
Non-Convex Self-Concordant Functions: Practical Algorithms
and Complexity Analysis

Donald Goldfarb∗ Lexiao Lai† Tianyi Lin‡ Jiayu Zhang§

Abstract
We extend the standard notion of self-concordance to non-convex optimization and develop a

family of second-order algorithms with global convergence guarantees. In particular, two function
classes – weakly self-concordant functions and F -based self-concordant functions – generalize the self-
concordant framework beyond convexity, without assuming the Lipschitz continuity of the gradient
or Hessian. For these function classes, we propose a regularized Newton method and an adaptive
regularization method that achieve an ϵ-approximate first-order stationary point in O(ϵ−2) iterations.
Equipped with an oracle capable of detecting negative curvature, the adaptive algorithm can further
attain convergence to an approximate second-order stationary point. Our experimental results
demonstrate that the proposed methods offer superior robustness and computational efficiency
compared to cubic regularization and trust-region approaches, underscoring the broad potential of
self-concordant regularization for large-scale and neural network optimization problems.

1 Introduction
Newton’s method is one of the cornerstones of optimization, dating back to the early development of
iterative methods. In convex optimization, it is known for its local quadratic convergence when the
objective function is smooth and strongly convex [48]. Despite its efficiency in the local sense, the Newton
method often lacks robustness in non-convex settings: without appropriate safeguards, it converges
to saddle points or exhibit global convergence slower than first-order methods [9]. To address these
limitations, extensive research has focused on enhancing its global behavior through various regularization
techniques. Among them, cubic regularization methods [47, 44, 10, 11] control step size by penalizing
large curvature through a cubic term; trust-region methods [13, 16, 14, 17] restrict each update to a
region where the local quadratic model is accurate; and regularized Newton methods [41, 20, 26] balance
curvature exploitation and stability via adaptive damping terms. Collectively, these approaches have
established rigorous global convergence guarantees and strong empirical performance across a broad
range of non-convex optimization problems.

However, these approaches suffer from some drawbacks [41, 26]. A primary one is computational: both
cubic regularization methods [47] and trust-region methods [13] require solving a nontrivial subproblem
at each iteration that involves cubic or constrained quadratic models rather than updating via a simple
Hessian inversion. This additional subproblem limits scalability to high-dimensional or large-scale
problems. Moreover, their theoretical guarantees depend on strong smoothness conditions, such as
the Lipschitz continuity of the Hessian [47, 44, 10, 11, 13, 16, 17, 41, 20, 26], and sometimes even of
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the gradient [16, 17, 26]. These conditions are often unrealistic in various applications, where Hessian
information may be ill-behaved or expensive to approximate accurately.

In the convex setting, these challenges can be effectively mitigated through the notion of self-
concordance [46, 45], which provides a unified framework for studying second-order methods without
strong smoothness. Self-concordant functions may possess unbounded third-order derivatives, yet the
growth of derivatives is locally controlled by the curvature encoded in the Hessian. This structure
ensures that Newton steps remain well-behaved in regions where strong smoothness fails. A canonical
example is the logarithmic barrier function, which is self-concordant but lacks a Lipschitz continuous
gradient or Hessian. For such functions, second-order methods (e.g., the damped Newton) achieve
global convergence and local quadratic convergence, offering both theoretical elegance and computational
practicality. Despite its success in convex optimization, extending self-concordance to non-convex settings
remains nontrivial. Although its definition appears superficially independent of convexity, it involves
the square root of local curvature terms, which can become ill-defined when the Hessian has negative
eigenvalues. One might attempt to circumvent this by taking absolute values before square roots, but this
modification imposes restrictive curvature bounds that fail to capture simple non-convex structures; for
example, the sigmoid function x 7→ 1/(1 + e−x) violates this property. This gap motivates developing a
generalized notion of self-concordance suitable for non-convex objectives, preserving its curvature control
while accommodating regions of negative curvature.

Related works The classical notion of self-concordance was introduced by [46] as a fundamental tool for
analyzing interior-point methods in convex optimization. Since then, this notion was extended in various
contexts, including composite optimization problems [61], distributed Newton methods [67], randomized
Newton updates [35] and stochastic quasi-Newton methods [24]. In parallel, other works studied stronger
variants of this notion [52, 27], which impose tighter curvature control to improve numerical stability.
A recent line of works have began to adopt the generalized notion of quasi-self-concordance, which
encompasses important non-quadratic objectives such as logistic regression [4, 61, 5, 68, 33, 19]. Further
generalization was proposed by [62], who introduced the notion of generalized self-concordance. Building
upon this formulation, subsequent works developed and analyzed Frank-Wolfe methods, demonstrating
the versatility of self-concordance-based curvature control beyond the standard convex setting [22, 7, 23].

Our proposed algorithms can also be viewed as second-order methods for non-convex optimization.
In this setting, numerous regularization techniques have been developed to ensure global convergence
of Newton-type methods. Classical strategies include cubic regularization [47, 44], trust-region frame-
works [13], and more recent regularized Newton variants [41, 20], all designed to stabilize Newton
steps in the presence of non-convex curvature. A major milestone in this line of work is the adaptive
cubic regularization method [10, 11], which established a global iteration complexity of O(ϵ−1.5) for
minimizing functions with Lipschitz continuous Hessian. This framework has inspired extensive research
aimed at improving regularization strategies, reducing computational cost, and refining complexity
guarantees [16, 14, 15, 17, 21, 26]. To enhance computational efficiency, several works have exploited
Hessian-vector products as major oracles, achieving convergence rates on the order of O(ϵ−7/4) while
avoiding explicit Hessian computations [3, 8]. A complementary line of research [40, 42, 25] has leveraged
negative curvature directions to escape saddle points and approach approximate second-order stationary
points. Building on these ideas, [54, 53] proposed hybrid line-search algorithms that alternate between
Newton updates and negative-curvature steps identified through the Lanczos method [31], offering a
robust trade-off between curvature exploitation and global progress.

Contributions This paper extends the notion of self-concordance to non-convex optimization and
develops corresponding second-order methods with theoretical guarantees and empirical validation. As
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in convex settings, our framework accommodates functions with unbounded higher-order derivatives,
thereby covering a broad range of applications. Our contributions can be summarized as follows:

1. We introduce two function classes – weakly self-concordant and F -based self-concordant functions –
that extend the classical notion of self-concordance to non-convex settings. These classes preserve
key curvature control properties while encompassing many objectives arising in machine learning.

2. We propose regularized Newton and adaptive regularization methods and prove their global and
local convergence guarantees without the gradient or Hessian Lipschitz continuity. We extend the
adaptive regularization methods [10, 11, 12] to constrained problems with self-concordant barriers.

3. We conduct experiments on non-negative matrix factorization and neural network training, demon-
strating that our methods achieve superior robustness and efficiency compared with existing
second-order approaches.

Organization In Section 2, we define non-convex self-concordant functions, and provide three examples
of their applicability. In Section 3, we describe our methods and present convergence results. In Section 4,
we provide several lemmas and prove our convergence results. In Section 5, we present empirical results
complementing our theoretical results. We conclude in Section 6.

2 Non-Convex Self-Concordant Functions
Letting f : Rn → R ∪ {+∞} where dom(f) = {x ∈ Rn | f(x) < +∞}, the problem of interest is given
by

min
x∈Rn

f(x). (1)

In the convex setting, the self-concordant function is defined in [45, Definition 5.1.1]. For the sake of
completeness, we summarize it as follows,

Definition 2.1. A closed and convex function f : Rn → R ∪ {+∞} is κ-self-concordant if dom(f) is
open, f is three times continuously differentiable on dom(f), and ∇3f(x)[h, h, h] ≤ 2κ

(
∇2f(x)[h, h]

)3/2
for all x ∈ dom(f) and h ∈ Rn.

We next extend this notion to non-convex settings.

Definition 2.2. A function f : Rn → R ∪ {+∞} is (κ, ℓ)-weakly self-concordant if the function
f(x) + ℓ

2
∥x∥2 is κ-self-concordant.

The weakly self-concordant functions form a subclass of weakly convex functions [18]. Indeed, f is
(κ, ℓ)-weakly self-concordant if and only if f(x) + ℓ

2
∥x∥2 is closed and convex, and for all x ∈ dom(f)

and h ∈ Rn, we have

∇3f(x)[h, h, h] = ∇3
(
f + ℓ

2
∥ · ∥2

)
(x)[h, h, h] ≤ 2κ

(
∇2f(x)[h, h] + ℓ∥h∥2

)3/2
.

In particular, if f is ℓ-weakly convex and satisfies |∇3f(x)[h, h, h]| ≤ m∥h∥3, then f is ( m
2a3/2

, ℓ+a)-weakly
self-concordant for any a > 0.

Definition 2.3. Given a reference function F : Rn → R ∪ {+∞}, we say that f is F -based κ-self-
concordant if dom(f) ⊆ dom(F ) and f + F is κ-self-concordant.
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Classical and weakly self-concordant functions are two special instances of general F -based self-
concordant functions. This formulation unifies analysis across different settings and enjoys convenient
closure properties.

Proposition 2.4. Let α1, α2 > 0. If fi is Fi-based κi-self-concordant for i = 1, 2, then α1f1 + α2f2 is
(α1F1 + α2F2)-based max( κ1√

α1
, κ2√

α2
)-self-concordant.

Proof. By definition, we have fi + Fi is κi-self-concordant for i = 1, 2. Then, [45, Theorem 5.1.1] shows
that α1(f1 + F1) + α2(f2 + F2) is max( κ1√

α1
, κ2√

α2
)-self-concordant. This implies the desired result.

2.1 Examples

In what follows, we present three representative examples of F -based self-concordant functions with full
details.

Generalized phase retrieval As shown in [58], the loss function f : R2n → R is defined as follows
(a∗k represents the conjugate transpose of ak),

f(zR, zI) = 1
2m

m∑
k=1

(|a∗kz|2 − y2k)
2 for ak =

1√
2
(aRk + aIk

√
−1) ∈ Cn, z = zR + zI

√
−1.

This is a (κ, ℓ)-weakly self-concordant function for some κ > 0 and ℓ > 0. Indeed, we can rewrite the loss
function as

f(zR, zI) = 1
2m

m∑
k=1

(
1
2
((aRk )

⊤zR + (aIk)
⊤zI)2 + 1

2
((aRk )

⊤zI − (aIk)
⊤zR)2 − y2k

)2
.

