INDUSTRIAL AND SYSTEMS ENGINEERING

ISE .-

Projected Stochastic Momentum Methods for Nonlinear
Equality-Constrained Optimization for Machine
Learning

Q1 WANG

Department of Industrial and Operations Engineering, University of Michigan

CHRISTIAN PIERMARINI

Amazon Sarl

YUNLANG ZHU, FRANK E. CURTIS

Department of Industrial and Systems Engineering, Lehigh University

COR@L Technical Report 26T-001

LEHIGH COR@L

UNTIT VERS STITY. COMPUTATIONAL OPTIMIZATIONY ™
RESEARCH AT LEHIGH p =

Projected Stochastic Momentum Methods for Nonlinear
Equality-Constrained Optimization for Machine Learning

Q1 WANG!, CHRISTIAN PIERMARINI?, AND YUNLANG ZHU, FRANK
E. CUrTIs?

Department of Industrial and Operations Engineering, University of Michigan*
2Amazon Sarl
3Department of Industrial and Systems Engineering, Lehigh University*®

Jan 16, 2026

Abstract

Two algorithms are proposed, analyzed, and tested for solving continuous optimization problems with
nonlinear equality constraints. Each is an extension of a stochastic momentum-based method from the
unconstrained setting to the setting of a stochastic Newton-SQP-type algorithm for solving equality-
constrained problems. One is an extension of the heavy-ball method and the other is an extension of the
Adam optimization method. Convergence guarantees for the algorithms for the constrained setting are
provided that are on par with state-of-the-art guarantees for their unconstrained counterparts. A critical
feature of each extension is that the momentum terms are implemented with projected gradient estimates,
rather than with the gradient estimates themselves. The significant practical effect of this choice is seen
in an extensive set of numerical experiments on solving informed supervised machine learning problems.
These experiments also show benefits of employing a constrained approach to supervised machine learning
rather than a typical regularization-based approach.

1 Introduction

Algorithms based on the stochastic-gradient methodology [27] 28] have been found to be especially powerful
for solving modern-day unconstrained continuous optimization problems that arise in multiple areas, most
notably in supervised machine learning. Of the many variants of the stochastic-gradient methodology,
momentum-based approaches have been particularly popular and effective in practice. These include the
heavy-ball method [25], Adagrad [12], RMSprop [9, B0, and Adam [I5]; see [3] for an overview.

The main contributions of this paper are extensions of the heavy-ball and Adam approaches from the
unconstrained setting to the setting of a stochastic Newton-SQP framework for solving nonlinear-equality-
constrained continuous optimization problems. Our approaches are inspired by the stochastic Newton-SQP
method proposed in [2] (see also [[§]) for solving problems with nonlinear equality constraints. We show
that our proposed methods can offer theoretical guarantees that are on par with state-of-the-art guarantees
that have been offered for the heavy-ball method and Adam in the unconstrained setting. In particular, our
analyses follow the analyses for these methods in the unconstrained setting that are presented in [10].

*giwangqi@Qumich.edu
fchripiermarini@gmail.com
tyuza23@lehigh.edu
$frank.e.curtis@lehigh.edu

Due to its more impressive practical performance, our more significant contribution in this paper is
the extension of Adam to the equality-constrained setting. A different extension of Adam to the equality-
constrained setting (without a convergence guarantee) has been proposed previously; see [2I]. However,
besides the fact that we offer a theoretical convergence guarantee for it, our algorithm is unique in that
the running averages that are maintained in an Adam-based approach are taken with projected gradient
estimates rather than with gradient estimates themselves. This is also the case with our extension of the
heavy-ball method. We show in an extensive set of numerical experiments with informed supervised machine
learning test problems that our projected stochastic Adam algorithm can outperform both (a) Adam applied
to minimize a regularized objective function and (b) the projection-less extension of Adam proposed in [21].

A variant of the stochastic Newton-SQP method from [2] that employs Adagrad-type scaling has been
proposed and analyzed in [24]. However, the algorithm and analysis in this paper are distinct from those
in [24] due to the subtle, yet significant differences between convergence analyses for Adagrad- versus other
methods. As far as we are aware, ours is the first paper that offers convergence guarantees for heavy-ball-
and Adam-based stochastic Newton-SQP methods for solving nonlinear-equality-constrained problems.

1.1 Outline

The class of optimization problems of our interest and fundamental properties of the algorithms that we
propose and analyze are presented in Our proposed heavy-ball- and Adam-based schemes, along with
our convergence analyses of them, are given in §3] In §4 we discuss a broad class of problems, namely,
informed supervised machine learning problems, for which the proposed algorithms are particularly well
suited. In that section we also discuss a few critical considerations for efficient implementations of the
algorithms. In we present the results of a large set of experiments that demonstrate the effectiveness of
the algorithms. Finally, we provide some concluding remarks in

2 Problem Formulation and Stochastic Newton-SQP Framework

Our problem class of interest is that of continuous equality-constrained optimization problems, where the
objective function f : R®™ — R and constraint function ¢ : R®™ — R™ are continuously differentiable.
Our proposed algorithms are designed to solve such problems when the objective function is defined by an
expectation of a function with a random variable argument and may be nonconvex, and when the equality-
constraint function may be nonlinear. Formally, our problem class of interest can be expressed as instances
of

Ig%{l f(x) subject to c(z) =0, where f(z)=E¢[F(x,§)] forall z €R", (1)

¢ is a random variable with associated probability space (2, F¢,P¢), F' : R®" x 2 — R, and E¢ denotes
the expected value operator with respect to the probability measure Pe. At a given € R", a first-order
optimality condition for problem is that there exists a Lagrange multiplier y € R™ such that

Vf(x)+J(x)'y =0 and c(z) =0, where J:=Vc’. (2)

The first of these conditions states that the gradient V f(x) lies in the range space of the constraint deriva-
tive J(z)T. Due to the fundamental theorem of linear algebra, this is equivalent to the property that the
projection of the gradient V f(z) onto the null space of the constraint Jacobian J(z) is equal to the zero
vector. Under the assumption that the constraint Jacobian has full row rank and with P(z) denoting the
projection operator onto this null space at z, the first-order optimality conditions in are equivalent to

P(x)Vf(r) =0 and c(x) =0, where P(x) =1~ J(x)"(J(x)J(z)")" J(x). (3)

These are the form of the first-order optimality conditions that we employ in our analyses.

The algorithms that we propose, analyze, and test in this paper have as a basis the stochastic-gradient-
based Sequential Quadratic Programming (SQP) framework proposed and analyzed in [2] for solving equality-
constrained optimization problems. A simplified version of this method is stated as Algorithm [I} The key

aspect of it that is distinct for the setting of constrained optimization is that each search direction is computed
to satisfy a linearization of the constraints that is defined with respect to the current iterate x. Specifically,
given an objective gradient estimate g € R™ and a symmetric and positive-definite matrix Hy € R™*"™, the
search direction dj can equivalently be defined as the solution of the quadratic optimization subproblem

min gl d+ 3d" Hid st e(on) +J(2e)d = 0. (4)

The linear system represents the necessary and sufficient conditions for optimality for , so any solution
of yields a solution of as well as a Lagrange multiplier estimate yy. (If x = xy is a point at which there
exists y such that holds and g = V f(x), then a solution of is (dk,yr) = (0,y).) It is well known
that if J(zy) has full row rank and since Hy, is positive definite in the null space of J(x), subproblem
is feasible and has a unique globally optimal solution, which is given by the unique solution of .

Algorithm 1 Stochastic-Gradient-based SQP Framework [2]
Require: z; € R™ and {ax} C (0,1]
1: for all k € N do

2: compute a stochastic gradient estimate g = V f(z)) and choose symmetric Hy, € R"*"

3: compute dj, by solving
YIRS
J(xr) 0 Yk (@)

4: set g1 < T + apdg

5: end for

An algorithm that computes each search direction by solving a system of the form can employ a
direct solver for symmetric indefinite linear systems. Alternatively, the search direction can be computed
using a step decomposition method. This is the approach that we specify for the methods that we propose
in this paper since the methods make use of running averages of projected gradient estimates. We close
this section with a description of the linear algebra involved in a step decomposition approach, which also
reveals the computational cost required to compute search directions in our proposed methods. Importantly,
these costs will be small when the number of equality constraints m is small, meaning that in such cases the
computational cost of each iteration will be proportional to the costs in an unconstrained context.

Suppose that, similarly as in Algorithm [} an algorithm computes each search direction through solving

s][]

where I is the identity matrix and we assume that J € R™*" has full row rank. By the fundamental
theorem of linear algebra, the solution component s can be expressed as s = v + u, where v € Range(J7)
and v € Null(J). Considering the second block of equations, one finds that v can be computed by solving
an m-dimensional positive-definite system J.J7 9 = —c for & € R™, then computing J7 % = v, which yields

v=—J'(JJ") e (7)

The computational cost of computing v is thus O(m3 4+ m?2n).

