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Abstract. Convex maximization arises in many applications but is generally
NP-hard, even for low-rank objectives. This paper introduces a set of broadly
applicable conditions that certify when such problems are polynomially solv-
able. Our main condition is a new property of the feasible set, which we
term co-monotonicity. We show that this property holds for two important
families: matroids and permutation-invariant sets. Under co-monotonicity
and mild additional assumptions, we develop a geometric framework that
generates polynomially many candidate solutions, one of which is optimal.
This yields a polynomial-time algorithm. We further derive substantially
sharper complexity bounds when the feasible set is permutation-invariant.
Our framework recovers existing tractable instances and often improves their
complexity. It also expands the frontier of tractability by providing the first
polynomial-time guarantees for new applications.

1 Introduction

In this paper, we study convex maximization of the form:

Z* = max f(Az
max f(Ar) "
st.r e X CR",

where the matrix A € R™*"™ has r linearly independent rows, r < n, and the function
f:R" — R is convex. Without loss of generality, we assume that problem (1) has
a global optimal solution. By definition, the integer r is exactly the rank of the
objective f (see, e.g., [25, 28]).

Convex maximization problem (1) has long been a cornerstone of optimization,
known for its interesting mathematical properties and broad applicability. Problem
(1) is known to be computationally difficult, as it covers several fundamental NP-
hard optimization problems, such as zero-one integer programming [24, 62], bilinear
programming [9], and difference-of-convex programming [33]; we refer the reader to
the excellent survey by [10] for a complete discussion.

Despite its general intractability, this paper aims to study when problem (1)
becomes polynomially solvable. Our approach is straightforward: if one can construct
polynomially many solutions, one of which is optimal for problem (1), then the
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problem can be solved in polynomial time by enumerating these candidates. To this
end, (i) we characterize novel conditions that identify tractable instances of problem
(1); and (ii) leveraging these conditions, we propose a general theoretical framework
to generate the ideal polynomial-size set of candidate solutions for (1).

1.1 A tractable subclass of problem (1)

In this subsection, we present structural conditions that single out a tractable subclass
of problem (1), with particular emphasis on a novel property of the feasible set X.
We show in the rest of the paper that any instance of (1) satisfying these conditions
admits a polynomial-time algorithm.

Throughout, we assume that the rank r is fixed, which is prevalent in prior studies
of tractability for special examples of problem (1) (see, e.g., [15, 58]). To illustrate
the significance of this assumption for tractability, consider the simple case r = 1.
When X is compact, problem (1) admits an optimal solution z* such that Az* is
an extreme point of the convex hull of the set {Ax € R" : x € X'} [11]. For r = 1,
this convex hull is just a bounded interval with two extreme points. To solve (1), it
suffices to evaluate only these two extreme points. This suggests that fixing the rank
r may constrain the number of relevant candidate solutions.

Nevertheless, problem (1) remains NP-hard even in the fixed-rank setting. For
example, [61] proved that minimizing a concave quadratic function of rank two (r = 2)
over a polytope is A'P-hard. For any hope in tackling problem (1) under a fixed
rank, one needs to impose further conditions on the feasible set X. To this end,
we now introduce a key combinatorial property of X — co-monotonicity. Intuitively,
co-monotonicity requires that whenever a linear objective is sorted according to a
permutation, the linear optimization problem over X admits an optimal solution
whose components follow a (perhaps different) permutation that depends only on
the ordering pattern of the objective.

We propose co-monotonicity as a novel unifying lens for a structural phenomenon
that arises across both discrete and continuous optimization, yet has not been ex-
plicitly recognized. In particular, we demonstrate that this property is satisfied by
two fundamental classes of sets:

(i) Matroids. A matroid is a combinatorial structure that generalizes the notion
of linear independence in matrices [72, 73]; and

(i) Permutation-invariant sets. A set X C R™ is permutation-invariant if it is sym-
metric, that is, any reordering of the entries of a vector within X’ is still contained
in X [39]. As the demand for handling set-based data has grown, permutation
invariance has become a cornerstone of modern machine learning, such as 3D
shape recognition and image classification [38, 40, 43]. Furthermore, it plays a key
role in classical optimization, from sparsity-constrained optimization to robust
optimization (see, e.g., [39, 44, 74]), where the constraints exhibit symmetry.

Consequently, even under the co-monotonicity condition on X', problem (1) remains
highly expressive. It encompasses a wide range of problems in optimization, statistics,
and machine learning, as exemplified in Section 6.

Besides, we make the following assumption.
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Assumption 1 For any subset S C [n], the following restriction of problem (1) can
be solved in polynomial time T1:

max {f(Az) : supp(z) = S} 2)

Assumption 1 means that problem (1) is tractable once the support is fixed. Thus,
instead of constructing polynomially many candidate solutions, it suffices to generate
polynomially many candidate supports, each of which can be solved efficiently under
Assumption 1. Consequently, our proof strategy centers on constructing supports
for (1), where the co-monotonicity of X plays a key role. Table 1 summarizes the
complexity bounds on the number of candidate supports for the co-monotone set
and for its two important classes.

Note that the fixed-support set {x € X" : supp(z) = S} is generally non-closed.
Consequently, problem (2) may not be able to attain its optimum. More precisely,
by Assumption 1 we mean that there exists a polynomial-time algorithm that either
returns an optimal solution when one exists, or certifies that no optimal solution exists.

In the binary setting, given a subset S, the binary variable x € X" is uniquely
determined by setting x; = 1 for i € S and x; = 0 for i ¢ S. Thus, we remark

Remark 1. For X C {0,1}™, Assumption 1 reduces to evaluating the objective f.

Another important class of (1) where Assumption 1 is often valid arises in best subset
selection problems, including sparse principal component analysis (SPCA) [35, 37]
and variable selection for two-sample tests (25T) [71]. In these problems, fixing the
support is equivalent to specifying a subset of features or samples. This often reduces
the original problem to a conventional and tractable optimization form.

1.2 Literature review

The tractability of special cases of (1) has been extensively investigated, particularly for
fixed rank r. This line of research broadly splits into two categories based on the struc-
ture of X: matroid-constrained optimization and sparsity-constrained optimization.

Matroid-constrained optimization. We begin by explaining a strategy used in the
literature on matroids: extreme point enumeration. When X C {0, 1}" represents a
matroid, (1) must admit an optimal solution z* such that Az* is an extreme point
of the convex hull of {Az : x € X'} [11]. If the number of such extreme points is
polynomially bounded, then (1) can be solved efficiently by enumeration. Researchers
have sought to identify feasible sets that allow for efficient extreme point enumeration,
among which matroids stand out as a widely-studied and successful case.

A key property of matroids is that any linear optimization over them is efficiently
solvable by the greedy algorithm [23, 42]. This tractability has laid the foundation
for developing various combinatorial and geometric techniques to enumerate relevant
extreme points. When X’ C {0, 1}" represents a matroid and f is a rank-2 polynomial
in (1), [31] demonstrated that the number of extreme points is at most O(n?) by lever-
aging parametric linear programming. [6] later applied the same technique to uniform
matroids and separable rank-2 functions. However, this parametric linear programming
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approach does not extend to higher ranks. For any fixed rank r, problem (1) over uni-
form matroids coincides with the shaped partition problem for two parts [36, 60]. [7] es-
tablished a lower bound of £2(n?L"=1/2)) for the complexity of this partition problem.

[58, 59] are two papers that are most closely related to our work. The celebrated
result of [58] shows that for a matroid X C {0, 1}", problem (1) admits a polynomial-
time algorithm for any fixed rank r. Their proof idea is a reduction of (1) to solving
polynomially many linear optimization problems over X whose optimal solutions
cover all extreme points. The reduction leverages several results of zonotopes that
represent the dual geometry of a Hyperplane Arrangement (HA) [13, 49]. Importantly,
the number of such linear problems is bounded by O(n?("~1)) [27, 58]. Tt is noted that
each linear problem is greedily solvable based on the matroid property. Subsequently,
[59] generalized this tractability beyond matroids to a broader class of sets, which
they termed edge-guaranteed. This concept was specifically defined to facilitate the
zonotope-based reduction method. By doing so, only a polynomial-time number of
linear optimization counterparts over edge-guaranteed sets need to be solved. [59]
also provided a solution approach for solving these linear problems.

Sparsity-constrained optimization. A complementary line of work investigates the
tractability of continuous optimization in the fixed-rank setting, specifically focusing
on SPCA and the linear Least Trimmed Squares (LTS) problem [64]. Both problems
impose a sparsity (zero-norm) constraint, where the main challenge is to select a
sized-k subset of features or samples from n candidates [15, 34, 45]. Once the subset
is determined, SPCA and LTS reduce to the standard PCA and least-square esti-
mation, both of which admit closed-form solutions. Rather than enumerating all (Z)
possibilities, the literature has focused on characterizing polynomially many subsets,
among which lies an optimal one. This reduces the original problem to evaluating
a manageable set of subsets.

SPCA is an interpretable dimensionality reduction method that constructs princi-
pal components from a small subset of features [12, 16, 37]. Given an n X n covariance
matrix of rank r, by leveraging eigenvalue properties and introducing the auxiliary
angle vector, [5] demonstrated that only O(n") candidate subsets suffice for solving
single-component SPCA on fixed-rank matrices. In another recent paper, [15] extended
this idea by combining eigenvalue properties with the HA technique. He constructed
O(nmin{d*’“}(TQJr’”)) subsets for general SPCA, where d denotes the number of principal
components. Furthermore, [15] first derived the polynomial-time complexity of disjoint
SPCA via a reduction to the maximum-profit integer circulation problem.