By Proposition 2.4, we claim that g(x) = ((c⊤1 x)
2 +(c⊤2 x)

2)2 is weakly self-concordant. Indeed, we denote
c⊤i x by xi and c⊤i h by hi for i = 1, 2. Then, we have ∇2g(x)[h, h] = 8(x1h1 +x2h2)

2 +4(x2
1 +x2

2)(h
2
1 +h2

2).
For some ℓ ≥ ∥c1∥2 + ∥c2∥2, we have

(∇2g(x)[h, h] + ℓ∥h∥2)
3
2 ≥

∑
i,j∈{1,2}

(|xi|3|hj|3 + |hi|3 + |hj|3).

We also have

∇3g(x)[h, h, h] = 24(x1h1 + x2h2)(h
2
1 + h2

2) ≤ 8
∑

i,j∈{1,2}

(|xi|3|hj|3 + |hi|3 + |hj|3)

Putting these pieces together yields that g is (4, ℓ)-weakly self-concordant.
The above results can be generalized; indeed, any polynomial functions are F -based self-concordant

for some functions F .

Proposition 2.5. Let p ≥ 2 be integer-valued. Suppose that f : Rn → R is a multivariate polynomial
with degree deg(f) ≤ 2p. Then, F (x) = (∥x∥2 + 1)p is convex and there exists m ≥ 0 such that f is
mF -based 1-self-concordant.

Proof. Since deg(f) ≤ 2p, each entry of ∇2f(x) (resp., ∇3f(x)) is a polynomial of degree at most 2p− 2
(resp., at most 2p − 3). There exist c1, c2 ≥ 0 such that, for all x, h ∈ Rn, we have |∇2f(x)[h, h]| ≤
c1(1+∥x∥2)p−1∥h∥2 and |∇3f(x)[h, h, h]| ≤ c2(1+∥x∥2)p−3/2∥h∥3. In addition, we have |∇3F (x)[h, h, h]| ≤
c3(1 + ∥x∥2)p−

3
2∥h∥3.
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We define φ(r) = (r+1)p. Then, we have∇F (x) = 2φ′(∥x∥2)x, ∇2F (x) = 2φ′(∥x∥2)I+4φ′′(∥x∥2)xx⊤.
For all h ∈ Rn, we have

∇2F (x)[h, h] = 2φ′(∥x∥2)∥h∥2 + 4φ′′(∥x∥2)(x⊤h)2 ≥ 2p(∥x∥2 + 1)p−1∥h∥2.

Thus, F is convex. Define g = f +mF , we have ∇2g(x)[h, h] ≥ (2pm− c1)(∥x∥2 + 1)p−1∥h∥2. Moreover,
|∇3g(x)[h, h, h]| ≤ (c2 +mc3)(∥x∥2 + 1)p−3/2∥h∥3. Thus, there exists m ≥ 0 such that g = f +mF is
1-self-concordant.

We consider the constrained polynomial optimization problem minx∈C f(x), where f is a polynomial,
and suppose there exists a self-concordant function g : Rn → R such that dom(g) = C. By Proposition 2.5,
we have f + F is self-concordant on Rn. Thus, we have f + F + g is self-concordant on C and f |C is
(F + g)-based self-concordant. This perspective provides numerous examples of F -based self-concordant
functions, such as linear regression, matrix factorization, sensor network localization [59], and D-optimal
design [60], without applying the logarithm in the objective and with the sum of decision variables being
less than 1 rather than equal to 1.

Many problems admit loss functions that can be modified to be F -based self-concordant for some
function F . For our next example, we define hα(x) = α−1(log(1 + eαx) + log(1 + e−αx)). For small
α > 0, hα serves as a smooth approximation to |x| [55], and it is 0.5α-self-concordant. After some
calculation, it can be verified that ∂2

∂x2hα(x) = α
2
(1 − tanh2(αx

2
)), ∂3

∂x3hα(x) = −α2 tanh(αx/2)

2 cosh2(αx/2)
, and that

| ∂3

∂x3hα(x)| ≤ α( ∂2

∂x2hα(x)) for x ≥ 0.

Sparse dictionary learning As introduced in [36], we consider the optimization problem in the
following form of

min
∥di∥≤1

f(D, r1, . . . , rK) =
K∑
i=1

∥xi −Dri∥2 + λ

(
K∑
i=1

n∑
j=1

|r(j)i |

)
,

where xi ∈ Rm, ri ∈ Rn, D ∈ Rm×n, di denotes the i-th column of D, r(j)i denotes the j-th entry of
ri, and λ > 0. We apply hα to smooth the absolute value function and the self-concordant function
g(di) = − log(1− ∥di∥2) (see [45, Theorem 5.1.4]) to impose ∥di∥ < 1. This yields the approximation in
the following form of

fα,µ(D, r1, . . . , rK) =
K∑
i=1

∥xi −Dri∥22 + λ

(
K∑
i=1

n∑
j=1

hα(r
(j)
i )

)
+ µ

(
n∑

i=1

g(di)

)
.

Propositions 2.4 and 2.5 imply that fα,µ is F -based 1-self-concordant.

Nonnegative matrix factorization Let R+ = {x ∈ R : x ≥ 0}, R++ = {x ∈ R : x > 0}. We show
that two NMF formulations [32] using Frobenius norm in Eq. (2) and Kullback–Leibler (KL) divergence
in Eq. (3), both fit into our nonconvex self-concordant framework. Indeed, we have

min
X∈Rm×r

++ ,Y ∈Rr×n
++

f1(X, Y ) = 1
2mn
∥Z −XY ∥22 = 1

2mn

 m∑
i=1

n∑
j=1

(
Zij −

r∑
k=1

XikYkj

)2
 , (2)

where Z ∈ Rm×n
+ . By Proposition 2.5, f1 is ℓF -based 1-self-concordant for F (X, Y ) = (∥X∥2F + ∥Y ∥2F +

1)2 −
∑

i,k log(Xik)−
∑

k,j log(Ykj) and some ℓ > 0. Another formulation using KL divergence is in the
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following form of

min
X∈Rm×r

++ ,Y ∈Rr×n
++

f2(X, Y ) = 1
mn

(
m∑
i=1

n∑
j=1

D

(
Zij

∥∥∥ r∑
k=1

XikYkj

))
, (3)

where D(x∥y) = x log(x/y)− x+ y.
We prove that f2(X, Y ) is F -based 1-self-concordant for some convex function F on Rm×r

++ × Rr×n
++ .

Indeed, we let g(x, y) = − log(x⊤y) and G(x, y) = −
∑r

i=1 log(xiyi). By Proposition 2.4, it suffices
to prove that g is τG-based 1-self-concordant for some τ > 3. Fixing (x, y) ∈ Rr

++ × Rr
++ and

h = (hx, hy) ∈ Rr × Rr, we define

s = x⊤y, L = h⊤
x y + h⊤

y x, ui =
|(hx)i|

xi
, vi =

|(hy)i|
yi

, wi =
xiyi
s
.

Then, we have

|L|
s
≤

r∑
i=1

wi(|ui|+ |vi|) ≤

√√√√2

(
r∑

i=1

wi(u2
i + v2i )

)
≤

√√√√2

(
r∑

i=1

(u2
i + v2i )

)
,

and
|h⊤

x hy |
s
≤

r∑
i=1

|(hx)i||(hy)i|
xiyi

≤ 1
2

(
r∑

i=1

(u2
i + v2i )

)
.

Thus, we have

|∇2g(x, y)[h, h]| =
∣∣∣L2

s2
− 2h⊤

x hy

s

∣∣∣ ≤ 3

(
r∑

i=1

(u2
i + v2i )

)
,

and

|∇3g(x, y)[h, h, h]| =
∣∣∣−2L3

s3
+ 6Lh⊤

x hy

s2

∣∣∣ ≤ 7
√
2

(
r∑

i=1

(u2
i + v2i )

)3/2

.

In addition, we obtain that ∇2G(x, y)[h, h] =
∑r

i=1(u
2
i +v2i ) and |∇3G(x, y)[h, h, h]| ≤ 2(

∑r
i=1(u

3
i +v3i )) ≤

2(
∑r

i=1(u
2
i + v2i ))

3/2. Thus, we have

∇2(g + τG)[h, h] ≥ (τ − 3)

(
r∑

i=1

(u2
i + v2i )

)
,

|∇3(g + τG)[h, h, h]| ≤ (2τ + 7
√
2)

(
r∑

i=1

(u2
i + v2i )

)3/2

.

This implies that |∇3(g + τG)[h, h, h]| ≤ 2(∇2(g + τG)[h, h])3/2 for some τ > 3. This yields the desired
result.

2.2 Descent Inequality

We establish the descent inequality for F -based κ-self-concordant functions where F is a convex function.
For simplicity, we define two auxiliary functions ω(z) and ω⋆(z) on R+ as follows,

ω(z) = z − log(1 + z) and ω⋆(z) =

{
−z − log(1− z) if z < 1,

+∞ otherwise.
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In addition, suppose that f is lower bounded, we define

Γf (x) = sup

{
t ≥ 0 : t− log(1 + t) ≤ κ2

(
f(x)− inf

z∈Rn
f(z)

)}
. (4)

Proposition 2.6. Suppose that f is F -based κ-self-concordant. Then, for any x ∈ dom(f) and d ∈ Rn

satisfying ∇f(x)⊤d ≤ 0, we define

ρ = −∇f(x)⊤d, δ = ∇2f(x)[d, d], ∆ = ∇2F (x)[d, d], η = ρ√
∆+δ

.

For any t ∈ [0, 1
κ
√
δ+∆

), we have x+ td ∈ dom(f) and

f(x+ td)− f(x) + ρt ≤ F (x) + t∇F (x)⊤d− F (x+ td) + κ−2ω⋆(κt
√
δ +∆).

If F is convex, we have
f(x+ td) ≤ f(x)− ρt+ κ−2ω⋆(κt

√
δ +∆). (5)

Suppose that t̄ = ρ

δ+∆+κρ
√
δ+∆

< 1
κ
√
δ+∆

minimizes the right-hand side of Eq. (5). Then, we have
f(x+ td) ≤ f(x) for all t ∈ [0, t̄] and

f(x+ t̄d) ≤ f(x)− ρt̄+ κ−2ω⋆(κt̄
√
δ +∆) = f(x)− κ−2ω(κη). (6)

If f is lower bounded, we have κ−2ω(κη) ≥ η2

2(1+Γf (x))
. If F is convex and κF -self-concordant, we have

f(x+ td) ≤ f(x)− ρt+ κ−2ω⋆(κt
√
δ +∆)− κ−2

F ω(κF t
√
∆). (7)

Proof. It follows from [45, Theorems 5.1.5 and 5.1.9] that x+ td ∈ dom(f) and

f(x+ td)− f(x) + ρt ≤ F (x) + t∇F (x)⊤d− F (x+ td) + κ−2ω⋆(κt
√
δ +∆).