Now letting Z € R"*("=™) denote an orthogonal matrix whose columns span Null(J), the first row of ()
states u+JTy = —(q+v), sou = —Z(ZT Z)~1ZTq. However, it is not efficient to compute v in this manner
since it requires computing the null-space basis matrix Z. Fortunately, one can replace Z(Z7Z)~1ZT with
a matrix expressed in terms of J. Specifically, one finds that Z(Z7Z)"1ZT =1 — JT(JJT)"1J =: P, so

u=—(I—-J"JJ") "' J)q = —Pq. (8)

In other words, u is the negative of the projection of ¢ onto the null space of J; recall . Practically
speaking, the component u can be computed by computing the matrix-vector product ¢ := Jgq, solving the

m-dimensional positive definite system JJ7g = § for § € R™, computing the matrix-vector product J7g,
and adding the result to —g. Thus, similar to v, the cost of computing u is O(m3 + m?n).

Through this discussion, one can observe that the solution of @ is the same if ¢ is replaced by Pq. This
follows since reveals that ¢ has no effect on v, and since by virtue of P being an orthogonal projection
matrix one has by that w = —Pg = —P2?q. That being said, the solution of the system is clearly
affected if ¢ is replaced by another vector not necessarily in the null space of the constraint Jacobian. These
comments reveal a critical distinction between our proposed version of Adam and that proposed in [21]. In
[21], running averages (i.e., the momentum terms) are taken with gradient vectors, whereas in our proposed
approach these running averages are taken with projected gradients. This difference is critical theoretically
and practically.

3 Stochastic Momentum-based Algorithms

In this section, we propose and analyze two new stochastic momentum-based methods for solving . Each
algorithm computes search direction components through the formulas and . However, they are each
distinct in the manner that scaling and momentum are applied to the latter component when constructing
the search direction taken by the algorithm.

The stochastic nature of the algorithms means that our analysis of each of them considers a stochastic
process defined by each algorithm. In each case, let (Q, F,P) denote a probability space that captures the
behavior of the algorithm, which is to say that each outcome in €2 represents a possible realization of a run
of the algorithm. In addition, let E denote the expected value operator defined by the probability measure
P. The only source of randomness in each iteration is the computation of a stochastic gradient estimate.
Hence, using the notation of , one can consider the set of outcomes as) = = x = x ---. Let F; be the
o-algebra defined by the initial conditions of an algorithm, and, more generally, for all £ € N let Fj, be the
o-algebra generated by the initial conditions and the stochastic gradient estimators up through the end of
iteration k£ — 1. In this manner, one has that 73 C F» C --- C F and the sequence {F} is a filtration.

Throughout this section, we employ the shorthand notation ¢ := c(xy), Ji := Ve(ag)T, and Py, := P(xy).

3.1 Projected Stochastic Heavy-Ball SQP

We first consider an extension of the heavy-ball method to the setting of equality-constrained optimization.
Specifically, we propose Algorithm

Algorithm 2 Projected Stochastic Heavy-ball SQP

Require: z; € R", {p;} and {hs} with p; € (0,1] and hy € Ry forall k € N, 5 € [0,1), and a € (0, 1]
1: set rg < 0 € R™
2: for all k € N do
3: compute a stochastic gradient estimate gx = V f(zy)

4 compute vg + —pgJi (JkaT)fl Cr

5 compute uy fhlzlpkgk, where Py =1 — JL(JpJI) 71y
6: set rp < Ore_1 + ug

7 set d, < v + Pury

8: set Tp+1 o + ady

9: end for

For our analysis of Algorithm [2] we make the following assumption.

Assumption 3.1. There exists an open convex set X C R™ containing the iterates of any run of Algorithm|[3
over which the objective function f : R™ — R is continuously differentiable and bounded below by fins € R,
and over which the constraint function ¢ : R™ — R™ is continuously differentiable and bounded in £o-norm in

the sense that there exists k. € Ry such that ||c(x)||2 < ke for all x € X. In addition, there exist constants
kv €Ryg, iy €Ryg, Lyvy € Ry, Ly € Ry, and omin € Ry such that one has that

IVf(z)l2 < kvy

||J(N2 < kg
[Vf(x) = V@2 < Lyyllz — 72
() = J(@)2 < Lyllz — 2|2

cmd 0'1(())Zomin

forall z e X,
forall z e X,
for all (z,7) € X x X,
for all (z,7) € X x X,
forall z e X,

where o1(+) yields the smallest singular value of its matriz argument. Furthermore,
E[Pygr|Fr] = PcVf(xr) for all k€N,
there exists a constant M € R such that
E[[Px(gx = V f(zi))lI31Fx] < M? for all k€N,

and there exist pairs of constants (Pmin, Pmax) € (0,1] x (0,1] and (Amin, hmax) € Ryg x Ryy such that
Pmin S Pk S Pmax and hmin S hk S hmax fO’f’ a” k S N

It is well known (e.g., see [3]) that, under Assumption one has
(@) = f2) < V(@) (T —2)+ 3Los|z — 23 forall (z,7) € X x X, (9)
and, using norm inequalities, there exists L; € Ry, such that
le(@)|1 < [le(z) + J(2)(Z — 2)||s + $Ls]|T — =3 for all (z,Z) € X x X. (10)
Next, let us show that an important Lipschitz continuity property holds.
Lemma 3.1. There exists Lpyvy € Ry such that for all (xz,T) € X x X one has

1P (@)V f(z) = P(@)Vf(Z)ll2 < Levylle — T2

Proof. Proof. Consider arbitrary x € X. Under Assumption the pseudoinverse of J(x) is a right inverse
and J(x)t := J(2)T (J(x)J(z)T)~!, so P(x) = [J(x)tJ(2). Also, P(x) is symmetric, and it is well known
that ||J(z)2 = ||J(:E)T(J(:c)J(:c))7 < 2 - for any x € X'. Thus, for any (z,7) € X x X, one has

|1P(z) = P(Z)|2 = | P(x)(I — P(T)) — (I = P(z))P(z)
=|1P(x)" (I - P(@))" — (I - P(2))P(@)]2
= 1P()" T (@) (J(@)")T = J (@)1 (2)P(@)]2
P(2)"(J(@) = J(2))" (@) ~ J(2)"(J(2) - T (2)) P(@)]
((

- |
< IP@)7(@) = J@) 1@z + 1) 1) - J@) LI P@)ls

< (@) |2 + 117 (@))1 () — J(@)]|2
2L, _
< Umian*tz

Therefore, for any (z,Z) € X x X, one has

|P@)V[f(z) = P(@)V(@)|l2 = [|P(2)V[(z) = P(2)Vf (@) + P(x)Vf(Z) = P(@)Vf(Z)]2
< | P@)2IVF(z) = V@) + [|P(z) = P@) |2V ()2

QiJliv _ _
(LVf t f) |z —Z|2 =: Lpvsllz — Z|2,

min

IN

which completes the proof. O O

Next we state a couple of bounds pertaining to finite series.

Lemma 3.2. Given 8 € (0,1) and K € N, one has that

K—1
1- 1 BQA+8)
/Bk T Q0 ﬂkk S 77 and ﬂka
Y il S o X< 2D
Proof. Proof. Each bound is straightforward to verify; e.g., for the second, see [10, Lemma B.2]. O

We also state the following lemma, which follows easily from our prior observations under Assumption
Here and throughout the remainder of our analyses, we define ¢ : R" xRy — R by ¢(z,7) = 7f(x)+||c(x)||.

Lemma 3.3. For all k € N, it follows that
vellz = llpx T (i)~ erllz < prkcomins (11)
E[l|ug|[3[Fx] = by 2Bl Prgr |31 Fk] < by (k55 + M?). (12)
In addition, for any T € Ry, it follows for all k € N that
¢k + ady,7) — ¢y, 7) < TaV far)dy + ek + adpdily — llexll + 50 (TLoy + Ly)lldil3. (13)

Proof. Proof. Consider arbitrary k € N. The bound (11 (respectively, (12)) follows from the definition of
v (respectively, uy) in the algorithm and Assumption 3.1} In addition, under Assumption [3.1} one has that

(g + adg, 7) — d(Tk, T)
= 7(f(zr + adi) — f(zr)) + |lc(zr + adi)ll1 — llexllx
< 7(aV f(xr) dy, + 30’ Lglldill3) + llex + adidills + 32 Lylldil3 = llexlly
= 1aV f(zx) di + ek + advdilly — |kl + 50*(TLy s + L)l dil3,
which completes the proof. O]

For our next lemmas, first observe that for all £ € N one has that

k-1 k
P =g+ Bricy = uk + Blur—1 + Bri—a) = > Buri =y B u. (14)
i=0 i=1
Lemma 3.4. For all k € N, it follows that
2 2
K+ M
Elllrel3] < 2527
mll’l(5)
Proof. Proof. Consider arbitrary k& € N. By (14), Jensen’s inequality, and Lemmas [3.2] and [3.3] one finds
that
k—1 2 k—1 2 k—1 . 2
) . T Brug_;
El|lrel3] = E Zﬂzukﬂ‘ =E <251> HW
i=0 2 i=0 Zi:O ﬂ 2
k=1 \ 2 k-1 k-1
7 Zi: BZE[Huk*ZH % R
< (Zﬁ SR (5 ZB el
i=0 >ico B
1 k—1 . va + M2
< = B ARGy + M?) < o132
as desired. O O

Next, we bound the expected value of the inner product between the true gradient of the objective
function and the search direction in each iteration.