LTS is a robust statistical method that fits a linear model to a subset of k
samples among n, thus mitigating the influence of n — k potential outliers [63, 64].
For the single feature case, [34] demonstrated that it suffices to evaluate only O(n?)
subsets. Building on the plane sweep algorithm given by [21], [34] developed an
exact O(n?logn) algorithm to solve LTS to optimality. Later, [54] improved the
complexity to O(n?) for the single-feature case. In addition, they proposed a more
general algorithm for LTS using topological plane sweep, which computes O(nP*2)
candidate subsets with p denoting the number of features.
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We conclude this literature review by highlighting two key research gaps. First,
existing theory primarily focuses on specific special cases of (1) and lacks general-
izability to the broader problem class studied in this paper. Second, the proposed
exact algorithms in the literature, while polynomial-time in theory, are not directly
implementable in practice. Bridging the gap between theoretical tractability and
practical solution method remains an open challenge.

1.3

Contributions and outline

Below we list the main contributions and an outline of the remaining paper.

(i)

(ii)

1.4

In Section 2, we formalize the definition of the co-monotone set, and demon-
strate that matroids and permutation-invariant sets form two canoical classes
of co-monotone sets.

For the n = 2 case, we establish the necessary and sufficient geometric con-

dition under which a set is co-monotone and the underlying mapping becomes
identical mapping.
In Section 3, by leveraging the convexity of f and the comonotonicity of X, we
develop a general theoretical framework for problem (1) that produces O(n?")
supports, one of which matches the support of an optimal solution. For any fixed
7, the bound O(n?") is polynomial in n; together with Assumption 1, it yields
a polynomial-time algorithm for (1) with complexity O(n?"=2 - T, +n?" - Ty)
that searches over these supports. This framework applies to any co-monotone
feasible set and, in a unified manner, recovers the known tractability of convex
matroid maximization and SPCA.

We also explicitly derive the polynomial-time complexity for the matroid
case, which coincides with the known bound in [58];

In Section 4, we refine the support-generation framework for permutation-
invariant sets, an important class of co-monotone sets. Specifically, we reduce
the number of candidate supports from O(n?") to O(n"*?), as detailed in Table 1.

Moreover, Section 4.3 shows that equipping permutation-invariant sets with
additional sign conditions leads to further reductions in complexity bounds, as
summarized in Table 2;

In Section 5, we broaden our tractability results and show that problem (1) can
be still solvable in polynomial time when f is only quasi-convex and X is not
comonotone; and

Finally, Section 6 applies our results to several applications. We recover or
improve existing complexity bounds for SPCA and its related from a novel
perspective. We also establish, for the first time, the polynomial-time complexity
for two additional application examples.

Notations and definitions

For a positive integer n, we let R™ and Rl denote the set of all the n-dimensional
vectors and nonnegative vectors, respectively, let [n] = {1,2,--- ,n}, let IT,, denote
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Table 1. The number of candidate supports for problem (1)

Co-monotone set | Matroid | Permutation-invariant set
This paper O(n*) On*2) O(n™*3)

The literature — O(nQT*Q) _

the set of all permutations of [n]. We let e denote the all-ones vector, and let I denote
the identity matrix, with their size being clear in context. For a vector z € R™, we
let ||z||o denote the number of nonzero entries of z, and let || = (|zy,--- , |z,]) "
contain the absolute entries of z. For a matrix X and a positive integer d, we let | X || ¢
denote its Frobenius norm, let || X || denote the number of nonzero rows of X, and let
| X1|(a) denote the sum of its d largest eigenvalues. For a symmetric matrix X, we let
Amax(X) denote its largest eigenvalue, and given a subset .S, let Xg ¢ denote a principal
submatrix of X indexed by .S. For a set D C R, we denote by conv(D) its convex hull.
Given a hyperplane H = {x € R" : "z = b}, we denote its two open half-spaces by

H> ={zcR":a'z>b}, and HS ={x € R":a'x < b}.

For a permutation 7w € II,, and a vector x € R", we say that x is sorted by
7 if 2y < oo+ < Ty holds. Note that the permutation that sorts a given vec-
tor x is not unique when there are ties. For example, the vector = [1,0,1]"
can be sorted by (2,1,3) or by (2,3,1). Given a permutation 7, we define a
set Z(m) = {z € R" : 2;q) < -+ < 4y} and its nonnegative counterpart
ZHm) ={z eR} :0< zrq) < - < Trgmy }

2 Co-monotone sets

In this section, we formally introduce the notion of co-monotone sets and discuss
their basic properties.

Definition 1. A set X C R" is called co-monotone if there is a mapping M : II,, —
I1,, such that for each permutation w € II,, and each cost vector v € Z(r), whenever

the problem

maxv 'z,

zeX

attains its optimum, it admits an optimal solution x* sorted by M(w), that is,
e Z(M(m)).

If one can choose M to be the identity mapping, then X is called standard co-
monotone.

Below provides a simple example to illustrate the concept.
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Ezample 1. Let X = {x € {0,1}" : e"x = k} with k € [n]. Then X is a standard
co-monotone set. Indeed, if v € Z(), an optimal solution to max{v'z: =z € X} is
obtained by setting x ) =+ = Zz) = 1 and Zr(x11) = -+ = Tr(n) = 0, which
belongs to Z(m). Thus, one can take M(7) = 7.

We note that a cost vector v can be sorted by multiple 7 in Definition 1 when v
has ties (as in the extreme case v = 0). However, regardless of the specific 7 chosen,
Definition 1 requires that there always exists an optimal solution of (6) that is sorted
by M(m).

We begin by characterizing standard co-monotone sets in the planar case. While
elementary, the two-dimensional setting provides a microcosm for understanding the ge-
ometric restrictions imposed by co-monotonicity. The following proposition establishes
that in R?, a mild surjectivity condition is sufficient for standard co-monotonicity.

Proposition 1. Assume X C R? is a compact co-monotone set under permutation
mapping M. If M is surjective, then X is standard co-monotone.

Proof. Let m = (1,2) and 7 = (2, 1). If M is the identity, the claim is immediate. Thus,
we assume M(m) = 7 and M(7) = . It suffices to prove for every v = (v, v2) satisfy-
ing v; > vy, one can find a vector 7 € S £ argmax{v 'z : x € X'} such that Z; > Z».

Since X C R? is co-monotone under M, there exists Z € S with & < Zo. Let
U = (vg,v1) € Z(m). Then one has

(0,Z) — (0,z) = (v —v2)(ZT1 — Z2) < 0. (3)

Moreover, applying co-monotonicity to ¥ which is sorted by 7, one can deduce a
vector T € argmax{?d 'z : x € X} such that T € Z(), i.e.,, T1 > Tp. This implies
(0,Z) > (v, ). Together with (3), one has (v, Z) < (v,7). Because Z is maximal for
v, one deduce T € S as well. The conclusion follows from 71 > Z». |

Proposition 1 implies that in two-dimensional case, co-monotonicity is always standard
unless the set forces a fixed ordering, that is, either X C Z(1,2) or X C Z(2,1).
We next provide a condition for verifying standard co-monotonicity using only two
directions, akin to checking extreme rays in polyhedral theory.

Proposition 2. A compact set X C R? is a standard co-monotone set if and only if
for each v € {e, —e} and m € Ily, the problem max{v'x : x € X} admits an optimal
solution T € Z(m) .

Proof. The necessity condition directly follows from Definition 1 due to v € Z(1,2) N
Z(2,1). To prove sufficiency, we take an arbitrary v = (v1,v2) with v; > wve. It
remains to prove that there exists  with Z; > Z which is optimal for the cost
vector v. Take any z € X. Then if Z; > Z5 then we are done. Otherwise, assume
T1 < Ty and let v = %e. By our assumption, v € Z(1,2) implies there exists
T € argmax{v 'z : ¥ € X'} with Z; > Z5. Next, we show the chain of inequalities

v E<o'E<v'z<v 'z (4)
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Indeed, the first inequality follows

1
vV E-T &= 5 (U1 = v2)(1 = 72) <0,

the second from Z is optimal for the linear objective v, and the third from

1
vz—v'T= —5(1)1 —02)(Z) — Tp) <0

Because 7 is optimal for the linear objective v, (4) implies that Z is also an optimal
solution for v. The conclusion follows from Z; > Z». a

In R?, ordering information is encoded by a small number of “coarse” directions
(such as the sum x; + x3). Proposition 2 exploits this fact by reducing standard
co-monotonicity to checking the existence of ordered optima for only a finite collection
of linear objectives.

We next connect co-monotonicity to symmetry. Following [39], a set X C R"
is called permutation-invariant if for every vector x € X and every permutation
7 € I, the permuted vector [Z.(1), Tr(2), - - ,x,r(n)}T also belongs to X'. Next, we
demonstrate that permutation-invariant sets are standard co-monotone.

Lemma 1. Any permutation-invariant set X is standard co-monotone.

Proof. Let v € R™ be sorted by 7 € IT,,. Suppose that Z is an optimal solution to
the problem max,cy v'x. Then, we construct a new vector z* by re-ordering the
entries of T so that
Tr() S S Ty
The vector z* still belongs to X due to permutation-invariance. By the rearrangement
inequality [29], we get
T <oz,

implying «* must also be optimal. Thus, we have M(7) = 7 in Definition 1. O

We do not expect that every standard co-monotone set is permutation invariant.
However, we can show that if a centered ellipsoid in R? is co-monotone, then it must
be permutation invariant.