Since F is convex, we have F (x) + t∇F (x)⊤d− F (x+ td) ≤ 0. Plugging this into the above inequality
yields Eq. (5). We define

g(t) = f(x)− ρt− 1
κ2

(
κt
√
δ +∆+ log(1− κt

√
δ +∆)

)
.

Taking the derivative of g(t) yields

g′(t) = −ρ+
(

t(δ+∆)

1−κt
√
δ+∆)

)
.

Thus, g′(t) ≤ 0 for all t ∈ [0, t̄]. Since g(0) = f(x), we have f(x + td) ≤ g(t) ≤ f(x) for all t ∈ [0, t̄].
Plugging t̄ into (5) yields Eq. (6). In addition, Eq. (6) implies

κη − log(1 + κη) = ω(κη) ≤ κ2(f(x)− f(x+ t̄d)) ≤ κ2

(
f(x)− inf

z∈Rn
f(z)

)
.

Thus, κη ≤ Γf(x). Since w(z) ≥ z2

2(1+Γf (x))
for 0 ≤ z ≤ Γf(x), we have κ−2ω(κη) ≥ η2

2(1+Γf (x))
. It follows

from [45, Theorem 5.1.8] that

F (x) + t∇F (x)⊤d− F (x+ td) ≤ −κ−2
F ω(κF t

√
∆).

which implies Eq. (7).
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3 Algorithms
We develop two algorithms for solving the problem in Eq. (1), where the objective function f is F -based
κ-self-concordant and bounded below. Compared to existing methods [47, 10, 11, 26], our two algorithms
rely on neither the Lipschitz Hessian condition nor the unconstrained domain (i.e., dom(f) = Rn).
Throughout this paper, we make Assumption 3.1 and impose additional assumptions (e.g., F is self-
concordant or quadratic) if necessary.

Assumption 3.1. The function f : Rn → R ∪ {+∞} is bounded below and is F -based κ-self-concordant
with respect to a convex function F : Rn → R ∪ {+∞} for some κ ≥ 0. In addition, ∇2(f + F )(x) is
positive definite for any x ∈ dom(f).

3.1 Regularized Newton’s Method (RNM)

The scheme is as follows,

xj+1 = xj − 1
1+κνf,F (xj)

(∇2(f + F )(xj))
−1∇f(xj), for all j = 0, 1, 2, . . . (8)

where νf,F (x) =
√
∇f(x)⊤(∇2(f + F )(x))−1∇f(x)1. At each iteration, we compute a direction d ∈ Rn

that minimizes the right-hand side of Eq. (6). This is equivalent to maximizing η =
−∇f(xj)

⊤d√
d⊤(∇2(f+F )(xj))d

and yields Eq. (8). In addition, we have ρ = δ +∆ = (νf,F (xj))
2 and t̄j =

1
1+κνf,F (xj)

with f(xj + t̄jdj) ≤
f(xj)− κ−2ω(κνf,F (xj)).

Under Assumption 3.1, we derive the convergence guarantees in terms of νf,F (x) rather than gradient
norm, which is insufficient to measure the stationarity due to the lack of Lipschitz gradients. Our results
can be interpreted as a generalization of [45, Section 5.2] and νf,F (x) = λf (x) when F = 0 (see [45, Page
354]). For functions that are weakly self-concordant, this measure relates to gradient norms of Moreau
envelopes (see Appendix A.1). We summarize our results in the following theorems and defer the proofs
to Section 4.

Theorem 3.2. Suppose that Assumption 3.1 holds. Then, the sequence of iterates {xj}j≥0 generated by
Algorithm 8 satisfy

min
0≤j≤k

νf,F (xj) ≤
√

2(1+Γf (x0))(f(x0)−infx∈Rn f(x))

k+1
.

where Γf (x) is defined in Eq. (4).

If the Polyak-Łojasiewicz condition [34, 50] holds at a limit point of {xj}j≥0, we show that the
function value locally converges linearly in the following theorem.

Theorem 3.3. Suppose that Assumption 3.1 holds, f+F is α-strongly convex and the Polyak-Łojasiewicz
condition holds true at an interior optimal solution x⋆ ∈ int(dom(f)) (i.e., there exists µ > 0 and a
neighborhood U of x⋆ in dom(f) such that 1

2
∥∇f(x)∥2 ≥ µ(f(x)− f(x⋆)) for all x ∈ U). If x⋆ is a limit

point of {xj}j≥0, we have xj → x⋆ and f(xj)− f(x⋆) converges Q-linearly to 0.

Remark 3.4. The RNM scheme performs well for training convolutional neural networks (CNNs) but is
less effective for nonnegative matrix factorization (NMF). An explanation lies in different choices and
magnitudes of F . In our CNN experiments, F is quadratic with the coefficients on the order of 10−2,
which is consistent with the asymmetric Hessian spectra reported in neural network training [66], where

1√a =∞ when a < 0.
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Algorithm 1 Adaptive Regularization Method
1: Input: 0 < σmin ≤ σ0, 0 < η1 ≤ η2 < 1 and 0 < γ1 < 1 < γ2 < γ3.
2: Initialization: x0 ∈ dom(f).
3: for j = 0, 1, 2, . . . do
4: Compute dj ∈ Rn and construct the model mj : R+ → R ∪ {+∞} according to one of two options: (i)

dj satisfies Eq. (9) and mj is defined in Eq. (10); and (ii) dj is defined in Eq. (17) and mj is defined in
Eq. (18).

5: if ∇f(xj)⊤dj > 0 then
6: tj ← 0.
7: else
8: tj ← argmint≥0mj(t).
9: end if

10: Compute rj ← f(xj)−f(xj+tjdj)
f(xj)−mj(tj)

.

xj+1 ←

{
xj + tjdj , if rj ≥ η1,

xj , otherwise.
σj+1 ∈


[max(σmin, γ1σj), σj ], if rj ≥ η2,

[σj , γ2σj ], if rj ∈ (η1, η2),

[γ2σj , γ3σj ], if rj ≤ η1.

11: if the termination condition depending on (xj , dj , σj) is satisfied then
12: return xj .
13: end if
14: end for

negative curvature is mild. In these settings, a small regularizer is sufficient to stabilize the updates and
capture local curvature. In contrast, the objective function f and its Hessian entries are much larger
in scale for NMF. Near a local minimizer, applying the same globally chosen F introduces excessive
regularization, which distorts the update direction and ultimately degrades performance.

3.2 Adaptive Regularization Method (ARM)

The scheme shares a similar spirit with the methods from [10, 11, 12] and has been summarized in
Algorithm 1. At each iteration, we compute a direction dj ∈ Rn and a step-size tj by minimizing the
model mj(t). Then, we compute the ratio rj to determine if a sufficient decrease is made. If rj ≥ η1, we
accept the update; otherwise, the iterate remains the same. Finally, we adjust the parameter σj based
on rj as described in Algorithm 1.

The key ingredients of Algorithm 1 consist of a specific rule for selecting the direction dj. The first
option can yield approximate first-order stationary points (see Theorem 3.5), while the second option,
equipped with an oracle that detects negative curvature, can yield approximate second-order stationary
points (see Theorem 3.8). In what follows, we provide all of details and convergence results.

First option: general descent directions To begin, we derive a convergence result for general
update directions dj. The only requirement is that dj = d(x0, . . . , xj, σj) is a descent direction when the
parameter σj is sufficiently large:

∃σ̄ > 0, s.t. ∇f(x)⊤dj ≤ 0 if σj ≥ σ̄. (9)

9



Under the same notation of Proposition 2.6, we view f as σjF -based κ-self-concordant and define the
local model mj(t) as follows,

mj(t) =


f(xj)− ρjt+ κ−2 ω⋆(κt

√
δj + σj∆j), if δj + σj∆j ≥ 0,

0, if δj + σj∆j < 0 and t = 0,

+∞, otherwise.
(10)

Thus, we only compute tj when δj + σj∆j ≥ 0 and ρj ≥ 0. In this case, minimizing Eq. (10) with respect
to t yields the solution in the form of

tj =
ρj

δj+σj∆j+κρj
√

δj+σj∆j
. (11)

Theorem 3.5. Suppose that Assumption 3.1 holds and Eq. (9) is satisfied. Let mj be defined in Eq. (10),
and the termination condition be

∇f(xj)
⊤dj√

∇2(f+σjF )(xj)[dj ,dj ]
≤ ϵ. (12)

Then, we have σj ≤ max(γ3σ̄, σ0, γ3) for all j, and Algorithm 1 terminates within at most O(ϵ−2)
iterations.

Note that it is possible to terminate at a point xj where both ∇f(xj) and ∇2(f + σjF ) have large
magnitudes. To mitigate this issue, we introduce two specific choices for dj and refine the termination
conditions accordingly.

The first choice is preconditioned gradient descent. Indeed, we define

dj = −Hj∇f(x), Hj ≻ 0, (13)

where Hj is the preconditioner that depends on x0, . . . , xj. This framework covers both gradient descent
(Hj = I) and quasi-Newton methods. Since Hj ≻ 0, we have ∇f(xj)

⊤dj ≤ 0, ensuring that Eq. (9) is
satisfied.

Corollary 3.6. Suppose that Assumption 3.1 holds, and there exists Λ > 0 such that ∥H1/2
j ∇2(f +

σjF )H
1/2
j ∥op ≤ Λ for all j. Let dj and mj be defined in Eq. (13) and Eq. (10) and the termination

condition be
√
∇f(xj)⊤Hj∇f(xj) ≤ ϵ. Then, we have σj ≤ max(σ0, γ3), and Algorithm 1 terminates

within at most O(ϵ−2) iterations.