Lemma 3.5. For all k € N, it follows that

k—1
E[Vf(xe)"di] < = B hos Bl Pe—iV f (wr—i)13]
=0
| PmacivsBllnle] | BLrvsa (Gur(1=5) | Koy + M2
Omin (1 76)2 2012r1in h?nm(76) .

Proof. Proof. Consider arbitrary k¥ € N. By the definition of dj, P, = PkT , and , one finds that

Vf(ae) di = Vf(zr)" (ve + Per)

k-1
V()" (Uk + Py Z [3iuk—z>

=0
k—1
= — eV I(x)TTE (T JE) ey JrZﬂsz xr) T Prug_;
1=0
= — oV (@) T (I e
k—1 k—1
+ 3 BV (i) P un—i + Y B (P f (k) — PoeiV f (i) ui—s. (15)
=0 =1

With respect to the first term in , it follows by Assumption and Lemma (specifically, (11))) that

S pmaxKVfHCk”Z)

iV f ()T T (T) 7! (16)

Omin
With respect to the second term in (15)), it follows with Assumption [3.1] that for all ¢ € {0,...,k — 1} one
has
EV f(2r—i)" Pl jun—il Frei] = E[=hy 2,V f(@r—i) " P Preigr—il Fr—i]

= *h;;_livf(ﬂfk—i)TPkT_iPk—in(xk i)

= —hi i PhiV (@) 3 < — ol Pri V f (-0) 3. (17)
With respect to the third term in , it follows by Lemma Jensen’s inequality, Lemma (specifically,
inequality (1)), and v; and P;r; being orthogonal for any j € N that for all i € {1,...,k — 1} one has

1PeV f (k) = PeiV f (@r-i)ll3 < Lpgglloe — ze—ills

k—1 2
= Lpyy || (vj + Pjr;)
j=k—1 9
k—1 k—1
< Ly yia® losl3+ D I1Psll5
j=k—1 j=k—1
k—1
S'[/?:’Vfio‘2 Zpmax c m1n+ Z ||PJTJ||§ . (18)
j=k—1

Consequently, along with the Cauchy-Schwarz inequality and since Young’s inequality implies that |ab| <

Slal? + 55|b|? for any (a,b) € R x R and A € R, one finds with A\ = =C— that

k—1 .
> BBV (k) — Po—iV f (w5—i)) s
=1
k—1 .

< BUPVF(wk) = PeiV f(@hi)ll2llun—ill2
kil 1-— L i

< if_ P yp P._; ; 4 =PV ;

<3 (ST 1P £ 00) = Pecs¥) + s

. 1-8 — i

<Y BLpyja maxhieOmin + D I1Pirsll3 | + 5 llu—ill3

= 2 el 2(1 - B)

Taking total expectation and using Lemma Lemma (specifically, (12])), and Lemma one finds
that

k—1
E > 8PV f(xn) - Pkami))Tuki]
=1
k—1 1 _6 k—1 ;
< ‘L —= | 252 E [||P; ——E [|ueill?
— ;6 PVfa 2 ’meax c mm +]§Z || r]” + 2(1 _ 6) [HUk ||2]
k—1 2 2 2 2
; (L1=B(2 o o Kyt M Ky + M
< ‘L - - :
< 2 Plrejoi (2 (pm”w“““ Tz aope) e, aop
pmax C(l_/B) Iivf+M2 — ﬁLPVfa pmaX C(l_ﬂ) K/2Vf+M2
= L "3 . 19
PVfa < 2 r2n1n + h’rznln ZB) 20'1r2nin + hrznm(- ﬂ) ()

Taking expectation on both sides of and using 7 , and 7 the proof is complete. O] O]
Now we bound the expected reduction in the merit function between two consecutive iterations.

Lemma 3.6. For any 7 € Ry, it follows for all k € N that

E[¢($k+1) - ?f)(xk)]
k—1
<-a <72ﬁ1 Bl PV f (i) 3] + (1 - Vf”‘“) pmmnzmckl]) +a2C,

i—0 minPmin

BLpvsT (Pmaxie | Kop + M2\ Practie | Fyy+ M
h — max Ve 11, L max Ve)
where € 1- ﬁ 2O-mln - h12n1n(1 - ﬁ)Q * 2(T VI - J) Jrzrlin M h?nln(l - ﬁ)Z

Proof. Proof. Consider arbitrary 7 € Ry, and k € N. By Lemma[3.3} a € (0,1], p € (0,1], and

Jrdy = Jyv + JiPery, = Jyvp = —ppJiJi (Je L) Fex = —prcr,

one has that

P(zps1) — d(xr) < 7oV f(zp) dy + llox + adidilly = lleells + 30*(TLog + L) del3
=7aV f(zr)"de — aprlleell + 30 (T Ly + L)l dill3. (20)

With respect to the last term, it follows from Lemma Lemma and v} Pyry, = 0 that

30%(rLy s + Ly)E[|dx 3]

%()42(7'va + Ly)E[||vx + Pyry3]

2 2 2 M2
1.2 PmaxFec HVf +
S 506 (Tva + LJ) (Ur2nin * hfmn(l - ﬁ)Q

) |

Now taking expectation on both sides of , and using Lemma and basic norm inequalities, one finds

]E[¢(3Uk+1) - ¢($k)]

TapmaxHVfE[”Ck”l]

< — Z P ZV i minIE
mZﬂ Bl Py ¥ (@) 3] — opminE e] + TP
+ﬁLPVfC¥T pmax c(l_ﬂ)+ KQVf+M2 +1 2(L + L) pr2naxﬁ3+ K:2V +M2
1, .
(1 - /8)2 2O-r2nin hr2n1n(6) 2 T ’ Ur2nin h12nln< ﬁ)Q
which completes the proof. O
Theorem 3.1. Suppose that Assumption[3.1] holds and define
SR OminPmin — 1_ THprmax -7
OminPmin 1 KV f Pmax OminPmin

Then, for any K € N and with C € R defined in Lemma [3.6}, it follows that

=

¢(z1) — 7 fint L%

atK T

1 _
o > Ehpa PV (@) 13 + pminllck 1] <

Proof. Proof. Consider arbitrary k € N. Given 7 defined by , it follows from Lemma that

E[¢(zr41) — ¢(z1)] < —ar (Zﬁlh;éxE 11 Pr—iV f (i) 3] +pmin]E[|Ck1]> +a’C.

Summing this inequality over k € {1,..., K} and using ¢(z) > 7 fint for all z € X yields

= < ¢(331)—Tfinf a
ZZBZ max ||Pk? ’va L—i || +;pmm ||ck?||] T—’—i

T

k=1 1=0

With respect to the first term in the parentheses on the left-hand side, one finds that

K k-1
S S PP el = 3OS AP £

k=1 1i=0 k=11i=1
K

K-k
=Y B[PV ()] > A
1=0

=
I
—

BKle»l

E[HPka(xk)”g]%

I
M=

>
Il
—

> > E[| PV ()3

] =

=
Il
—

This inequality, along with , completes the proof. O

10

C

)

Theorem shows that the average expected combination of the squared norm of the projected gradient
and £;-norm constraint violation over K iterations decreases to aC/7 at a rate of O(1/K). Indeed, the upper
bound on the average expected combination can be made as small as desired: with {px}, {hi}, and 3 fixed,
one can choose a small enough such that «C/7 is as small as desired, then choose K sufficiently large such
that the first term on the right-hand side of is as small as desired. In addition, pyin and hyax can be
chosen to achieve any desired balance between E[|| P,V f(z)[|3] and E[||ck|[1] in the left-hand side of (22)).

3.2 Projected Stochastic Adam SQP

Next, we consider an extension of the Adam method to the setting of equality-constrained optimization.
Specifically, we propose Algorithm where we note that for any equal-length real vectors a and b we
use a o b to denote their component-wise product, we use e to denote a vector of all ones whose length is
determined by the context in which it appears, and for any real vector v we use diag(v) to denote a diagonal
matrix whose diagonal components are those of v (in order).

We emphasize that, like the variant of Adam that is analyzed in [I0], Algorithm [3| involves a modified
bias correction term in order to guarantee that a certain step size sequence (see the sequences {n;} and {ay}
below) is monotonically nondecreasing as k — oo. As discussed in [I0], this variant for the unconstrained
setting regularly yields comparable performance with the original Adam method. We borrow this modified
bias correction idea in order to model our analysis on that in [10].