Example 2. Let n =2 and X = {z: ' Qx < 1}, where Q € R™*" is a symmetric
positive definite matrix. If X' is co-monotone, then X is permutation invariant. Indeed,
because 0 is an interior of X, if X is co-monotone under a mapping M : II,, — II,,,
then M must be surjective, which implies that M can be chosen to be the identity
mapping. Consider any v € R” and z € argmax{v'x : x € X'}. A standard calcu-
lation yields that z = %Qflv, where A = \/vTQ~1v. Therefore, X is co-monotone
if and only if
[(Qe): — Q)] (i — 73) = 0¥ #

As n = 2, this is equivalent to
(Q11 — Q12)77 + (Q11 + Q22 — 2Q12) 7172 + (Q22 — Q12)75 > 0 Va,
which implies (Q11 + Q22 — 2Q12)? — 4(Q11 — Q12)(Q22 — Q12) = (Q11 — Q22)* < 0.

Therefore, Q11 = Q22 and X is permutation invariant.
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While permutation-invariant sets form a substantial subclass of co-monotone sets,
the concept also captures combinatorial structures that lack full symmetry. An impor-
tant source of non-standard co-monotone sets is structure closely related to greedy
algorithms. Matroids provide a canonical instance of this kind. Let M = ([n], B) be a
matroid over [n] with a collection of bases B C 2["] [73]. For a set S C [n], its incidence
vector = € {0,1}" is defined as z; = 1 if 4 € S and 0 otherwise for all ¢ € [n]. In this
paper, we identify M with the corresponding set of incidence vectors X C {0, 1}".

Lemma 2 ([23]). If X € {0,1}" encodes a matroid or the set of bases of a matroid,
then X is co-monotone. Moreover, the associated permutation mapping M can be
accessed in O(nlogn) time.

Proof. Assume X represents the bases of a matroid. Consider any vector v € R™
sorted by vz, > Vg, > vg, for a m € II,,. The best-in greedy algorithm scans
elements in the order 7(1),...,7(n) and selects an element whenever feasibility is
preserved, i.e., it constructs a vector * € {0,1}" by the recursion

why = 1ifand only if [2% ), , 25, 1), 1,0,-+ 0] € X. (5)

By [23], this procedure returns an optimal solution to max{v'z : x € X'}. Impor-
tantly, the output z* depends solely on the feasibility check of X and the permutation
7, not on the specific values of v. Therefore, for all v sorted by 7, greedy produces the
same optimal solution z*. This proves that a matroid is co-monotone. To be more spe-
cific, we assume WLOG that m = (1,2,...,n) is the natural order. Define o = M()
by requiring o (i) < o(j) if either (1) 7 ;) =1and 27, =0, or (2) ;) = x7 ;) and
i < j. For permutation 7 other than the natural one, M () can be defined similarly.

Consider the case where X represents a matroid, i.e., the incidence vectors of
independent sets. Let 2* be the vector given by (5). Then the solution obtained by
setting z; = « if v; > 0 and z; = 0 otherwise is optimal for max,¢ x v z. Because z*
is binary, =* and Z share the same order according to above modification. This implies
that X' is co-monotone under M. In both cases, the time complexity is O(nlogn),
dominated by the sorting step. a

The connection between greedy solvability and set structure has been extensively
studied beyond matroids in literature. Other notable binary generalizations include
antimatroids [18], and greedoids with strong exchange axiom and matroid embed-
ding structures [41, 32]. In the continuous setting, Edmonds’ classical best-in greedy
algorithm extends to polymatroids and base polyhedra of submodular functions [22].
In discrete analysis, M-convex sets serve as the integral analogue of these structures
[55, Chapter 4]. One can readily verify the co-monotonicity of above greedy-related
families using the same reasoning as in Lemma 2; we do not repeat the details here.

3 Polynomial-time solvability

In this section, we propose a general theoretical framework that identifies a polynomial
number of candidate supports for (1) and demonstrates the existence of an optimal
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support among them. Under Assumption 1, (1) is tractable for any fixed support;
therefore, evaluating only these candidates yields a polynomial-time algorithm. No-
tably, our analysis applies to any co-monotone set in (1) and unifies, as special cases,
all tractability results surveyed in Section 1.2.

3.1 Complexity analysis: A novel theoretical framework

In this subsection, we reduce the search for an optimal solution to (1) to a polynomial
number of candidate supports, which is established through a three-step framework
outlined in Figure 1. Under Assumption 1, we show that this framework directly
leads to a polynomial-time algorithm for (1).

Step 1. Leveraging the convexity of f, we reduce (1) to its linear counterpart (6),
which maximizes a linear function ¢ Az over the original feasible set X’ for
some ¢ € R". As X is co-monotone, we derive an optimality condition for
(6) that relies only on the vector A'c.

Step 2. Since ¢ is unknown, we partition its space R" into a polynomial number of
regions within which the optimality condition for (6) is fixed.

Step 3. Finally, we show that each region in Step 2 admits a polynomial-sized set
of possible supports. Thus, at least one of them is optimal to (1).

1. Reduction to the 2. Space 3. Support
linear counterpart > partition > construction
(Proposition 3) (Lemma 3) (Theorem 2)

Fig. 1. A theoretical framework of complexity analysis.

We remark that the proposed framework has two key advantages. First, generality:
it provides a systematic procedure that establishes polynomial-time solvability of (1)
for any co-monotone feasible set X. Second, adaptability: each step can be tailored
to specific X' (e.g., permutation-invariant sets) to tighten the complexity bounds. To
avoid redundancy, we do not repeat the framework in the subsequent sections for
special families of X’; instead, we present only the necessary changes.

Proposition 3. There exists a vector ¢ € R" such that

maxc' Az (6)
TeX

admits an optimal solution, and every optimal solution to the linear counterpart (6)
is also optimal for the original problem (1).

Proof. Let T € X be an optimal solution to problem (1). Let ¢ € R” be a (sub)gradient
of f(Ax) at AZ. Then, we show that Z is also optimal for (6) with the vector ¢.
Suppose, by contradiction, that there exists a solution z* € X satisfying

¢l Az* > 72" Az
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Then, we have that
F(A2*) = f(AR) + (Ax* — AB) > f(AB),

where the first inequality results from the convexity of f. The strict inequality
contradicts the optimality of Z in (1). Hence, Z must be optimal for (6) with €.

Furthermore, we show that any optimal solution of (6) with the vector ¢ is
also optimal for (1). Let £ € X be an optimal solution of (6) with ¢, and thus
¢" Az =¢" AZ holds. Then, applying the convexity of f again yields

J(AD) > f(AB) + (A% — A7) = f(AD),

where the inequality must hold with equality because (1) attains the optimum at Z. It
follows that Z also attains the optimal value of (1). We thus complete the proof. O

It is worth noting that Proposition 3 provides a strong result: each optimal solution
of (6) for some c is also optimal for (1). Therefore, our analysis can focus on a
single optimal solution of (6) to solve (1). Compared to (1), its linear counterpart
(6) can be better controlled, as (6) enjoys an optimality condition derived from the
co-monotonicity of X.

Remark 2. Let X be a co-monotone set. Let ¢ € R", and let € I1,, be a permutation
such that

(AT6) 0y << (47T0)

)

That is, A" c is sorted by 7. Then, by Definition 1, the set Z(M(7)) must contain
an optimal solution of (6). o

w(n)

In this context, the permutation 7 depends on the cost vector A'c in (6). We make
two remarks about the set Z(M(r)):

(i) By definition, the set Z(M(m)) contains all vectors in R™ whose entries are
sorted by M(m); and

(i) For a given vector ¢ € R", the permutation 7 may not be unique. As noted in
Section 2, co-monotonicity allows us to fix an arbitrary . The corresponding
set Z(m) is then uniquely characterized and always contains an optimal solution

of (6).

To prepare for partitioning the parameter space of ¢ € R”, we introduce a technique
from discrete geometry-the hyperplane arrangement Theorem. Let H = {H;}cpp) be
a collection of p hyperplanes in R?, where each H; denotes a hyperplane. The set H
partitions the whole space RY into relatively open faces (or regions) of dimensions
from 0 to ¢. In what follows, we will use the terms face and region interchangeably.
Each face can be characterized by Nic[y) I~{Z-, where H; € {H;,H; ,H} represents
either the hyperplane H; or one of the two open half-spaces corresponding to H;. The
collection of these faces is called the arrangement A(H) of H. For more details, we
refer to [19, 20], with [1, Chapter 1] that provides illustrative examples of A(H) in R?.
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Theorem 1 (Hyperplane arrangement Theorem [19]). Let H be a finite set
of p hyperplanes in R?. Then the arrangement A(H) consists of O(p?) relatively
open regions (or faces) and can be constructed in O(p?) time. Furthermore, when all
hyperplanes in H pass through the origin, this bound tightens to O((p — 1)971).

Lemma 3. The space R™ can be partitioned into O(n?"—2) regions. For each region R,
there exists a fized permutation m such that, for all ¢ € R, the vector A c is sorted by .