The second choice is adaptive regularized Newton’s method. Indeed, we define

dj = −(∇2(f + σjF )(xj))
−1∇f(xj), (14)

which yields
mj(t) = f(xj)− t(νf,σjF (xj))

2 + κ−2ω⋆(κtνf,σjF (xj)). (15)

The termination condition in Eq. (12) becomes νf,σjF (xj) ≤ ϵ. If δj + σj∆j ≥ 0 and ρj ≥ 0, the optimal
step size is

tj =
1

1+κνf,σjF (xj)
. (16)

Corollary 3.7. Suppose that Assumption 3.1 holds. Let dj and mj be defined in Eq. (14) and Eq. (15),
and the termination condition be νf,σjF (xj) ≤ ϵ. Then, we have Algorithm 1 terminates within at most
O(ϵ−2) iterations.
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Second option: negative curvature descent Suppose that F is κF -self-concordant. Then, we
exploit negative curvature to escape from saddle points and further decrease the objective. For each
iterate xj, we have access to the smallest eigenvalue of Hessian λmin(∇2f(xj)) and a corresponding unit
eigenvector vj . If the Hessian exhibits strong negative curvature, Algorithm 1 switches from a regularized
Newton step to a curvature-exploiting step as follows,

dj =


−(∇2(f + σjF )(xj))

−1∇f(xj), if λmin(∇2f(xj)) ≥ −λnc,

vj, if ∇f(xj)
⊤vj ≤ 0, λmin(∇2f(xj)) < −λnc,

−vj, otherwise,
(17)

where λnc = σj
√
ϵH∇2F (xj)[vj, vj ]. This rule ensures that, if the significant negative curvature is detected,

a descent direction aligned with it will be used to escape saddle regions. Under the same notation of
Proposition 2.6, we view f as σjF -based κ-self-concordant and define the local model mj(t) as follows,

mj(t) =

{
f(xj)− t(νf,σjF (xj))

2 + κ−2ω⋆(κtνf,σjF (xj)), if λmin(∇2f(xj)) ≥ −λnc,

f(xj)− κ−2
F ω(κF t

√
σj∆j) + κ−2ω⋆(κt

√
δj + σj∆j), otherwise.

(18)

If λmin(∇2f(xj)) ≥ −λnc, we have that mj(t) reduces to the one used for adaptive regularized Newton’s
methods. Thus, we can use Eq. (16). If λmin(∇2f(xj)) < −λnc and δj + σj∆j ≥ 0, Algorithm 1 performs
a negative curvature step where δj = λmin(∇2f(xj)) < 0. Minimizing mj(t) with respect to t yields

tj = − δj√
σj∆j

√
δj+σj∆j(κF

√
δj+σj∆j+κ

√
σj∆j)

. (19)

Theorem 3.8. Suppose that Assumption 3.1 holds with a κF -self-concordant F . Let dj and mj be
defined in Eq. (17) and Eq. (18), and the termination condition be νf,σjF (xj) ≤ ϵg and λmin(∇2f(xj)) ≥
−σj
√
ϵH∇2F (xj)[vj, vj]. Then, we have σj ≤ max(σ0, γ3) for all j, and Algorithm 1 terminates within

at most O(ϵ−2
g + ϵ−1.5

H ) iterations.

Remark 3.9. The ARM improves the RNM in two dimensions. First, it introduces a parameter σj

that controls the magnitude of regularization, mitigating the issue of excessively large regularization, as
discussed in Remark 3.4. Second, the ARM is effective when f is ℓF -based κ-self-concordant, but we have
no prior knowledge of ℓ.

Remark 3.10. The key advantage of the ARM over the trust region (TR) method and [12, Algorithm 2.4.1]
is to compute a better direction dj and construct a better model mj(·) by leveraging the special self-
concordance structure. Indeed, the TR method computes dj based on a local model mj(d) = f(xj) +
∇f(xj)

⊤d+ 1
2
d⊤Bjd where Bj is symmetric such that f(xj + dj) < f(xj). The corresponding ratio of

reduction is rj =
f(xj)−f(xj+dj)

mj(0)−mj(dj)
. The TR method either accepts or rejects but always scales the radius based

on rj. In [12, Algorithm 2.4.1], a local model mj(d) = f(xj) +∇f(xj)
⊤d+ 1

2
σj∥d∥2 is constructed and

dj = argmind mj(d). All of other steps are similar to that used in the ARM. Another advantage of the
ARM is its ability to handle the constrained case where dom(f) ̸= Rn. It rejects when xj + dj /∈ dom(f),
while maintaining convergence guarantees.

4 Convergence Analysis
We provide the convergence analysis for the RNM and ARM algorithms proposed in Section 3 by proving
all theorems.
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4.1 Technical Lemmas

We define a set of successful iterations up to k by Sk = {j : 0 ≤ j ≤ k, rj ≥ η1}2, unsuccessful iterations
up to k by Uk = {0, . . . , k}\Sk, and all successful iterations by S =

⋃∞
k=0 Sk.

Lemma 4.1. Suppose that f is bounded below and continuously differentiable. If there exists σmax > 0
such that σj ≤ σmax for all j ≥ 0 and ϵ̃ > 0 such that f(xj) −mj(tj) ≥ ϵ̃ for all j ∈ S, Algorithm 1
terminates within O(ϵ̃−1) iterations.

Proof. If Algorithm 1 does not terminate up to k, we have f(x0) − infz∈Rn f(z) ≥
∑

j∈Sk
f(xj) −

f(xj+1) ≥
∑

j∈Sk
η1ϵ̃ = η1|Sk|ϵ̃. This implies that |Sk| = O(ϵ̃−1). Then, we see from Algorithm 1 that

γ1σj ≤ max(γ1σj, σmin) ≤ σj+1 for j ∈ Sk and γ2σj ≤ σj+1 for j ∈ Uk. Thus, σ0γ
|Sk|
1 γ

|Uk|
2 ≤ σk. Since

σk ≤ σmax, we have |Sk| log(γ1) + |Uk| log(γ2) ≤ log(σmaxσ
−1
0 ). This together with k = |Sk|+ |Uk| yields

k ≤ |Sk|
(
1− log(γ1)

log(γ2)

)
+ 1

log(γ2)
log(σmax

σ0
). Since |Sk| = O(ϵ̃−1), we have k = O(ϵ̃−1).

Lemma 4.2. Suppose that Assumption 3.1 holds and Eq. (9) is satisfied. Let mj be defined in Eq. (10),
and the termination condition be ∇f(xj)

⊤dj√
∇2(f+σjF )(xj)[dj ,dj ]

≤ ϵ. Then, we have σj ≤ max(γ3σ̄, σ0, γ3) for all j

and f(xj)−mj(tj) ≥ ϵ2

2(1+Γf (x0))
for all j ∈ S.

Proof. We prove by contradiction. Suppose that there exists j such that σj+1 > max(γ3σ̄, σ0, γ3) ≥ σj.
Then, we have σj ≥ σj+1

γ3
≥ max(σ̄, 1). We let ρj = −∇f(xj)

⊤dj, δj = ∇2f(xj)[dj, dj], and ∆j =

∇2F (xj)[dj, dj ]. We obtain from Assumption 3.1 that ρj ≥ 0 and δj + σj∆j ≥ δj +∆j ≥ 0. We also have

f(xj)−mj(tj) = ρjtj − κ−2ω⋆(κtj
√

δj + σj∆j).

By Proposition 2.6, we have xj + tjdj ∈ dom(f) and

f(xj)− f(xj + tjdj) ≥ ρjtj − κ−2ω⋆(κtj
√

δj +∆j).

Since ω⋆(·) is increasing, we have rj ≥ 1 > η2 and thus σj+1 ≤ σj ≤ max(γ3σ̄, σ0, γ3). This yields a
contradiction. Thus, σj ≤ max(γ3σ̄, σ0, γ3) for all j.

For all j ∈ S, we provide a lower bound of f(xj) − mj(tj). Indeed, by combining Eq. (11) with
Eq. (10), we have

f(xj)−mj(tj) ≥ (∇f(xj)
⊤dj)

2

2(1+Γf (x0))∇2(f+σjF )[dj ,dj ]
> ϵ2

2(1+Γf (x0))
.

This completes the proof.

Lemma 4.3. Suppose that Assumption 3.1 holds with a κF -self-concordant F . Let dj and mj be de-
fined in Eq. (17) and Eq. (18), and the termination condition be νf,σjF (xj) ≤ ϵg and λmin(∇2f(xj)) ≥
−σj
√
ϵH∇2F (xj)[vj, vj ]. Then, we have σj ≤ max(γ3, σ0) for all j and f(xj)−mj(tj) ≥ min

(
ϵ1.5H

6(κf+κF )2
,

ϵ2g
2(1+Γf (x0))

)
for all j ∈ S.

Proof. We prove by contradiction. Suppose that there exists j such that σj+1 > max(σ0, γ3) ≥ σj . Then,
we have σj ≥ σj+1

γ3
≥ 1. Using the same idea proving Lemma 4.2, we have ρj ≥ 0 and δj + σj∆j ≥

δj + ∆j ≥ 0. We divide the remaining proof into two cases: (i) λmin(∇2f(xj)) ≥ −λnc; and (ii)
λmin(∇2f(xj)) < −λnc.

For the first case, we have

f(xj)−mj(tj) = ρjtj − κ−2ω⋆(κtj
√

δj + σj∆j).

2We define ri = 0 if Algorithm 1 terminates when j ≤ i.
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By Proposition 2.6, we have xj + tjdj ∈ dom(f) and

f(xj)− f(xj + tjdj) ≥ ρjtj − κ−2ω⋆(κtj
√

δj +∆j).

Since ω⋆(·) is increasing, we have rj ≥ 1 > η2 and then σj+1 ≤ σj ≤ max(σ0, γ3). This yields the
contradiction.

For the second case, we have δj = λmin(∇2f(xj)) < 0 and

f(xj)−mj(tj) = −κ−2ω⋆(κtj
√
δj + σj∆j) + κ−2

F ω(κF tj
√

σj∆j).

By Proposition 2.6, we have xj + tjdj ∈ dom(f) and

f(xj)− f(xj + tjdj) ≥ −κ−2ω⋆(κtj
√

δj +∆j) + κ−2
F ω(κF tj

√
∆j).

Defining g(σ) = −κ−2ω⋆(κtj
√

δj + σ∆j) + κ−2
F ω(κF tj

√
σ∆j), we have

g′(σ) =
t2j∆j

2

(
−1

1−κtj
√

δj+σ∆j
+ 1

1+κF tj
√

σ∆j

)
≤ 0.

Thus, f(xj) −mj(tj) = g(σj) ≤ g(1) ≤ f(xj) − f(xj + tjdj), which implies rj ≥ 1 > η2. This yields a
contradiction.