Algorithm 3 Projected Stochastic Adam SQP
Require: z; € R", {pi} and {hy} with p; € (0,1] and hy € Ry, for all k € N, 5, € [0,1), B2 € (B1,1),
a € (0,1], and e € Ry
1: set rg + 0 € R™
2: set 5o+ 0 € R™
3: for all £k € N do
4: compute a stochastic gradient estimate g = V f(xy)

compute vy —prJiL (Jng)_l Cr

compute uy, < —hy ' Pygy, where Py := 1 — JF (JkJ,ip)71 Iy
set 7, < B17k—1 + ug (first momentum)

set sg < Bosp_1 + uk o ug (second momentum)

(1-p1)/1-B%

9: set Ny < — At (bias correction)

10: set dy < vy + np Py diag(sy, + ee) ™/ ?ry,
11: Set xx41 ¢ xp + ady
12: end for

For our analysis of Algorithm [3] we make the following assumption.

Assumption 3.2. With respect to Algorithm[3, the conditions of Assumption [3.] hold and, in addition,

M? + 2
llurlloo = Hh,:1Pk9k||oo < \/7 for all k € N.
k

Before commencing our analysis, let us define a few quantities to simplify our expressions. Let us also
note that for any vector defined by the algorithm, we use a second subscript to denote a component index;
e.g., for any (k,i) we use si,; to denote the ith component of the vector sj. Similarly, for the product Pygx,
we use [Prgg]; to denote its ith component. For the sake of simplicity, let us define the step size for uy as

a(l=p)y/1 - g5
7 for all k€N,

Qp = ang =

and observe that it is nondecreasing as k — oco. In addition, let us define for all k& € N the vectors t;, and ty,
where for all ¢ € {1,...,n} the ith component of each vector is given by

e ~ Un P)
tk,i — ki and o= ki _ [kgk:}z

w/8k7i—|-6’ ’ \/Sk,i TE€ hk\/S/m‘—Fe’

respectively. Let us also note that for all (k,7) and j € {1,...,k} one has that

sWZﬁé“ WP} = sk g + Z BY ' h (Pugil?,

= l=k—j+1

and for all (k,i) and j € {1,...,k} let us define the related quantity

Sji=Pisr_ji+E Z By h 2 [Pugi)? | Fr—jr | - (24)
l=k—j+1

Also, similarly as for for the heavy-ball method, one finds here for all £ € N that

Tk = ug + B1rg—1 = ug + B1(ug—1 + Bire—2) Zﬂluk i = Zﬂ .- (25)

=0

We begin with two technical lemmas whose proofs can be found in [10].

Lemma 3.7. Let (Bl,ﬁg,) be given by Algomthm@ and let {ar} be any sequence of real numbers. For any
k € N, with by := Z; 1,8 a and qy, —ZJ 161 a;, one has that

k

u L (log (1 4 b’“) - klog(ﬂz))
bt (1_/31)(1—%) €
k
and Z J
j=1

9
bj +e
Proof. Proof. See [10, Lemmas 5.2 and A.2]. O

< log (1 + b:) — klog(f2).

Lemma 3.8. For any k € N and 8 € (0, 1), it follows that

k-1
P 45
Zﬁ%/;ﬂg(im and ZﬂJ jG+1) < a g
Jj=0
Proof. Proof. See [10, Lemmas A.3 and A.4]. O

Now, similarly as in Lemma for the heavy-ball method in the previous subsection, we bound the
expected inner product between the true gradient of the objective function and the search direction in each
iteration.

Lemma 3.9. For all k € N, it follows that

E[V f ()" di]
k—1

> BE[(Pe;Vf(wr—j))" diag(3k i1 + ee) /* PV f (1))
3=0

Tk

hmax

12

—

2 2 k— j

o pasrioEfleglla] | By G s (ﬁlymmufk-n?]
Omin hminm j=0 62 e

L oot VTP A+ 5

Ay 0 A

k—1 k—1
1-p
FLhggad— P S 12 S BVE

Vil ——
4\ /M2 + K3 5=

Proof. Proof. Consider arbitrary k € N. By the definition of dy, Py = P!, and 7 one finds that

=J

~

Vf(zi) di = Vf(xe)T (vp + nePr diag(sk + ee) ™ %ry,)
k—1
= Vf(ax) v —me Y B0V f(ax)" Pr diag(si +)™ P g

Jj=0

k—1
= Vf(an) ok =k Y B (P V f(wx—;))" diag(sk + ee) ™/ Pe_jgi—

B

k—1
— e Y B (PeV f () — PeejV f(i—;))" diag(sy + €)™ Pe_jgi_; . (26)
j=0

e,
Term A satisfies . With respect to term B, one finds for any j € {1,...,k — 1} that
(Pi—yV f(z1-3))" diag(si + ee) " ?Pojgry = (PoeyV f(an—y))" diag(3y 1 +) 2P jgi
B

+ (Pk_ij(:rk_j))T (diag(:s;C + 66)71/2 — diag(3x,j+1 + 66)71/2) Pr_igr—; .

B>
Thus, by the definition , one finds for B that
E[B1] = E[E[B1|Fi—;]] = E[(Ps—jV f (w1—;))" diag(Sx,j41 + ee) "> Po; V f(21-5)),
and at the same time one finds for By that, from [10, Pages 19-20, Eq(A.27)] and Assumption one has

B[Py V f (25))T ding(G 41 + ce) V2PV (i)

2
2,/ M2 + ﬁ%f
hmin\/ 1- ﬂl %
1 L _
= §E[(Pk-—jvf($k—j))T diag(,j11 + ce) PV f(z)]
2
2,/ M? + Kyp , R ,
P A s TR T
hmin\/ 1- 51 2

From the definitions of By and Bs, one finds that

E[| By |]

IN

+ Vi + 1E[(Py—jg—;)" diag(sy—j + ee) ™ Pujgr—;]

k—1 k—1
B=nY Bih';(Bi+Ba) > m Y Bl (B —|Bs),
j=0 j=0

13

so taking expectation and employing the above equation for E[B;] and bound for E[|Bs|] yields

> nkzﬂjh HBQH)
§=0
k-1
> Q}Zia)c ; BIE[(Py—;V f(ax—;))" diag(8k 41 +ee) /2Py V [(wr)]
2y M2 + K2 B F=1 '
_ ”km > (ﬁ)j J + 1E[[[£k—113]- 27
mlnm j=0 52

Now with respect to term C' in (26), with Lemma [3.1] Jensen’s inequality, Lemma [3.3] (specifically, inequal-
ity (11 . vg—; and Pj_ th bemg orthogonal for any k — 1 € N, and the fact that {ozk} is nondecreasing,
one finds (similarly as in (I8)) that for any j € {1,. — 1} one has

|PeV f(zx) — Poe iV f(zr—j)|15 < L?vv,fHﬂ?k —zh—jll3
2

J
Z avg_ + ap— 1 Pe_iti_;)

2
= LPVf

2

< Lpyyj (Z llowr— l||2+Z||04k 1P iti— z||2>

< LPVf]2a2p12nax Koo + LPVfJO% 1 Z llte—1ll3
=1

J
< LPVfJQOéQpIQnaX KO min + L ijai Z ||tk—lH§

At the same time, for the vector diag(sg + ee)*l/QPk_jgk_j, one finds for all ¢ € {1,...,n} that

k
etski=ctBse—jit Y. hi 25 (Pg)? > e+ Blskji > Bhle + sk_yi)
I=k—j+1
2 2
. Puggr-g)? L (Peyor—g)? _ Py (Peyory)i P

€+ Ski B €+ Sk—ji Bl hi_ e+ sk—ji) B3 b
Thus, along with the Cauchy-Schwarz inequality and since Young’s inequality implies that |ab| < %|a\2 +
12 ; _ RminV/1-—P
ﬁ|b| for any (a, b) eER xR and X € R>O’ one finds with \ = Wm that

(PeV f(xk) — PoeyV f(zi—j))" diag(si + ee) " /*Pr_jgi—;
< ||PeV (k) = PoejV f(zi—j) 2]l diag(sk + €)™ /2 Pr_jgu—jl2

mln\/ Bl
EENICE W
M? + k3 7+ 1

+ || diag(sy, + ee) /2 Pe_jgr—;|13

hmin\/ 1- /81

< - Mn;m\/iﬁl.il (L?va]2a2p12nax K= m1n+L vf]OékZ”tk l2>
—|—va 7+

| PeV f(zr) — PeeyV f(zi—5) I3

14

]\42—’—"{Vf\/‘7T hig— J
hwinv/T=P1 3] sl

Thus, using Lemma one finds that

E[-C]
k—1

ECI = e Bl iE [[(PV S (n) = PeyV flan—y))" ding(si +)" /2Pesgn |
=0

k—1
2 —2 Vv 1 _61 ﬁ
¢min \/M2 n /1 P \/] 1

< nkL%’Vfa pmax

Ly o ¢M2+r-v ZO \/jljlgmntk_ln%}
T pLzi g() VIR 1
< mL?Dwa%imﬁ?o;?ni”l_Bl%ﬂ J2+nkLPwaki”lﬁlk NG S Sl
4\/ij0 44/ M? + K% =0 =1
,/M2+f<avfhmax - o 3 ,
e Z() Vi IR
2 2 VI=B Bi(l+5)

