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Abstract. We introduce method iR2N, a modified proximal quasi-Newton method for minimizing4

the sum of a C1
function f and a lower semi-continuous prox-bounded h that permits inexact5

evaluations of f , ∇f and of the relevant proximal operators. Both f and h may be nonconvex. In6
applications where the proximal operator of h is not known analytically but can be evaluated via an7
iterative procedure that can be stopped early, or where the accuracy on f and ∇f can be controlled,8
iR2N can save significant computational effort and time. At each iteration, iR2N computes a step by9
approximately minimizing the sum of a quadratic model of f , a model of h, and an adaptive quadratic10
regularization term that drives global convergence. In our implementation, the step is computed using11
a variant of the proximal-gradient method that also allows inexact evaluations of the smooth model,12
its gradient, and proximal operators. We assume that it is possible to interrupt the iterative process13
used to evaluate proximal operators when the norm of the current iterate is larger than a fraction of14
that of the minimum-norm optimal step, a weaker condition than others in the literature. Under15
standard assumptions on the accuracy of f and ∇f , we establish global convergence in the sense16
that a first-order stationarity measure converges to zero and a worst-case evaluation complexity in17

O(ϵ
−2

) to bring said measure below ϵ > 0. Thus, inexact evaluations and proximal operators do not18
deteriorate asymptotic complexity compared to methods that use exact evaluations. We illustrate the19
performance of our implementation on problems with ℓp-norm, ℓp total-variation and the indicator20
of the nonconvex pseudo p-norm ball as regularizers. On each example, we show how to construct21
an effective stopping condition for the iterative method used to evaluate the proximal operator that22
ensures satisfaction of our inexactness assumption. Our results show that iR2N offers great flexibility23
when exact evaluations are costly or unavailable, and highlight how controlled inexactness can reduce24
computational effort effectively and significantly.25
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1. Introduction. We consider the problem class30

(1.1) minimize
x∈Rn

f(x) + h(x),31

where f : Rn → R is continuously differentiable, h : Rn → R ∪ {+∞} is proper,32

lower semi-continuous (lsc), and both may be nonconvex. In practice, h, called the33

regularizer, is designed to promote desirable properties in solutions, such as sparsity.34

We develop method iR2N, a variant of the modified proximal quasi-Newton algorithm35

R2N of Diouane et al. [25] that allows for inexact evaluations of f and ∇f , as well as36

of the relevant proximal operators. Among other applications, evaluations of f and37

∇f are inexact when they result from the discretization of a differential or integral38

operator [8], from the sampling of a sum of a large number of terms, as in machine39

learning applications [34], or from using multiple floating-point systems [31]. Like40
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R2N, iR2N computes a step at each iteration by approximately minimizing the sum of41

a quadratic model of f , a model of h, and an adaptive quadratic regularization term.42

The subproblem is solved with method iR2, which is to method R2 of Aravkin et al. [3]43

as iR2N is to R2N, i.e., proximal operators are evaluated inexactly. Method R2 may be44

viewed as a variant of the standard proximal-gradient method with adaptive step length,45

and is a special case of R2N. We consider settings where proximal operators do not have46

a closed-form expression, and one must thus rely on inexact evaluations. Specifically, we47

focus on scenarios where proximal operators can be evaluated by running a convergent48

algorithm that can be terminated early with appropriate guarantees detailed below.49

Special cases that fit our assumptions include choices of convex and nonconvex h,50

including the ℓp-norm total variation (TV), ℓp-norm regularizer and the indicator of the51

nonconvex ℓp-pseudo norm ball with 0 < p < 1. Method iR2N reduces to R2N when f ,52

∇f and proximal operators are evaluated exactly. We establish global convergence of53

iR2N under standard assumptions on the inexactness of f and ∇f , and provided the54

inexact proximal operator yields a step whose norm is at least a fraction of the norm55

of an optimal step. We also establish that worst-case evaluation complexity of iR2N is56

of the same order as that of R2N. Thus, inexact evaluations do not degrade worst-case57

complexity. Our remaining assumptions are standard. To emphasize our assumptions58

on inexact evaluations, we simplify those assumptions of [25] that would complicate the59

analysis. In particular, we assume that ∇f is Lipschitz continuous, but its Lipschitz60

constant need not be known nor approximated. However, it should be clear that iR2N61

remains convergent under the more general assumptions of [25] with its worst-case62

complexity affected accordingly. It should also be clear that minor alterations of our63

approach would establish that the proximal quasi-Newton trust-region algorithm of64

Aravkin et al. [4, 5] remains convergent under inexact evaluations and its asymptotic65

worst-case complexity is unchanged. Such minor alterations would also establish66

convergence and complexity of Levenberg-Marquardt variants in the vein of [6] that67

are useful when f is a least-squares residual.68

We report computational experience with the proximal operator of the ℓp norm,69

the total variation in ℓp norm, and the indicator of the nonconvex ℓp-pseudo norm70

ball. Each of those proximal operators must be evaluated via an iterative procedure.71

For each, we devise a stopping condition that ensures satisfaction of our assumption72

on inexact proximal operator evaluations. Our results show that iR2N offers great73

flexibility in settings where exact evaluations are costly or unavailable, and highlight74

how controlled inexactness can be exploited to reduce computational effort effectively75

and significantly. We provide an efficient Julia implementation of iR2N as part of the76

open-source package RegularizedOptimization.jl [7].77

Related Research. Most numerical methods for (1.1) require the evaluation of78

one or more proximal operators [32] at each iteration. The proximal operator of h79

with step size ν > 0 at q ∈ Rn is80

(1.2) prox
νh

(q) ..= argmin
u∈Rn

1
2∥u− q∥2 + νh(u) ⊆ Rn.81

For given h and q, (1.2) can be empty, a singleton or contain multiple elements, one of82

which must be identified. Beck [11] and Chierchia et al. [19] summarize the closed-form83

of (1.2) for a large number of choices of h relevant in applications. The standard84

proximal-gradient method [26] along with most proximal methods in the literature85

assume that obtaining an element of (1.2) exactly is possible.86

For certain choices of h, it is necessary to apply an iterative method to appoximate87

an element of (1.2), e.g., the total variation (TV) with ℓp regularization h(x) = ∥Dx∥p,88
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where p ≥ 1 and D is the upper bidiagonal finite-difference operator with a diagonal89

of negative ones and a superdiagonal of ones. Finding an element in (1.2) for the90

TV-ℓp can be achieved via the taut-string method [9] or the fast TV denoising method91

[20]. As in other methods in the literature for various choices of convex h [10, 24, 27],92

the latter monitor the duality gap between a convex problem and its dual. Those93

algorithms have guaranteed convergence properties and can be terminated early, i.e.,94

short of optimality. In the above, the evaluation of (1.2) is inexact in the sense that a95

convergent process to identify a global minimizer is applied and can be stopped short96

of optimality according to an optimality criterion.97

A somewhat more complicated scenario is the algorithm described by Yang98

et al. [43] for the case where h is the indicator of the “ball” in pseudo-norm ℓp with99

p ∈ (0, 1). The evaluation of the proximal operator requires solving a nonconvex100

problem to global optimality in that case, and their algorithm is not guaranteed to101

always succeed. We return to this problem in Section 4.102

Other concepts of inexactness of the proximal operator appear in the literature. For103

convex h, Rockafellar [36] requires that an approximate solution of (1.2) be a certain104

distance from the optimal set. Still for convex h, Barré et al. [10] unveil multiple ways105

to define inexactness by finding a primal-dual point in a certain relaxed subdifferential.106

Salzo and Villa [38] define three approximations: they compute z such that either (i)107

∥z − proxνh(q)∥ ≤ ϵ, (ii) ν−1(q− z) lies in a relaxation of the subdifferential of h at z,108

or (iii) z ∈ proxνh(q+e) with ∥e∥ ≤ ϵ for some ϵ > 0. Chen et al. [18] extend proximal109

inexactness by introducing the concept of (γ, δ, ε)-proximal-gradient stationary point110

(PGSP) for convex h based on the Goldstein subdifferential. The PGSP generalizes111

the three concepts of [38] by jointly relaxing spatial and functional exactness and112

directly quantifying the first-order residual, thus also encompassing Rockafellar’s [36]113

and relaxed subgradient formulations within a unified framework. For nonconvex h,114

Gu et al. [27] say that an element is an inexact solution of (1.2) if its objective value115

is within ϵ of its optimal value.116

To cope with inexact evaluations of the proximal operator, classical schemes must117

be revised to preserve convergence guarantees. The seminal inexact proximal-point118

algorithm (iPPA) of Rockafellar [36] allows summably controlled errors in the resolvant119

computation of a maximal monotone operator and still ensures global convergence120

with linear/superlinear behavior under suitable parameter growth. Building on the121

accelerated estimate-sequence framework, Salzo and Villa [38] establish that the122

accelerated iPPA retains O(1/k) decay under inexactness of type (i) above, and123

optimal O(1/k2) decay under inexactness of type (ii). Schmidt et al. [39] establish124

an O(1/k) rate for proximal-gradient and an O(1/k2) rate for an accelerated variant125

under inexactness similar to (iii) above. Extensions include inertial, variable-metric126

forward–backward schemes with relative inner accuracy and uniform symmetric positive127

definite metrics [16]; nonconvex inexact (accelerate) proximal gradient with guarantees128

matching the exact counterparts under calibrated error schedules [27]; adaptive,129

implementable stopping rules that preserve O(ϵ−2) iteration complexity and enable130

support identification [24]; and accelerated proximal gradient under relative error131

criteria that maintain an O(1/k2) rate [13]. For nonconvex problems, the sequence132

generated by an inexact proximal-gradient (or splitting) method can still be shown to133

converge to a first-order critical point under an assumption of type (iii) above on the134

approximation errors [41]. Finally, for weakly convex functions, recent results establish135

global convergence for inexact proximal algorithms under inexactness of type (i) above,136

allowing controlled inexactness in the proximal steps while maintaining convergence137

