
1.00e—03 6.31le+02 5.47e4+02 5.96e—01  5.56e4-00
1.00e—02 5.71e4+02 4.81e+02 6.22e—01 5.17e+400
1.00e—01 4.95e4+02 4.89e+02 4.11le—01 5.85e+00
5.00e—01  4.90e+02 4.59¢+02 1.94e4+00 6.42e+00
9.00e—01 5.12e+02 4.98¢+02 2.06e+00 6.53e+00
9.90e—01 5.24e+02 5.09e4+02 1.91e+00 6.84e+00

exact mode  4.92e+02 5.03e4+02 3.92e+01  6.88e+00

iterations. The value of x, has little effect on the number of iR2N/iR2 iterations. As
in Subsections 5.1 and 5.2, inexact mode yields a reduction in computational cost,
though more modest because the smooth objective and its gradient are costlier in (5.5)
than in (5.2) or (5.3). Thus, the reduction in proximal evaluations must outweigh the
increase in outer iterations. Table 5.4 gives the approximate solution identified by
the exact and inexact variants, and the final value of the smooth objective. Although
both exact and inexact mode recover a solution that has one more nonzero than z, the
final smooth objective values are close to that at Z. Figure 5.3 plots the simulation
of (5.4) with parameters found by iR2N with x, = 1.0e—07 when solving (5.5). The
solutions with exact and inexact mode are indistinguishable.

TABLE 5.4
Approzimate solutions of (5.5) found by the exact and inexact variants with kg, = 1.0e—07. The
last column shows the smooth objective value at the solution.

@ LIF@)I”
True 0.00e+00 2.00e—01 1.00e+-00 0.00e+00 0.00e+00 8.82e—01
Inexact 0.00e+00 2.00e—01 9.98¢—01 —1.00e—02 0.00e+00 8.96e—01
Exact 0.00e+00 2.00e—01 9.98e—01 —1.00e—02 0.00e+00 8.96e—01

Exact mode

voltage

Fi1c. 5.3. Simulation of (5.4) with solutions of (5.5) found by iR2N.

5.4. Inexact objective and gradient evaluations. We now consider inexact
evaluations of the smooth objective and its gradient. In (5.5), each evaluation of F'
involves solving an ODE system numerically, which inherently depends on a stopping
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tolerance that introduces an approximation error. We use the Verner [42] 9/8 optimal
Runge-Kutta method as implemented in [33]. In our implementation of F', the accuracy
of the ODE solve can be adjusted via a parameter prec > 0 that sets the absolute and
relative stopping tolerances. The gradient is computed via automatic differentiation,
and hence, its accuracy also depends on prec. Decreasing this tolerance improves
the accuracy of the objective and gradient but increases the computational cost. The
results of Subsection 5.3 used prec = 10~ as the reference “exact” objective and
gradient evaluations.

Because Assumption 3.6 may not be easily verifiable in practice, we propose
a heuristic inspired from trust-region methods for derivative-free optimization [23,
chapter 10], that consists in adapting the accuracy based on the progress of the
algorithm. More precisely, we increase the accuracy on unsuccessful iterations, i.e.,
pr < mnp in Algorithm 3.1. At iteration k, we set prec to

(5.6) prec(k) := max(10~ exp(log(10~"*/107*) np/N), 107,

where N is a preset maximum number of unsuccessful iterations after which prec =
107 is always used, and np counts the number of unsuccessful iterations. Small values
of N lead to a rapid increase in accuracy, whereas larger ones maintain low-accuracy
evaluations over more iterations. Though (5.6) may not guarantee Assumption 3.6
at every iteration, the objective and gradient accuracy improves as the algorithm
progresses, as required by the assumption.

We focus on (5.5) with the setting of Subsection 5.3 and we use (5.6) for inexact
objective and gradient. We vary the value of N with fixed k, = 10”7 in Table 5.5.

TABLE 5.5
Iterations and time on (5.5) with inexact objective and gradient evaluations.

N fail rate iter iR2N iter iR2 prox time (s)
exact F 0%  5.14e4+02  4.90e+02 3.51le—01  5.28e+00
20 0%  5.66e+02 5.10e+02 4.55e—01  5.16e+00

50 20%  6.36e+02 5.07e+02 3.77e—01  4.31e+00

100 30% 6.3le+02 5.08e+02 3.46e—01  3.27e+00

200 80%  6.67e+02 5.47e+02 3.69e—01  2.46e+00

The first line of Table 5.5 reports the number of iterations and the solution time
obtained with “exact” objective and gradient. Lines 2-5 use (5.6) for several values of
N. As N increases, iR2N spends a larger fraction of its iterations in a low-precision
regime, making it increasingly likely that Assumption 3.6 is violated. When iR2N
operates with insufficient accuracy for too long, the algorithm may eventually stall,
cease to make progress, and reach the maximum number of allowed iterations. The
second column of Table 5.5 reports the proportion of such failed runs over ten trials.
Importantly, the iteration and timing statistics shown in Table 5.5 correspond only
to the successful runs. The failure rate increases with N, and for N = 200 few runs
succeed. Moderate values of N yield significant benefits in terms of solution time.