KR.O

S 77kL2 a2pr2nax ¢~ min
el a /M2 4 k2, (L= B1)

k-1 k-1
Ellitx—5113]) B1V1

+ T]k:L?vaai - -
\/ kvy i=1 l=j
s /M2 + K:thmax k-1 By J ~
v 3 () TEIE s 12 (28)

+ i
mln \% 1- ﬁl =0 62
Combining with the bounds , , and completes the proof. O O

Theorem 3.2. Suppose that Assumptions and hold and define T € Ry by along with

TﬁlLQPVf (1 —61)(Tva—|—LJ)
G ’ = , G) =)
l(ﬁl 62) (1 B /82)3/2\/m 2(/81 ﬁQ) 2(1 — 52)
L2 ?nax 3 1- 1+ 2 2
G3(B1,Be) = TLbv otV ~ A +) , and G4(B1,Be) := (rLvy ;LQJ)pma"Kc.
4 M2+vam(1—,81) min Umin

Then, for any K € N, it follows that

i mm 51) 2 .
Z E[|P:V f(zi)[12] + pminE]lckl]1]

—1 \ 2hmaxy / M? +”2Vf

15

ot Ohmax /M2 4 K /T = Br °
< o(x1) — T fint N kv 1 n (Il(log< NHVf)) —log(ﬁg)>

- atK VA (1— 532 h2im (1=
2, .2
+ <O;_2G1(51752) + iGz(ﬂl,ﬂz)) (1_71;?;) <Il(10g (1 m) - log(ﬂz))
+ LGB o) + 2G5 o). (20)
Proof. Proof. Consider arbitrary k € N. Similar to , one has that
$(zri1) — Slax) < 7aV f(x) de — aprllexlls + 50 (T Ly + Ly)|dll3- (30)

Let Amax(+) and Apin(-) denote the maximum and minimum eigenvalues, respectively, of a real symmetric
matrix argument. By Assumption and Lemma one finds for any j € {1,...,k — 1} that

M2+ g koo M2+ k2
/\max (diag(§k7j+1 + 66)1/2> S €+ Z ﬂ <Vf 6) S Z ﬂg 7 <thf>

Jj=1

’/M2+’€2Vf 1_55 1/M2+’€Vf
17B2 mlnalfﬁl

Consequently, one finds that
E[(Py—;Vf(xr—5))" diag(Sk, 511 + ee) "/ Pp;V f(x—5))]
. ~ — hmina 1-
> E{Anin(ding(5 541 +) ™2) | Py V F i) [3) > \/M(i’”
[e%% + K f
Taking total expectation , using Lemmas and and 7 one finds that
El¢p(zr+1) — ¢(zk)]
< TaE[V f(w1)" di] — apiEll|ex|h] + 30°(TLy s + L)E[|dy 3]
< 7BV f(zx)"di] — aprEl|lcx|1] + 30*(r Ly + L) E[llox 3] + nZEll|te]I3])
1

E_
hmin 1- j max E
Thnin®d = B1) NS i B (g)|3] 4 ra Lk)

)
1 _ _
hmax\ / M? + KJQVf j=0 Omin

3hmaxy/ M2 + HQVf k-1 B J B)
il /1]E .

hmin \/1 - ﬂl =0 <B2) J * 1 H|tk j||2]
o 2 V1= pi(1+pB1)

2 2 2
+TOékvafO(Pmaxhc0

g R

\/7
+ 710} Ly —F—e ZE k53] Zﬁi\/

41/ va j=1 1=
— apminE[llex 1] + 30*(TLys + Ly) (Pmaxfffor;in + neE[14]13]) -

Summing over k € {1,..., K} and using the fact that {«y} is nondecreasing, one has

Thmina(l — B1) LA TRV P K
min 1 v max
SN BIE(Pe sV (1) |3 40 (1 _ TRV sPma) S Efflx 1]
k=1

2hmax\/mk 15=0 minPmin

A

E[| PV f(@r-p)l3]. (31)

< -
2

+ Tk

16

< ¢(x1) = 7 fine +
(1) hmin\/]- k=1

7=0

B3hmax+/ M? —I—ffoTaK K (k-1
£|3 (X (5) Vi

B
rad Lio /1= B1 K [kl I Ly)
| [k by 1Ez:zwmmzmw ylrhos 4 L)y me
4’/M2+H2Vf k=1 Jj=1

C

2 —2 \/1_51 51(+ﬁ1)

2(7_LVf + LJ)p?naxﬁz

K L2 2 2
+ TAK Lpy & Pmaxhc mm M2 +K (1 _ﬁl

With respect to the term A, one finds by Lemma [3.2] that

k—1

202

min

hmm - a
A= w0 = 5) SSNS g1 [PV ()]
k=

hmax M2+/‘5vf 15=0

ahmlnT i K— k+1 2
> (-8 JE[[PeV f () [15]-

max M? + va k=1

With respect to the term B, one finds with Lemma [3.8 and 8; < (2 that

S3hmax+ / M?2 +vaTaK
B =

ViR Zwmzx2f%ﬁ+f%

g e S /A S S | Y
- mm\/ 1- 51 (1)3/2 o1 k2

With respect to the term C, one finds with Lemma, [3.8] that

372
TaKLPVf

- Ta% Ly v lz [Z BIVI(I+1)

€= 4,/M? + /svf

b1
1
1/M2—|—/<;2vf(

Now it follows from Assumption and Lemma that sk < 7 M Thus, with Lemma

hiin (1=B

K ,,,k
;m&zz% Sy

i=1 k=1 i=1 k=1

B
B2

0 (log (1 + %) — Klog(ﬁg))

S S GRS s 7 BT
S (1 _61)(1 - %) (1 g(mln(62) > Kl g(52)>

and

n K K .2 ,
Zntk\b—zzk,zé ZSM’L Z(log(S%)

~ Klog(4))

K
E|> |tk|§‘| :
k=1

M2 + 2
<n <log (7hfmn(1 f;;ck) — Klog(ﬂg)> .

Hence, with ag < aﬁ and the above bounds for A, B, and C, one has from) that

K
m1n TK: max
3 (1 BEFHIENPV f (@) 13] + pimin (1—“‘”)ZEII%IH

2hmaX\/m k=1 mlnpmln k=1
6hmax\/m7'a\/ 1-— 51 n M2 + 2V
tog | 1+ 7 | — K log(32)
(-2)

hminv 1— /62 h12n1n(62 €

n M? + K%,
@ (log (M) - Klog(52)>
+ K (OzSGg(ﬂh 52) + 062G4(ﬁ17 52)) .

Diving both sides by a7 K, and using along with (1 — 8" > (1 — B), yields the result. 0O O

< @(x1) — 7 fint +

+ (a®G1(B1, B2) + &*Ga(B1, B2))

This theorem shows that the long-run average of a positive combination of E[|| P,V f(x)||3] and E[||ck]|1]
can be made as small as desired. Consider the right-hand side of , which can be written as the sum of

(b(xl) - Tfmf

A=
max,/M +/<;vf\/ — pinlog (1+ M —M?)e)
hmln V 1-— 52(1 - &)B/QK ,
c 6 max+ /M2 + va\/l — ﬂl’fl (— log(ﬁg))
o hmm\/ 1—- 62(1 - B 3/2 7
D :=

2 M2 + 2
<O7[_G1(/51752) + 3G2(51,52)> (1_717571) (;log < }M%) - 10%(52)))
2
and F := %Gs(ﬁhﬁz) + %G4(617/82)'

Supposing that {pr}, {ht}, B1, and € are set and fixed, one can choose the remaining inputs Sz, «, and
K to make each of the above terms as small as desired. Specifically, consider first the term C. Observe

that \}‘M) and (1 — %)_3/2 are both monotonically decreasing in 82 € (1,1) as S2 — 1 and the former

decreases to 0 and the latter to (1 — £1)~%/2, and hence C' is monotonically decreasing in 35 over this range
and decreases to 0 as B2 — 1. Thus, one can first choose 32 close enough to 1 such that C' is as small as
desired, and then consider the value of S as fixed. Next, one can choose a € (0, 1] small enough such that
D and E are as small as desired, and then consider the value of o as fixed. Note that D could be further
reduced by increasing K. The last parameter to choose is K, where one can choose K large enough such
that A and B are as small as desired. In summary, by first choosing S5 close enough to 1, then choosing
«a small enough, and finally choosing K large enough, one can make the right-hand side of as small as
desired. Consequently, the long-run average of the linear combination of E[|| P,V f(x)||3] and E[||ck||1] can
be made as small as desired.

