
Optimization over Trained Neural Networks:
Going Large with Gradient-Based Algorithms

Jiatai Tong1, Yilin Zhu2, Thiago Serra2, and Samuel Burer2

1 Northwestern University, Evanston IL, United States
jiataitong2026@u.northwestern.edu

2 University of Iowa, Iowa City IA, United States
{yilin-zhu,thiago-serra,samuel-burer}@uiowa.edu

Abstract. When optimizing a nonlinear objective, one can employ a
neural network as a surrogate for the nonlinear function. However, the
resulting optimization model can be time-consuming to solve globally
with exact methods. As a result, local search that exploits the neural-
network structure has been employed to find good solutions within a
reasonable time limit. For such methods, a lower per-iteration cost is
advantageous when solving larger models. The contribution of this pa-
per is two-fold. First, we propose a gradient-based algorithm with lower
per-iteration cost than existing methods. Second, we further adapt this
algorithm to exploit the piecewise-linear structure of neural networks
that use Rectified Linear Units (ReLUs). In line with prior research,
our methods become competitive with—and then dominant over—other
local search methods as the optimization models become larger.

Keywords: Constraining learning · Gradient ascent · Linear regions ·
Piecewise-linear functions · Rectified linear units.

1 Introduction

In the field of mathematical programming, piecewise-linear functions play an im-
portant role in modeling nonlinear functions [43,41,70,45,31]. In deep learning,
a popular model that provides a piecewise-linear approximation of a nonlinear
function is the neural network with the ReLU activation function [2,30]. Re-
searchers have long known that some neural network architectures are universal
function approximators [13,21,28], and in particular, this is also true of the ReLU
activation function if the architecture is sufficiently wide [75] or deep [26]. When
neural-network approximations are used as surrogates for solving nonlinear opti-
mization problems, algorithms that exploit the piecewise-linear structure of the
neural networks are of particular interest. In this paper, we propose gradient-
based algorithms for this setting.

Optimizing a piecewise-linear function over a polyhedron can be modeled
using a Mixed-Integer Linear Programming (MILP) formulation. In the specific
case of ReLU networks, existing MILP formulations either have a weak linear
relaxation due to big M coefficients [20] or become prohibitively large when us-
ing a disjunctive formulation [29]. Researchers have found success by improving

2 J. Tong et al.

the big M coefficients [12,20,22,36,66,3,76,27,61], strengthening formulations us-
ing valid inequalities [1], and using a hybrid of both formulations [66]. Other
improvements include reformulation [29,55,38], parameter rescaling [50], prun-
ing the search space by inference [64,73,6,56], and working with sparser neural
networks [54,73,8,49].

There also exist local search methods, which do not solve the full MILPs
exactly, but instead are designed to find good solutions in limited time. Indeed,
the works by Perakis & Tsiourvas [48] and Tong et al. [65] are closely related to
this paper. Both take a geometric view of the input space of the ReLU network,
focusing on the linear pieces of the function approximation. Known as linear
regions in machine learning, each piece corresponds to a polyhedron associated
with a distinct set of active neurons. Within a linear region, changes to the input
have a linear impact on the output. In Figure 1, we illustrate these concepts on
a neural network having inputs x1 and x2, neurons with outputs h1 to h5, and
output y.

h1=max{0, x2−0.7}

h2=max{0, − x2+0.3}

h3=max{0, 0.3x1−0.1x2+0.02}

h4=max{0, 0.45x1−0.15x2−0.28}

h5=max{0, 1.2x1−0.4x2−0.79}

y=−h1− h2+ h3+ h4− h5

x1

x2

0.0 0.5 1.0
x1

0.0

0.5

1.0

x 2

1

2
3

4

5

0.0 0.5 1.0
x1

1

2
3

4

5

Fig. 1. Top: Visual description of neural network used as example. Bottom left: Lines
partitioning the space based on what inputs produce a positive output for each neuron,
with the arrow pointing to the positive side, the length of the arrow proportional to
the magnitude of the parameters, and the arrow label denoting the influence on y.
Bottom right: Contour plots of y over the lines associated with neural activations.

Going Large with Gradient-Based Algorithms 3

We summarize the works [48,65] just mentioned, taking the liberty to name
them MILP Walk and LP Walk , respectively, in order to draw parallels between
these methods and our methods introduced in Section 3:

– MILP Walk: Perakis & Tsiourvas [48] solve a sequence of restricted MILP
models. Each MILP model finds the best solution across all linear regions
containing the current solution. If a better solution is found, the same process
is repeated from the new solution. In Figure 2 Left, solution A lies only in
the linear region in darkest gray, in which the best solution is B. In turn,
solution B lies in the four linear regions with the three darker tones of gray,
where the best solution is C. Finally, solution C lies in the four linear regions
with the two lighter tones of gray, where the best solution is C again. Once
no improvement is found, the algorithm stops.

– LP Walk: Tong et al. [65] solve a sequence of LP models. Each LP model
finds the best solution in a linear region containing the current solution. If
a better solution is found, they repeat the process by moving slightly past
the new solution along the line from the last solution. Moving slightly past
avoids using a solution lying in multiple linear regions. In Figure 2 Right,
the linear region of solution A is in darker gray, and its best solution is along
the line from A to B. In turn, the linear region of solution B is in slightly
lighter gray, and its the best solution is along the line from B to C. From C
we find solution E and move towards D. From D we find solution E again.
At this point, the algorithm stops.