Proof. For any pair 4, j € [n] with ¢ < j, define the hyperplane
Hy = {ce R (47¢), — (47¢) =0} (7)

Let H = {H;; }1<i<j<n denote these hyperplanes, whose number is n(n — 1)/2. Each
hyperplane leads to two open half-spaces: Hg and H; According to Theorem 1,

the arrangement A(H), which forms a partition of R”, consists of at most O(n?("—1))
relatively open regions (or faces). ) )

Each region is characterized by Ni<;<;<nH;;, where H;; € {H,j, Hg, H;} Con-
sequently, the relative ordering between any two components (AT c)i and (ATc)j is
invariant within a region. This establishes the existence of a fixed permutation that

sorts ATc for all ¢ in the same region. We thus conclude the proof. O
We make two remarks about Lemma 3:

e We characterize the optimality condition of (6) via the set Z(r|c) (see Remark 2);
however, the parameter ¢ € R” in (6) is unknown. Importantly, Lemma 3 establishes
that, as ¢ ranges over R”, only O(n?~2) distinct sets Z(r|c) exist; and

e Hyperplane arrangements and its dual geometry are standard tools for space
partition (see, e.g., [15, 58, 59]). Furthermore, in the next section, we introduce
a family of hyperplanes in the extended space that yield improved bounds.

In the rest of this paper, we assume that the permutation mapping M in Def-
inition 1 can be evaluated in polynomial time, which is denoted by T,. Now, we are
ready to show the main results.

Theorem 2. The following hold:

(i) There ezists a collection of O(n?") candidate supports for (1), among which at
least one support is optimal; and

(it) Under Assumption 1, problem (1) admits a polynomial-time algorithm with
complexity O(n? =2 . Ty +n?" - Ty).

Proof. Our proof includes two parts.

Part I. By Lemma 3, we can partition R” into regions Ri,---,Rg with K =
O(n*~2). In addition, for each k € [K], there exists a permutation 7% € II,, that
sorts AT ¢ for all ¢ € Ry,. Combing this result with Remark 2, we obtain that

Claim. Let k € [K]. For any ¢ € R¥, the set Z(c*) contains an optimal solution of
(6), where o* := M(m*).
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According to Proposition 3, there exists a vector ¢* € R” such that every optimal
solution of (6) is also optimal for (1). According to Remark 2, (6) admits an optimal
solution that belongs to the set Z(M(7*)), where 7* can be an arbitrary permutation
that sorts ATc*. Since ¢* must belong to some region R, with ¢ € [K], we have

7t =7, and Z(M(7*)) = Z(c*).

As a result, the union |J Z(o*) contains an optimal solution to (1), which allows
ke[K]
us to equivalently convert (1) into

2= ma)%{{f(ATx) xe | Z(ok)}. (8)

kE[K]

Claim 1 For any permutation o € II,,, the set Z(o) admits at most O(n?) candidate
Supports.

Proof. Since every vector x € Z(o) is sorted by o, its zero entries (if any) appear
consecutively and form a continuous block under this permutation. The support of
x is uniquely determined by this zero block. Specifically:

If = contains no zero entries, there is exactly one support [n].

If x contains zeros, there exist indices 1 < t; < t5 < n such that

To(1) < S g(ty-1) <O, o) = " = To(ty) =0, 0 <Zo(yr1) <00 < To(n)-

It is evident that for any fixed pair (¢1,t2), the support of = is uniquely identified.
Since there are O(n?) possible choices of (t1,t2), the claim follows. o

According to Claim 1, there are at most O(n?) possible supports within each
set Z(o"). Since there are O(n?"~2) such sets in (8), the total number of candidate
supports is at most O(n?"), denoted by Sy, -- Sy, with |L| = O(n?"). Thus, (8) can
be reformulated as

2" = max max { f(ATz) : supp(z) = S[}. (9)

Le[L] zeX

Part II. By Definition 1, computing the permutation o* for the region Ry, takes
T, for each k € [K]. As shown in Part I, each region yields O(n?) supports once
the permutation is fixed. Therefore, the overall computational complexity of support
generation is O(n?" =2 - T, 4+ n?"). Under Assumption 1, each subproblem in (9) is
solvable T; time. Accordingly, evaluating all candidate supports {Sg}ge[L] requires

@ (nzr*Q N PR Tl)

running time. Since both T; and T, are polynomial, there is a polynomial-time
algorithm that operates by evaluating {Sg}ge[ 1]+ This completes the proof. a

We make the following remarks about Theorem 2.
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e According to Theorem 2, (1) is polynomially solvable under Assumption 1. This
result generalizes existing tractability analyses, which were limited to specific cases
of (1) (e.g., [58, 15, 59]). For example, Theorem 2 establishes, for the first time,
the polynomial-time solvability of 25T with the fixed rank in Section 6; and

e The complexity bounds in Theorem 2, while general, are not necessarily tight for all
problem classes of (1). We can further improve the complexity bound for specific
structure of the feasible set X, as shown in Corollary 1.

For the matroid setting, according to Remark 1 and Lemma 2, the results of
Theorem 2 can direcly apply. By further exploiting the matroid structure, we reduce
the number of candidate supports required for optimality from O(n?") to O(n?"~2).
Corollary 1 recovers the result of [58, Theorem 1.4] from a different perspective.

Corollary 1. When X € {0,1}" encodes the bases of a matroid, the following hold:

(i) There exists a collection of O(n*"=2) candidate supports for (1), among which
at least one support is optimal; and
(ii) Problem (1) admits a polynomial-time algorithm with complezity O(n?"~logn).

Proof. The best-in greedy algorithm (5) yields an optimal solution z* to (6) in
To = O(nlogn) time. In particular, the optimal solution z* remains the same as long
as the cost vector A"c of (6) is sorted by the same permutation. Hence, it suffices to
evaluate one support per region defined by the permutation of AT c. Combining this
with the O(n?"~2) regions in Theorem 2, we obtain O(n?"~2) candidate supports for
(1) that guarantee optimality. Then, the complexity in Part (i) immediately follows
from Remark 1 and Theorem 2. O

4 Improved complexity for permutation-invariant sets

In this section, we focus on permutation-invariant X’ for which Ty = O(1).

4.1 Optimality condition

In this subsection, we derive a new optimality condition for (6) tailored to permutation-
invariant sets. This condition characterizes the sign pattern of an optimal solution
by a thresholding rule, which compares each element of the cost vector A'c of (6)
against two threshold parameters.

To motivate the thresholding rule, consider the permutation-invariant set X =
{z €]0,1]" : e"& = k}. For this case, according to strong duality, there exists an
optimal Lagrangian multiplier A such that (6) is equivalent to

max c¢' Ar — ez + Mk = max (ATC - )\e)T z + M\k.
z€[0,1]™ z€[0,1]”

Clearly, the above maximization problem admits an optimal solution x* satisfying
the thresholding rule:

(i) It (ATC)Z. > A, then zf =1 > 0; and
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(i) If (ATC)Z. < A, then z = 0.

This example clearly illustrates how a thresholding rule, parameterized by the dual
variable )\, yields an optimality condition for (6). Such a rule can be extended to gen-
eral permutation-invariant sets. It is expected that the resulting optimality condition
becomes more complicated than in the illustrative example above. In the general set-
ting, there are two threshold parameters, which arise from the permutation-invariant
structure rather than directly using Lagrangian multipliers.

We now formalize the general optimality condition.

Definition 2. For any vector c € R” and parameters A < X, define the set

Q (¢, \,A) :=={z € R" : (a) sign constraints, (b) ordering constraints}
where
(a) Sign constraints: For any i € [n],

x; >0 if (ATC>Z. >N =0ifA< (ATC)Z. <A oz <0df (ATc)i <A\
(b) Ordering constraints: For any i,j € [n] with i < j,

x; > xj if (ATC)Z. = (ATc)j S {X,A}.

By convention, if A > X, then Q(c,\,\) = 0.

Lemma 4. Suppose that X is permutation-invariant. Then, for any c € R", there
exist parameters A < X such that Q (c, A, A) contains an optimal solution x* of (6), i.e.,

z* e Q(C,X,A) .
Proof. We begin by deriving two properties of the optimal solution z* of (6).

i

Claim 2 For any i,j € [n], if (ATC) = (ATC)J,, then swapping x; and xj remains
optimal to (6).

Proof. Let & be the vector obtained by exchanging the i-th and j-th components of z*.
Since X is permutation-invariant, we have & € X. In addition, it is easy to verify that

cTAi — ¢ Ax* = ((ATC) - (ATc)i) (xf —a%) =0.

j J
Hence, 7 is also optimal. o

For any ¢ < j with (ATc)i = (ATc)j, if 27 < z7, we swap them such that
z; > x. Thus, for any A < A, the updated vector * satisfies the ordering constraints
in Q (c, A, A) while preserving optimality by Claim 2.
Claim 3 For any i,j € [n], if xj > 7, then (AT¢), > (ATC)], must hold.

%
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Proof. We prove the result by contradiction. Suppose (ATC)Z. < (ATc)j. By the
permutation-invariance of X, exchanging the components z} and z; of z* yields
another feasible vector & € X'. The resulting change in the objective value is
T A T * T T * *
¢ At —c Azx" = ((A c)j - (A c)l) (zf —x3) >0,
which contradicts the optimality of z*. Thus, the condition (ATC)Z. > (ATc)j holds. ¢
We partition the index set based on the signs of the components of z*:
It ={i:a; >0}, I°={i:a} =0}, T~ ={i:a} <0}
If 7° is nonempty, define the thresholds:

A = max (ATC) ., A= min (ATC) -
v i€z0 v
Then, we have A > \. The case where Z° is empty will be discussed separately.
Next, we show that the sign constraints in Q (c, A, A) are also satisfied by x*.

(i) For any i € Zt and j € Z°, given 2} > 0 = z}, Claim 3 implies that v; > v;
must hold. Therefore, we have that
(ATC)4 > max (ATC) =)
k3 jEIO J
foralli € ZT. 7 7
(ii) By construction of A and ), it is clear that A < (ATc)i < X for all i € Z°.
(iii) Analogous to Part (i), we can show that (A'c) < AforallieZ™.