18

4 Informed Supervised Machine Learning and Implementation
Details

Let us now discuss a methodology for which the algorithms proposed and analyzed in the previous section are
particularly well suited. The methodology involves incorporating prior knowledge into a supervised learning
process through hard constraints that are imposed during training only. Both of these highlighted aspects are
critical for its effectiveness. The methodology’s use of hard constraints is in contrast to previously proposed
methodologies that incorporate prior knowledge through either (a) soft constraints [37] (i.e., through regu-
larization/penalty terms in the objective function) or (b) designing the prediction function to incorporate
knowledge directly [4, 23] (e.g., through neural network layers for which a forward pass requires solving a set
of equations or even an optimization problem). By imposing such constraints during training only, one can
avoid having the trained network require expensive operations for each forward pass. Another key feature
of this methodology is that one does not solve the hard-constrained training problem with a penalty-based
(e.g., augmented Lagrangian) method. This feature is also critical for the effectiveness of the methodology.

The supervised training of a machine learning model involves solving an optimization problem over a set
of parameters of a prediction function, call it p : R"/ x R™ — R"°, where ny is the number of features in
an input, n is the dimension of the training/optimization problem, and n, is the dimension of the output.
Denoting known input-output pairs in the form (a, b) € R"f xR™ and given a loss function £ : R" xR"> — R,
the training/optimization problem can be viewed in expected-loss or empirical-loss minimization form, i.e.,

;?El]iRI’l‘ Jaxs {p(a,2),b)dPs p(a,b) ~ mingern SN Uplas, x), by),
where A is the input domain, B is the output domain, P4 p is the input-output probability function, and
{(a;, b))}, C R" x R". In our setting, the problem has (hard) constraints on = as well. Generally, these
can be formulated in various ways; e.g., expectation, probabilistic, or almost-sure constraints. We contend
that for many informed-learning problems—such as for many physics-informed learning problems, as we
discuss below—a fixed, small number of constraints suffices to improve training. Given a (small) number m
of input-output pairs {(a$, b$)}7,, the constraints may take the form

¢di(plai,z),b5,...) =0 forall i e{1,...,m},

where the arguments to the constraint functions {¢;} may include additional terms, such as derivatives of
the prediction function with respect to inputs and/or model weights; see §5|for specific examples.

Our algorithms from the previous section can be employed in numerous informed-learning contexts (e.g.,
fair learning [7, [T11 16} [34H36]). For this work, we tested our approach on a few physics-informed learning
problems. We emphasize that our goal here is not to test huge-scale, state-of-the-art techniques for physics-
informed learning. Rather, we take a few physics-informed learning test problems and train relatively
straightforward neural networks in order to demonstrate the relative performance of our proposed algorithms
with a soft-constrained approach with Adam scaling [I5] and the hard-constrained approach with Adam
scaling from [2I]. The relative performance of the algorithms would be similar if we were to train much more
sophisticated and large-scale neural networks that are being developed in state-of-the-art physics-informed
learning. For more on physics-informed learning we direct the reader to, e.g., [0} [14] 19l 26| 29, [32] [33]. The
work [5] lies in the physics-informed learning with hard constraints, but is restricted to the hard constraints
that the PDE inputs and solutions are linearly related, whereas our method handles general nonlinear
constraints. They enforce feasibility via projection, while we allow infeasible iterates, using projection only
for momentum. Thus, we do not compare our method with theirs.

Let us now provide an overview of the setting of physics-informed learning that we consider in our
experiments. A parametric partial differential equation (PDE) can be written generically as F(¢,u) = 0,
where (®,U,V) is a triplet of Banach spaces, F : & x Y — V is a differential operator, ¢ € ® represents
PDE parameters, and u € U denotes a solution of the PDE corresponding to ¢. The aim is to train a model
to learn a mapping from the PDE parameters to a corresponding solution. Let such a mapping be denoted
as G : & x RY x R® — U, the inputs to which are PDE parameters, a vector encoding information about

19

the domain of the PDE solution about which one aims to make a prediction (e.g., temporal and/or spatial
coordinates), and, say, neural-network model parameters, and the output is a predicted solution value.

For training a model to solve the PDE with potentially no known solution values (see [I4]), one can
consider a set of training inputs {(¢;,v:)}ies, and minimize the average PDE residual over the training
inputs. Assuming that, in addition, one has access to observed and/or computed solution data in the form of
tuples {(¢;, yi, u;) }ies,, one can also aim to minimize the differences between known and predicted solution
values. Mathematically, these aims can be expressed as finding x to minimize

1 2 1 2
i > IF($i.9(¢i,yi)13 and/or il > llws — G(bi, i,)13 (33)

IS 1€Sa

Note that the ¢; and/or y; elements in {(#;, y;) }ics, may be the same or different from those in {(¢;, i, u;) }ics,-
Additional terms may also be used for training, e.g., pertaining to initial and/or boundary conditions, or
pertaining to partial physics information. For example, in we train a model for which it is known that
a mass-balance equation should hold, so our training problem involves residuals for the known mass-balance
equation, even though this only defines the physics partially. Overall, if one combines all learning aims
into a single objective function—say, with a linear combination involving weights for the different objective
terms—then one is employing a soft-constrained approach. We contend that a more effective approach can
be to take at least a subset of terms and impose them as hard constraints during training. For example,
with respect to the aims in , one might impose constraints such as F(¢;, G(é:, yi, x)) = 0 for some i € Sy
and/or u; = G(¢;,y;, x) for some i € So. Our experiments show the benefits of this idea.

5 Numerical Experiments

In this section, we present the results of numerical experiments that compare the performance of our proposed
algorithms (SQP-Heavyball(con) and SQP-Adam(con), respectively, where (“con” stands for “constrained”)
versus a soft-constrained approach with Adam scaling (Adam(unc) for “unconstrained”) [14] and a hard-
constrained approach with projection-less Adam scaling (Adam(con)) [21I]. We consider four test problems.
A few of them—mnamely, our 1D spring, 1D Burgers’ equation, and 2D Darcy flow problems—have been seen
in the literature; see [20] [23]. We also consider a problem from chemical engineering, a modified version of a
reaction network proposed in [I3]. To ensure a fair comparison, for each test problem, SQP-Heavyball(con),
SQP-Adam(con), Adam(unc), and Adam(con) use the same objective function, which is usually the data-fitting
loss plus PDE residual loss, while the hard-constrained methods SQP-Heavyball(con), SQP-Adam(con), and
Adam(con) impose additional constraints: the PDE residuals are zero at some input data points. Further
details are provided in each problem’s subsection. The software uses PyTorch (BSD-3 license). For all
experiments, the parameters 3 = 0.9, #; = 0.9, 82 = 0.999, and € = 10~7 were used; see Algorithms and
Our numerical experiments were performed using Google CoLaboratory™ L4 GPU platforms.

5.1 1D Spring

Our first test problem aims to predict the movement of a damped harmonic (mass-spring) oscillator [22]
under the influence of a restoring force and friction. For simplicity, our aim was to train a model to predict
the movement for known parameters and a single initial condition. (Our later test problems involved more
complicated situations; this simple problem and the case of only a single initial condition serves as a good
starting point for comparison.) The spring can be described by a linear, homogeneous, second-order ordinary

differential equation with constant coefficients, namely, m L) + udlzl—f) + ku(t) = 0 over t € [0,1], where

2
we fixed the mass m = 1, friction coefficient 4 = 4, and sdf)ring constant k = 400. This corresponds to
an under-damped state for which the exact solution with amplitude A and phase ¢ is well known to be
u(t) = e % (2A cos(¢ + t/wi — 62)), where § = p/(2m) and wo = \/k/m.

Our aim was to train a neural network with the known ODE and a few observed solution values to be
able to predict the height of the spring at any time ¢ € [0,1]. We used a fully connected neural network

20

with 1 input neuron (corresponding to t), 3 hidden layers with 32 neurons each, and 1 output neuron (that
predicts the spring height at time t). Hyperbolic tangent activation was used at each hidden layer. For the
training problems, we used two types of terms: ODE-residual and data-fitting terms. The times at which the
ODE-residual terms were defined were 30 evenly spaced points over [0, 1]. The times at which the data-fitting
terms were defined were 10 evenly spaced points over [0,0.4]. The runs for Adam(unc) only considered an
objective function where the terms in were combined with a weight of 10~% on the average ODE-residual.
The runs for the remaining solvers considered the same objective and included hard constraints for the ODE
residual at times {2%, %, %}, i.e., 3 constraints. For all algorithms, we ran a “full-batch” version (i.e., with
exact objective gradients employed) and a “mini-batch” version, where in each iteration of the latter version
only half of the ODE-residual data points were used. We employed the same two fixed learning rates (i.e.,
value of o in Algorithms [2|and [3)) for each algorithm: 5 x 10~% and 1 x 10~%. For the other step-size-related
parameters we chose pp =1 and hy = 1 for all k € N.