For a broader discussion about linear regions and their nexus with mathematical
optimization, we recommend the survey by Huchette et al. [30].

0.0 0.5 1.0
x1

0.0

0.5

1.0

x 2

1

2
3

4

5

A

B

C

0.0 0.5 1.0
x1

1

2
3

4

5

A

B
C

D

E

Fig. 2. Left: Solutions found by MILP Walk from the initial solution A = (0.23, 0.636)
until convergence. Right: Solutions found by LP Walk from A until convergence.

4 J. Tong et al.

Which algorithm, MILP Walk or LP Walk, is best suited for a particular
instance often depends on the size of that instance. Starting from the same
solution, it is easy to see that MILP Walk will move next to a solution that is at
least as good as the one found by LP Walk. On the other hand, each iteration of
MILP Walk solves the same MILP model used to optimize over the entire neural
network, albeit restricted to the neighborhood of the current solution. Hence, the
per-iteration cost of MILP Walk is higher than the the per-iteration cost of LP
Walk. Consequently, LP Walk can perform more iterations in the same amount
of time. Indeed, an empirical comparison of both methods shows that LP Walk
performs better for neural networks with more inputs, layers, and neurons [65],
all of which imply a larger number of linear regions [57]. Thus, LP Walk conducts
a style of search that is more akin to sampling than to enumeration [56].

Of course, solving an LP model for each linear region, as in LP Walk, may
eventually become too costly in ever larger neural networks. Hence, in this paper,
we propose a new local search approach with an even smaller per-iteration cost:

– Gradient Walk: We compute a sequence of gradient steps. Each step may
find a better solution within the current linear region, or a solution in another
linear region that is better or worse. We keep track of the best solution found.
If the improvement is too small for a predefined number of steps, we restart
from a perturbation of the best solution found thus far. In Figure 3 Left, we
move from A to B through nine intermediary steps in the same linear region
as A, all in the same direction, and then from B to C with five intermediary
steps. Note that the steps are orthogonal to the contour plots within the
linear regions. In Figure 3 Right, we continue from C until H by zig-zagging
among linear regions and improving in all steps except G. The steps following
H would not find a much better solution. Hence, the algorithm stops.

0.0 0.5 1.0
x1

0.0

0.5

1.0

x 2

A …
B … C

0.8 0.9 1.0
x1

0.55

0.65

0.75

x 2

C

D E

F G

H

Fig. 3. Left: First solutions found by Gradient Walk from the initial solution A =
(0.23, 0.636). Right: Next solutions found over a narrower region of the input space.

Going Large with Gradient-Based Algorithms 5

In what follows, we define our problem of interest and its conventional MILP
model in Section 2. Then we present an algorithm for Gradient Walk as well
as a variant that further exploits knowledge of linear regions in Section 3. We
evaluate those algorithms in Section 4. Conclusions are given in Section 5.

2 Preliminaries

We optimize the function f : Rn0 → R associated with a neural network over a
polytope X ⊂ Rn0 :

maximizex f(x) (1)
s.t. x ∈ X (2)

i.e., we want an input x = [x1 x2 . . . xn0]
⊤ ∈ X maximizing the prediction f(x).

In the experiments of Section 4, X equals a box, but our theoretical development
requires only that X be polyhedral.

Let the neural network have L hidden layers, each hidden layer l ∈ L :=
{1, . . . , L} having preactivation values gl = [gl1 gl2 . . . g

l
nl
]⊤ and outputs hl =

[hl
1 hl

2 . . . h
l
nl
]⊤ from neurons indexed by i ∈ Nl = {1, 2, . . . , nl}. The output

layer L + 1 has a single preactivation value gL+1
1 as the network output. Let

W l and bl denote the weight matrix and bias vector associated with the l-th
layer, for which we assume that all elements are within [−1, 1]. The preactivation
value gli of neuron i in layer l is given by gli = W l

ih
l−1 + bli, and the output hl

i

of neuron i in hidden layer l follows by the ReLU activation hl
i = max{0, gli}. In

this setting, x = h0 and f(x) = gL+1
1 .

For an input x ∈ X, let zl(x) = [zl1 z
l
2 . . . z

l
nl
]⊤ be the layer activation pattern

produced in layer l of the neural network when given x as input, where:

z l
i =

{
1, if h l

i = g l
i ≥ 0,

0, if g l
i ≤ 0.

(3)

A neuron is binding if gli = hl
i = 0. In this case, zli can be either 0 or 1.

Let z(x) = {z1(x), z2(x), . . . ,zL(x)} be the activation pattern produced
across all layers of the neural network when given x as input. A linear region
Rz′ ∈ X is a set where every input x has the same activation pattern z′ as all
the other inputs, i.e., z(x) = z′ ∀x ∈ Rz′ . The output of f varies linearly within
each linear region. Inputs lie in multiple linear regions if a neuron is binding.

We can formulate the optimization problem as the following MILP model:

maximize f(x) = gL+1
1 (4)

s.t. h0 = x, x ∈ X (5)

W l
ih

l−1 + bli = gl
i, ∀l ∈ L ∪ {L+ 1}, i ∈ Nl (6)

(zl
i = 1) → (hl

i = gl
i), ∀l ∈ L, i ∈ Nl (7)

(zl
i = 0) → (gl

i ≤ 0 ∧ hl
i = 0), ∀l ∈ L, i ∈ Nl (8)

hl
i ≥ 0, zl

i ∈ {0, 1}, ∀l ∈ L, i ∈ Nl (9)

6 J. Tong et al.

The indicator constraints (7)–(8) can be modeled with big M constraints [5].
We can formulate an LP model optimizing over a single linear region Rz′ by

fixing z = z′. For example, this is what LP Walk does in each iteration.