Since Algorithm 1 does not terminate at xj for j ∈ S, we have νf,σjF (xj) > ϵg or λmin(∇2f(xj)) < −λnc.
Indeed, if λmin(∇2f(xj)) ≥ −λnc and νf,σjF (xj) > ϵg, we obtain from x − log(1 + x) ≥ x2

2(1+Γf (x0))
for

0 ≤ x ≤ Γf (x0) that
f(xj)−mj(tj) ≥

ϵ2g
2(1+Γf (x0))

.

Otherwise, we consider the case of λmin(∇2f(xj)) < −λnc. For simplicity, we define γ = κF

κ
and z = − δj

σj∆j
.

Then, Eq. (18) implies

f(xj)−mj(tj) = κ−2
(
γ−2ω

(
γz

γ(1−z)+
√
1−z

)
− ω⋆

(
z

γ
√
1−z+1

))
≥ κ−2gγ(z),

where
gγ(z) =

z
γ
√
1−z

+ log

(
1− z

γ
√

(1−z)+1

)
− 1

γ2 log
(
1 + γz

γ(1−z)+
√
1−z

)
.

We also have gγ(0) = 0 and g′γ(z) ≥ z2

2(γ+1)2
. This implies gγ(z) ≥ z3

6(γ+1)2
and

f(xj)−mj(tj) ≥ z3

6(κ+κF )2
≥ ϵ1.5H

6(κf+κF )2
.

This completes the proof.

4.2 Main Results

We are ready to provide the proofs for all theorems.

Proof of Theorem 3.2. Proposition 2.6 guarantees that xj ∈ dom(f), f(xj) ≤ f(x0) for all j ≥ 0 and
f(xj)− f(xj+1) ≥ (νf,F (xj))

2

2(1+Γf (x0))
. Summing this inequality over j = 0, 1, 2, . . . yields

f(x0)− inf
x∈Rn

f(x) ≥
k∑

i=0

f(xj)− f(xj+1) ≥
k∑

i=0

νf,F (xj)
2

2(1+Γf (x0))
≥ (k+1)(min0≤j≤k νf,F (xj))

2

2(1+Γf (x0))
.

This completes the proof.
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Proof of Theorem 3.3. We denote by U the neighborhood of x⋆ where the Polyak-Łojasiewicz condition
holds. There exists L > 0 such that ∥∇2(f + F )(x)∥op ≤ L for all x ∈ U . By [2, Proposition 3.3 and
Theorem 3.4], we have xj → x⋆ if there exist c1, c2 > 0 such that f(xj) − f(xj+1) ≥ c1∥∇f(xj)∥2 and
∥∇f(xj)∥ ≥ c2∥xj − xj+1∥ for all xj, xj+1 ∈ U . Indeed, by Proposition 2.6 and using the fact that
f(xj) ≤ f(x0) and ∥∇2(f + F )(xj)∥op ≤ L for all j, we have

f(xj)− f(xj+1) ≥ 1
2(1+Γf (x0))

(νf,F (xj))
2 ≥ 1

2(1+Γf (x0))L
∥∇f(xj)∥2, for any xj ∈ U. (20)

In addition, we have ∥∇f(xj)∥ ≥ α∥xj+1 − xj∥. Putting these pieces together yields the desired result.
It remains to prove the linear convergence of function values. As xj → x⋆, there exists K ∈ N

such that xj ∈ U for all j ≥ K. Applying Eq. (20) and the Polyak-Łojasiewicz inequality yields
f(xj)− f(xj+1) ≥ µ

(1+Γf (x0))L
(f(xj)− f(x⋆)) for all j ≥ K. This implies

f(xj+1)− f(x⋆) ≤
(
1− µ

(1+Γf (x0))L

)
(f(xj)− f(x⋆)).

which implies that f(xj)− f(x⋆) converges Q-linearly to 0.

Proof of Theorem 3.5. Suppose that Assumption 3.1 holds, Lemma 4.2 implies that Lemma 4.1 holds
with ϵ̃ = ϵ2

2(1+Γf (x0))
and σmax = max(γ3σ̄, σ0, γ3). Thus, Algorithm 1 terminates within O(ϵ̃−1) = O(ϵ−2)

iterations.

Proof of Corollary 3.6. It follows from Theorem 3.5 that within O(ϵ−2) iterations, we can output xj

satisfying √
∇f(xj)⊤Hj∇f(xj)

Λ
≤ ∇f(xj)

⊤dj√
∇2(f+σjF )[dj ,dj ]

≤ ϵ
Λ
.

This completes the proof.

Proof of Corollary 3.7. The direction dj and the model mj given by Eq. (14) and Eq. (15), and the
termination condition given by Eq. (12) satisfy the conditions of Theorem 3.5 with σ̄ = 1. This completes
the proof.

Proof of Theorem 3.8. Suppose that Assumption 3.1 holds, Lemma 4.3 implies that the conditions
of Lemma 4.1 hold with ϵ̃ = min

(
ϵ1.5H

6(κf+κF )2
,

ϵ2g
2(1+Γf (x0))

)
and σmax = max(σ0, γ3). Thus, Algorithm 1

terminates within O(ϵ̃−1) = O(ϵ−2
g + ϵ−1.5

H ) iterations. This completes the proof.

5 Experiments
We conduct experiments on nonnegative matrix factorization and training convolutional neural networks
to evaluate our proposed methods.

Nonnegative matrix factorization (NMF) We denote U [a, b] as the uniform distribution on
[a, b]. For the KL divergence, we generate the data matrix Z = X̂Ŷ + 0.01Ẑ, where X̂ ∈ Rm×r,
Ŷ ∈ Rr×n, Ẑ ∈ Rm×n and their entries are sampled i.i.d. from U [0, 1]. For the MSE loss, we generate
M = X̂Ŷ , where X̂ ∈ Rm×r, Ŷ ∈ Rr×n and their entries are sampled i.i.d. from U [0, 1]. We compute
the singular value decomposition of M = U diag(σ1, . . . , σr, 0, . . . , 0)V

⊤ and construct the data matrix
Z = Udiag(σ1, . . . , σr, σr+1, . . . , σmin(m,n))V

⊤, where σr+1, . . . , σmin(m,n) are sampled i.i.d. from U [0, 0.1σr].
The optimal function value is given by 1

2mn
∥Z − X̂Ŷ ∥2F . Thus, the optimality gap is defined as the

difference between the current function value and the optimal function value. Throughout, we set
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Figure 1: Performance comparison on NMF with MSE loss (left) and KL divergence (right).
m = 100, n = 20, and r = 10. We consider the case where the initialization of X and Y are independent,
with each entry drawn i.i.d. from U [0, 1].

We compare the performance of Algorithm 1 (with configurations in Eq. (14) and Eq. (15)) against
L-BFGS-B and trust-constr methods from scipy [63]. We also implement several configurations of
ARC [10, 11] to illustrate the advantages of our method over cubic regularization method. Since ARC is
designed for unconstrained optimization problems, we define f(X, Y ) = +∞ whenever X /∈ Rm×r

+ or
Y /∈ Rr×n

+ . In this setting, when some entries of X or Y approach zero, ARC tends to stagnate, with the
regularization parameter blowing up since the direction drives those entries toward zero. To mitigate
this issue, we incorporate a logarithmic barrier into the objective function when running ARC, defined as

fµ(X, Y ) = f(X, Y ) + µ

(
m,r∑
i,j=1

logXij

)
+ µ

(
r,n∑

i,j=1

log Yij

)
.

We report the original loss function f(X, Y ) and tune µ to achieve the best performance. In both
Algorithm 1 and ARC, we use σ0 = 1, η1 = 0.01, η2 = 0.9, γ1 = 0.5, and γ2 = γ3 = 2, following [12,
Section 2.4]. In Algorithm 1, we set κ = 1.

As shown in Figure 1, Algorithm 1 consistently outperforms other methods. For large µ, although
ARC converges faster, it fails to reach high accuracy, while for small µ, ARC may fail to converge. These
observations align with the strong performance of ARC in unconstrained optimization and suggest that
more refined algorithmic designs may be required for constrained optimization problems.

Training convolutional neural networks (CNNs) The use of Newton’s methods in large-scale
neural network training is prohibitively expensive, as computing and inverting the Hessian is costly.
To overcome this limitation, the Kronecker-Factored Approximate Curvature (KFAC) method was
introduced in [38] as a scalable alternative to Newton’s method and natural gradient descent.

KFAC is a Kronecker-factorized version of a positive definite Fisher Information Matrix (FIM),
which is equivalent to the generalized Gauss-Newton matrix (GGN) in certain cases [39, 49, 37, 1], to
approximate the Hessian. This avoids doing multiple back propagation steps to compute the exact
Hessian and additional storage. KFAC approximates the FIM by exploiting the layer-wise structure of
feed-forward neural networks. Indeed, we consider a supervised learning problem with data distribution
(x, y) ∼ D, where x denotes the input and y the target. A feed-forward neural network defines a
parametric function fθ : Rdx → Rdy , with θ consisting of weight matrices and biases across all layers. In
particular, we let the l-th layer be sl = Wlal + bl, hl = ϕ(sl), where al ∈ Rdin are the input activation
nodes to the layer, Wl ∈ Rdout×din and bl ∈ Rdout are the parameters, sl ∈ Rdout are the pre-activations,
and hl ∈ Rdout are the output activation after applying the elementwise transformation ϕ.
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Algorithm 2 KFAC (i) [38, 65] and KFAC with weak self-concordance (KFAC-WSC) (ii).
1: Input: ηk: learning rate; ω: weight decay; γ: damping; µ: momentum, default 0.9.
2: Input: If choosing (ii), input κ: weak self-concordance parameter, default 1; input β: layerwise leaning rate

momentum, default 0.99.
3: Initialization: k ← 0 and initialize {Wl}L−1

l=0 .
4: while stopping criterion not met do
5: k ← k + 1.
6: Sample a mini-batch and update {Sl}L−1

l=0 , {Al}L−1
l=0 with moving average.

7: Compute the inverses {S−1
l }

L−1
l=0 , {A−1

l }
L−1
l=0 .

8: for l = 0, . . . , L− 1 do
9: Sample a mini-batch B.

10: Gl ← ∇Wl
LB(W ), Dl ← (Al + γI)−1Gl(Sl + γI)−1, Ml ← µMl + (1− µ)Dl.

11: Compute λl according to one of two options: (i) λl ← 0. (ii) λ2
l ← βλ2

l + (1− β)vec(Gl)
⊤vec(Dl).