[28].138
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Notation. The Euclidean norm is ∥ · ∥. When required, other norms are denoted139

with different symbols. We use f , h, m, ϕ, φ, ξ and ψ for functions. Other lowercase140

Latin letters denote vectors in Rn. Exceptions are p and q, which are standard to141

denote a pair of dual ℓp and ℓq norms, and r, which denotes a radius. Uppercase A142

and B are matrices, L is a Lipschitz constant, and O is used for the Landau notation.143

Lowercase Greek letters denote scalars. Calligraphic letters denote sets.144

2. Background.145

2.1. Variational Analysis Concepts. We say that h : Rn → R ∪ {+∞} is146

proper if h(x) < +∞ for at least one x ∈ Rn and lower semi-continuous (lsc) at x̄ if147

lim infx→x̄ h(x) = h(x̄). It is lsc if it is lsc at all x̄ ∈ Rn. We say that h is prox-bounded148

at x if there is λ > 0 such that w 7→ h(w) + 1
2λ

−1∥w − x∥2 is bounded below [37,149

Definition 1.23]. The threshold of prox-boundedness of h at x is the supremum of all150

such λ at x, and is denoted λx. We say that h is uniformly prox-bounded if there is151

λ ∈ R+ ∪ {+∞} such that λx ≥ λ for all x ∈ Rn.152

For ϕ : Rn → R ∪ {±∞} and x̄ ∈ dom(ϕ), the Fréchet subdifferential of ϕ at x̄ is153

∂̂ϕ(x̄) ..=

{
v ∈ Rn

∣∣∣∣∣ lim inf
x→x̄

ϕ(x) − ϕ(x̄) − vT (x− x̄)

∥x− x̄∥
≥ 0

}
.154

The limiting subdifferential ∂ϕ(x̄) of ϕ at x̄ is the set of elements v ∈ Rn such that155

there exists a sequence {xk} → x̄ with {ϕ(xk)} → ϕ(x̄), and there exists vk ∈ ∂̂ϕ(xk)156

for all k such that {vk} → v. It always holds that ∂̂ϕ(x̄) ⊆ ∂ϕ(x̄).157

If ϕ is proper, we say that x̄ is stationary for ϕ, or for the problem of minimizing158

ϕ, if 0 ∈ ∂̂ϕ(x̄). If ϕ is proper and has a local minimum at x̄, then x̄ is stationary159

for ϕ. In the special case where ϕ = f + h with f continuously differentiable and h160

proper, then ∂ϕ(x) = ∇f(x) + ∂h(x) [37, Theorem 10.1]. We say that f : Rn → R has161

Lipschitz-continuous gradient with Lipschitz constant L ≥ 0 if for all x and s ∈ Rn,162

(2.1) |f(x+ s) − f(x) −∇f(x)T s| ≤ 1
2L∥s∥

2.163

2.2. Models. In this work, we focus on three sources of inexactness: the objective,164

its gradient and the proximal operator evaluations. We denote f̂ and ∇̂f the inexact165

counterparts of f and ∇f . At each iteration, R2N computes a step scp defined below166

that serves to define a stationarity measure and that results from a proximal operator167

evaluation. Accordingly, in iR2N, we denote its inexact counterpart ŝcp. We follow168

[3, 6, 25] and structure the iterations of an algorithm around two sets of models, but,169

since the only information we have access to is inexact, those are based on f̂ and ∇̂f .170

For ν > 0 and x ∈ Rn, the first-order models171

φcp(s;x) ..= f̂(x) + ∇̂f(x)T s(2.2)172

ψ(s;x) ≈ h(x+ s)(2.3)173

mcp(s;x, ν−1) ..= φcp(s;x) + 1
2ν

−1∥s∥2 + ψ(s;x)(2.4)174

serve to generalize the concept of Cauchy point, hence the subscript “cp”, where175

we use the symbol “≈” to mean that the left-hand side is an approximation of the176

right-hand side. We will be more specific in Assumption 3.3 below. The dual role of177

models (2.2)–(2.4) is to define a threshold for sufficient decrease at each iteration, and178

to define a measure of approximate stationarity.179
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For σ > 0, x ∈ Rn and B(x) = B(x)T ∈ Rn×n, the second-order models180

φ(s;x) ..= f̂(x) + ∇̂f(x)T s+ 1
2s
TB(x)s(2.5)181

m(s;x, σ) ..= φ(s;x) + 1
2σ∥s∥

2 + ψ(s;x),(2.6)182

are used to compute a step. Because φcp(·;x) is linear and φ(·;x) is quadratic for183

fixed x, both have globally Lipschitz-continuous gradient.184

We follow [3, 6, 25] and require that all models that we consider satisfy the185

following assumption.186

Assumption 2.1. For all x ∈ R
n, ψ(·;x) is proper, lsc and uniformly prox-187

bounded. In addition, ψ(0;x) = h(x) and ∂ψ(0;x) ⊆ ∂h(x).188

2.3. The Proximal-Gradient Method. The direct generalization of the gradi-189

ent method to nonsmooth regularized optimization is the proximal-gradient method190

[26]. For (1.1), the proximal-gradient iteration can be written191

xk+1 = xk + sk,cp(2.7)192

sk,cp ∈ argmin
s

1
2ν

−1
k ∥s+ νk∇̂f(xk)∥2 + ψ(s;xk)193

= argmin
s

∇̂f(xk)T s+ 1
2ν

−1
k ∥s∥2 + ψ(s;xk)(2.8)194

= argmin
s

mcp(s;xk, ν
−1
k ),195

where νk > 0 is an appropriate step length, though it is typically used with ψ(s;xk) ..=196

h(xk + s). We call sk,cp a Cauchy step. It turns out that sk,cp exists provided νk is197

sufficiently small.198

Proposition 2.1 (37, Theorem 1.25). Let φcp(·;x) be as in (2.2), and ψ(·;x) be199

proper, lsc, prox-bounded with threshold λx > 0 and such that ψ(0;x) = h(x). For any200

0 < ν < λx, the set argminsmcp(s;x, ν−1) is nonempty and compact.201

We denote scp an element of argminsmcp(s;x, ν−1) when one exists. When scp is202

well defined, the quantity203

(2.9)
ξcp(scp, x, ν

−1) ..= (φcp + ψ)(0;x) − (φcp + ψ)(scp;x)

= (f̂ + h)(x) − (φcp + ψ)(scp;x)
204

is central to the algorithm and the analysis, as it is in [3, 6, 25], where it plays the dual205

role of defining Cauchy decrease and serving as stationarity measure. Indeed, under206

standard assumptions, x is stationary for (1.1) if ξcp(scp;x, ν−1) = 0 [25, Lemma 3.5].207

We diverge slightly from those references and, for reasons that become clear later, note208

that ν−1∥scp∥ can equally be used as stationarity measure.209

Proposition 2.2. Let x ∈ R
n and ψ(·;x) be proper, lsc, prox-bounded with210

threshold λx > 0 and such that ∂ψ(0;x) ⊆ ∂h(x). Let 0 < ν < λx and scp ∈211

argminsmcp(s;x, ν−1). If scp = 0, then 0 ∈ ∇̂f(x) + ∂h(x). If, in addition,212

∇̂f(x) = ∇f(x), then x is stationary for (1.1).213

Proof. If scp = 0, then ξcp(scp;x, ν−1) = 0 by (2.9). The rest of the proof is214

identical to that of [25, Lemma 3.5].215

In the special case h = 0, i.e., smooth optimization, scp = −ν∇f(x). Thus, we216

normalize and use ν−1∥scp∥ as stationarity measure.217
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The identification of an scp, when one exists, coincides with the identification of an218

element in the image of a proximal operator (1.2), i.e., scp ∈ proxνψ(·;x)(−ν∇̂f(x)). It219

is the computation of an element in such a set that represents the main computational220

challenge in problems for which the set is not known analytically, so that one must221

resort to an iterative numerical method. In that case, the scp computed is inexact,222

and we refer to this situation as an inexact evaluation of the proximal operator.223

The following result is hidden inside the proof of [15, Lemma 2].224

Proposition 2.3. Let f have Lipschitz-continuous gradient with Lipschitz con-225

stant L ≥ 0 and let h be proper, lsc and prox-bounded at x ∈ Rn with threshold λx > 0.226

Let 0 < ν < min(1/L, λx), and let s ∈ Rn be such that227

(2.10) f(x) + ∇f(x)T s+ 1
2ν

−1∥s∥2 + h(x+ s) ≤ (f + h)(x).228

Then,229

(2.11) (f + h)(x) − (f + h)(x+ s) ≥ 1
2 (ν−1 − L)∥s∥2.230

Proof. We inject f(x) + ∇f(x)T s ≥ f(x+ s) − 1
2L∥s∥

2, which follows from (2.1),231

into (2.10) and obtain (2.11).232

Proposition 2.3 applied to φcp(·;x), ψ(·;x) and scp ∈ proxνψ(·;x)(−ν∇̂f(x)), yields233