3 Our Proposed Algorithms

We propose two gradient-based algorithms for solving (1)–(2). We assume through-
out that the polyhedral domain X is bounded, i.e., X is a polytope. Indeed, neural
networks are often used within a confined domain. There is a growing body of
work on preventing a neural network from extrapolating outside the nominal or
implied domain defined by a training set [60,67,77]. Moreover, the possibility of
embedding a neural network as part of an MILP model depends on the input set
being bounded [57], which otherwise would also prevent us from benchmarking
against existing algorithms [48,65].

Our first algorithm, the Perturbed Projected Gradient Ascent (PPGA) algo-
rithm, is described in Section 3.1. PPGA makes use of both the piecewise-constant
nature of ∇f and projection onto X. Our second algorithm, PPGA with Linear
Region Valve (PPGALR), is described in Section 3.2. PPGALR enhances PPGA by fur-
ther exploiting the structure of the linear regions, being particularly beneficial
if the number of linear regions is large.

3.1 Perturbed Projected Gradient Ascent (Algorithm 1)

We first mention the standard approach, called the Projected Gradient As-
cent (PGA) algorithm, of projecting the gradient steps over the feasible set to
produce iterates of the form

xt+1 = PX(x
t + γ∇f(xt)), (10)

where γ is the learning rate and L2 projection [52,51] solves the convex quadratic
program (QP)

PX(ẋ) = argmin
x

∥x− ẋ∥2 (11)

s.t. x ∈ X, (12)

which takes only O(n0) time when X is a box.
Based on PGA, we now introduce our method PPGA. For any point x′ ∈ Rz(x),

i.e., any point x′ in the same linear region as x, we can calculate f(x′) with the
affine transformation

f |Rz(x)(x
′) = T (z(x))x′ + t(z(x)), (13)

where

T (z(x)) = wL+1

(
L∏

l=1

(zl(x)I)W l

)
(14)

Going Large with Gradient-Based Algorithms 7

and t(z(x)) is constant [30]. Hence, it follows that

∇f(x) = wL+1

(
L∏

l=1

(zlI)W l

)
(15)

for any point x at the interior of its linear region, i.e., not binding for any neuron.
Hence, f has a piecewise affine landscape, which may contain local maxima,
saddle points, and local minima.

For smooth maximization problems, one may generally escape from (interior
feasible) saddle points and local minima by introducing a perturbation when
∇f(x) is small enough [32,33,23,69]. Our case is quite different, however, since
all differentiable regions have constant gradients and because saddle points and
local minima occur at the boundary of those regions, where the function is

Algorithm 1 Perturbed Projected Gradient Ascent
Input: Model f with input size n0, learning rate γ, time limit T , restart noise coeffi-

cient Ξ, error threshold ϵ, tolerance window k; input domain X
Output: Best solution x∗ and objective value f(x∗)

1: δ ← Ξ√
n0

2: Sample initial x ∼ Uniform(X)
3: x∗ ← x ▷ Initialized best solution so far
4: x′ ← x ▷ Initialized best solution since reset
5: r ← 0 ▷ Initialized reset counter
6: while Time < T do
7: x← PX (x+ γ∇f(x)) ▷ Gradient step; replaced with Algorithm 2 in PPGALR
8: if f(x) > f(x′) then ▷ If found best solution since reset
9: ∆← f(x)− f(x′) ▷ Calculate local improvement before update

10: x′ ← x ▷ Update best solution since reset
11: if f(x) > f(x∗) then ▷ If found best overall solution
12: x∗ ← x ▷ Update best overall solution
13: end if
14: if ∆ < f(x) · ϵ then ▷ If local improvement is below threshold
15: r ← r + 1 ▷ Increment reset counter
16: if r = k then ▷ If reached reset trigger
17: x← PX

(
x∗ + ξ

)
, ξ ∼ N (0, δ) ▷ Reset event

18: x′ ← x
19: r ← 0
20: end if
21: else ▷ If the improvement is above the threshold
22: if f(x) = f(x∗) then ▷ If current solution matches best overall solution
23: r ← 0 ▷ Reset the counter
24: end if
25: end if
26: end if
27: end while
28: return x∗, f(x∗)

8 J. Tong et al.

nondifferentiable. Hence, the size of ∇f(x) is not a reliable measure of local
optimality in our case.

We hence use a different mechanism to measure progress. If we accumulate
k improvements that are relatively small in comparison to the current objective
value f(xt), while not producing a better overall solution, then we continue
the next iteration from a perturbation ξ ∼ N (0, Ξ√

n0
) around the current best

solution x∗. If that happens at step t, then the next update is

xt+1 = PX(x
∗ + ξ + γ∇f(x∗ + ξ)) (16)

The resultant algorithm, our Perturbed Projected Gradient Ascent (PPGA) algo-
rithm, is described as Algorithm 1.

3.2 PPGA With Linear Region Valve (Algorithms 1 and 2)

When the ReLU network gets deeper, the gradient calculated with Equation (15)
may either explode or diminish, which makes it important to find an appropriate
learning rate. As an alternative to calibrate the learning rate, we propose using
linear region information for making local decisions about the size of the gradient
step. Because we assume in this paper that all weights are within [−1, 1], we
expect the gradient to diminish when the network gets deeper. Notably, a similar
approach can also be applied to resolve gradient explosion.