12: Wl ←Wl − ηk
1+κλl

Ml − ηkωWl.
13: end for
14: end while

Table 1: Test accuracy of different neural network optimizers. We replicate the KFAC experiments from
[65] using 10 random seeds. Values following “±” denote standard deviations across seeds.

Dataset Model SGD Adam [29] KFAC KFAC-WSC
CIFAR10 VGG16 93.39 93.62 93.88±0.16 94.13±0.17
CIFAR10 ResNet32 95.14 94.66 95.24±0.13 95.07±0.14
CIFAR100 VGG16 73.31 74.22 73.53±0.47 74.27±0.19
CIFAR100 ResNet32 77.73 77.40 78.08±0.21 77.07±0.39

The network is trained by minimizing L(θ) = E(x,y)∼D[L(fθ(x), y)], where L is a loss function, and the
FIM is F (θ) = E(x,y)∼D[∇θ log pθ(y | x)(∇θ log pθ(y | x))⊤] where pθ(y | x) denotes the model’s predictive
distribution. For the weight matrix Wl, the gradient of L with respect to Wl can be written in terms of the
input activation and the back-propagated signal. In particular, ∇Wl

L = gla
⊤
l , where gl = ∇slL ∈ Rdout

is the gradient of L with respect to the pre-activations s. The Fisher block corresponding to Wl is
Fl = E[vec(∇Wl

L) vec(∇Wl
L)⊤] = E[(al ⊗ gl)(al ⊗ gl)

⊤]. The direct computation of Fl is intractable,
as it scales with the square of the number of parameters in W . The key idea behind KFAC is to
treat al and gl as independent, yielding Fl ≈ E[ala⊤l ] ⊗ E[glg⊤l ]. For any X ∈ Rdout×din , we have
F−1
l vec(X) ≈ (E[ala⊤l ])−1X(E[glg⊤l ])−1 = A−1

l XS−1
l , where Al = E[ala⊤l ] and Sl = E[glg⊤l ]. Thus, if the

partial gradient of L with respect to Wl is denoted as ∇Wl
L(W ) (as is common in PyTorch), the natural

gradient is given by A−1
l ∇Wl

L(W )S−1
l .

When implementing KFAC, it is common to add regularization to Al and Sl to improve both
generalization and numerical stability [38]. The natural gradient with Tikhonov regularization [38]
is Dl = (Al + γI)−1∇Wl

L(W )(Sl + γI)−1. We can interpret Dl as an approximate Newton direction
(∇2(f + F )(xj))

−1∇f(xj) in the sense that ∇2F (xj) is replaced by γI. We interpret γ as the weak
self-concordance parameter ℓ and λl =

√
vec(Dl)⊤vec(∇Wl

L(W )) as an approximation of νf,F (xk).
We follow the techniques of [65] and evaluate our algorithms by training VGG16 [56] and ResNet32

[28, 64] on CIFAR-10 and CIFAR-100 [30]. We conduct experiments on a single NVIDIA V100 SXM2
GPU from San Diego Supercomputer Center [57]. The results are summarized in Table 1. We performed
a grid search to identify the best hyperparameters that maximize test accuracy during training. Both
KFAC and KFAC-WSC were trained for 100 epochs. The initial learning rate was selected from
the set η0 ∈ {10−3, 3 × 10−2, 10−2} and the learning rate decay by 0.1 was applied at the 40th and
80th epochs. The weight decay factor from ω ∈ {10−2, 3 × 10−1, 10−1}, and the damping factor from
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γ ∈ {3× 10−3, 10−2, 3× 10−2}. Our method improved training efficiency on VGG16 for CIFAR-10 and
CIFAR-100, while being outperformed by KFAC on ResNet32.

6 Conclusions
We generalized the notion of self-concordance to non-convex settings by introducing weakly self-concordant
functions and F -based self-concordant functions. Based on these two classes, we proposed regularized
Newton and adaptive regularization methods and proved their global and local convergence guarantees. We
also conducted numerical experiments to evaluate their effectiveness. Indeed, our adaptive regularization
method outperformed adaptive cubic regularization, L-BFGS, and trust-region methods on non-negative
matrix factorization problems in terms of both MSE and KL divergence losses. Our KFAC-based
regularized Newton method improved training efficiency on VGG16 for CIFAR-10 and CIFAR-100, while
being outperformed by KFAC on ResNet32. In summary, our results demonstrate the importance of
extending self-concordance for large-scale non-convex optimization.
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A Additional Results on Weak Self-Concordant Functions
In Section A.1, we present an alternative way to measure stationarity for weakly self-concordant functions.
In Section A.2, we introduce an inexact proximal point method for minimizing weakly self-concordant
functions that relies on Hessian–vector products (HVPs) and achieves an iteration complexity comparable
to that of RNM and ARM, with high probability. In Section A.3, we prove our convergence results.

For a self-concordant function f : Rn → R ∪ {+∞} and x ∈ dom(f), we define λf(x) =√
∇f(x)⊤(∇2f(x))−1∇f(x). For a matrix A ≻ 0, we denote its condition number by cond(A) and

define ∥x∥A =
√
x⊤Ax. We also define the following absolute constants α⋆ = 0.0001, R1 = 0.49,

R2 =
1√

1−α⋆
R1, R3 =

√
1−α⋆

1+α⋆
R1, C1 = 9, C2 = 0.95, and C3 =

R−1
2 −1

R−1
2 −2

.

A.1 Convergence to a Proximal Stationary Point

For any η > 0, we define the Moreau envelope fη : Rn → R ∪ {+∞} [43] of f by fη(y) = infx∈Rn{f(x) +
1
2η
∥y − x∥2}. The gradient norms of the Moreau envelope, ∥∇fη(x)∥, have been used as a measure of

stationarity for weakly convex functions [18]. For weakly self-concordant functions, we show next that
RNM (see Eq. (8)) and Algorithm 1 can find a point with ∥∇fη(x)∥ ≤ ϵ (for any small enough η) in
O(ϵ−2) iterations.

Lemma A.1. Suppose that f : Rn → R ∪ {+∞} is (κ, ℓ)-weakly self-concordant and lower-bounded. For
any µ > ℓ, ϵ > 0, and x ∈ dom(f), if νf, 1

2
µ∥·∥2(x) ≤

√
µ−ℓϵ

µ+κ
√
µ−ℓϵ

, then we have ∥∇f1/µ(x)∥ ≤ ϵ.

Proof. Let ϵ′ =
√
µ−ℓϵ

µ+κ
√
µ−ℓϵ

and φ(y) = f(y) + 1
2
µ∥y − x∥2. Thus, we assume νf, 1

2
µ∥·∥2(x) = λφ(x) ≤ ϵ′.

It follows from [18, Lemma 2.2] that 1
µ
∥∇f1/µ(x)∥ = ∥x − argminφ∥. Moreover, ∇2φ ≥ (µ − ℓ)I
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implies that
√
µ− ℓ∥x − argminφ∥ ≤ ∥x − argminφ∥∇2φ(x). We define ω′

⋆(t) =
t

1−t
for t ∈ [0, 1) and

apply [45, Eq. (5.2.4)] with f = φ. In the notation of [45], we note that x⋆
f = argminφ, Mf = κ,

∥ · ∥x = ∥ · ∥∇2φ(x). Thus, we have ∥x − argminy φ(y)∥∇2φ(x) ≤ κ−1ω′
⋆(κλφ(x)). Therefore, we obtain

√
µ−ℓ
µ
∥∇f1/µ(x)∥ ≤ ∥x− argminφ∥∇2φ(x) ≤ κ−1ω′

⋆(κλφ(x)) ≤ κ−1ω′
⋆(κϵ

′) =
√
µ−ℓ
µ

ϵ.

A.2 Inexact Proximal Point Method (IPPM)

We develop an algorithm for minimizing a (κ, ℓ)-weakly self-concordant function f using only gradient and
Hessian–vector product (HVP) oracles. Our approach is based on the proximal point method [51]. Given
the current iterate zj ∈ dom(f), we consider the regularized objective fj : Rn → R ∪ {+∞} defined as
fj(y) = f(y) + 1

2
µ∥y − zj∥2. The update of the proximal point method is given by zj+1 = argmin fj.

When µ > ℓ, each function fj is self-concordant.
To solve these subproblems inexactly, we introduce Algorithm 3. The algorithm combines the

Newton–CG (conjugate gradient) method [48, Algorithm 7.1] with the Lanczos method [31]. By exploiting
self-concordance, it avoids line searches, which is its main advantage over traditional Newton–CG. For
a self-concordant function f , the algorithm outputs, with probability 1 − δ, y ∈ dom(f) such that
either λf(y) ≤ ϵ1 and λf(x0) ≥

√
1−α⋆

1+α⋆
ϵ0, or y = x0 and λf(x0) ≤ ϵ0. A more precise convergence

theorem, together with its proof, is deferred to Theorem A.10 in Appendix A.3. This algorithm may be
of independent interest in convex optimization.

Algorithm 3 A Newton-CG Method for Self-Concordant Functions
1: Input: κ ≥ 0, ϵ0 > 0, ϵ1 > 0, β > 1, δ ∈ [0, 1).
2: Initialization: x0 ∈ dom(f).
3: β0 ← sqrt-cond(∇2f(x0), 0.5δ, β), flag← True.
4: for k = 0, 1, 2, . . . do
5: gk ← ∇f(xk), hk ← CG-Inverse(∇2f(xk), gk, βk, α⋆).
6: ρk ← h⊤k gk, δk ← ∇2f(xk)[hk, hk].
7: return xk if ρk ≤ (1− α⋆)ϵ

2
1 or (k = 0 and ρ0 ≤ (1− α⋆)ϵ

2
0).

8: if ρk >
R2

1
κ2 then

9: tk ← ρk
δk+κρk

√
δk

, Bk ← (1 +
√
1+α⋆

1−α⋆
κ
√
ρk)

2, βk+1 ← Bkβk.
10: else
11: if flag then
12: β⋆ ← sqrt-cond(∇2f(xk), 0.5δ, βk), βlocal ← C4

3β
⋆, flag← False.

13: end if
14: tk ← ρk

δK+2κρk
√
δk

, βk+1 ← βlocal.
15: end if
16: xk+1 ← xk − tkhk.
17: end for
18: function sqrt-cond(H, δ, β):
19: Use the Lanczos algorithm to obtain λ1, λ2 such that |λ1 − λmax(H)| ≤ 1

3λmax(H) and |λ2 − λmin(H)| ≤
1
3λmin(H). return

√
2λ1/λ2.