234

(2.12) ξcp(scp;x, ν−1) ≥ 1
2ν

−1∥scp∥
2,235

because the Lipschitz constant of ∇φcp(·;x) is zero.236

By contrast, we denote an approximate Cauchy step resulting from an inexact237

minimization of (2.4) as ŝcp. We will be more specific about the meaning of inexactness238

in that context in Assumption 3.5. Accordingly, we define239

(2.13) ξ̂cp(ŝcp;x, ν−1) ..= (φcp + ψ)(0;x) − (φcp + ψ)(ŝcp;x).240

Proposition 2.3 states that (2.11) also holds for any s that produces simple decrease241

in (2.4); s need not be an exact minimizer. Thus, if we apply a descent procedure to242

minimize (2.4) starting from s = 0, any iterate, denoted generically as ŝcp, generated243

by that procedure will satisfy (2.11), i.e.,244

(2.14) (φcp + ψ)(0;x) − (φcp + ψ)(ŝcp;x) ≥ 1
2ν

−1∥ŝcp∥
2.245

Thus, an exact minimizer in (2.8) would produce a Cauchy step sk,cp that246

satisfies (2.12). For brevity, we write ξk,cp
..= ξcp(sk,cp;xk, ν

−1
k ) and ξ̂k,cp instead247

of ξ̂cp(ŝk,cp;xk, ν
−1
k ). The above shows that ξk,cp ≥ 1

2ν
−1
k ∥sk,cp∥

2 and ξ̂k,cp ≥248
1
2ν

−1
k ∥ŝk,cp∥

2 provided ŝk,cp results in simple decrease in (2.4) from s = 0.249

Proposition 2.2 indicates that one role of the first-order models (2.2)–(2.4), and250

hence of ŝk,cp and ξ̂k,cp is to determine approximate stationarity. The role of the251

second-order models (2.5)–(2.6) is to allow us to compute a step that improves upon the252

(inexact) Cauchy step. Minimizing the second-order model is a well-defined problem253

for all sufficiently large σk.254

Proposition 2.4 (25, Proposition 3.3). Let φ(·;x) be defined as in (2.5), and255

let ψ(·;x) be proper, lsc and prox-bounded with threshold λx > 0 and such that256

ψ(0;x) = h(x). For any σ > λ−1
x −λmin(B(x)), the set argminsm(s;x, σ) is nonempty257

and compact, where λmin represents the smallest eigenvalue.258
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3. Algorithm and Convergence Analysis. Our algorithm is a modification of259

method R2N of Diouane et al. [25]. At a general iteration k, an approximate Cauchy260

step ŝk,cp is computed together with the corresponding value of ξ̂k,cp by minimizing (2.4)261

inexactly. If xk is not approximately stationary, a step sk is computed by approximately262

minimizing (2.6). Because only f̂ , and not f , is available, we compute the ratio of263

achieved versus predicted decrease264

(3.1) ρ̂k
..=

f̂(xk) + h(xk) − (f̂(xk + sk) + h(xk + sk))

φ(0;xk) + ψ(0;xk) − (φ(sk;xk) + ψ(sk;xk))
265

to accept or reject sk. Acceptance of sk occurs when ρ̂k ≥ η̂1 > 0, which indicates that266

sufficient decrease occurs in f̂ + h. The parameters of the algorithm, specifically σmin,267

together with assumptions on the accuracy of f̂ , are chosen so that acceptance of sk268

also implies that sufficient decrease occurs in f +h. We then update σk accordingly, as269

in R2N. All that is required of sk is that it satisfy a sufficient decrease condition—see270

Assumption 3.4 below. That can be achieved, for instance, by computing ŝk,cp from a271

single (inexact) proximal-gradient iteration on (2.6) with a well-chosen step length νk272

starting from s = 0, and computing sk by continuing the (inexact) proximal-gradient273

iterations from ŝk,cp. Should ∥sk∥ be much larger than ∥ŝk,cp∥, we reset sk to ŝk,cp as274

in R2N. The procedure is formally stated as Algorithm 3.1. We refer the reader to275

[25] for more background.276

3.1. Assumptions. Intentionally, our assumptions are not the most general277

under which convergence of Algorithm 3.1 can be shown to occur. We have done so in278

order to highlight the influence of our assumptions on the inexactness of the objective,279

gradient and proximal operators evaluations on the analysis. We refer the interested280

reader to [25] for the current most general assumptions. Nonetheless, we expect that281

our convergence guarantees remain valid under the weaker assumptions, at the cost of282

a more intricate analysis.283

Our first assumption concerns Lipschitz-continuity of the gradient. Technically,284

this assumption is only necessary for the complexity analysis; convergence can be285

guaranteed under continuous differentiability only.286

Assumption 3.1. ∇f is Lipschitz-continuous with constant L ≥ 0—see (2.1).287

We assume that {Bk} is bounded; a common assumption in the literature. Under288

appropriate growth conditions, convergence is preserved even if {Bk} is allowed to289

grow unbounded [25].290

Assumption 3.2. There exists κB > 0 such that ∥Bk∥ ≤ κB for all k.291

Assumption 3.2 is trivially satisfied when Bk = 0, as in [3, Algorithm 6.1]. It is292

also satisfied in [12] where the objective is strongly convex and the model Hessian is293

defined by a positive definite limited-memory quasi-Newton update. Under standard294

assumptions, the LBFGS and LSR1 updates satisfy Assumption 3.2 [5, 17].295

Our next assumption bounds the discrepancy between h and its model ψ.296

Assumption 3.3. There exists κh > 0 such that |ψ(x, s)− h(x+ s)| ≤ κh∥s∥
2 for297

all x and s ∈ Rn.298

The bound ∥s∥2 in Assumption 3.3 can be relaxed to o(∥s∥) [25]. Assumption 3.3299

is satisfied when ψ(s;x) = h(x + s), and when h(x) = g(c(x)) where c is twice300

continuously differentiable with bounded second derivatives and g is globally Lipschitz301

continuous if we select ψ(s;x) = g(c(x) + ∇c(x)T s).302
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Algorithm 3.1 iR2N

1: Given κf > 0, κ∇ > 0, choose constants 0 < γ3 ≤ 1 < γ1 ≤ γ2, 0 < η̂1 ≤ η̂2 < 1.
2: Choose 0 < θ1 < 1 < θ2.
3: Choose σmin > 4κfθ1θ

2
2/(η̂1(1 − θ1)) and σ0 ≥ σmin.

4: for k = 0, 1, . . . do
5: Choose Bk

..= B(xk) ∈ Rn×n such that Bk = BTk .
6: Set νk

..= θ1/(∥Bk∥ + σk).
7: repeat
8: Compute ŝk,cp an approximate solution of minsmcp(s;xk, ν

−1
k ) and ξ̂k,cp.

9: Compute a step sk such that m(sk;xk, σk) ≤ m(ŝk,cp;xk, σk).
10: if ∥sk∥ > θ2∥ŝk,cp∥ then
11: Reset sk = ŝk,cp.
12: end if
13: until f̂ and ∇̂f satisfy Assumption 3.6.
14: Compute the ratio ρ̂k as in (3.1).
15: if ρ̂k ≥ η̂1 then
16: Set xk+1 = xk + sk.
17: else
18: Set xk+1 = xk.
19: end if
20: Update the regularization parameter according to

σk+1 ∈


[γ3σk, σk] if ρ̂k ≥ η̂2, very successful iteration

[σk, γ1σk] if η̂1 ≤ ρ̂k < η̂2, successful iteration

[γ1σk, γ2σk] if ρ̂k < η̂1 unsuccessful iteration

21: Reset σk+1 = max(σk+1, σmin).
22: end for

The next assumption drives the convergence analysis and states that the step303

sk computed at iteration k should result in a decrease at least comparable to that304

induced by the approximate Cauchy step in the first-order model.305

Assumption 3.4. There is θ1 ∈ (0, 1) such that φ(0;x) + ψ(0;x) − (φ(sk;x) +306

ψ(sk;x)) ≥ (1 − θ1)ξ̂k,cp for all k.307

As we now show, Assumption 3.4 holds for sk computed as stated in Algorithm 3.1.308

Lemma 3.1. For θ1 ∈ (0, 1) and sk as in Algorithm 3.1, Assumption 3.4 holds.309

Proof. The proof of [25, Proposition 3] applies with s = sk and ŝk,cp in place of310

scp. Indeed, it remains valid for any s ∈ Rn and scp ∈ Rn as long as m(s;x, σ) ≤311

m(scp;x, σ), which is guaranteed by step 7 of Algorithm 3.1.312

We ensure that Step 7 in Algorithm 3.1 holds because the inexact Cauchy step313

ŝk,cp coincides with the first (inexact) step of the proximal gradient method applied to314

m(s;xk, σk) from s = 0 with an appropriate step length νk. Therefore, computing sk by315

continuing the proximal iterations from ŝk,cp leads to further decrease in m(s;xk, σk).316

The next assumption requires the norm of the computed step ŝk,cp to be at least317

a fraction of that of an exact step sk,cp.318
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Assumption 3.5. There exists κs ∈ (0, 1] such that, for all k,319

∥ŝk,cp∥ ≥ κs min{∥sk,cp∥ | sk,cp ∈ prox
νψ(·;xk)