A

Based on Parts (i)-(iii), we conclude that for any 7 € [n],

(I) 1f (ATC)Z. > ), then i € T+ must hold, which implies z} > 0.
(I) f A < (AT¢), < A, then ¢ € Z° must hold, which implies z} = 0.
(L) If (AT¢), < A, then i € T~ must hold, which implies 2} < 0.

If Z° = (), then set
A= min (ATC)Z., A = max (ATC)Z..
€Lt i€~
If Z= = (), then set A = X\. If T+ = (), then set A = \. Under these settings, the
result follows immediately from the above analysis for the case of Z° # (). Hence, we
complete the proof. m]

We remark about Lemma 4 that

(i) The optimality condition in Lemma 4 is more straightforward than the one
in Remark 2. It explicitly determines the sign pattern of some elements of an
optimal solution, whereas Remark 2 only provides the permutation; and

(ii) In addition, the set Q(c, \, \) relies only on a component-wise comparison be-
tween AT ¢ and thresholds A, A, which bypasses the need to determine a specific
permutation of AT ¢ and compute the mapping M as in Remark 2.

Leveraging these advantages, we significantly reduce the computational complexity
of (1) in the following subsections.
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4.2 Extended space partition and improved complexity

In this subsection, we propose a novel partition of the extended parameter space

R” x R x R that corresponds to ¢, A, A, respectively.

Lemma 5. The space R" x R X R can be partitioned into O(nrjl) regions such that
forall (¢, A\, \) € R" x R X R in the same region, the set Q (c, )\,A) s constant.

Proof. To begin, we define the following 2n + 1 hyperplanes:
Hi={(c,A\) eR" xRxR: (AT
Hiin={(c,AX) ER"xRxR: (A"

H2n+1 = {(C,A,X) eR" xR x R: A=

)i =X}, Vie[n],
), =A}, Vie[n],
A}

Let H = {H:}cpp,41)- According to Theorem 1, the arrangement A(H) divides

the space R” x R x R into at most O((2n)" 1) = O(n"*1) relatively open regions.
Each region is defined as an intersection of the form

c
Cc

ﬂ Hy, where H, € {H,, H7 ,HS} .
te2n+1]

Within each region, where the choices of H; are fixed for all ¢ € [2n + 1], the signs of
(ATC)Z. -\, Vi € [n], (ATC)Z, — A\ Vi€ n], and X — )

are fixed. By Definition 2, the set Q(c,\,A) depends only on these sign patterns.
Consequently, it is invariant within each region. a

Compared to Lemma 3, Lemma 5 reduces the number of regions from O(n?"~2)

to O(n™*1), which yields a complexity linear in 7. This reduction directly leads to
an improved complexity for (1), as we demonstrate below.

Theorem 3. Suppose that X is permutation-invariant. Then

(i) There exists a collection of O(n"3) candidate supports for (1), among which
at least one support is optimal; and

(ii) Under Assumption 1, problem (1) admits a polynomial-time algorithm with
complezity O(n"™+3 - Ty).

Proof. The proof includes two parts.

Part I. According to Lemma 5, the space R” xR xR can be partitioned into finitely
many regions { Ry }e(x] with K = O(n" ). Moreover, Lemma 5 shows that for any
(c,\,A) € Ry, the set Q(c, A, A) is identical. That is, the sign and ordering constraints
that characterize Q(c, A\, A) in Definition 2 are fixed. More specifically, the following

index sets I]j , I,g I, Ik:’\, and Ik:A remain unchanged for any (c, A A) € Ry, where

Iy ={i: (AT}, >}, R ={i: A< (A7), <A}, I ={i: (AT¢), <A},
T ={i: (ATe), =X}, L2 ={i:(ATc), = A}.
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These index sets are disjoint and satisfy
+ -~ UT=A T2 =
TFUIQUI, UM UZ. = =[n)].

Based on these index sets, we define the region-dependent set:

N ;>0 €LY, 7, =0VieI), v <0Viel,
T* =<z eR": . (10)

z; > xj,Vi,j € T2 with i < j or Vi, j € T, > with i < j

By construction, we have 7% = Q(c, \, A) for every (c,\,A) € Ry.

Combining Proposition 3 with Lemma 4, we can find ¢* and \* < N\ such that
Q(c*, X", \*) contains an optimal solution of (1). Since (¢*, X", A*) must belong to
some region, (1) can be equivalently converted into

2 :ma/%({f(ATx) ve | T"'}. (11)

k€E[K]

Next, we analyze the possible supports of all vectors in Y*. By (10), the sign
of each x; is fixed for any i € I,j U I,g UZ, . In contrast, the entries indexed by
Ikz)‘ UZ, 2 do not have specified signs, which results in various supports. Fortunately,
their relative order is fixed. Since the set I,f* U Ik:A has cardinality at most n, it
generates at most O(n?) supports, as established in Claim 1. Combining this with
K = O(n"*1), the total number of distinct supports for (11) is O(n"3).

Part I. The proof is identical to that of Theorem 2 and thus omitted. O

4.3 Complexity under additional sign conditions

In this subsection, we show how additional sign properties lead to further complexity
reductions for (1) over permutation-invariant sets. The corresponding complexity
bounds are as summarized in Table 2. While the complexity analysis builds on that
for general permutation-invariance, we refine it for each family by leveraging their
specific properties.

We next discuss these special families in detail and analyze their perspective
refinements.

Table 2. Candidate support complexity of (1) over permutation-invariant sets

General Nonnegative / Sign-invariant
General O(n™"3) O(n™)
Fixed support size | O(n""2) o(n")
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Nonnegative permutation-invariant sets When X’ is nonnegative permutation-
invariant, any optimal solution of (6) contains no negative entries. Accordingly, the
two thresholding parameters in Definition 2, which distinguish positive and negative
entries of an optimal solution, are no longer both necessary. Indeed, it suffices to keep
a single thresholding parameter associated with positive entries, which simplifies the
set @ in Definition 2 as follows.

Definition 3. For any vector ¢ € R" and a parameter A, define
Qo (¢, \) := {z € R" : (a) sign constraints, (b) ordering constraints} ,
where
(a) Sign constraints: For any i € [n],
x; >0 if (ATC)Z. >N x;=04f (ATc)i <A
(b) Ordering constraints: For any i,j € [n] with i < j,
x; > x5 >04f (ATC)Z. = (ATc)j =\
By adapting the analysis of Lemma 4 and dropping the parameter \ therein, we
readily obtain the following result.

Remark 3. Suppose that X is nonnegative permutation-invariant. Then for any
¢ € R", there exists a parameter \ such that at least one optimal solution of (6) lies
in Qnonneg(C7 )\)

Remark 3 means that the simplified set Q"°™°8(c, \) still characterizes the optimality
condition of (6).

As a byproduct of Q"°""¢&(¢, \), the extended space to be partitioned reduces
from R" x R X R to R"” x R, which yields fewer regions than in Lemma 5. Specifically,
we construct a collection of n hyperplanes, denoted by H"""¢ = {H;}c[,,], where

Hi={(c,\) eR" xR: (ATc), = A}, Vi€ n].

Remark 4. The set H"*"°¢ partitions R” X R into O(n") regions. Within each region,
the set Q"°"°8(c, \) is invariant.

Corollary 2. Suppose that X is nonnegative and permutation-invariant. Then

(i) There ezists a collection of O(n"') candidate supports for (1), among which
at least one support is optimal; and

(it) Under Assumption 1, problem (1) admits a polynomial-time algorithm with
complexity O(n"™+1 - Ty).

Proof. By leveraging Remarks 3 and 4, we split R” x R into O(n") regions, each
associated with a fixed set Q"°"™°(c, A). As shown in Theorem 3, the union of these
sets contains an optimal solution of (1). Furthermore, the nonnegativity of each
Qromneg(e ) leads to a sharper bound on the number of candidate supports. This
improvement follows from a refinement of Claim 1, as shown below.
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Claim 4 For any permutation o € II,,, the set Z7 (o) admits at most O(n) candidate
Supports.

Proof. If x € Z%(0) is strictly positive, its support is exactly [n]. If x € ZT (o)
contains zeros, by nonnegativity, the vector must satisfy

To) = =Tor) =0, 0<Zo41) <00 < To(n)
for some index ¢ € [n], which yields n distinct supports. S

Combining O(n) bound per region with the O(n*~2) regions gives O(n? 1) total
candidate supports. We thus complete the proof. a

Sign- and permutation-invariant sets A set X' € R™ is said to be sign-invariant
if x € X implies € X for all T satisfying |z| = |Z|. Suppose that X is sign- and
permutation-invariant. Then, For any ¢ € R" and x € X', we can construct z € X
such that

c'Ar <c'Az = (IATCDT ||
Specifically, for each i € [n], we let ; = z; if (A" ¢);x; > 0, and Z; = —x; otherwise.
Consequently, (6) can be written as

max (’ATCDT |z] = max (’ATc’)Tx (12)
lz|eXx TEXNRY
Since the set XNR’} in (12) is nonnegative and permutation-invariant, the analysis
from the previous subsection can be partially applied. The main difference is that
the objective of (12) involves absolute values of the cost vector. To characterize its
optimality condition, it is natural to modify Q"°"™°8(c, \) by replacing A'c and A
in Definition 3 with their absolute values. We denote the resulting set by 9%8%(c, \)
and omit its formal definition for brevity.
Accordingly, we revise the space partition approach to guarantee that the set
%81 (¢, \) remains fixed within each regions. Specifically, we now construct 2n hyper-

planes in R™ x R to achieve component-wise comparisons of absolute values. Define
HI" = {H;}ic[on), Where

Hi={(c,)) eR"xR: (AT¢), = A}, Vien],
Hipn={(cN) €R" xR: (A'c), = A}, Vien.

i
The set H8" results in O((2n)") = O(n") distinct sets of Q%8"(c, \), which yields the
same order of complexity as in Remark 4, but for this sign- and permutation-invariant
case. Hence, Corollary 2 extends directly to give the following result.