Results are provided in Figures|[l] and [2l The plots in Figure [I| show that SQP-Adam(con) yielded lower
objective values (loss) more quickly and achieved better accuracy (i.e., lower mean-squared error) after the
training budget expired. They also show that SQP-Adam(con) achieved more comparable results for the two
learning rates, whereas the other algorithms performed worse for the smaller learning rate. Our results here
demonstrate that SQP-Adam(con) requires less hyperparameter tuning. The plots in Figure |2[show that the
difference in performance can be seen clearly in the predictions that one obtains.

Loss (full batch, 0.0005) Loss (mini-batch, 0.0005) Loss (full batch, 0.0001) Loss (mini-batch, 0.0001)
10° 100 100 10°
10724 102 10771 —s~ adam(unc) —— 10724
Adam(con)
a —— SQP-Heavyball(con)

—=— Adam(unc) —=— Adam(unc) 10-44 —*— SQP-Adam({con) —=— Adam{unc)

107 4 Adam(con) 10¢ Adam(con) 1074 1 Adam(con)
—— sQP-Heavyball(con) —— sQP-Heavyball(con) —— sQP-Heavyball(con}
—+— sqp-Adam(con) —+— sQP-Adam(con) —+— sqp-adam(con)

0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000 o 5000 10000 15000 20000 25000 30000
Epoch Epoch Epoch Epoch

Figure 1: 1D Spring losses over epochs. For the mini-batch runs, the solid lines indicate means over 5 runs
while the shaded regions indicate values within one standard deviation of the means.

Epoch: 10001 Epoch: 10001 Epoch: 20001 Epoch: 20001

¥

A
(XY XYYY (ITY

N p

eodsocogecoodge

Figure 2: Predicted trajectories. Left to right: Adam(unc) (mini-batch, o = 0.0005), SQP-Adam(con)
(mini-batch, 0.0005), Adam(unc) (mini-batch, 0.0001), and SQP-Adam(con) (mini-batch, 0.0001). Axes are
time ¢ € [0, 1] (horizontal) and true/predicted u(t) (vertical). Green dots indicate times at which the ODE-
residual terms were defined for the objective function; orange dots indicate data-fitting values; the gray line
indicates the true solution; and the blue line indicates the predicted solution. Code from [22] (available
under the MIT License) was used to generate the plots.

5.2 Chemical engineering problem

This problem models the reaction system of 1-butene isomerization when cracked on an acidic zeolite [I3].
The system is reformulated as an ordinary linear differential equation by scaling the kinetic parameters of

21

the true model. The ODE is

—(e® 4+ @ 4 N (1) + BuB (1) + Ou® (1)
du(t) 2cM MW (t)
dt Py (1) — BB (1) ’
0(4)u(1) (t) — 0(5)u(4) (t)

where ¢ = [4.283,1.191,5.743,10.219, 1.535]7. Our aim was to train a neural network with the known ODE

and mass-balance condition (namely, du(;t) ®10.5 du(;z ® 4 du(;t) ® 4 du(:z) — 0) over various initial conditions
near a nominal initial condition, where the nominal one is ug = [14.5467, 16.335, 25.947, 23.525]. In this
manner, the trained network can be used to predict u(t) at any ¢ (for which we use the range t € [0, 10]) for
any initial condition near the nominal one.

We used a fully connected neural network with 5 input neurons (corresponding to the initial condition
in R* and ¢t € R), 3 hidden layers with 64 neurons each and hyperbolic tangent activation, and 4 output
neurons (corresponding to u(t) € R*). The training problems involved three objective terms: ODE-residual
(weighted by 1072), mass-balance (weighted by 1072), and data-fitting (weighted by 1) terms. Training
data was generated by solving the ODE over 1000 initial conditions (of the form wug + &, where £ was a
random vector with each element drawn from a uniform distribution over [—1,1]) using odeint from the
scipy library [31] (BSD licensed). Specifically, solution values were obtained over 64 evenly spaced times
in [0, 10], which over the 1000 initial conditions led to 64000 training points. The ODE-residual and mass-
balance terms involved all 64000 training points, whereas the data-fitting term involved only 20% of these
points chosen at random with equal probability. The runs for Adam(unc) used only these objective terms,
whereas the runs for SQP-Heavyball(con), SQP-Adam(con), and Adam(con) also considered 10 constraints
on mass-balance residuals, the points for which were chosen uniformly at random over all initial conditions
and times. The mini-batch size was 20% of all samples. We tested learning rates for all algorithms: 5 x 10~%
and 1 x 10~%. For the other step-size-related parameters we chose pp = 0.5 and hy = 1 for all k € N. The
results in Figures [3| show that SQP-Adam(con) performed best.

Loss (full batch, 0.0005) Loss (mini-batch, 0.0005) Loss (full batch, 0.0001) Loss (mini-batch, 0.0001)

—=— Adam(unc)

Adam(con)
—— SQP-Heavyball(con) 102
—*— SQP-Adam(con)

—=— Adam(unc)

Adam(con)
—— 5QP-Heavyball(con) 1024
—=— SQP-Adam(con)
ANVAV -

—=— Adam(unc)

Adam(con)
—— 5QP-Heavyball(con) 1024
—+— SQP-Adam(con)

—=— Adam(unc)

Adam{con)
—— 5QP-Heavyball(con)
—*— SQP-Adam(con)

T T T T T T T T T T T 4 T T T T T T T T T T T
0 20000 40000 60000 80000 100000 0 5000 10000 15000 20000 0 20000 40000 60000 80000 100000 o 5000 10000 15000 20000
Epoch Epoch Epoch Epoch

Figure 3: Chemical engineering problem losses over epochs. For the mini-batch runs, solid lines indicate
means over 5 runs while the shaded regions indicate values within one standard deviation of the means.

5.3 1D Burgers’ equation

Burgers’ equation is a PDE often used to describe the behavior of certain types of nonlinear waves [23] [33].
With respect to a spatial domain [0, 1], time domain [0, 1], and viscosity parameter v = 0.01, we used the
equation, initial condition, and (periodic) boundary condition

250+ u(a, 1) 20 = D, v e (0,1), te0,1]
u(z,0) = up(x), x €10,1];
u(z,t) = u(x + 1,t), x €10,1], t €[0,1].

22

Our aim was to train a neural network with the known PDE and boundary condition over various initial
conditions near a nominal initial condition. In this manner, for any (z,t) and initial condition near the
nominal one, the trained network can predict u(z,t).

We used a fully-connected neural network with 34 input neurons (corresponding to z, ¢, and a discretiza-
tion of ug over 32 evenly spaced points), 3 hidden layers with 64 neurons each and hyperbolic tangent
activation, and 1 output neuron (corresponding to u(z,t)). The training problems involve three objective
terms: PDE-residual (weighted by 10~%), boundary-residual (weighted by 1073), and data-fitting (weighted
by 1) terms. Training data was generated by solving the PDE over 100 initial conditions (of the form
up(z) = sin(2wz + &), where for each instance £ was chosen from a uniform distribution over [0, 0.2]) using
the odeint solver, as in the previous section. Specifically, solution values were obtained over 32 evenly spaced
points each in the spatial and time domains, which over the 100 initial conditions led to 102,400 training
points. For each initial condition, the PDE-residual and boundary-residual terms involved all relevant gen-
erated training points, whereas the data-fitting term involved only 200 points chosen at random with equal
probability. Adam(unc) used only these objective terms, whereas SQP-Heavyball(con), SQP-Adam(con),
and Adam(con) also considered 10 constraints on PDE residuals, the points for which were chosen uniformly
at random over all initial conditions and spatio-temporal points. The mini-batch was 20% of all samples.
We tested learning rates: 1072 and 5 x 10~%. For the other step-size-related parameters we chose p;, = 1
and hy, =1 for all k¥ € N. One finds in Figure [that the results obtained by Adam(unc) and SQP-Adam(con)
were in fact comparable. The performance by the projection-less Adam approach (Adam(con)) was inferior
to these, and the performance by SQP-Heavyball(con) was poorer still. Figure [§] shows that a prediction
by the model obtained by SQP-Adam(con) is indeed close to the true solution.

Loss (full batch, 0.001)

Loss (mini-batch, 0.001)

Loss (full batch, 0.0005)

Loss (mini-batch, 0.0005)

—=— Adam(unc)
o~ Adam(con)

—=— Adam(unc)
+— Adam(con)

—=— Adam(unc)
o~ Adam(con)

—=— Adam(unc)
o~ Adam(con)

—— SQP-Heavyball(con)
—v— sQp-Adam(con)

—— SQP-Heavyball(con)
—v— SQP-Adam(con)

—— SQP-Heavyball(con)
—+— SQP-Adam(con)

—— SQP-Heavyball(con)
—v— SQP-Adam(con)

.
-
- »

104 104
2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000]

Epoch Epoch

o 2000 4000 6000 8000 10000)
Epoch

2000 4000 6000 8000 10000
Epoch

Figure 4: Burgers’ losses over epochs. For mini-batch runs, solid lines indicate means over 5 runs while the
shaded regions (not very visible) indicate values within one standard deviation of the means.