(−νk∇̂f(xk))}.320

In the experiments of Section 4, ψ(·;xk) satisfies the assumptions of Proposition 2.1321

and, therefore, the minimum in Assumption 3.5 is well defined.322

Assumption 3.5 holds when sk,cp is computed exactly, i.e., ŝk,cp = sk,cp. Indeed,323

let ∥sk,min∥ be the smallest norm across all possible choices of sk,cp. Several cases324

can occur. Firstly, if ∥sk,min∥ > 0, then ∥sk,cp∥ > 0 necessarily, and Assumption 3.5325

holds with κs
..= min(1, ∥sk,cp∥/∥sk,min∥). If, on the other hand, ∥sk,min∥ = 0, the326

same holds if we compute sk,cp ≠ 0 but, should we compute sk,cp = 0, Proposition 2.2327

would imply that xk is stationary and the iterations would stop. This case will be328

clarified in Lemma 3.5.329

Details on how we satisfy Assumption 3.5 when ŝk,cp ̸= sk,cp in certain situations330

relevant in practice can be found in Section 4. We further comment on Assumption 3.5331

in Section 6.332

In the same fashion as [31], we bound evaluation errors in terms of the step.333

Similar assumptions are made in [22] in a trust-region context.334

Assumption 3.6. There exist κf > 0 and κ∇ > 0 such that, for all k ∈ N,335

|f(xk) − f̂(xk)| ≤ κf∥sk∥
2,(3.2)336

|f(xk + sk) − f̂(xk + sk)| ≤ κf∥sk∥
2,(3.3)337

∥∇f(xk) − ∇̂f(xk)∥ ≤ κ∇∥sk∥.(3.4)338

Finally, we assume that the objective is bounded below, which is only required in339

the complexity analysis.340

Assumption 3.7. There exists (f + h)low ∈ R such that (f + h)(x) ≥ (f + h)low341

for all x ∈ Rn.342

3.2. Convergence Analysis. Our first result relates the decrease predicted by343

the model to the step size.344

Lemma 3.2. Let Assumption 3.4 hold. Then,345

φ(0;xk) + ψ(0;xk) − (φ(sk;xk) + ψ(sk;xk)) ≥ 1
2 (1 − θ1)θ−2

2 ν−1
k ∥sk∥

2.346

Proof. Assumption 3.4, (2.14) and line 10 of Algorithm 3.1 yield347

φ(0;xk) + ψ(0;xk) − (φ(sk;xk) + ψ(sk;xk)) ≥ (1 − θ1)ξ̂k,cp348

≥ 1
2 (1 − θ1)ν−1

k ∥ŝk,cp∥
2

349

≥ 1
2 (1 − θ1)θ−2

2 ν−1
k ∥sk∥

2.350

Our next result mirrors [6, Theorem 4.1] and shows that whenever σk exceeds a351

threshold σsucc, iteration k is very successful and σk+1 decreases.352

Lemma 3.3. Let Assumptions 3.1 to 3.4 and 3.6 be satisfied and define353

σsucc
..= max

(
θ1θ

2
2(L+ κB + 2κh + 4κf + 2κ∇)

(1 − θ1)(1 − η̂2)
, λ−1

)
> 0.354

If, at iteration k of Algorithm 3.1, sk ̸= 0 and σk ≥ σsucc, then ρ̂k ≥ η̂2, and iteration355

k is very successful.356
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Proof. As in the proof of [6, Theorem 4.1], σk increases as long as it is below λ−1
xk

.357

Thus, we assume that σk ≥ λ−1. The definitions of ρ̂k and φ, Assumption 3.4, the358

triangle inequality and Lemma 3.2 yield359

|ρ̂k − 1|360

=
|f̂(xk + sk) − f̂(xk) − ∇̂f(xk)T sk − 1

2s
T
kBksk + h(xk + sk) − ψ(sk;xk)|

φ(0;x) + ψ(0;x) − (φ(sk;xk) + ψ(sk;xk))
361

≤
|f̂(xk + sk) − f̂(xk) − ∇̂f(xk)T sk| + | 12s

T
kBksk| + |h(xk + sk) − ψ(sk;xk)|

1
2 (1 − θ1)θ−2

2 ν−1
k ∥sk∥

2 .362

The triangle inequality along with Assumptions 3.1 and 3.6 bound the first term363

in the numerator as364

|f̂(xk + sk) − f̂(xk) − ∇̂f(xk)T sk|365

≤ |f(xk + sk) − f(xk) −∇f(xk)T sk| + 2κf∥sk∥
2 + κ∇∥sk∥

2
366

≤ ( 1
2L+ 2κf + κ∇)∥sk∥

2.367

Assumption 3.2 bounds the second term in the numerator by 1
2∥Bk∥∥sk∥

2 ≤ 1
2κB∥sk∥

2.368

Assumption 3.3 bounds the last term in the numerator by κh∥sk∥
2. After simplifying369

by ∥sk∥
2 and using νk ≤ θ1/σk by definition in Algorithm 3.1, those observations give370

|ρ̂k − 1| ≤
θ1θ

2
2(L+ κB + 2κh + 4κf + 2κ∇)

(1 − θ1)σk
.371

Therefore, σk ≥ σsucc implies that ρ̂k ≥ η̂2.372

In Lemma 3.3, we showed that σk ≥ σsucc =⇒ ρ̂k ≥ η̂2, which means that373

there is a decrease in f̂ + h. Next, we show that there exists η1 > 0 such that374

ρ̂k ≥ η̂1 =⇒ ρk ≥ η1, and similarly for η̂2. Therefore, a decrease also occurs in f + h375

every time a step is accepted.376

Lemma 3.4. Let Assumptions 3.4 and 3.6 hold. At iteration k, denote377

ρk
..=

f(xk) + h(xk) − (f(xk + sk) + h(xk + sk))

φ(0;xk) + ψ(0;xk) − (φ(sk;xk) + ψ(sk;xk))
378

the measure of agreement between the actual and predicted decrease in f + h. Let σmin379

be as in Algorithm 3.1 and380

η1
..= η̂1 −

4κfθ1θ
2
2

(1 − θ1)σmin

> 0, η2
..= η̂2 −

4κfθ1θ
2
2

(1 − θ1)σmin

> 0.381

Then, ρ̂k ≥ η̂1 =⇒ ρk ≥ η1 and ρ̂k ≥ η̂2 =⇒ ρk ≥ η2.382

Proof. By definition of ρ̂k and ρk,383

ρ̂k = ρk +
(f̂ − f)(xk) + (f − f̂)(xk + sk)

(φ+ ψ)(0;xk) − (φ+ ψ)(sk;xk)
.384

Because Algorithm 3.1 enforces σk ≥ σmin > 0, we obtain νk ≤ θ1/σk ≤ θ1/σmin.385

Thus, Lemma 3.2 and Assumption 3.6 give386
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|ρ̂k − ρk| ≤
2κf∥sk∥

2

1
2 (1 − θ1)θ−2

2 ν−1
k ∥sk∥

2 ≤
4κfθ1θ

2
2

(1 − θ1)σmin

.387

Now, if ρ̂k ≥ η̂1,388

ρk ≥ η̂1 −
4κfθ1θ

2
2

(1 − θ1)σmin

= η1.389

The lower bound on σmin ensures η1 > 0. The same holds for η2 because η̂2 ≥ η̂1.390

Lemmas 3.3 and 3.4 together imply that ρ̂k ≥ η̂1 guarantees a decrease in f + h.391

The next result is classic and considers the case where only a finite number of392

successful iterations occur.393

Lemma 3.5. Let Assumptions 3.1 to 3.4 and 3.6 be satisfied. Suppose Algorithm 3.1394

generates finitely many successful iterations. Then xk = x⋆ for all k sufficiently large395

and x⋆ is first-order stationary.396

Proof. By assumption, there is k0 ∈ N such that xk = x⋆ for all k ≥ k0. If x⋆ is397

not stationary, as of iteration k0, Algorithm 3.1 repeatedly computes nonzero steps398

sk, all of which are rejected, i.e., ρk < η1. Thus, for all k ≥ k0, σk+1 > σk. Hence, for399

sufficiently large k, σk > σsucc, which triggers a successful iteration, and is absurd.400

Lemma 3.3 implies that there exists σmax = min(σ0, γ2σsucc) such that σk ≤ σmax401

for all k ∈ N. Consequently, Assumption 3.2 yields that for all k ∈ N,402

(3.5) νmin ≤ νk ≤ νmax, νmin
..= θ1/(κB + σmax), νmax

..= θ1/σmin.403

Let ϵ > 0. We seek a bound on kϵ
..= min{k ∈ N | ν−1

k ∥ŝk,cp∥ < ϵ} = |S(ϵ)| +404

|U(ϵ)| + 1, where405

S(ϵ) ..= {k ∈ N | ρ̂k ≥ η̂1 and k < kϵ}, U(ϵ) ..= {k ∈ N | ρ̂k < η̂1 and k < kϵ}.406

Lemma 3.6. Let Assumptions 3.1 to 3.4, 3.6 and 3.7 be satisfied. Assume that407

Algorithm 3.1 generates infinitely many successful iterations. Then,408

|S(ϵ)| ≤ (f + h)(x0) − (f + h)low
1
2η1(1 − θ1)νmin

ϵ−2 ..= ωsϵ
−2,409

where νmin is defined in (3.5).410

Proof. Let k ∈ S(ϵ). By definition, ρ̂k ≥ η̂1, which, by Lemma 3.4, implies that411

ρk ≥ η1. Assumption 3.4, (3.5), (2.14) and the fact that k < kϵ then imply412

(f + h)(xk) − (f + h)(xk + sk) ≥ η1((φ+ ψ)(0;xk) − (φ+ ψ)(sk;xk))413

≥ η1(1 − θ1)ξ̂k,cp414

≥ 1
2η1(1 − θ1)ν−1

k ∥ŝk,cp∥
2

415

≥ 1
2η1(1 − θ1)νkϵ

2
416

≥ 1
2η1(1 − θ1)νminϵ

2.417

The rest of the proof is classic and identical to, e.g., [6, Lemma 4.3].418
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It is remarkable that the bound in Lemma 3.6 is identical to that of the standard419

R2N, which is more apparent when comparing with [6, Lemma 4.3] than with [25,420

Theorem 6.4]. The extra factor 1
2 in the denominator of our bound on |S(ϵ)| is due to421

the fact that we use ν−1
k ∥ŝk,cp∥ as stationarity measure instead of ν

−1/2
k ξ̂

1/2
k,cp, as in [6].422

Finally, we recover a worst-case complexity bound of the same order as in the423

analysis with exact proximal operator evaluations. The proof is identical to that of,424

e.g., [6, Theorem 4.5], and is omitted.425

Theorem 3.7. Let Assumptions 3.1 to 3.4, 3.6 and 3.7 be satisfied. Then,426

|S(ϵ)| + |U(ϵ)| =
(
1 + | logγ1(γ3)|

)
ωsϵ

−2 + logγ1(σmax/σ0) = O(ϵ−2),427

where ωs is defined in Lemma 3.6.428

Theorem 3.7 shows that iR2N brings the measure ν−1
k ∥ŝk,cp∥ below ϵ in O(ϵ−2)429

iterations. That measure is not a stationarity measure because it includes the inexact-430

ness on ŝk,cp. By Assumption 3.5, there exists an exact Cauchy step skϵ,cp such that431