Corollary 3. Suppose that X is sign- and permutation-invariant. Then

(i) There ezists a collection of O(n™') candidate supports for (1), among which
at least one support is optimal; and

(ii) Under Assumption 1, problem (1) admits a polynomial-time algorithm with
complexity O(n™ Tt - Ty).
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Fixed support size Inspired by practical applications (e.g., see Section 6), we
are also interested in the setting where the support size of X is fixed to s € [n],
which means that any solution in X must have exactly s nonzero entries. Note that
fixed support size does not affect the optimality condition for (6); hence, hyperplane
arrangements remain the same. This additional property refines the complexity
analysis by reducing the number of candidate supports per region. For a given region,
this number is of the same order as the number of candidate supports in either Z(o) or
Z%(0), depending on the structure of X (see Claim 1 and Claim 4). When the support
size is fixed, we show that this order is reduced by one for both Z(c) and Z% (o).

Claim 5 For any permutation o € II,,, the set Z(o) with fized support size conlains
at most at most O(n) supports, and the set Z* (o) with fized support size contains
at most at most O(1) supports.

Proof. As shown in Claim 1, the set Z(o) can generate up to O(n?) candidate
supports, since each support is determined by a pair of indices 1 < t; < s < n
therein. With a fixed support size s, we can replace t5 with ¢t; +n — s — 1, which
thus reduce the number of possible supports to O(n).

For the nonnegative case, the set Z7 (o) admits a unique support when the
support size is fixed. ]

Claim 5 enables an additional reduction in complexity, as summarized in the
following principle.

Remark 5. For any specific family of X with fixed support size, the order of the
number of candidate supports decreases by one.

5 Beyond Permutation-mapped Property and Convexity

In previous sections, we assume a finite convex objective function and a co-monotone
feasible region. In this section, we extend the established complexity results to two
settings where these assumptions fail.

5.1 Quasi-convex objective

In some applications, such as minimal cost-reliability ratio spanning tree problem
[14], the objective in (1) is a quasi-convez rather than convex function. To be more
precise, a function g : D — R is called quasi-convexr, where D C R” is a convex
open set, if the level set {x € D : g(x) < t} is convex for all ¢ € R. An important
source of quasi-convex functions arises in fractional programming [25, 50, 66, 30].
Specifically, the function g(x) = Z;Ei;
and go : D — R, is concave. Moreover, composing a quasi-convex function with
a univariate monotone nondecreasing function preserves quasi-convexity. Similar to
Proposition 3, under additional regularity conditions, a quasi-convex maximization
problem can be reduced to a nominal linear optimization problem.

is quasi-convex when ¢; : D — R is convex
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Proposition 4. Assume f : D — R is a upper semicontinuous and quasi-convex
function, where D CR” is open and conver, and the set AX 2 {Ax:x € X} C D
is compact. Then there exists a vector ¢ € R” such that every optimal solution to the
linear counterpart (6) is also optimal for the original problem (1).

Proof. Since f is upper semicontinuous and AX is compact, the problem max f(y)
ye

admits an optimal solution which is denoted by y. Let fiax = f(¥). Because f is
quasi-concave and upper semicontinuous, the strict sublevel set S = {y: f(y) < fmax}
is an open convex set. Moreover, since § ¢ S, one can deduce from the renowned
hyperplane separating theorem that there exists a ¢ € R" such that

SC{y:c'(y—y) <0}

Because S is open, the inclusion can be strengthened to

SC{y:c¢'(y—7) <0k (13)
Now let y* be any optimal solution to max ¢y which exists because AX is
ye

compact. Then ¢ y* > ¢'7, implying y* ¢ S by (13). Hence, by the definition of

S, one has y* € argmax f(y). Finally, any optimal solution z* for (6) leads to an
yEAX

optimal solution Az* € argmax f(y). O
yeEAX

Because the concavity is only used in Proposition 3 to derive the results in Section 3
and 4, Proposition 4 immediately implies the following remark.

Remark 6. The theoretical results established in Section 3 and 4 continue to hold for
a quasi-convex objective f, provided that the conditions of Proposition 4 are satisfied.

We emphasize that that the upper semicontinuity and compactness assumptions
imposed in Proposition 4 are necessary, which we illustrate in Example 3 and 4 below.
Therefore, Proposition 4 does not subsume Proposition 3.

Example 3. Let A=1,n=1, X =R, and f(z) = min{|z|,1}. One can verify that

the maximizers of f are (—oo,—1] U [1,00) and are thus unbounded. In contrast,

for any nonzero ¢ € R, the linear problem max c¢'z is unbounded and hence has no
BAS

optimal solution. If ¢ = 0, then every x € X is optimal for the linear problem. Thus,
without compactness of AX, the conclusion of Proposition 4 may fail.

Example 4. Let n =2 and A = I. Define
X = {(xl,xg) 0 <3 <4/1 —x%} U {(xl,xg) 1< 2,10 < 1},

1 if g >1
f(!L'l, (EQ) = 0 if x = (0, 1)
—1 otherwise.

and
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One can verify that f is quasi-convex and admits a unique maximizer Z = (0, 1) over
X. However, Z is not an exposed point of X' (see Figure 4). As a result, no linear
objective can single out Z:

X2
z=(0,1)

-

Fig. 2. The optimal solution cannot be exposed in X.

5.2 Affine restriction of binary permutation invariant sets

In this subsection, we no longer assume that X is itself a co-monotone set. Instead,
we study the case where X = S NP satistying Assumption 2 below.

Assumption 2 conv(SNP) = conv(S) NP, where S C {0,1}" is co-monotone and
P={xeR": Mz <b} for some M € R™*" and b € R™.

Assumption 2 holds for example in either of the following cases: (i) X is a matroid
and P is a matroid polytope [22], or (ii) the affine constraints defining P are facial
for X; see [8, Section 3.1] for a formal definition and further discussion.

The additional constraints imposed by P can destroy the co-monotone structure
of X. Proposition 5 shows that their effect can be absorbed into a modified linear
objective over S.

Proposition 5. Suppose X = SNP satisfies Assumption 2. Then for every v € R,

there erists v € R such that T € argmax vz if and only if
reX

T € XNP-(y)N |argmax (U—MT'y)Tx , (14)
€S

where P—(y) £ {x € R" : (Mx); = b; Vi € [m] s.t. 7; # 0} .

Proof. First, suppose that # € argmaxv 'z, and denote the optimal value by @. Then
TEX
we also have that & = max v'z. By Assumption 2, conv(X) = conv(S) N P,
z€conv(X)
which implies that
T=max v
zeR?
st. Mz <b (15)

x € conv(S).
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Let v € R™? be the optimal Lagrangian multipliers associated with the constraints
Mz < bin (15). Define the Lagrangian £(z) = (v — M ") Tz + b ~. Tt follows that

u = E = g
U= max () = max(z),

implying x € argmax ¢(x). Moreover, complementary slackness implies that Z €
T€ES
P_(7). Together with z € X, this yields (14).

We now prove the converse. Suppose that Z satisfies (14). Since & € P—(7) implies
yT(Mz — b) = 0, we have £(Z) = v'z. Taking any € X C S, one can deduce from
(14) that

Uz) > lz)=v' 'z —~y"(Mz—b) >0z,

where the last inequality is due to Mz < b and v > 0. Because T € X is feasible,
combining these relations proves that Z is optimal for max vla. a
fAS

Next, we consider a setting where in addition to Assumption 2, we assume S is
permutation invariant. With this additional structure, Proposition 5 enables us to
reduce the analysis to linear optimization over S and to derive the corresponding
complexity results. We present another application of Proposition 5 in Section 6.4.

As in the previous sections, we begin by introducing a core set that captures
the optimality conditions for cost vectors in a hyperplane arrangement region to be
defined later.

Definition 4. For any c € R", A € R and v € R™, define the set

QM (e, \, ) £ {x eER"

x; =0 if (ATC—MT’)/)i > A
x; =114f (ATC—MT’}/)Z. <A

We denote by LP the worst-case time for both minimizing and maximizing e’z over
QM(e, A1) N X NP(y).

Lemma 6. Suppose X = S NP satisfies Assumption 2 and S is permutation invari-
ant. Then for all c € R”, there exists v € RT* and A € Ry such that the following holds:

(1) If T € argmaxc' Az, then T is either a minimizer or a maximizer of e x over
x

fAS
Q(c, A7) N X N P=(9).
(2) Conversely, if x™* and ™" are any mazimizer and minimizer of e’z over
QM (e, \,v) N X NP—(7) respectively, then {x™, 2™} contains an optimal

solution to maxc' Azx.
TzeEX

Proof. Fix ¢ € R" and let Z € argmaxc' Az. Applying Proposition 5 to v = AT,
TeEX
one can deduce that there exists v € R’ such that  is optimal for

T, agTA\ T
rmneagc(A c—M'7) (16)
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Moreover, since S is a binary permutation invariant set, Remark 3 yields a threshold
A € R such that € Q8%(c, N\, 7). Let 7= = {i € [n] : (ATc— M T); = \}. Because
for any 2 € SN QA(¢, \,v), the coordinates z; are fixed for all i ¢ Z=, the problem
(16) is equivalent to

max A E Zi,
zESNQ ieT=
which in turn further amounts to

max e . (17)
TESNQAL

Consequently, T is an optimal solution to (17). Depending on the sign of A and thanks
to & € X N'P_(v), the first conclusion holds true.