Suppose that we are in the linear region Rz with activation pattern z. We can
calculate how far we may move to reach the next linear region in the direction
of the gradient by a ratio test:

u = min
i∈I

(
− gi
∆gi(x)

)
(17)

where I =
{
i | i ∈ Nl, l ∈ L,− gi

∆gi(x)
≥ 0
}

is a subset of all neurons, and

∆gi(x) = gi(x+∇f(x))− gi(x). (18)

Here, u is the relative step size to the next linear region, while the actual step
size is u · ∥∇f(xt)∥. We can use u as an estimate for the size of a linear region
Rz′ near Rz, i.e., ∥z−z′∥1 ≤ ζ with a relatively small ζ. Given also the relative
step size γ, then we estimate the gradient step to stretch over

v =
⌈γ
u

⌉
(19)

linear regions around Rz.
Let V > 1 be a predetermined valve value, which corresponds to the number

of linear regions that we would like to stretch over at each gradient step. If γ is
such that v < V at the current linear region, then we use a scale factor c over
the magnitude of the gradient:

xt+1 =

PX

(
xt + c

∇f(xt)

∥∇f(xt)∥

)
, if γ ≤ V · u,

PX (xt + γ∇f(xt)) , otherwise.
(20)

Going Large with Gradient-Based Algorithms 9

Algorithm 2 Adaptive Gradient Step with Linear Region Valve
Input: Current solution x, learning rate γ, valve value V , scale factor c
Output: New iterate x′ ▷ Replaces iterate calculated in Line 7 of Algorithm 1

1: ∇f(x)← wL+1

(
L∏

l=1

(zlI)W l

)
2: g ← f(x)
3: g′ ← f

(
x+∇f(x)

)
4: ∆g ← g′ − g
5: ρ← −g/∆g
6: Mask all negative entries in ρ with +∞
7: u← min(ρ)
8: if V · u ≥ γ then

9: x′ ← PX

(
x+ c · ∇f(x)∥∥∇f(x)∥∥

)
10: else
11: x′ ← PX

(
x+ γ · ∇f(x)

)
12: end if
13: return x′

The adaptive gradient step replaces Line 7 in Algorithm 1 with Algorithm 2.
In our implementation, we simply chose V = 1

∥∇f(xt)∥ as an adaptive valve
value, so that a small gradient will more likely trigger the rescaled gradient up-
date. We also set c = u, so that we force the step size stretching more than V lin-
ear regions, since each linear region is estimated to have length u·∥∇f(xt)∥ = u

V .
The main reason using adaptive hyperparameters is that applying grid search to
extra hyperparameters is very costly, and we want to be fair to those algorithms
with fewer hyperparameters, such as PPGA and [65].

We denote this variant of PPGA using Algorithm 2 and adaptive (V, c) design
as PPGALR.

4 Numerical Experiments

We devised numerical experiments to evaluate algorithms PPGA and PPGALR on
standard benchmarks and compare them with other methods. In the follow-
ing subsections, we define the concept of a basic experiment, then describe our
method for generating multiple experiments, and finally detail the optimization
results. All numerical experiments were implemented in Python 3.10.8 using
Gurobi 11.0 and evaluated on a single Xeon E5-2680v4 core running at 2.4 GHz
with 16 GB of memory under the CentOS Linux operating system. The source
code is publicly shared at https://github.com/yillzhu/nn_opt .

4.1 Definition of an Experiment

In our study, an experiment P refers to a complete specification of five design
options that determine the structure of a neural network and the algorithm used:

https://github.com/yillzhu/nn_opt

10 J. Tong et al.

– Input size, i.e., the input dimension n0 of the neural network.
– Depth, i.e., the number of hidden layers d of the neural network.
– Width, i.e., the number of neurons m in each hidden layer.
– Seed , i.e., the seed s used to instantiate the network parameters.
– Algorithm, i.e., the local search method M used for optimization.

Given a particular combination of these specifications, the experiment proceeds
as follows. With seed s fixed, we generate a neural network having input dimen-
sion n0, depth d, and width m. For each optimization algorithm M, we then
conduct a grid search to determine the optimal hyperparameters: shaking noise
σ, error threshold ϵ, and tolerance window k. Once these parameters are fixed,
the algorithm M is used to optimize the network within a specified time limit.

In line with prior work [48,65] and to properly benchmark with it, we optimize
over neural networks with their weights as defined at initialization. Hence, in-
stead of optimizing over neural networks approximating specific functions based
on their training, we work with neural networks representing distinct and ran-
dom functions. We believe that this makes the results more representative.

4.2 Generating Multiple Experiments

In addition to PPGA and PPGALR, we use the PGA algorithm from Section 3.1 as
a baseline and benchmark against the algorithm proposed for LP Walk in [65],
which we denote as SimplexWalk. SimplexWalk has shown better scalability
than solving directly with Gurobi [25] or with MILP Walk [48]. Hence,

M ∈ {PPGALR, PPGA, PGA, SimplexWalk} .

We use input size n0 ∈ {10, 100, 1000}, depth d ∈ {2, 4, 6, 8}, and width m ∈
{100, 1000, 10000}, resulting in 3× 3× 4 = 36 distinct network configurations.