432

(3.6) ν−1
k ∥skϵ,cp∥ ≤ κ−1

s ν−1
k ∥ŝkϵ,cp∥ < κ−1

s ϵ.433

Thus, if ν−1
k ∥ŝkϵ,cp∥ is small, ν−1

k ∥skϵ,cp∥ is comparably small. The next result shows434

that when the latter occurs, we have identified a near stationary point, and marks the435

impact of κs on the analysis.436

Theorem 3.8. Let Assumptions 3.5 and 3.6 be satisfied. Let ϵ > 0 and assume437

ν−1
k ∥ŝk,cp∥ < ϵ. There exists sk,cp ∈ proxνψ(·;xk)

(−νk∇̂f(xk)) that satisfies Assump-438

tion 3.5 such that ∥sk,cp∥ < κ−1
s νmaxϵ, and uk ∈ ∇f(xk) + ∂ψ(sk,cp;xk) such that439

440

(3.7) ∥uk∥ <
(
κ∇θ2νmax + κ−1

s

)
ϵ.441

Proof. By definition, sk,cp is an exact minimizer of (2.4), thus442

0 ∈ ∇̂f(xk) + ν−1
k sk,cp + ∂ψ(sk,cp;xk)443

= ∇f(xk) + gk + ν−1
k sk,cp + ∂ψ(sk,cp;xk),(3.8)444

where gk
..= ∇̂f(xk)−∇f(xk) and ∥gk∥ ≤ κ∇∥sk∥ ≤ κ∇θ2∥ŝk,cp∥ from Assumption 3.6445

and line 10 of Algorithm 3.1. By (3.5) and ν−1
k ∥ŝk,cp∥ < ϵ, ∥ŝk,cp∥ ≤ νkϵ < νmaxϵ.446

Thus, ∥gk∥ < κ∇θ2νmaxϵ.447

On the other hand, Assumption 3.5 gives448

∥ν−1
k sk,cp∥ ≤ κ−1

s ν−1
k ∥ŝk,cp∥ < κ−1

s ϵ.449

Now, (3.8) implies that450

uk
..= −(gk + ν−1

k sk,cp) ∈ ∇f(xk) + ∂ψ(sk,cp;xk).451

Because ∥uk∥ ≤ ∥gk∥ + ∥ν−1
k sk,cp∥, (3.7) holds. Finally, the same reasoning as above452

shows that ∥sk,cp∥ is bounded as announced.453

The following results directly from Theorem 3.7 and mirrors [29, Lemma 3].454
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Lemma 3.9. Under the assumptions of Theorem 3.7 and Assumption 3.5, there455

exists an infinite index set N ⊆ N and {sk,cp} where sk,cp ∈ proxνψ(·;xk)
(−νk∇̂f(xk))456

for all k such that457

1. {ŝk,cp}N → 0 and {sk,cp}N → 0,458

2. {sk}N → 0459

3. there exists uk ∈ ∇f(xk) + ∂ψ(sk,cp;xk) such that {uk}N → 0.460

Proof. Claim 1 follows directly from Theorem 3.7, (3.5) and (3.6). Claim 2 follows461

from Line 10 of Algorithm 3.1. Claim 3 results from Theorem 3.8.462

We close this section with a result stating that every limit point of the sequence463

{xk}N generated by Algorithm 3.1 is stationary, where N is defined in Lemma 3.9,464

under an assumption on the subdifferential of the models ψ(·;xk).465

Recall that for a sequence of sets {Ak} with Ak ⊆ R
n for all k ∈ N, the set466

lim supAk is the set of limits of all possible convergent sequences {ak}N with N ⊂ N467

infinite and ak ∈ Ak for all k ∈ N .468

Theorem 3.10. Under the assumptions of Theorem 3.7, Assumptions 2.1 and 3.5,469

let N ⊆ N be as in Lemma 3.9. Assume that {xk}N → x̄ and that470

(3.9) lim sup
k∈N

∂ψ(sk,cp;xk) ⊆ ∂ψ(0; x̄).471

Then x̄ is stationary for (1.1).472

Proof. By our assumptions, Lemma 3.9, continuity of ∇f and Assumption 2.1,473

0 ∈ ∇f(x̄) + lim sup
k∈N

∂ψ(sk,cp;xk) ⊆ ∇f(x̄) + ∂ψ(0; x̄) ⊆ ∇f(x̄) + ∂h(x̄).474

Thus, x̄ is stationary for (1.1).475

As Leconte and Orban [29] explain, (3.9) holds in several relevant cases, e.g.,476

1. each ψ(·;xk) and ψ(·; x̄) are proper, lsc and convex with ψ(·;xk) → ψ(·; x̄) in477

the epigraphical sense, and 0 ∈ dom ψ(·; x̄);478

2. ψ(s;x) ..= h(x+ s) and h(xk + sk,cp) → h(x̄) as would occur, in particular but479

not exclusively, when h is continuous.480

4. Evaluation of inexact proximal operators. In this section, we discuss the481

practical implementation of Algorithm 3.1 with focus on computing an approximate482

solution of (2.8) that satisfies Assumption 3.5. Our approach is simple: assume that483

an upper bound Mk > 0 on ∥sk,cp∥ can be determined based on properties of ψ(·;xk).484

Assume also that a descent procedure is applied to (2.8) starting from s = 0 that485

generates iterates ŝj , j ≥ 0. Then, stopping the procedure as soon as ∥ŝj∥ ≥ κsMk486

ensures that Assumption 3.5 holds.487

We consider three regularizers whose proximal operators (1.2) are not known488

analytically and must be computed inexactly:489

h(x) = ℓp(x) = ∥x∥p (1 ≤ p <∞),(4.1)490

h(x) = TVp(x) = (
∑
i

|xi − xi−1|
p)1/p (1 ≤ p <∞),(4.2)491

h(x) = χp,r(x) =

{
0 if ∥x∥pp ≤ r

∞ otherwise
(0 < p < 1),(4.3)492

where TVp is the one-dimensional total-variation operator, and χp,r is the indicator of493

the ℓp-pseudo norm “ball” of radius r1/p for r > 0.494
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The next lemmas derive bounds on the norm of solutions to the proximal problems495

associated with those regularizers.496

Lemma 4.1. Let h be given by (4.1) and ψ(s;xk) ..= h(xk + s) with s ∈ Rn. The497

unique solution sk,cp of (2.8) is such that498

(4.4) ∥sk,cp∥ ≤

{
νk(∥∇̂f(xk)∥ + n1/p−1/2) (1 ≤ p < 2)

νk(∥∇̂f(xk)∥ + 1) (p ≥ 2).
499

Proof. Since ψ(·;xk) is convex, (2.8) is strongly convex and, therefore, has a500

unique solution sk,cp. The necessary optimality conditions read501

∇̂f(xk) + ν−1
k sk,cp + uk = 0, uk ∈ ∂ψ(sk,cp;xk).502

Here, ∂ψ(sk,cp;xk) = {u ∈ Rn | ∥u∥q ≤ 1 and uT (sk,cp + xk) = ∥sk,cp + x∥p}, where q503

is such that 1/p+ 1/q = 1. By equivalence of norms,504

∥uk∥ ≤ n1/2−1/q ∥uk∥q ≤ n1/2−1/q = n1/p−1/2.505

When 1 ≤ p ≤ 2, the latter bound is attained for uk
..= (n−1/q, n−1/q, . . . , n−1/q) with506

∥uk∥q = 1. When p > 2, the bound simplifies to ∥uk∥ ≤ 1, which is attained for507

uk
..= (1, 0, . . . , 0). Thus, ∥sk,cp∥ = νk∥∇̂f(xk) + uk∥ ≤ νk(∥∇̂f(xk)∥ + ∥uk∥), which508

yields (4.4).509

The next result helps bound solutions of (2.8) when h is given by (4.2), but is510

more general, which is why it is stated separately.511

Lemma 4.2. Let A ∈ Rm×n, h(x) ..= ∥Ax∥• where ∥ · ∥• is a norm on Rm, and512

ψ(s;xk) ..= h(xk + s). The unique solution sk,cp of (2.8) satisfies513

(4.5) ∥sk,cp∥ ≤ νk

(
∥∇̂f(xk)∥ + ∥A∥ ∥uk∥

)
,514

where uk ∈ ∂∥A(xk + sk,cp)∥•.515

Proof. Here again, sk,cp is unique by strong convexity of (2.8). For η(y) ..= ∥y∥•,516

∂η(y) = {u ∈ Rm | ∥u∥⋆ ≤ 1 and uT y = ∥y∥•},517

where ∥·∥⋆ is the dual norm of ∥·∥•. By [35, Theorem 23, 9], ∂ψ(s;xk) = AT∂η(A(xk+518

s)). Thus, the first-order optimality conditions of (2.8) imply519

0 ∈ ∇̂f(xk) + ν−1
k sk,cp +ATuk,520

where uk ∈ ∂η(A(xk+sk,cp)). We extract sk,cp = −νk(∇̂f(xk)+ATuk), and ∥sk,cp∥ ≤521

νk(∥∇̂f(xk)∥ + ∥AT ∥ ∥uk∥), which is (4.5) since ∥A∥ = ∥AT ∥.522

Lemma 4.2 does not state a bound on ∥uk∥ as one would depend on ∥ · ∥• and the523

bound ∥uk∥⋆ ≤ 1. The next corollary applies Lemma 4.2 to (4.2).524

Corollary 4.3. Let h be as in (4.2) and ψ(s;xk) ..= h(xk + s). The unique525

solution sk,cp of (2.8) satisfies526

(4.6) ∥sk,cp∥ ≤

νk
(
∥∇̂f(xk)∥ + 2 sin

(
π(n−1)

2n

)
n1/p−1/2

)
(1 ≤ p < 2)

νk

(
∥∇̂f(xk)∥ + 2 sin

(
π(n−1)

2n

))
(p ≥ 2).