To prove the second part, we assume WLOG that A > 0 since the other case can
be proved similarly. Let 2™ be a maximizer of ez over QA N X N P_(7). Then
™2 ig also optimal for (16) by the equivalence above. Consequently, we deduce from

Proposition 5 and 2™ € X N P— that 2™ € argmaxc' Az. O
zeX

We now state the resulting complexity bound.

Proposition 6. Suppose X = S NP satisfies Assumption 2 and S is permutation
invariant. Then problem (1) can be solved in time O((n +m)™ ™™ . (Ty + LP)).

Proof. Consider the hyperplane arrangement H defined by

H, = {(C, A7) € RrTmHL . (ATc — MT'y)i —\= O} Vi € [n]
Hj = {(c,\7) € R 2 5 = 0} Vj € [m).

Then by construction, for all tuples (¢, A, ) lying in the same hyperplane arrangement
region, the induced linear optimization problems

min /max e’z
z€R™ (18)
stz e QM(e, N, ) NX NP_(y)

share a common minimizer and a common maximizer.
On the other hand, Proposition 4 yields a cost vector ¢ such that any optimal
solution to
max (A'¢) "z
st.reX=8NnP

is optimal for the original problem (1). Combining this with Proposition 5 and
Lemma 6, there exists 4 € R™ and A € R such that either the minimizer or the
maximizer of (18) associated with (¢, \,%) is optimal for (1). Because H gives rise to
a partition of the parameter space (c, A,7y), collecting the minimizers and maximizers
over all regions must include one optimal solution to (1). Hence, the total number
of candidate solutions is at most 2|#|. The conclusion follows from Theorem 1 that
1] = O((n +m)r+. 0



26 Shaoning Han, Liangju Li, and Yongchun Li

6 Applications

In this section, we present several applications of (1), including SPCA, its variants, and
variable selection for two-sample tests. Throughout this section, we assume the sample
covariance matrix admits a rank-r factorization AA"T € R™*™ with A € R™". We
show that when r is fixed, these problems can be solved in polynomial time. For each
application, we either (i) match or improve the best-known computational complexity,
or (ii) provide the first-known polynomial-time guarantee. Table 3 summarizes our
results and compares them with existing bounds.

Table 3. Number of candidate supports for application examples

Single SPCA | Nonnegative SPCA SPCA Disjoint SPCA 25T

AT+
Arrird)

This paper O(n") Oo(n") o (n(T2+r>/2> (@] <(n(d +1)?) ) o(n™)

Literature o(n") — @] <n"‘i"{d"'}("2+")> o (nd2(7'2+")/2) -

6.1 SPCA with a single component and its nonnegative variant

Since the work of [35], principle component analysis (PCA) has been a widely-used
tool for dimensionality reduction in statistics and machine learning, but its principal
components typically involve all features, which can hinder interpretability and lead to
unstable estimates. SPCA addresses these issues by restricting the number of features
used in each component [37]. In contrast to PCA, which can be solved directly using
eigenvalue decomposition, SPCA is NP-hard and even inapproximable in general [47].
However, in the fixed-rank setting, SPCA admits polynomial-time algorithms [15].

This subsection studies SPCA with a single component and its nonnegative
variant. The general SPCA problem is treated separately in Section 6.3 because it
requires a different analysis. Formally, SPCA with a single component is defined as:

2P = max {HATxui lzllz = Lzl < s}, (Single SPCA)
T€ER™
It is evident that Single SPCA fits within the framework of (1), with the objective
f(ATx) = ||ATz||2. In this case, the rank of the function f coincides with the rank r of
the covariance matrix AA . Moreover, the feasible set of Single SPCA is permutation-
and sign-invariant with respect to z, which makes Corollary 3 applicable.

As shown in [51], once the support of features is fixed, Single SPCA reduces to a
standard PCA problem on the corresponding principle submatrix of AAT. Leveraging
this result, we next illustrate that candidate supports can be efficiently evaluated.
Let {S¢}seqr) be the collection of feasible supports satisfying |S¢| < s. Then, Single
SPCA can be reformulated as

spca __ AT 2 . 2 _ 1 _ }
s ma {H z|, + lz]3 = 1,supp(z) = S

= (447)5,5) = e Do (447) ) #1940 =5},

(19)
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where the second equality follows from the closed-form solution of PCA [51], and the
last equality follows from the monotonicity of the objective function in the subset
Sp. The reformulation (19) serves two purposes:

(i) It verifies Assumption 1 for Single SPCA: once the support is fixed, the sub-
problem reduces to computing the largest eigenvalue of an s X s matrix, which
can be done in T; = O(s?) time [67)].

(ii) It restricts the search to supports of size exactly s, which simplifies the support-
construction procedure and reduces the overall complexity, as noted in Remark 5.

Combining Corollary 3 with the results above, we obtain the following complexity
bound for Single SPCA.

Theorem 4. The following hold for Single SPCA:

(i) There ezists a collection of O(n") candidate supports for Single SPCA, among
which at least one support is optimal; and
(ii) Single SPCA admits a polynomial-time algorithm with complezity O(n" - s2).

Note that Theorem 4 matches the best-known bound in [5] and improves on the
O(n™"*+7) bound of [15].

Nonnegative SPCA with a single component In many applications, it is natural
to impose an entrywise nonnegativity constraint on the principal component, leading
to nonnegative PCA and its sparse variant. Two common modeling motivations are
(i) to reflect physical or domain constraints where the latent direction is inherently
nonnegative (e.g., intensities, concentrations, gene expression, metabolite abundances)
[2, 68], and (ii) to avoid components that rely on positive-negative cancellations (i.e.,
contrast directions) [75]. By incorporating this additional structure, nonnegativity
can often improve interpretability [3] and reduce the estimation error of underlying
statistical models; see [52] and literature therein for more details.

Even without sparsity constraints, a nonnegative PCA problem remains NP-hard,
as it includes the matrix copositivity testing problem as a special case, which is known
to be NP-complete [56]. We show below that when the design matrix A has a fixed
rank, the nonnegative SPCA problem is polynomially solvable. Formally, Nonnegative
SPCA (NN-SPCA) is defined as

2
max {HA%HZ x>0, ||z)2 =1, ||zl < s} . (NN-SPCA)

We consider the fixed-support subproblem for NN-SPCA. Given a support set
supp(z) = S, NN-SPCA reduces to

max || A" z|3
zeR™

z; >0 Vie S
56'7;:0 VZ%S

Because the feasible region is not closed, the optimal solution to (20) need not exist.
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Lemma 7. There exists a polynomial algorithm that produces a feasible solution T to
NN-SPCA. Moreover, whenever (20) attains an optimum, the returned T is optimal

for (20).

Proof. Without loss of generality, we assume S = [n]; otherwise we can substitute out
x; =0Vi ¢ S and apply the same argument to the corresponding principle submatrix
of AAT. For any optimal solution Z > 0 to (20), it must satisfy the KKT conditions
for smooth optimization problems involving open sets (see [48, Section 11.5]), implying
that there exists A € R such that

V.L(Z,\) =0,
where the Lagrangian L(x,\) = |ATz||3 — A||z||3. Thus, one has
AATZ = A7 and |ATZ|3 =\ (21)

For each eigenvalue A of AAT, let V()\) 2 {x: AATz = Az} denote the associated
eigenspace. Then by (21), solving (20) boils down to finding the largest eigenvalue
A such that V(A) NR7T . # 0.

To test whether V' (\) contains a strictly positive vector, consider the linear program

v(\) £ max ¢

s.t. x; >t Vi € [n]

in =1
=1
x e V(N),

where the second constraint ensures that v(A) is finite. Because at optimality it
holds ¢ = min,ep,) z;, we have v(A) > 0 if and only if V(A\) "R’} # 0. Let 2(\) be
the optimal solution to (22). If there exists an eigenvalue with v(\) > 0, let A be
the largest such eigenvalue and return z = x(\)/||z(\)||2. Then Z is feasible for
NN-SPCA, and it is optimal for (20) whenever (20) attains an optimum. If v(A) <0
for all eigenvalues A, then the optimal solution to (20) does not exist. In this case,
we set Z as the first coordinate vector, which is trivially feasible for NN-SPCA.
Since AAT has at most n distinct eigenvalues and each instance of (22) is a linear
program, the procedure runs in polynomial time. a

In parallel to Theorem 4, we obtain the following complexity guarantee for
NN-SPCA.

Theorem 5. The following hold for NN-SPCA:

(i) There exists a collection of O(n") candidate supports for NN-SPCA, among
which at least one support is optimal.

(ii) NN-SPCA admits a polynomial-time algorithm with complexity O (n"(LP + s?)),
where (’)(nr(LP + 82)) , where LP is the running time of the fixed-support routine
in Lemma 7.
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Proof. Because the feasible region of NN-SPCA is permutation invariant, one can use
Lemma 7 in place of Assumption 1 and follow the same argument as in Theorem 4. O

As a corollary of Theorem 5, nonnegative PCA (i.e., without the sparsity con-
straint) is solvable in polynomial time when A has fixed rank, by setting s = n.