For gradient-based algorithms (PPGALR, PPGA, PGA), performance is very sus-
ceptible to hyperparameters. Therefore, we use a preprocessing phase to search
for better hyperparameters for each gradient-based algorithm through grid search
and voting. For each network configuration (n0, d,m), we generate five random
networks using seeds s ∈ {5, 6, 7, 8, 9}. These networks, denoted as grid search
instances, are used for choosing hyperparameters over a grid with

γ ∈ {0.001, 0.01, 0.1, 1, 5}, σ ∈ {0.2, 2, 20}, k ∈ {100, 500, 1000}.

For each grid search instance, we evaluate all 5 × 3 × 3 = 45 parameter combi-
nations, running the optimization for 5 minutes per grid point. The five combi-
nations achieving the best objective values are recorded for each instance. After
processing all five grid search instances, we obtain five sets of top-performing pa-
rameter combinations. The most frequently occurring combination across these
sets is selected as the final grid search result for that algorithm and network con-
figuration. This process runs independently for each gradient-based algorithm.

Once the hyperparameters are calibrated, we generate 20 additional networks
for each (n0, d,m) combination using seeds s ∈ {10, 11, . . . , 29}. These are re-
ferred to as optimization instances. Each algorithm M is then applied to these

Going Large with Gradient-Based Algorithms 11

instances, and the gradient-based algorithms use the hyperparameters obtained
from the grid search. Every run is executed for 7200 seconds, during which we
record, at every second, the best objective value and the number of iterations.

4.3 Computational Complexity of Walk Steps

The complexity of the problem can be affected by all three setup options (n0, d,m).
For gradient-based algorithms (PPGALR, PPGA, PGA), the asymptotic complexity
of both calculating the gradient and making a prediction is

O(dm2 + n0m).

which can be deduced from a sequence of vector-matrix multiplications. Through
Equation (18), each step of the linear region algorithm (PPGALR) may cost twice
as much as PGA and PPGA steps, which we may consider still acceptable. On
the other hand, SimplexWalk carries out the solution of one LP model per step.
Notably, the computational cost of a SimplexWalk step, if the LP model is solved
using the simplex algorithm, is exponential on n0 in worst-case.

4.4 Results

We use the Dolan–More performance profile [16,63] to compare the performance
of different algorithms on multiple problems. A performance profile shows, for
each algorithm, the fraction of test instances on which it performs within a given
factor of the best observed result. The horizontal axis represents the performance
factor τ ≥ 1 in log scale, and the vertical axis ρM(τ) ∈ [0, 1] represents the
fraction of experiments for which the algorithm M attains a performance ratio
of at most τ . The vertical intercept ρM(1) indicates how often an algorithm
achieves the best result among all competitors, and a curve approaching ρ = 1
more rapidly reflects an algorithm whose performance is consistently close to the
best algorithm across all experiments.

Figure 4 shows the overall performance profiles across all setups after the
methods have been run for 30, 60, and 120 minutes. The other two plots focuses
on the results after 120 minutes. Figure 5 shows the performance profiles from
partitioning the instances according to the input size of the neural network.
Figure 6 partitions the instances according to the depth and the width of the
neural network.

4.5 Analysis

In general, the relationship between the three gradient algorithms is similar
across different time budgets, with PPGA and PPGALR outperforming the vanilla
PGA. However, the gap between the first PPGA and vanilla PGA shrinks for the
largest width (10000). Since width dominates the complexity of gradient steps,
it is possible that PPGA algorithms do not gain much in performance advantage
in the early steps compared to the vanilla algorithm. Therefore, the advantage

12 J. Tong et al.

Fig. 4. Comparison of algorithm performance over all instances by varying time limit.

Fig. 5. Comparison of algorithm performance by varying input size in 120-minute runs.

that we observe is likely gained in the later steps, when the vanilla algorithm is
captured in some local optimum while PPGA escapes through perturbation.

While PPGALR is overall better than PPGA in the aggregate of instances from
Figure 4, the advantage of PPGALR is due to the instances with larger dimensions:

– From Figure 5, we see that PPGALR matches PPGA for the smallest input (10)
but does significantly better than PPGA for larger input sizes (100 and 1000).

– From the rows of Figure 6, PPGALR is generally better for larger widths.
– From the columns of Figure 6, we see that PPGALR is worse for the smallest

depth (2), but that it dominates the results for deeper networks (6 and 8).

Hence, larger input size and depth seem to be the most determinant factors
for PPGALR performing better than PPGA. Larger width also contributes in some
cases. Those conditions conform with the cases in which neural networks tend
to have more linear regions, which has inspired the design of PPGALR in the first

Going Large with Gradient-Based Algorithms 13

place. Moreover, as indicated by Equation 15 and given the weight distribution,
neural networks with greater depth are bound to have smaller gradients.

Fig. 6. Comparison of performance by varying depth and width in 120-minute runs.

14 J. Tong et al.

Meanwhile, notably, SimplexWalk gets comparatively better with longer run-
times, as shown in Figure 4. That conforms with the intuition that it takes longer
to converge due to the more costly steps, but that each step tends to provide
greater improvements. Indeed, we observe SimplexWalk dominating in the three
scenarios with smallest depth and width in Figure 6.

4.6 A Case Study on Adaptive Stepsize for PPGALR

To better understand why PPGALR dominates in deeper instances, we present a
case study on a randomly generated instance with (n0 = 1000, d = 6, w = 1000)
and seed s = 30. We ran 1000 iterations of PPGA with five learning rates, γ ∈
{5, 50, 500, 5000, 50000}. We also ran 1000 iterations of PPGALR, but with only
three different learning rates, γ ∈ {5, 500, 50000}. We use fewer learning rates
with PPGALR because there is a greater overlap in step sizes and objective values
across learning rates in this case, making it harder to visually distinguish them.
Figure 7 shows the influence of the learning rate γ on the step size over time.
Figure 8 shows the influence of the learning rate γ on the solution value.