527
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Proof. Apply Lemma 4.2 with ∥ · ∥• = ∥ · ∥p and528

A ..=

−1 1
. . .

. . .

−1 1

 ∈ R(n−1)×n.529

Note that ATA is the centered finite-difference operator for second derivatives, which530

is symmetric, tridiagonal and Toeplitz. Its eigenvalues are thus known in closed form,531

hence the value of ∥A∥ [40, p. 54]. Finally, ∥uk∥ can be bounded as in the proof of532

Lemma 4.1.533

The final lemma derives a bound on the solution of the proximal problem associated534

to the indicator function in (4.3).535

Lemma 4.4. Let h be as in (4.3) and ψ(s;xk) ..= h(xk + s). Any solution sk,cp536

of (2.8) satisfies537

(4.7) ∥sk,cp∥ ≤ r1/p + ∥xk∥.538

Proof. Because 0 < p < 1, t 7→ tp is concave for t ≥ 0, and thus subadditive,539

i.e., (a + b)p ≤ ap + bp for any a, b ≥ 0. Let u ∈ Rn. By recurrence on n, ∥u∥pp =540 ∑n
i=1 |ui|

p ≥ (
∑n
i=1 |ui|)

p, which states that ∥u∥p ≥ ∥u∥1. This implies that the unit541

“ball” in ℓp-pseudo-norm is a subset of the unit ℓ1-norm ball. In turn, the latter is a542

subset of the unit ℓ2-norm ball. A scaling argument shows that the same holds with balls543

of radius r > 0. Therefore, because ∥xk + sk,cp∥p ≤ r1/p, we have ∥xk + sk,cp∥ ≤ r1/p.544

The triangle inequality yields ∥sk,cp∥ ≤ ∥xk + sk,cp∥ + ∥xk∥ ≤ r1/p + ∥xk∥.545

In (4.4), (4.6) and (4.7), the bound on ∥sk,cp∥ depends only on known quantities546

at iteration k. Thus, we can enforce Assumption 3.5 by stopping the inexact proximal547

procedure as soon as ∥ŝ(j)k,cp∥ exceeds a fixed fraction of said bound.548

5. Numerical experiments. In this section, we present numerical experiments549

indicating that exploiting inexact objective values, gradients and proximal operators550

can reduce computational cost substantially. We implement Algorithm 3.1 in the Julia551

language [14] as a modification of the R2N solver [25] in [7].552

The implementation of the proximal operator of (4.1) and (4.2), which are both553

convex, is available from the Julia interface [2] to the proxTV library [9]. Both554

implement iterative methods. The method for (4.1) computes projected quasi-Newton555

search directions, and performs a backtracking line search to determine the step556

size. That for (4.2) alternates between gradient projection into the ℓp-norm ball and557

Frank-Wolfe steps. After each update, the primal solution is reconstructed from the558

dual variable, and a new gradient is computed.559

Our implementation of the proximal operator of (4.3) is based on the Iteratively560

Reweighted ℓp-Ball Projection (IRBP) scheme of [43]. At each iteration, IRBP561

approximates the ℓp-“ball” norm via a weighted linearization of the nonconvex set562

around the current iterate. This results in a convex subproblem describing a projection563

into a weighted ℓ1-norm ball, which can be solved efficiently [21]. A smoothing vector564

is maintained and adaptively updated to avoid numerical instability and improve565

convergence. The nonconvex nature of χp,r implies that there may be non-global566

minima or saddle points [43]. Therefore, the step output by χp,r may not even567

induce ξ̂k,cp ≥ 0. To the best of our knowledge, there is currently no procedure that568

is guaranteed to determine a global minimum. In order to mitigate the issue, we569
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implement a multi-start strategy to increase the odds that ŝk,cp be a global solution.570

Our strategy is not always successful, but nevertheless often results in acceptable steps.571

Part of future work is to find a procedure that identifies a global minimizer. Our572

implementation is available from [1].573

In each case, inexactness in the proximal operator evaluations is controlled by574

0 < κs ≤ 1 in Assumption 3.5. For κs ≈ 0, the expectation on the quality of ŝk,cp is at575

its lowest, i.e., Assumption 3.5 is easiest to satisfy, but (5.1) is harder to reach. Thus576

the solver may spend less time inside each (cheap) proximal operator evaluation at577

the cost of potentially performing more (costly) outer iterations. On the other hand,578

when κs ≈ 1, the ŝk,cp should be close to an exact solution. In this case, the solver579

may spend more time than necessary inside each proximal operator evaluation, which580

may adversely affect the total solution time. In our experiments, we vary the value of581

κs to assess the impact of the inexactness on the performance of iR2N.582

Step 9 in Algorithm 3.1 is performed by a special case of Algorithm 3.1 with583

B = 0 in which the proximal step computation is the only subproblem. In effect, that584

is a variant of the R2 algorithm [3, Algorithm 6.1] extended to the inexact proximal585

framework. We refer to this variant as iR2. Although iR2 is also allowed to perform586

inexact evaluations of its smooth objective and gradient, we evaluate the quadratic587

model φ(s;xk) exactly in our experiments.588

Each procedure to solve (4.1)–(4.3) comes with its original stopping condition.589

We say that we run iR2N in exact mode when we use this original stopping condition,590

independently of Assumption 3.5, and we consider that the resulting proximal operator591

is then evaluated exactly. By contrast, we run iR2N in inexact mode when the592

iterations of the proximal operator evaluation are terminated as soon as either (i)593

∥ŝk,cp∥ ≥ κsMk, where Mk is the upper bound on ∥sk,cp∥ given in (4.4), (4.6), or (4.7),594

or (ii) the original stopping condition of the proximal operator evaluation is met. In595

proximal operator evaluations, iR2 uses the same value of κs as iR2N.596

Inequalities (3.6) suggest using ν−1
k ∥ŝk,cp∥ ≤ κsϵ as stopping criterion in Algo-597

rithm 3.1, since it guarantees that ν−1
k ∥sk,cp∥ ≤ ϵ. However, we will see that small598

values of κs yield the best performance but make that stopping condition overly599

stringent. In addition, the bound Mk given in Lemmas 4.1, 4.2 and 4.4 need not be600

tight, and could indeed be quite loose. For those reasons, all our experiments use the601

simple stopping condition602

(5.1) ν−1
k ∥ŝk,cp∥ ≤ ϵ.603

In the next sections, we report the performance of iR2N on problems that use604

the inexact proximal operators described above. In Subsections 5.1 to 5.3, both the605

objective and gradient are assumed to be evaluated exactly, i.e., only subject to the606

limits of floating-point operations. In Subsection 5.4, we consider inexact evaluations607

of the objective and gradient. All our tests are performed in double precision on a608

2020 MacBook Air with an M1 chip (8-core CPU, 8 GB unified memory).609

Because f in our test problems is based on randomly-generated data, we average610

the statistics over 10 runs. It is useful to keep in mind that each iR2N and iR2 iteration611

evaluates a single proximal operator—see Line (8) of Algorithm 3.1. Tables in the612

next sections use the following headers: “κs” is the value of the inexactness parameter613

in Assumption 3.5, “iR2N” is the average number of outer iterations, “iR2” is the614

average number of inner iterations per outer iteration, “prox” is the average number615

of iterations per proximal operator evaluation, and “time (s)” is the average CPU616

solution time in seconds.617
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5.1. Basis pursuit denoising problem (BPDN). The BPDN problem is618

stated as619

(5.2) min
x∈Rn

1
2∥Ax− b∥22 + µ∥x∥p,620

where µ = 10−1, A ∈ R200×512 is random with orthonormal rows, b = Ax̄+ ε, x̄ has621

10 nonzeros, and ε is a noise vector from a normal (0, 1) distribution. We use p = 1.1622

to attempt to recover a sparse solution. In (5.1), we set ϵ = 10−6.623

Table 5.1
Statistics on (5.2) for several values of κs.

κs iR2N iR2 prox time (s)
1.00e−07 1.61e+01 1.21e+02 1.02e+02 5.03e+00
1.00e−05 1.57e+01 1.63e+02 1.90e+02 9.80e+00
1.00e−03 1.49e+01 1.33e+01 4.02e+02 1.55e+01
1.00e−02 1.49e+01 1.78e+01 6.02e+02 1.77e+01
1.00e−01 1.45e+01 1.39e+01 5.81e+02 1.32e+01
5.00e−01 1.45e+01 1.37e+01 5.90e+02 1.28e+01
9.00e−01 1.45e+01 1.39e+01 5.80e+02 1.25e+01
9.90e−01 1.46e+01 1.37e+01 5.90e+02 1.38e+01

exact mode 1.45e+01 1.35e+01 5.68e+02 1.20e+01

Table 5.1 shows that the average number of iR2N/iR2 iterations decreases globally624

as κs increases. The proximal operator iterations increase as κs increases, as expected.625

For small values of κs, inexact mode yields a substantial reduction in the number of626

proximal iterations and solution time compared with exact mode at the expense of627

a modest increase in outer iterations. For large values of κs the behavior of iR2N is628

close to that of exact mode.629

Figure 5.1 shows that the solutions produced in exact and inexact mode are630

essentially identical, and that both recover the sparse support of x̄.631
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Fig. 5.1. Components of the solution of (5.2) found by iR2N and of x̄.