In Table 5.6, we report the performance of Algorithm 3.1 using inexact objective,
gradient and proximal operator evaluations following rule (5.6) on (5.5) with N = 100.
The number of iR2N, iR2 and proximal iterations is globally unaffected by inexact
evaluations, but the latter yield significant savings in terms of solution time.

6. Discussion. Method iR2N subsumes R2N [25] by allowing inexact evaluations
of the objective, its gradient, and the proximal operator. Under usual global conver-
gence conditions, we showed that inexact evaluations and proximal operators do not
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TABLE 5.6
Statistics on (5.5) with increasing accuracy given by (5.6) with N = 100 and several values of
Kks. Each entry reports the multiplicative gain or loss compared to the reference values in Table 5.3.
A wvalue smaller than 1 indicates a gain.

Kg iR2N iR2 prox time (s)
1.00e—07 1.23e4+00 1.04e+00 9.90e—01 6.20e—01
1.00e—05 1.08e+00 1.02e4+00 1.38e4+00 4.90e—01
1.00e—03  8.40e—01 7.70e—01  5.50e—01 2.70e—01
1.00e—02  1.00e4+00 1.00e+00 1.10e4+00  3.60e—01
1.00e—01 1.11e+00 9.60e—01  5.20e—01  3.00e—01
5.00e—01  9.90e—01 9.20e—01 1.19e+00  2.50e—01
9.00e—01  1.03e4+00 8.80e—01 1.17e+00  3.00e—01
9.90e—01  9.40e—01 8.30e—01 1.36e+00 2.50e—01

average factor  1.03e+00 9.30e—01 1.03e+00  3.60e—01

deteriorate asymptotic complexity compared to methods that use exact evaluations.
Our assumptions on the inexactness of f and V f are standard.

Assumption 3.5 on the inexact evaluation of proximal operators differs in nature
from Definitions (ii) and (iii) of [38]. Their Definition (i), also used in [36], can be
written ||y o, — Sk.cpll < € for at least one sy, ., where {€;} is positive and summable.
It is equivalent to ||sy cpll = €x < |5k cpll < [k cpll + €k, Which is strictly stronger than
Assumption 3.5 in that we only require one of the inequalities. Moreover, we use the
specific value €, = (1 — #)||sg cpll, which need not be summable. Indeed, by the same
reasoning as in the proof of Lemma 3.6, for any successful iteration k, there exists a
Cauchy step sy, ¢, such that

(f +h)(@r) = (F + D) (@x + s1) > 3 (1= 01)wy (|8 el
%771(1 - el)yr;ix”/‘s\k,cpHQ

-1 2 2
%771(1 - 91)Vmax’€s|‘5k,cp” .

(AVARAY]

Therefore, if we sum those inequalities over the set S of all successful iterations and
use Assumption 3.7, we obtain

(f + h)(l‘o) - (f + h)low Z %771(1 - el)l/r;zix’%g Z ||Sk,cpH2'
keS

A similar inequality holds for 5, .,,. Thus, both {5}, .,,} and {sj, ., } are square summable.
However, showing that they are summable appears to require the stronger Kurdyka-
Lojasiewicz assumption [15, Theorem 1], which is not used in our analysis.

iR2N naturally generalizes the special cases R2 [3] with B(z) = 0, R2DH [25] with
B(z) diagonal, and LM [6] when f is a squared residual norm and B(z) = J(x)J ()",
where J(x) is the residual Jacobian. It stands to reason that the same mechanisms
can be used to extend the trust-region variants (TR [3], TRDH [30], and LMTR [6])
to inexact evaluations and proximal operators with minimal modifications.

Numerical experiments confirm that iR2N provides substantial flexibility in con-
texts where exact evaluations are expensive or unavailable, and demonstrate that
controlled inexactness can be leveraged to reduce computational cost without compro-
mising convergence behavior.

In the context of trust-region methods for (1.1), Aravkin et al. [3, 6] give procedures
based on the solution of a nonlinear equation to obtain an element of (2.4) with the
additional constraint ||s||.c < A, where A > 0, or, equivalently, with the additional
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term x(s | AB,) in the objective, where B is the £, -norm unit ball and x is the
indicator of a set. They do so for two choices of 1. Our results apply directly to both
regularizers, and indeed to any regularizer combined with a trust-region constraint.
Here, B, C B, and hence, ||sg p|l2 < A. Thus, we may use the stopping condition
||§k,cp|| > KVSA'

Future work will focus on allowing inexact evaluations of the quadratic model (2.5),
particularly regarding B, which itself may be computed inexactly—for instance, when
represented in reduced numerical precision or when linear systems involving B, are
solved approximately.
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