20: function CG-Inverse(H, g, β, α):

21: Perform min

{
n,

⌊
logβ−1

β+1

0.5α

⌋
+ 1

}
CG iterations to compute H−1g start from 0.

We are now ready to introduce Algorithm 4 (IPPM). At each iterate zj, IPPM computes an inexact
proximal point zj+1 by approximately solving the subproblem min fj to a prescribed accuracy using
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Algorithm 3. The convergence of IPPM is established in the Theorem A.3, whose proof is deferred to the
end of Appendix A.3. This result relies on Assumption A.2, which requires that all proximal subproblems
are sufficiently well conditioned.

Algorithm 4 Inexact Proximal Point Method (IPPM)
1: Input: κ ≥ 0, µ > 0, ϵ > 0, β > 1, δ ∈ [0, 1), ∆ > 0.
2: Initialization: z0 ∈ dom(f).
3: K ← 8µ∆

(µ−ℓ)ϵ2
, δ′ ← (K + 2)−1 δ, β′ ← C2

3β, ϵ′ ←
(√

1−α⋆
1+α⋆

− 0.5
)
ϵ

4: for j = 0, 1, 2, . . . do
5: Set fj : Rn → R ∪ {+∞} with fj(y) := f(y) + 1

2µ∥y − zj∥2.
6: zj+1 ← The output of Algorithm 3 with objective function fj , input κ ← κ, ϵ0 ← ϵ, ϵ1 ← ϵ′, β ← β′,

δ ← δ′, and initialization x0 ← zj .
7: return zj if zj+1 = zj .
8: end for

Assumption A.2. In IPPM, there exists B > 0 such that for all j ≥ 0, we have cond(∇2f(z0)+µI) ≤ B2

and cond(∇2fj(argmin fj) + µI) ≤ B2.

Theorem A.3. Assume that f is (κ, ℓ)-weakly self-concordant, lower bounded, and that Assumption A.2
holds. Let µ > ℓ, β ≥ B, ∆ ≥ f(z0) − infy f(y), and ϵ′ ≤ R2

κ
. Then, with probability at least 1 − δ,

IPPM terminates in at most
⌊
8µ(f(z0)−infy f(y))

(µ−ℓ)ϵ2

⌋
+ 2 iterations, and its output y satisfies ν

f,
1
2
µ∥·∥2

(y) ≤ ϵ.

Moreover, the total number of HVP computations performed by IPPM is O(ϵ−2(log(ϵ−1) + log(δ−1))).

A.3 Convergence Analysis

In this section, we prove the convergence of Algorithms 3 and 4. To do so, we first present some technical
lemmas. Lemma A.4 analyzes the function sqrt-cond in Algorithm 3 by a classical result [31] on the
Lanczos method. Lemma A.5 analyzes the function CG-Inverse in Algorithm 3 using [48, Theorem 5.5].
Lemma A.6 describes the relationship between the condition numbers of the Hessians at two nearby
points for self-concordant functions.

Lemma A.4. Let A ≻ 0. Given δ ∈ [0, 1) and β ≥
√

cond(A), sqrt-cond(A, δ, β) outputs a number in
[
√

cond(A), 2
√

cond(A)] with probability at least 1− δ. The total number of matrix-vector multiplications
with A required by the method is at most CL min{n, β log(nδ−2)}, where CL > 0 is a constant.

Proof. Let ϵ′ = 1
10β2 . It follows from [31, Theorem 4.2] that, with probability at least 1

2
δ, the

Lanczos method outputs λ1 such that |λ1 − λmax(A)| ≤ 1
3
λmax(A) in O(min{n, log(nδ−2)}) matrix-

vector multiplications. With probability at least 1 − 1
2
δ, the Lanczos method outputs λ′ such that∣∣λ′ − λmax

(
2λ1

1−ϵ′
I − A

)∣∣ ≤ ϵ′ · λmax

(
2λ1

1−ϵ′
I − A

)
≤ 1

3
λmin(A) in O(min{n, β log(nδ−2)}) matrix-vector mul-

tiplications. Letting λ2 =
2λ2

1−ϵ′
− λ′, then we have |λ2 − λmin(A)| ≤ 1

3
λmin(A). Thus, letting X2 = 2λ1/λ2

suffices.

Lemma A.5 (Theorem 5.5 of [48]). Given a matrix H ≻ 0 and β ≥
√
cond(H), CG-Inverse(H, g, β, α) re-

turns h ∈ Rn such that ∥h−H−1g∥H ≤ α∥g∥H−1. The algorithm requires at most CCG min{n, β log(α−1)}
matrix-vector multiplications with H, where CCG > 0 is a constant. Moreover, we have (1− α)∥g∥H−1 ≤
∥h∥H ≤ (1 + α)∥g∥H−1 and (1− α)g⊤H−1g ≤ h⊤g ≤ (1 + α)g⊤H−1g.
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Lemma A.6. Let f be κ-self-concordant with global minimizer x⋆
f . Let x, y ∈ dom(f), R ∈ (0, 0.5),

and κ > 0 such that λf(x) ≤ R
κ

and λf(y) ≤ R
κ
. Then cond(∇2f(x)) ≤

(
R−1−1
R−1−2

)4
cond(∇2f(x⋆

f)) ≤(
R−1−1
R−1−2

)8
cond(∇2f(y)).

Proof. [45, Theorem 5.1.13] implies that x⋆
f exists. It follows from [45, Theorem 5.1.7, Theorem 5.2.1]

that (1 − κr)2∇2f(x) ⪯ ∇2f(x⋆
f) ⪯ 1

(1−κr)2
∇2f(x), where r = ∥x − x⋆

f∥∇2f(x) ≤ 1
(R−1−1)κ

. The desired
result follows from direct calculation.

We are ready to analyze Algorithm 3. Convergence of the algorithm consists of two stages. In the
first stage, it converges to a neighborhood of the global minimizer (see Lemma A.7). In the second stage,
it converges Q-linearly to the global minimizer (see Lemma A.8).

Lemma A.7. Suppose f is κ-self-concordant. At any given iteration of Algorithm 3, if β2
k ≥ cond(∇2f(xk))

and ρk >
R2

1

κ2 , then

f(xk)− f(xk+1) ≥ κ−2 ω
(√

1−α⋆

1+α⋆
κ
√
ρk

)
≥ κ−2ω(R3)

and
√

cond(∇2f(xk+1))

cond(∇2f(xk))
≤ Bk ≤ exp (C1κ

2(f(xk)− f(xk+1))).

Proof. It follows from Lemma A.5 that ρk
δk
∈ [ 1−α⋆

(1+α⋆)2
, 1+α⋆

(1−α⋆)2
]. Thus, Proposition 2.6 implies that

f(xk) − f(xk+1) ≥ κ−2ω
(

κρk√
δk

)
≥ κ−2ω

(√
1−α⋆

1+α⋆
κ
√
ρk

)
≥ κ−2ω(R3). Let rk = ∥xk+1 − xk∥∇2f(xk) =

ρk
√
δk

δk+κρk
√
δk

. Hence, we have (1 − κrk)
−1 ≤ 1 +

√
1+α⋆

1−α⋆
κ
√
ρk. It follows from [45, Theorem 5.1.7] that√

cond(∇2f(xk+1))

cond(∇2f(xk))
≤ (1− κrk)

−2 ≤ Bk. Moreover, we have

logBk

κ2(f(xk)−f(xk+1))
≤

2 log
(
1+

√
1+α⋆

1−α⋆
κ
√
ρk

)
ω

(√
1−α⋆

1+α⋆
κ
√
ρk

) ≤
2 log

(
1+

√
1+α⋆

1−α⋆
R1

)
ω

(√
1−α⋆

1+α⋆
R1

) ≤ C1,

where the second inequality holds by the monotonicity of
log

(
1+

√
1+α⋆

1−α⋆
t
)

ω
(√

1−α⋆
1+α⋆

t
) for t > R1. This completes the

proof.

Lemma A.8. Suppose f is κ-self-concordant. At any given iteration of Algorithm 3, if β2
k ≥ cond

(∇2f(xk)) and ρk ≤ R2
1

κ2 , then (1 + α⋆)λf (xk+1)
2 ≤ C2ρk.

Proof. If ρk ≤ R2
1

κ2 , then we have tk = ρk
δK+2κρk

√
δk

. Letting λk = λf (xk), Hk = ∇2f(xk), Gk =
∫ 1

0
∇2f(xk +

τ(xk+1 − xk))dτ , ζk = κ
√
δk, we have ∇f(xk+1) = Gk(xk+1 − xk) +∇f(xk) = −tkGkhk + gk. It follows

from [45, Corollary 5.1.5] that (1 − tkζk +
1
3
t2kζ

2
k)Hk ⪯ Gk ⪯ 1

1−tkζk
Hk. Moreover, [45, Lemma 5.1.7]

implies that H−1
k+1 ⪯ 1

(1−tkζk)2
H−1

k . Thus, we have λf (xk+1)
2 ≤ 1

(1−tkζk)2
∥∇f(xk+1)∥2H−1

k

, where

∥∇f(xk+1)∥2H−1
k

= λ2
k − 2tkh

⊤
k Gkhk + t2kh

⊤
k GkH

−1
k Gkhk − 2tkh

⊤
k Gk(H

−1
k gk − hk).

Using the Cauchy–Schwarz inequality and Lemma A.5, we have

|2h⊤
k Gk(H

−1
k gk − hk)| ≤ α⋆∥Gkhk∥2H−1

k
+ α−1

⋆ ∥H−1
k gk − hk∥2Hk

.

Thus, we have λ2
k+1 ≤ λ2

kg(tk, ζk), where

g(t, ζ) =
1−2t(1−α⋆)2(1−tζ+ 1

3
t2ζ2)

(1−tζ)2
+ t2(1+α⋆)2

(1−tζ)4
+ α⋆t

(1−tζ)2

(
(1+α⋆)2

(1−tζ)2
+ 1
)
.
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Lemma A.5 implies ζk ∈ [0, 1+α⋆√
1−α⋆

R1]. For any ζl < ζu, we define tu = 1
(1−α⋆)2

1+α⋆
+3ζl

and tl =
1

(1+α⋆)2

1−α⋆
+3ζu

.