5.2. Matrix completion problem. The problem is stated as632

(5.3) min
x∈Rn

1
2 ∥P (x−A)∥2F + µTVp(x),633
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where µ = 10−1, p = 1.1 and A ∈ R10×12 is a fixed matrix representing an image and634

the operator P only retains a subset of pixels. In (5.1), ϵ = 10−3.635

Table 5.2 gathers our results on (5.3). The benefits of choosing κs small are similar636

to those in Table 5.1. Figure 5.2 shows that the reconstruction error with the solutions637

of exact and inexact mode are close, as is the discrepancy between the two solutions.638

Table 5.2
Statistics on (5.3) for several values of κs.

κs iR2N iR2 prox time (s)
1.00e−07 3.69e+01 3.41e+02 5.88e+02 9.46e+01
1.00e−05 3.72e+01 3.03e+02 8.71e+02 1.42e+02
1.00e−03 3.69e+01 2.09e+02 3.76e+03 3.54e+02
1.00e−02 3.77e+01 2.12e+02 4.06e+03 3.73e+02
1.00e−01 3.41e+01 1.90e+02 4.37e+03 3.25e+02
5.00e−01 3.56e+01 2.19e+02 4.31e+03 3.54e+02
9.00e−01 3.77e+01 1.81e+02 4.49e+03 3.57e+02
9.90e−01 3.55e+01 2.01e+02 4.27e+03 3.54e+02

exact mode 3.18e+01 1.67e+02 4.49e+03 3.36e+02

|Xinexact − A| (κs = 10−7)

0
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0.1
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·10−3

Fig. 5.2. Left: Heatmap of the difference between the solution X found by iR2N in inexact and
exact mode, and A. Right: Difference between the two solutions. The values masked by P are set to
zero and shown in black.

5.3. Fitzhugh-Nagumo inverse problem. The FitzHugh–Nagumo system is639

a simplified representation of a neuron’s action potential modeled by the system of640

differential equations641

(5.4) V ′(t) = x−1
2 (V (t)− 1

3V (t)3−W (t)+x1), W ′(t) = x2(x3V (t)−x4W (t)+x5).642

We use initial conditions V (0) = 2 and W (0) = 0, and generate data v̄(x), w̄(x) by643

solving (5.4) with x̄ = (0, 0.2, 1, 0, 0), which corresponds to the Van der Pol oscillator,644

to which we add random noise. We then aim to recover x̄ by minimizing the misfit645

while encouraging a sparse solution:646

(5.5) min
x∈R5

1
2 ∥F (x)∥22 + χp,r(x),647

where p = 0.5, r = 2, F : R5 → R
2n+2, F (x) ..= (v(x) − v̄(x), w(x) − w̄(x)), and648

v(x) = (v1(x), . . . , vn+1(x)) and w(x) = (w1(x), . . . , wn+1(x)) are sampled values of649

V and W at n+ 1 discretization points. We set ϵ = 10−5 in (5.1). Table 5.3 reports650

our results.651

The small number of iterations per proximal call arises from the fact that χp,r is652

an indicator; the projection of a point that already belongs to the set requires zero653
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Table 5.3
Statistics on (5.5) for p = 1

2
and r = 2 with several values of κs.

κs iR2N iR2 prox time (s)
1.00e−07 5.14e+02 4.90e+02 3.51e−01 5.28e+00
1.00e−05 5.72e+02 4.64e+02 4.62e−01 5.21e+00
1.00e−03 6.31e+02 5.47e+02 5.96e−01 5.56e+00
1.00e−02 5.71e+02 4.81e+02 6.22e−01 5.17e+00
1.00e−01 4.95e+02 4.89e+02 4.11e−01 5.85e+00
5.00e−01 4.90e+02 4.59e+02 1.94e+00 6.42e+00
9.00e−01 5.12e+02 4.98e+02 2.06e+00 6.53e+00
9.90e−01 5.24e+02 5.09e+02 1.91e+00 6.84e+00

exact mode 4.92e+02 5.03e+02 3.92e+01 6.88e+00

iterations. The value of κs has little effect on the number of iR2N/iR2 iterations. As654

in Subsections 5.1 and 5.2, inexact mode yields a reduction in computational cost,655

though more modest because the smooth objective and its gradient are costlier in (5.5)656

than in (5.2) or (5.3). Thus, the reduction in proximal evaluations must outweigh the657

increase in outer iterations. Table 5.4 gives the approximate solution identified by658

the exact and inexact variants, and the final value of the smooth objective. Although659

both exact and inexact mode recover a solution that has one more nonzero than x̄, the660

final smooth objective values are close to that at x̄. Figure 5.3 plots the simulation661

of (5.4) with parameters found by iR2N with κs = 1.0e−07 when solving (5.5). The662

solutions with exact and inexact mode are indistinguishable.663

Table 5.4
Approximate solutions of (5.5) found by the exact and inexact variants with κs = 1.0e−07. The

last column shows the smooth objective value at the solution.

x 1
2
∥F (x)∥2

True 0.00e+00 2.00e−01 1.00e+00 0.00e+00 0.00e+00 8.82e−01
Inexact 0.00e+00 2.00e−01 9.98e−01 −1.00e−02 0.00e+00 8.96e−01
Exact 0.00e+00 2.00e−01 9.98e−01 −1.00e−02 0.00e+00 8.96e−01
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Fig. 5.3. Simulation of (5.4) with solutions of (5.5) found by iR2N.

5.4. Inexact objective and gradient evaluations. We now consider inexact664

evaluations of the smooth objective and its gradient. In (5.5), each evaluation of F665

involves solving an ODE system numerically, which inherently depends on a stopping666
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tolerance that introduces an approximation error. We use the Verner [42] 9/8 optimal667

Runge-Kutta method as implemented in [33]. In our implementation of F , the accuracy668

of the ODE solve can be adjusted via a parameter prec > 0 that sets the absolute and669

relative stopping tolerances. The gradient is computed via automatic differentiation,670

and hence, its accuracy also depends on prec. Decreasing this tolerance improves671

the accuracy of the objective and gradient but increases the computational cost. The672

results of Subsection 5.3 used prec = 10−14 as the reference “exact” objective and673

gradient evaluations.674

Because Assumption 3.6 may not be easily verifiable in practice, we propose675

a heuristic inspired from trust-region methods for derivative-free optimization [23,676

chapter 10], that consists in adapting the accuracy based on the progress of the677

algorithm. More precisely, we increase the accuracy on unsuccessful iterations, i.e.,678

ρk < η1 in Algorithm 3.1. At iteration k, we set prec to679

(5.6) prec(k) ..= max(10−3 exp(log(10−14/10−3)nF /N), 10−14),680

where N is a preset maximum number of unsuccessful iterations after which prec =681

10−14 is always used, and nF counts the number of unsuccessful iterations. Small values682

of N lead to a rapid increase in accuracy, whereas larger ones maintain low-accuracy683

evaluations over more iterations. Though (5.6) may not guarantee Assumption 3.6684

at every iteration, the objective and gradient accuracy improves as the algorithm685

progresses, as required by the assumption.686

We focus on (5.5) with the setting of Subsection 5.3 and we use (5.6) for inexact687

objective and gradient. We vary the value of N with fixed κs = 10−7 in Table 5.5.688

Table 5.5
Iterations and time on (5.5) with inexact objective and gradient evaluations.

N fail rate iter iR2N iter iR2 prox time (s)
exact F 0% 5.14e+02 4.90e+02 3.51e−01 5.28e+00

20 0% 5.66e+02 5.10e+02 4.55e−01 5.16e+00
50 20% 6.36e+02 5.07e+02 3.77e−01 4.31e+00

100 30% 6.31e+02 5.08e+02 3.46e−01 3.27e+00
200 80% 6.67e+02 5.47e+02 3.69e−01 2.46e+00

The first line of Table 5.5 reports the number of iterations and the solution time689

obtained with “exact” objective and gradient. Lines 2–5 use (5.6) for several values of690

N . As N increases, iR2N spends a larger fraction of its iterations in a low -precision691

regime, making it increasingly likely that Assumption 3.6 is violated. When iR2N692

operates with insufficient accuracy for too long, the algorithm may eventually stall,693

cease to make progress, and reach the maximum number of allowed iterations. The694

second column of Table 5.5 reports the proportion of such failed runs over ten trials.695

Importantly, the iteration and timing statistics shown in Table 5.5 correspond only696

to the successful runs. The failure rate increases with N , and for N = 200 few runs697

succeed. Moderate values of N yield significant benefits in terms of solution time.698

In Table 5.6, we report the performance of Algorithm 3.1 using inexact objective,699

gradient and proximal operator evaluations following rule (5.6) on (5.5) with N = 100.700

The number of iR2N, iR2 and proximal iterations is globally unaffected by inexact701

evaluations, but the latter yield significant savings in terms of solution time.702

6. Discussion. Method iR2N subsumes R2N [25] by allowing inexact evaluations703

of the objective, its gradient, and the proximal operator. Under usual global conver-704

gence conditions, we showed that inexact evaluations and proximal operators do not705

Commit e58e6d7 by Dominique on 2025-12-15 12:52:36 -0500 Cahier du GERAD G-2026-73



[toc] 21

Table 5.6
Statistics on (5.5) with increasing accuracy given by (5.6) with N = 100 and several values of

κs. Each entry reports the multiplicative gain or loss compared to the reference values in Table 5.3.
A value smaller than 1 indicates a gain.