6.2 Variable selection for two-sample tests

Two-Sample Tests (2ST) aim to determine whether two collections of samples are
drawn from the same distribution, and they have found broad applications in bioinfor-
matics, finance, healthcare, and machine learning [26, 69]. To enhance both statistical
efficiency and interpretability, recently Wang et al. [71] proposed selecting a subset
of informative variables to conduct 2ST based on the maximum mean discrepancy
statistic. This leads to the optimization problem:

2 = max (ATl +a ol = 1, el < s}, (25T)

where A € R™*".

It is evident that 2ST and Single SPCA share the same feasible set. In fact, Single
SPCA is a special case of 2ST: the only difference is the additional linear term a "z
in the objective, which increases the the objective rank to r + 1. More importantly,
this term breaks the eigenvalue-based structure of Single SPCA. As a result, existing
complexity results (see, e.g., [5, 15]), which rely on eigenvalue properties, do not
extend to 2ST. Our general analysis framework can easily accommodate this setting.
Observe that for any fixed support S, the corresponding subproblem for 2ST is
a trust-region-type subproblem, which can be solved by first computing an eigen-
decomposition of (AAT) 5,5 and then solving a one-dimensional secular equation; see
[53] or Section 4.3 of [57] for details. Since the eigen-decomposition dominates the
cost, the fixed-support subproblem can be solved in O(s%) time.

As a direct application of Corollary 3, we obtain the first polynomial-time com-
plexity bound for 25T when r is fixed.

Theorem 6. The following hold for 25T:

(i) There exists a collection of O(n" 1) candidate supports for 2ST, among which
at least one support is optimal.

it admits a polynomial-time algorithm with complexity O(n"t1s°).

i) 25T admit. ! jal-time algorithm with lexity O(n"t1s3

6.3 General SPCA
In this subsection, we study the general SPCA problem (see [17, 70)):

2

2P0 = max {HATUHF 2UTU = I, || U0 < 3}7 (SPCA)
UeRn x4

where the row-sparsity constraint |[U]|o < s enforces the matrix U to contain at most

s nonzero rows. SPCA is also more specifically referred to as Row-Sparse PCA in

the literature [17, 45].
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In contrast to Single SPCA, the general SPCA problem does not admit a
permutation- and sign-invariant feasible region; therefore, the results in Section 4 do
not apply directly. By leveraging eigenvalue properties, [45] reformulated SPCA as
the following convex maximization problem over a binary permutation-invariant set:

Lspea _ le{o x, { Z T0;0; Z T = 5} (23)

(@ ign
where for each i € [n], a; € R” represents the ith row vector of A, and || - [|(g) is a
convex function given by the sum of the d largest eigenvalues of its matrix argument.
Shishkin et al. [67] shows that || - [|(4) for an s x s symmetric matrix can be computed
in time T; = O(ds? ) Then, by Remark 1, (23) naturally satisfies Assumption 1.
Moreover, since Z | Zi sa;a; € R™T is symmetric and depends linearly on x, the

objective in (23) is convex and has rank (r2 + r)/2. Consequently, problem (23) falls
into the sign- and permutation-invariant setting with rank (r? + r)/2 and a fixed
support size, and its complexity result immediately follows Corollary 2 and Remark 5.

Theorem 7. The following hold for SPCA:

(i) There exists a collection of O(n""+7)/2) candidate supports for SPCA, among
which at least one support is optimal; and

(i) SPCA admits a polynomial-time algorithm with complexity O(n(’%”)/ 2.ds?).

Importantly, Theorem 7 reduces the number of candidate supports from the bound
O(nmin{d:r}(r*+1)) in [15] to the significantly smaller O(n(""+7)/2). The theoretical
reduction in complexity in turn increases the feasibility of developing practical, exact
algorithms for SPCA.

6.4 Disjoint SPCA

In this subsection, we study another variant of SPCA where the principal components
are sparse and have disjoint supports. As originally proposed by [4], we consider

o, {||ATU||F UTU = I,Uy;(1 - Zij) = 0,¥i € [n],j € [d}} ,
Ze<le, Z Tegs

(Disjoint SPCA)
where each column of the binary matrix variable Z € {0,1}"*¢ encodes the support
of each principal component, and s € Zi specifies the sparsity budget for each
component. The constraints Ze < e models that the supports of components are
disjoint. We note that Single SPCA is also a special case Disjoint SPCA at d = 1.
We first reformulate Disjoint SPCA as a purely binary optimization problem.
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Lemma 8. Disjoint SPCA is equivalent to

max Z Amax Z Zijaia;r
7 jew

i€[n]
d+1
Jj=1
ZZZ']' S Sj V] € [d]
i=1

Z € {0,1} D),

Proof. In Disjoint SPCA, the matrix U has disjoint column supports, which simplifies
the orthonormal constraint UTU = Iy to U'U; = 1 for all j € [d], where U; is
denotes the jth column of U. Consequently, the inner maximization problem over
U decomposes into d independent subproblems. According to [46], the optimal value
of the jth subproblem is

UIDS%) {HATUHi : U]TU]‘ = Id, Uzg(]- — ZZJ) = O,V’L S [’I’L]} = )\max Z Zijaia;r
’ i€[n]

Plugging these values into Disjoint SPCA yields the objective of (24). Finally, intro-
ducing a slack column Z; 411 € {0,1} for each ¢ € [n] to indicate that index ¢ is not
assigned to any component converts the constraints Ze < e into Z‘jii Z;; = 1. This
completes the proof. O

Because the feasible set of (24), denoted by X, is generally not co-monotone, the
complexity results from previous sections do not apply directly. Instead, we invoke
Proposition 5 to derive the optimality condition for (24).

Definition 5. For any V € R gnd v € R define

Zi; =0 Vi€ n],Vj¢argmax{V;jy —~; : j €[d+1]}
Q) £ ZeX| . .
( ZZijZSj Zf’YJ>OVj€[d]
i=1

Lemma 9. For any V € R (@) there exists a y E_Rffrl with Yg4+1 = 0 such that
Z 1s an optimal solution to max (V. Z) if and only if Z € QP5(V,~).
€

Proof. We write X =S NP, where

d+1
S§=1¢2e{0, 1} N "7 =1Vi€ [n]
j=1
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is the set of bases of a transversal matroid, and

P= {Z ERMH N 7, <5 V€ [d]}

i=1

is the corresponding transversal matroid polytope. The decomposition implies that

conv(S NP) = conv(S) NP, and hence Assumption 2 holds for (24). By Proposi-

tion 5, there exists ¥ € R% such that Z € argmax(V, Z) if and only if (i) Z € X, (ii)
Zex

S Zij=s; for all j € [d] with v; > 0, and (iii)

n d+1
Z € argmax (V, Z) — T(Z7e — s) = argmax Vii — i) Z;s
ges ( ) =7 ( ) %es ; ;( i — V) Zij

Since S imposes a (d+ 1)-choose-one constraint for each row 4, condition (iii) amounts
to requiring that Z;; can be nonzero only for indices j attaining argmax, €ld+1] {Vij —
7, }. Together with (i) and (ii), this is precisely Z € QP%(V, 7). O

We now state the complexity result for Disjoint SPCA.

d(r2+4r42)
p)

Proposition 7. Disjoint SPCA can be solved in O((n(d +1)?) _1dn2) time.

Proof. Note that the objective of (24) is a sum of d terms, where the jth term returns

the largest eigenvalue of Zie[n] Z;;a;a; . Analogous to the objective function of (23),

each term is convex in z and has rank (r2+r)/2. Consequently, the objective function in

(24) has rank 7 £ d(r?+7r)/2 and can be written in the form f(.AZ), where f is convex

,and A : R™?4 — R" is a linear operator. Let AT : RT — R™*? denote its adjoint.
Let H be the hyperplane arrangement induced by

Hijo={(c,7) €ER" xR*: (AT¢)ij+v = (A Qe+ i€, j#LE[d+]]
Hj={(¢,7) eR" xR?: 4; =0} j €ld],

where we treat y4+1 = 0 and (A ¢); 441 = 0 Vi € [n] as fixed constants for notational
convenience. Then it follows from Theorem 1 that

H| =0 ((d(d2+1)n + d) Ml) -0 ((n(d+ 1)2)W‘1) . (25)

Combining Proposition 3 and Lemma 9, we obtain a certain ¢ € R™ and v € R”
such that QP5(AT¢,v) # 0 and any member of QP5(AT¢,v) is optimal for (24).
Furthermore, by the same reasoning as in the proof of Lemma 3, the set QP%(AT¢, )
is constant within each region of H. Therefore, selecting one representative point
from QP9(AT¢,v) per region and collecting all such points yields a set of candidates
that contains an optimal solution to (24).

To prove the complexity, it remains to bound the cost per region. We first
note that the feasibility problem over QP%(AT¢, ) is essentially a transshipment



A Geometric Perspective on Polynomial Solvability 33

problem, which can be transformed into a maximum flow problem using standard
techniques; see [65, Section 11.6]. Therefore, for each region, we can find a representa-
tive Z € QP5(AT¢,7) in O(dn?) time using the Ford-Fulkerson Algorithm. Second,
for each solution candidate Z, evaluating the objective of (24) amounts to computing
the largest eigenvalues of d symmetric matrices in R"*", which costs T; = O(dr?)
in total. Together with (25), the overall running time is

H] - (O(dn?) + O(dr?)) = O ((n(d +1)?) e dn2> :

This completes the proof. a
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