Our three main observations are the following:

– In PPGA, when we increase the learning rate γ, the step size changes propor-
tionally. In PPGALR, on the other hand, the step size is less affected by the
learning rate and only the size of the smallest steps are clipped.

– In PPGA, the range of step sizes for a specific learning rate is small. In PPGALR,
on the other hand, the valve mechanism defined by Equation (20) allows for
a larger range of step sizes regardless of learning rate. That seems to lead to
similar convergence for step sizes in different orders of magnitude.

– Since there is no mechanism designed for avoiding excessively large step sizes,
both algorithms perform similarly worse when γ = 50000. We could poten-
tially address this by designing another valve and truncating large steps.

Hence, PPGA is more sensitive to the learning rate and does not converge well with
lower learning rates (γ ∈ {5, 50}). In turn, PPGALR is more robust and converges
well with lower learning rates in deep neural networks, as observed in Figure 6.

Fig. 7. Step size in log scale over iterations for PPGA (Left) and PPGALR (Right) for each
learning rate.

Going Large with Gradient-Based Algorithms 15

Fig. 8. Solution value over iterations for PPGA (Left) and PPGALR (Right) for each learn-
ing rate.

5 Conclusion

In this paper, we proposed Gradient Walk: a new approach for local search based
on gradient steps to optimize over the piecewise affine landscape of a trained
ReLU network function within a polytope. We also proposed two algorithms
for this approach, PPGA and PPGALR. PPGA is based on projected gradient steps
and empirically-crafted perturbations. PPGA is designed to search for a feasible
solution while avoiding entrapment in arbitrary local optima constructed by the
special landscape of ReLU networks. PPGALR extends PPGA by using adaptive
gradient steps that stretch further when the step size is too small relative to the
local affine landscape. PPGALR is designed to circumvent the issue of diminishing
step sizes caused by the combination of a misaligned learning rate with small
gradients observed in deep ReLU networks. We report that PPGALR has a better
performance than PPGA in neural networks with larger dimensions, whereas both
outperform the baseline projected gradient ascent algorithm PGA and compare
favorably against the LP Walk algorithm SimplexWalk, which has previously
shown better results than other alternatives in the benchmark setting [65].

In a nutshell, we double down on the trend of using specialized local search
with lower per-iteration cost to find better solutions in constraint learning. We
achieve that with gradient steps leveraging the local structure in ReLU networks.

Given the growing body of constraint learning applications within machine
learning [1,9,12,14,17,18,34,35,37,39,53,56,57,58,59,62,67] and in mathematical
optimization [4,7,11,15,38,42,44,46,47,54,61,71,72,74], as well as the emergence
of many constraint learning frameworks [4,40,10,19,42,24,68], the development
of new algorithms to timely find better solutions is of particular importance.

In future work, we intend to devise a variant of PPGA that is also robust
against large learning rates, explore how other characteristics of the landscape
of ReLU networks can be leveraged to produce better algorithms, and apply the
Gradient Walk approach to solve other types of constraint learning models.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

16 J. Tong et al.

References

1. Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong
mixed-integer programming formulations for trained neural networks. Mathemat-
ical Programming (2020)

2. Arora, R., Basu, A., Mianjy, P., Mukherjee, A.: Understanding deep neural net-
works with rectified linear units. In: ICLR (2018)

3. Badilla, F., Goycoolea, M., Muñoz, G., Serra, T.: Computational tradeoffs of
optimization-based bound tightening in ReLU networks. arXiv:2312.16699 (2023)

4. Bergman, D., Huang, T., Brooks, P., Lodi, A., Raghunathan, A.U.: JANOS: An
integrated predictive and prescriptive modeling framework. INFORMS Journal on
Computing (2022)

5. Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: On mathematical programming
with indicator constraints. Mathematical Programming (2015)

6. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient veri-
fication of (relu)-based neural networks via dependency analysis. In: AAAI (2020)

7. Burtea, R.A., Tsay, C.: Safe deployment of reinforcement learning using determin-
istic optimization over neural networks. Computer Aided Chemical Engineering
(2023)

8. Cacciola, M., Frangioni, A., Lodi, A.: Structured pruning of neural networks for
constraints learning. Operations Research Letters (2024)

9. Cai, J., Nguyen, K.N., Shrestha, N., Good, A., Tu, R., Yu, X., Zhe, S., Serra, T.:
Getting away with more network pruning: From sparsity to geometry and linear
regions. In: CPAIOR (2023)

10. Ceccon, F., Jalving, J., Haddad, J., Thebelt, A., Tsay, C., Laird, C.D., Misener,
R.: Omlt: Optimization & machine learning toolkit. Journal of Machine Learning
Research 23(349), 1–8 (2022)

11. Chen, Y., Shi, Y., Zhang, B.: Data-driven optimal voltage regulation using input
convex neural networks. Electric Power Systems Research (2020)

12. Cheng, C., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: ATVA (2017)

13. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals and Systems (1989)

14. De Palma, A., Behl, H., Bunel, R.R., Torr, P., Kumar, M.P.: Scaling the convex
barrier with active sets. In: ICLR (2021)