κs iR2N iR2 prox time (s)
1.00e−07 1.23e+00 1.04e+00 9.90e−01 6.20e−01
1.00e−05 1.08e+00 1.02e+00 1.38e+00 4.90e−01
1.00e−03 8.40e−01 7.70e−01 5.50e−01 2.70e−01
1.00e−02 1.00e+00 1.00e+00 1.10e+00 3.60e−01
1.00e−01 1.11e+00 9.60e−01 5.20e−01 3.00e−01
5.00e−01 9.90e−01 9.20e−01 1.19e+00 2.50e−01
9.00e−01 1.03e+00 8.80e−01 1.17e+00 3.00e−01
9.90e−01 9.40e−01 8.30e−01 1.36e+00 2.50e−01

average factor 1.03e+00 9.30e−01 1.03e+00 3.60e−01

deteriorate asymptotic complexity compared to methods that use exact evaluations.706

Our assumptions on the inexactness of f and ∇f are standard.707

Assumption 3.5 on the inexact evaluation of proximal operators differs in nature708

from Definitions (ii) and (iii) of [38]. Their Definition (i), also used in [36], can be709

written ∥ŝk,cp− sk,cp∥ ≤ ϵk for at least one sk,cp, where {ϵk} is positive and summable.710

It is equivalent to ∥sk,cp∥− ϵk ≤ ∥ŝk,cp∥ ≤ ∥sk,cp∥+ ϵk, which is strictly stronger than711

Assumption 3.5 in that we only require one of the inequalities. Moreover, we use the712

specific value ϵk = (1 − κs)∥sk,cp∥, which need not be summable. Indeed, by the same713

reasoning as in the proof of Lemma 3.6, for any successful iteration k, there exists a714

Cauchy step sk,cp such that715

(f + h)(xk) − (f + h)(xk + sk) ≥ 1
2η1(1 − θ1)ν−1

k ∥ŝk,cp∥
2

716

≥ 1
2η1(1 − θ1)ν−1

max∥ŝk,cp∥
2

717

≥ 1
2η1(1 − θ1)ν−1

maxκ
2
s∥sk,cp∥

2.718

Therefore, if we sum those inequalities over the set S of all successful iterations and719

use Assumption 3.7, we obtain720

(f + h)(x0) − (f + h)low ≥ 1
2η1(1 − θ1)ν−1

maxκ
2
s

∑
k∈S

∥sk,cp∥
2.721

A similar inequality holds for ŝk,cp. Thus, both {ŝk,cp} and {sk,cp} are square summable.722

However, showing that they are summable appears to require the stronger Kurdyka-723

 Lojasiewicz assumption [15, Theorem 1], which is not used in our analysis.724

iR2N naturally generalizes the special cases R2 [3] with B(x) = 0, R2DH [25] with725

B(x) diagonal, and LM [6] when f is a squared residual norm and B(x) = J(x)J(x)T ,726

where J(x) is the residual Jacobian. It stands to reason that the same mechanisms727

can be used to extend the trust-region variants (TR [3], TRDH [30], and LMTR [6])728

to inexact evaluations and proximal operators with minimal modifications.729

Numerical experiments confirm that iR2N provides substantial flexibility in con-730

texts where exact evaluations are expensive or unavailable, and demonstrate that731

controlled inexactness can be leveraged to reduce computational cost without compro-732

mising convergence behavior.733

In the context of trust-region methods for (1.1), Aravkin et al. [3, 6] give procedures734

based on the solution of a nonlinear equation to obtain an element of (2.4) with the735

additional constraint ∥s∥∞ ≤ ∆, where ∆ > 0, or, equivalently, with the additional736
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term χ(s | ∆B∞) in the objective, where B∞ is the ℓ∞-norm unit ball and χ is the737

indicator of a set. They do so for two choices of ψ. Our results apply directly to both738

regularizers, and indeed to any regularizer combined with a trust-region constraint.739

Here, B2 ⊂ B∞, and hence, ∥sk,cp∥2 ≤ ∆. Thus, we may use the stopping condition740

∥ŝk,cp∥ ≥ κs∆.741

Future work will focus on allowing inexact evaluations of the quadratic model (2.5),742

particularly regarding Bk, which itself may be computed inexactly—for instance, when743

represented in reduced numerical precision or when linear systems involving Bk are744

solved approximately.745
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Montréal, QC, Canada, 2024.755

[5] A. Y. Aravkin, R. Baraldi, and D. Orban. A proximal quasi-Newton trust-region method for756
nonsmooth regularized optimization. arXiv, (2103.15993v1), 2021. Preliminary report.757

[6] A. Y. Aravkin, R. Baraldi, and D. Orban. A Levenberg-Marquardt method for nonsmooth758
regularized least squares. SIAM J. Sci. Comput., 46(4):A2557–A2581, 2024.759

[7] R. Baraldi, G. Leconte, and D. Orban. RegularizedOptimization.jl: Algorithms for regularized760
optimization, 2024.761

[8] R. J. Baraldi and D. P. Kouri. A proximal trust-region method for nonsmooth optimization762
with inexact function and gradient evaluations. Math. Program., 201(1):559–598, 2023.763

[9] A. Barbero and S. Sra. Modular proximal optimization for multidimensional total-variation764
regularization. J. Mach. Learn Res., 19(56):1–82, 2018.765
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[32] J.-J. Moreau. Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. Fr., 93:273–299,812
1965.813

[33] C. Rackauckas and Q. Nie. DifferentialEquations.jl – A performant and feature-rich ecosystem814
for solving differential equations in Julia. J. Open Source Softw., 5(1), 2017.815

[34] H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Stat., 22(3):400–407,816
1951.817

[35] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.818
[36] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM J. Control819

Optim., 14(5):877–898, 1976.820
[37] R. T. Rockafellar and R. Wets. Variational Analysis, volume 317 of Grundlehren der mathema-821

tischen Wissenschaften. Springer Verlag, 2009.822
[38] S. Salzo and S. Villa. Inexact and accelerated proximal point algorithms. J. Convex Anal., 19823

(4):1167–1192, 2012.824
[39] M. Schmidt, N. Roux, and F. Bach. Convergence rates of inexact proximal-gradient methods for825

convex optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger,826
editors, Advances in Neural Information Processing Systems, volume 24. Curran Associates,827
Inc., 2011.828

[40] G. D. Smith. Numerical solution of partial differential equations: finite difference methods.829
Number 1 in Oxford Applied Mathematics and Computing Science Series. Oxford University830
Press, Oxford, England, third edition, 1985.831

[41] S. Sra. Scalable nonconvex inexact proximal splitting. In F. Pereira, C. Burges, L. Bottou,832
and K. Weinberger, editors, Advances in Neural Information Processing Systems, volume 25.833
Curran Associates, Inc., 2012.834

[42] J. H. Verner. Numerically optimal Runge–Kutta pairs with interpolants. Numer. Algor., 53835
(2–3):383–396, 2010.836

[43] X. Yang, J. Wang, and H. Wang. Towards an efficient approach for the nonconvex ℓp ball837
projection: algorithm and analysis. J. Mach. Learn Res., 23(101):1–31, 2022.838

Cahier du GERAD G-2026-73 Commit e58e6d7 by Dominique on 2025-12-15 12:52:36 -0500

http://dx.doi.org/10.13140/RG.2.2.21140.51840
http://dx.doi.org/10.13140/RG.2.2.21140.51840
http://dx.doi.org/10.13140/RG.2.2.21140.51840
http://dx.doi.org/10.1080/00207728108963798
http://dx.doi.org/10.1080/00207728108963798
http://dx.doi.org/10.1080/00207728108963798
http://dx.doi.org/10.1609/aaai.v32i1.11802
http://dx.doi.org/10.1609/aaai.v32i1.11802
http://dx.doi.org/10.1609/aaai.v32i1.11802
http://dx.doi.org/10.1007/s10898-024-01460-7
http://dx.doi.org/10.1007/s10898-024-01460-7
http://dx.doi.org/10.1007/s10898-024-01460-7
http://dx.doi.org/10.13140/RG.2.2.22451.40486
http://dx.doi.org/10.13140/RG.2.2.22451.40486
http://dx.doi.org/10.13140/RG.2.2.22451.40486
http://dx.doi.org/10.1007/s10589-024-00604-5
http://dx.doi.org/10.1007/s10589-025-00676-x
http://dx.doi.org/10.1007/s10589-025-00676-x
http://dx.doi.org/10.1007/s10589-025-00676-x
http://dx.doi.org/10.24033/bsmf.1625
http://dx.doi.org/10.5334/jors.151
http://dx.doi.org/10.5334/jors.151
http://dx.doi.org/10.5334/jors.151
http://dx.doi.org/10.1214/aoms/1177729586
http://dx.doi.org/doi:10.1515/9781400873173
http://dx.doi.org/10.1137/0314056
http://dx.doi.org/10.1007/978-3-642-02431-3
https://www.heldermann-verlag.de/jca/jca19/jca1133_b.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/8f7d807e1f53eff5f9efbe5cb81090fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/8f7d807e1f53eff5f9efbe5cb81090fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/8f7d807e1f53eff5f9efbe5cb81090fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/7f100b7b36092fb9b06dfb4fac360931-Paper.pdf
http://dx.doi.org/10.1007/s11075-009-9290-3
http://jmlr.org/papers/v23/21-0133.html
http://jmlr.org/papers/v23/21-0133.html
http://jmlr.org/papers/v23/21-0133.html

	Introduction
	Background
	Variational Analysis Concepts
	Models
	The Proximal-Gradient Method

	Algorithm and Convergence Analysis
	Assumptions
	Convergence Analysis

	Evaluation of inexact proximal operators
	Numerical experiments
	Basis pursuit denoising problem (BPDN)
	Matrix completion problem
	Fitzhugh-Nagumo inverse problem
	Inexact objective and gradient evaluations

	Discussion