Since tk =
1

δk
ρk

+3ζk
and δk

ρk
∈ [ (1−α⋆)2

1+α⋆
, (1+α⋆)2

1−α⋆
], we have

g(tk, ζk) ≤ 1−2tl(1−α⋆)2(1−tuζu)
(1−tlζl)2

+ t2u(1+α⋆)2

(1−tuζu)4
+ α⋆tu

(1−tuζu)2

(
(1+α⋆)2

(1−tuζu)2
+ 1
)

for any ζk ∈ [ζl, ζu]. Dividing [0, 1+α⋆√
1−α⋆

R1] into 1000 intervals equally, we can verify numerically that
g(tk, ζk) ≤ 0.945. The desired result follows from λ2

k ≤ ρk(1− α⋆)
−1.

In Algorithm 3, we define k⋆ = min{k : ρk ≤ R2
1κ

−2} and the events

A1 =
{
cond(∇2f(x0)) ≤ β2

0 ≤ 4cond(∇2f(x0))
}
,

A2 =
{
cond(∇2f(xk⋆)) ≤ (β⋆)2 ≤ 4cond(∇2f(xk⋆))

}
,

A3 =
{
β2
k ≥ cond(∇2f(xk)), ∀k ≥ 0

}
.

Lemma A.9 shows that A1 ∩ A2 ∩ A3 happens with high probability. Hence, using two calls of sqrt-cond,
Algorithm 3 gets good estimates of Hessian condition numbers.

If A1 ∩ A2 ∩ A3 holds, then for all 0 ≤ k ≤ k⋆, using Lemma A.7, we have

βk = β0B0B1 · · ·Bk−1 ≤ 2
√
cond(∇2f(x0)) exp(C1κ

2(f(x0)− f(xk))). (21)

Moreover, for all k ≥ k⋆ + 1, by Lemma A.6, we have

βk = C4
3β

⋆ ≤ 2C4
3

√
cond(∇2f(xk⋆)) ≤ 2C6

3

√
cond(∇2f(argmin f)). (22)

Lemma A.9. Suppose that f is κ-self-concordant and β2 ≥ cond(∇2f(x0)), then P (A1 ∩ A2 ∩ A3) ≥
1− δ.

Proof. By Lemma A.4, we have P (A1) ≥ 1− 1
2
δ. Therefore, it suffices to show P (A2|A1) ≥ 1− 1

2
δ and

A1 ∩ A2 ⊆ A3. To show P (A2|A1) ≥ 1 − 1
2
δ, we observe from Lemma A.7 that β2

0 ≥ cond(∇2f(x0))
implies β2

k⋆ ≥ cond(∇2f(xk⋆)). Thus, Lemma A.4 implies P (A2|A1) ≥ 1 − 1
2
δ. It remains to show

A1 ∩ A2 ⊆ A3. Suppose that A1 ∩ A2 holds, then we have cond(∇2f(xl)) ≤ β2
l for 0 ≤ l ≤ k⋆ by

Lemma A.7. Moreover, Lemma A.8 yields ρl ≤ R2
1

κ2 for all l ≥ k⋆ + 1. Therefore, using Lemma A.6, we
have cond(∇2f(xl)) ≤ C8

3cond(∇2f(xk⋆)) ≤ C8
3(β

⋆)2 = β2
local = β2

l . This completes the proof.

We present the convergence theorem for Algorithm 3.

Theorem A.10. Suppose that f is κ-self-concordant, bounded below, and that β2 ≥ cond(∇2f(x0)).
Then, with probability at least 1− δ, the following statements hold:

1. Algorithm 3 terminates and returns a point y. If y ≠ x0, then λf (y) ≤ ϵ1 and λf (x0) ≥
√

1−α⋆

1+α⋆
ϵ0;

if y = x0, then λf(x0) ≤ ϵ0. Let ∆f = κ2(f(x0) − f(y)), K1 =
∆f

ω(R3)
, and K2 = 2 logC−1

2

(
R2

κϵ1

)
.

Then Algorithm 3 terminates within 2 + ⌊K1⌋+max(⌊K2⌋, 0) iterations.

2. Define B = max
(√

cond(∇2f(x0)),
√

cond(∇2f(argminy f(y)))
)
, and

Λ1 = CCGmin
{
n, 2BeC1∆f log(α−1

⋆ )
}
,

Λ2 = CCGmin
{
n, 2BC6

3 log(α
−1
⋆ )
}
,

Λ3 = CL

(
min

{
n, β log(nδ−2)

}
+min

{
n, 2BeC1∆f log(nδ−2)

})
.

The total number of HVP computations performed by Algorithm 3 is at most (Λ1 + 1)(K1 + 1) +
(Λ2 + 1)(K2 + 1) + Λ3 = O(log(ϵ−1

1 ) + log(δ−1)).
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Proof. By Lemma A.9, it suffices to prove all statements hold deterministically assuming that the
event A1 ∩ A2 ∩ A3 holds. For all k = 0, . . . , k⋆ − 1, we have ρk >

R2
1

κ2 . Therefore, it follows from
Lemma A.7 that f(xk) − f(xk+1) ≥ κ−2ω(R3). Summing this inequality over k = 0, 1, . . . , k⋆ − 1
yields k⋆κ−2ω(R3) ≤ f(x0) − f(xk⋆). Thus, k⋆ must be finite. Lemma A.8 implies that we have
ρk+1 ≤ C2ρk ≤ R2

1

κ2 for all k ≥ k⋆. Thus, we have (1− α⋆)ϵ
2
1 ≤ ρk ≤ Ck−k⋆

2 ρk⋆ ≤ Ck−k⋆

2
R2

1

κ2 . Therefore, the
algorithm terminates at some k ≤ 1 + ⌊K1⌋+max(⌊K2⌋, 0).

Suppose that Algorithm 3 returns xM ̸= x0, then we have ρ0 ≥ (1−α⋆)ϵ
2
0. It follows from Lemma A.5

that λf (x0) ≥
√

1−α⋆

1+α⋆
ϵ0. Moreover, since Algorithm 3 terminates at xM , we have ρM ≤ (1− α⋆)ϵ

2
1, and

thus λf (xM) ≤ ϵ1. Suppose that Algorithm 3 returns x0, then we have λf (x0) ≤ ϵ0 by Lemma A.5.
Now, we can estimate the total number of HVPs. By Lemma A.5, the total number of HVPs

called by CG-Inverse is bounded by
∑k⋆

k=0CCG min{n, βk log(α
−1
⋆ )}+

∑⌊K2⌋+1
k=1 CCG min{n, βk+k⋆ log(α

−1
⋆ )}.

Moreover, we call sqrt-cond at the zeroth iteration and the k⋆-th iteration. Hence, the total number
of HVP computations called by sqrt-cond is at most Λ3, by Lemma A.4 and Eq. (22). One HVP is
computed in each iteration additionally. Putting these pieces together, the desired result follows from
Eq. (21) and Eq. (22).

We are ready to prove the convergence of IPPM, which shares a similar spirit with the methods from
[8].

Proof of Theorem A.3. With probability at least 1− (K +2)δ′ ≥ 1− δ, the results of Theorem A.10 hold
for the first ⌊K⌋+ 2 calls of Algorithm 3. Hence, if we are able to prove that IPPM must terminate in
⌊K⌋+2 iterations under the assumption that the results of Theorem A.10 hold for all calls of Algorithm 3,
then indeed IPPM terminates in ⌊K⌋+ 2 iterations with probability at least 1− δ.

It follows from Proposition 2.6, Lemma A.7, and Lemma A.8 that f(zj+1) +
1
2
µ∥zj+1 − zj∥2 =

fj(zj+1) ≤ fj(zj) = f(zj). If we have zj ≠ zj+1 for j = 0, 1, . . . , N − 1 , then summing this inequality
over j = 0, 1, . . . , N − 1 yields

1
2
µ

N−1∑
j=0

∥zj+1 − zj∥2 ≤ f(z0)− f(zN) ≤ f(z0)− inf
y
f(y). (23)

Let Hj = ∇2f(zj) + µI. By the fact that λmax(H
−1
j ) = (λmin(Hj))

−1 ≤ 1
µ−ℓ

and the definition of fj,
we have ∥zj+1 − zj∥2 ≥ (µ − l)(zj+1 − zj)

⊤H−1
j+1(zj+1 − zj) = µ−l

µ2 ∥∇f(zj+1) − ∇fj(zj+1)∥2H−1
j+1

. Thus,

we have ∥zj+1 − zj∥2 ≥ µ−l
µ2 (∥∇f(zj+1)∥H−1

j+1
− ∥∇fj(zj+1)∥H−1

j+1
)2 = µ−l

µ2 (λfj+1
(zj+1) − λfj(zj+1))

2 ≥
µ−l
µ2 (
√

1−α⋆

1+α⋆
ϵ − ϵ′)2 = µ−l

4µ2 ϵ
2, where the last inequality follows from Theorem A.10. Therefore, we have

∥zj+1 − zj∥2 ≥ µ−l
4µ2 ϵ

2 and thus N ≤ 8µ(f(z0)−inf f)
(µ−ℓ)ϵ2

by Eq. (23).
Suppose that IPPM terminates at zN = zN+1, then we have N ≤ 8µ(f(z0)−inf f)

(µ−ℓ)ϵ2
. This implies that IPPM

terminates in ⌊K⌋+ 2 iterations. It follows from Theorem A.10 that λfN+1
(zN+1) = νf, 1

2
µ∥·∥2(zN+1) ≤ ϵ.

Let Λ1 = CCGmin
{
n, 2BeC1∆f log(α−1

⋆ )
}
, Λ2 = CCG min {n, 2BC6

3 log(α
−1
⋆ )}, and Λ3 = CL(min{n,

β′ log(nδ′−2)} + min{n, 2BeC1∆f log(nδ′−2)}). For j ≤ N , we define ∆
(j)
f = fj(zj) − fj(zj+1) and

K
(j)
1 =

∆
(j)
f

ω(R3)
. Moreover, we define ∆

(N+1)
f = 0 and K2 = 2 logC−1

2

R2

κϵ′
. Theorem A.10 yields that the total

number of HVP computations by IPPM is bounded by
∑N+1

j=0 (1+K
(j)
1 )(1+Λ1)+ (1+K2)(1+Λ2)+Λ3 ≤

1+Λ1

ω(R3)

∑N+1
j=0 ∆

(j)
f +(1+Λ2)(N +2)2 logC−1

2

R2

κϵ′
+(N +2)(2+Λ1+Λ2+Λ3). The desired result follows from∑N+1

j=0 ∆
(j)
f =

∑N+1
j=0 (fj(zj)− fj(zj+1)) =

∑N+1
j=0 (f(zj)− f(zj+1)− 1

2
µ∥zj+1 − zj∥2) ≤ f(z0)− inf f .
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