15. Delarue, A., Anderson, R., Tjandraatmadja, C.: Reinforcement learning with com-
binatorial actions: An application to vehicle routing. In: NeurIPS (2020)

16. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Math. Program. 91(2), 201–213 (2002). https://doi.org/10.1007/
s101070100263, https://doi.org/10.1007/s101070100263

17. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward networks. In: NFM (2018)

18. ElAraby, M., Wolf, G., Carvalho, M.: OAMIP: Optimizing ANN architectures using
mixed-integer programming. In: CPAIOR (2023)

19. Fajemisin, A., Maragno, D., den Hertog, D.: Optimization with constraint learning:
A framework and survey. European Journal of Operational Research (2023)

20. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints (2018)

21. Funahashi, K.I.: On the approximate realization of continuous mappings by neural
networks. Neural Networks (1989)

https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263

Going Large with Gradient-Based Algorithms 17

22. Grimstad, B., Andersson, H.: ReLU networks as surrogate models in mixed-integer
linear programs. Computers & Chemical Engineering (2019)

23. Guo, X., Han, J., Tajrobehkar, M., Tang, W.: Escaping saddle points efficiently
with occupation-time-adapted perturbations. arXiv preprint arXiv:2005.04507
(2020)

24. Gurobi Optimization: Gurobi Machine Learning. https://github.com/Gurobi/
gurobi-machinelearning (2025), accessed: 2025-02-09

25. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2024), https:
//www.gurobi.com

26. Hanin, B., Sellke, M.: Approximating continuous functions by ReLU nets of mini-
mal width. arXiv:1710.11278 (2017)

27. Hojny, C., Zhang, S., Campos, J.S., Misener, R.: Verifying message-passing neural
networks via topology-based bounds tightening. In: ICML (2024)

28. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Networks (1989)

29. Huchette, J.: Advanced mixed-integer programming formulations: Methodology,
computation, and application. Ph.D. thesis, Massachusetts Institute of Technology
(2018)

30. Huchette, J., Muñoz, G., Serra, T., Tsay, C.: When deep learning meets polyhedral
theory: A survey. arXiv:2305.00241 (2023)

31. Huchette, J., Vielma, J.P.: Nonconvex piecewise linear functions: Advanced formu-
lations and simple modeling tools. Operations Research (2023)

32. Jin, C., Ge, R., Netrapalli, P., Kakade, S.M., Jordan, M.I.: How to escape saddle
points efficiently. In: International conference on machine learning. pp. 1724–1732.
PMLR (2017)

33. Jin, C., Netrapalli, P., Jordan, M.I.: Accelerated gradient descent escapes saddle
points faster than gradient descent. In: Conference On Learning Theory. pp. 1042–
1085. PMLR (2018)

34. Kanamori, K., Takagi, T., Kobayashi, K., Ike, Y., Uemura, K., Arimura, H.: Or-
dered counterfactual explanation by mixed-integer linear optimization. In: AAAI
(2021)

35. Kumar, A., Serra, T., Ramalingam, S.: Equivalent and approximate transforma-
tions of deep neural networks. arXiv:1905.11428 (2019)

36. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J., et al.:
Algorithms for verifying deep neural networks. Foundations and Trends® in Op-
timization (2021)

37. Liu, X., Han, X., Zhang, N., Liu, Q.: Certified monotonic neural networks. In:
NeurIPS. vol. 33 (2020)

38. Liu, X., Dvorkin, V.: Optimization over trained neural networks: Difference-of-
convex algorithm and application to data center scheduling. IEEE Control Systems
Letters (2025)

39. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks. arXiv:1706.07351 (2017)

40. Lueg, L., Grimstad, B., Mitsos, A., Schweidtmann, A.M.: reluMIP:
Open source tool for MILP optimization of relu neural networks
(2021). https://doi.org/https://doi.org/10.5281/zenodo.5601907,
https://github.com/ChemEngAI/ReLU_ANN_MILP

41. Mangasarian, O.L., Rosen, J.B., Thompson, M.E.: Global minimization via
piecewise-linear underestimation. Journal of Global Optimization (2005)

42. Maragno, D., Wiberg, H., Bertsimas, D., Birbil, S.I., Hertog, D.d., Fajemisin, A.:
Mixed-integer optimization with constraint learning. Operations Research (2023)

https://github.com/Gurobi/gurobi-machinelearning
https://github.com/Gurobi/gurobi-machinelearning
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/https://doi.org/10.5281/zenodo.5601907
https://doi.org/https://doi.org/10.5281/zenodo.5601907
https://github.com/ChemEngAI/ReLU_ANN_MILP

18 J. Tong et al.

43. McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-
grams: Part I — convex underestimating problems. Mathematical Programming
(1976)

44. McDonald, T., Tsay, C., Schweidtmann, A.M., Yorke-Smith, N.: Mixed-integer
optimisation of graph neural networks for computer-aided molecular design. Com-
puters & Chemical Engineering (2024)

45. Misener, R., Floudas, C.A.: Piecewise-linear approximations of multidimensional
functions. Journal of Optimization Theory and Applications (2010)

46. Misener, R., Biegler, L.: Formulating data-driven surrogate models for process
optimization. Computers & Chemical Engineering (2023)

47. Murzakhanov, I., Venzke, A., Misyris, G.S., Chatzivasileiadis, S.: Neural networks
for encoding dynamic security-constrained optimal power flow. In: Bulk Power
Systems Dynamics and Control Sympositum (2022)

48. Perakis, G., Tsiourvas, A.: Optimizing objective functions from trained relu neural
networks via sampling. arXiv:2205.14189 (2022)

49. Pham, H., Ren, A., Tahir, I., Tong, J., Serra, T.: Optimization over trained (and
sparse) neural networks: A surrogate within a surrogate. arXiv:2505.01985 (2025)

50. Plate, C., Hahn, M., Klimek, A., Ganzer, C., Sundmacher, K., Sager, S.: An anal-
ysis of optimization problems involving ReLU neural networks. arXiv:2502.03016
(2025)

51. Polyak, B.T., Levitin, E.: Constrained minimization methods. USSR Computa-
tional Mathematics and Mathematical Physics 6 5, 1–50 (1966)

52. Rosen, J.B.: The gradient projection method for nonlinear programming. part i.
linear constraints. Journal of the society for industrial and applied mathematics
8(1), 181–217 (1960)

53. Rössig, A., Petkovic, M.: Advances in verification of ReLU neural networks. Journal
of Global Optimization (2021)

54. Say, B., Wu, G., Zhou, Y.Q., Sanner, S.: Nonlinear hybrid planning with deep net
learned transition models and mixed-integer linear programming. In: IJCAI (2017)

55. Schweidtmann, A.M., Mitsos, A.: Deterministic global optimization with artifi-
cial neural networks embedded. Journal of Optimization Theory and Applications
(2019)

56. Serra, T., Ramalingam, S.: Empirical bounds on linear regions of deep rectifier
networks. In: AAAI (2020)

57. Serra, T., Tjandraatmadja, C., Ramalingam, S.: Bounding and counting linear
regions of deep neural networks. In: ICML (2018)

58. Serra, T., Yu, X., Kumar, A., Ramalingam, S.: Scaling up exact neural network
compression by ReLU stability. In: NeurIPS (2021)

59. Serra, T., Kumar, A., Ramalingam, S.: Lossless compression of deep neural net-
works. In: CPAIOR (2020)

60. Shi, C., Emadikhiav, M., Lozano, L., Bergman, D.: Constraint learning to define
trust regions in optimization over pre-trained predictive models. INFORMS Jour-
nal on Computing (2024)

61. Sosnin, P., Tsay, C.: Scaling mixed-integer programming for certification of neural
network controllers using bounds tightening. In: CDC (2024)

62. Strong, C.A., Wu, H., Zeljić, A., Julian, K.D., Katz, G., Barrett, C., Kochenderfer,
M.J.: Global optimization of objective functions represented by ReLU networks.
Machine Learning (2021)

63. Tits, A.L., Yang, Y.: Globally convergent algorithms for robust pole assignment by
state feedback. IEEE Trans. Automat. Control 41(10), 1432–1452 (1996). https:
//doi.org/10.1109/9.539425, https://doi.org/10.1109/9.539425

https://doi.org/10.1109/9.539425
https://doi.org/10.1109/9.539425
https://doi.org/10.1109/9.539425
https://doi.org/10.1109/9.539425
https://doi.org/10.1109/9.539425

Going Large with Gradient-Based Algorithms 19

64. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: ICLR (2019)

65. Tong, J., Cai, J., Serra, T.: Optimization over trained neural networks: Taking a
relaxing walk. In: International Conference on the Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research. pp. 221–233. Springer
(2024)

66. Tsay, C., Kronqvist, J., Thebelt, A., Misener, R.: Partition-based formulations for
mixed-integer optimization of trained ReLU neural networks. In: NeurIPS (2021)

67. Tsiourvas, A., Sun, W., Perakis, G.: Manifold-aligned counterfactual explanations
for neural networks. In: AISTATS (2024)

68. Turner, M., Chmiela, A., Koch, T., Winkler, M.: PySCIPOpt-ML: Embedding
trained machine learning models into mixed-integer programs. In: CPAIOR (2020)

69. Vahedi, A.M., Ilies, H.T.: Spgd: Steepest perturbed gradient descent optimization.
arXiv preprint arXiv:2411.04946 (2024)

70. Vielma, J.P., Ahmed, S., Nemhauser, G.: Mixed-integer models for nonseparable
piecewise-linear optimization: Unifying framework and extensions. Operations Re-
search (2010)

71. Wang, K., Lozano, L., Cardonha, C., Bergman, D.: Optimizing over an ensemble
of trained neural networks. INFORMS Journal on Computing (2023)

72. Wu, G., Say, B., Sanner, S.: Scalable planning with deep neural network learned
transition models. Journal of Artificial Intelligence Research (2020)

73. Xiao, K.Y., Tjeng, V., Shafiullah, N.M., Madry, A.: Training for faster adversarial
robustness verification via inducing ReLU stability. In: ICLR (2019)

74. Yang, S., Bequette, B.W.: Optimization-based control using input convex neural
networks. Computers & Chemical Engineering (2021)

75. Yarotsky, D.: Error bounds for approximations with deep ReLU networks. Neural
Networks (2017)

76. Zhao, H., Hijazi, H., Jones, H., Moore, J., Tanneau, M., Hentenryck, P.V.: Bound
tightening using rolling-horizon decomposition for neural network verification. In:
CPAIOR (2024)

77. Zhu, Y., Burer, S.: An extended validity domain for constraint learning.
arXiv:2406.10065 (2024)

	Optimization over Trained Neural Networks: Going Large with Gradient-Based Algorithms