Input v True Solution Epoch 2001

ud

Figure 6: Darcy flow diffusion coefficient v and
true/predicted solution, where diffusion coefficient
v not seen in training. Predicted solution by
SQP-Adam(con) (mini-batch, aj = 0.001).

True Solution Epoch 10001

Figure 5: Burgers’ true/predicted solutions
for initial condition not seen in training.
Predicted solution by SQP-Adam(con) (mini-
batch, ay = 0.0005).

5.4 2D Darcy flow

The steady-state 2D Darcy flow equations model the flow of a fluid through a porous medium [23] 29].
With respect to the spatial domain [0,1]?, a forcing function f (we use f(x) = 1 for all z € (0,1)? in our

23

experiments), and a diffusion coefficient v, we used

V- (vl@) V() = f(2), v e (0,1)%
u(z) =0, z € 90,12

Our aim was to train a neural network with the known PDE and boundary condition over various diffusion
coefficients such that, for any = € [0, 1]? and diffusion coefficient v, it could be used to predict u(z).

We used the Fourier Neural Operator (FNO) architecture imported from the neuralop library [I8] 20]
(MIT License). The inputs were given in three channels, one for v, one for a horizontal position embedding,
and one for a vertical position embedding. Each channel had dimension 16 x 16. We used 4 hidden layers
(the default). The output was a single channel of dimension 16 x 16 (corresponding to u(z)). The training
problems involve three objective terms: PDE-residual (weighted by 1072), boundary-residual (weighted
by 1072), and data-fitting (weighted by 1) terms. We use the neuralop package [17] to generate 100 v
values and their corresponding solutions for training. Specifically, we first generate 1000 samples using the
default settings of neuralop and then select 100 with similar v values. For each v value, the PDE-residual
and boundary-residual terms involved all relevant generated training points, whereas the data-fitting term
involved only 20% of the points chosen at random with equal probability. The runs for Adam(unc) used
only these objective terms, whereas the runs for SQP-Heavyball(con), SQP-Adam(con), and Adam(con)
considered the same objective in addition to 50 constraints on PDE residuals, the points for which were
chosen uniformly at random over all initial conditions and spatial points. We ran full-batch and mini-batch
settings, where the mini-batch was dictated by 20% of the v values. We tested using the same learning
rates for all algorithms: 5 x 1072 and 1 x 1073, For the other step-size-related parameters we chose p;, = 1
(SQP-Heavyball(con)), pr = 0.5 (SQP-Adam(con)), and hy = 1 for all k € N. The results in [7] show
strong relative performance by SQP-Adam(con). Figure [6] shows that a prediction by the model obtained by
SQP-Adam(con) is close to the true solution.

Loss (full batch, 0.005) Loss (full batch, 0.001) Loss (mini-batch, 0.005) Loss (mini-batch, 0.001)

—=— Adam(unc) —=— Adam(unc) —=— Adam(unc) —=— Adam(unc)
Adam(con) Adamicon) Adam(con) Adam(con)

—— SQP-Heavyball(con) 10°9 —— SQP-Heavyball(con} 10°q —— SQP-Heavyball(con)

—¥— SQP-Adam(con)

10° 4 —— SQP-Heavyballcon) 100
—+— SQP-Adami(con)

—*— SQP-Adam(con) —*— SQP-Adam(con)

T T T T T 10 T T T T T T T T T T T T T T T
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 500 1000 1500 2000 o 500 1000 1500 2000
Epoch Epoch Epoch Epoch

Figure 7: Darcy flow losses over epochs. For mini-batch runs, solid lines indicate means over 5 runs while
the shaded regions indicate values within one standard deviation of the means.

6 Conclusion

We proposed two stochastic diagonal-scaling methods for nonlinear equality constrained optimization, and
provided convergence guarantees for each approach. We also demonstrated the algorithms in the context
of informed supervised learning. The methods’ per-iteration costs are comparable to an unconstrained
(soft-constrained) approach that also uses diagonal scaling. The numerical experiments reveal practical
benefits of the proposed schemes, which we conjecture would also be witnessed when training larger and
more sophisticated neural networks for informed learning.

References

[1] Albert S. Berahas, Frank E. Curtis, Michael J. O’Neill, and Daniel P. Robinson. A Stochastic Sequen-
tial Quadratic Optimization Algorithm for Nonlinear-Equality-Constrained Optimization with Rank-

24

Deficient Jacobians. Mathematics of Operations Research, page moor.2021.0154, October 2023.

Albert S. Berahas, Frank E. Curtis, Daniel Robinson, and Baoyu Zhou. Sequential Quadratic Opti-
mization for Nonlinear Equality Constrained Stochastic Optimization. SIAM Journal on Optimization,
31(2):1352-1379, January 2021.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223-311, January 2018.

Nithin Chalapathi, Yiheng Du, and Aditi S Krishnapriyan. Scaling physics-informed hard constraints
with mixture-of-experts. arXiv preprint arXiv:2402.13412, 2024.

Hao Chen, Gonzalo E Constante Flores, and Can Li. Physics-informed neural networks with hard linear
equality constraints. Computers & Chemical Engineering, 189:108764, 2024.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi, and
Francesco Piccialli. Scientific Machine Learning Through Physics—Informed Neural Networks: Where
we are and What'’s Next. Journal of Scientific Computing, 92(3):88, September 2022.

Frank E. Curtis, Suyun Liu, and Daniel P. Robinson. Fair Machine Learning through Constrained
Stochastic Optimization and an e-Constraint Method. Optimization Letters, June 2023.

Frank E. Curtis, Michael J. O’Neill, and Daniel P. Robinson. Worst-case complexity of an SQP method
for nonlinear equality constrained stochastic optimization. Mathematical Programming, June 2023.

Yann Dauphin, Harm de Vries, and Yoshua Bengio. Equilibrated adaptive learning rates for non-convex
optimization. In Advances in Neural Information Processing Systems. arXiv:1502.04390, 2015.

Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A Simple Convergence Proof of
Adam and Adagrad. In Transactions on Machine Learning Research. arXiv:2003.02395, 2022.

Michele Donini, Luca Oneto, Shai Ben-David, John S Shawe-Taylor, and Massimiliano Pontil. Empirical
risk minimization under fairness constraints. In Advances in Neural Information Processing Systems.

arXiv:1802.08626, 2018.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121-2159, 2011.

Udit Gupta, Seongmin Heo, Aditya Bhan, and Prodromos Daoutidis. Time scale decomposition in
complex reaction systems: A graph theoretic analysis. Computers & Chemical Engineering, 95:170-181,
December 2016.

George Em Karniadakis, lIoannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422-440, May 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, ICLR. arXiv:1412.6980, 2015.

Junpei Komiyama, Akiko Takeda, Junya Honda, and Hajime Shimao. Nonconvex optimization for
regression with fairness constraints. In International conference on machine learning. PMLR, 2018.

Jean Kossaifi, Nikola Kovachki, Zongyi Li, David Pitt, Miguel Liu-Schiaffini, Valentin Duruisseaux,
Robert Joseph George, Boris Bonev, Kamyar Azizzadenesheli, Julius Berner, and Anima Anandkumar.
A library for learning neural operators. arXiv preprint arXiv:2412.10354, 2025.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with appli-
cations to pdes. Journal of Machine Learning Research, 24(89), 2023.

25

[19]

[20]

[29]

[30]

[31]

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving ordinary
and partial differential equations. IEEE transactions on neural networks, 9(5):987-1000, 1998.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. In International Conference on Learning Representations, ICLR, 2021.

Pablo Marquez-Neila, Mathieu Salzmann, and Pascal Fua. Imposing hard constraints on deep networks:
Promises and limitations. arXiv preprint arXiv:1706.02025, 2017.

Ben Moseley. So, what is a physics-informed neural network? https://github.com/benmoseley/
harmonic-oscillator-pinn/blob/main/Harmonic%20oscillator’%20PINN.ipynb, 2018. Published:
2021-08-28.

Geoffrey Négiar, Michael W. Mahoney, and Aditi S. Krishnapriyan. Learning differentiable solvers
for systems with hard constraints. In International Conference on Learning Representations, ICLR.
arXiv:2207.08675, April 2023.

Michael J. O’Neill. A two stepsize sqp method for nonlinear equality constrained stochastic optimization,
2024.

Boris Teodorovich Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1-17, 1964.

Magziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686—707, February 2019.

H. Robbins and S. Monro. A Stochastic Approximation Method. The Annals of Mathematical Statistics,
22(3):400-407, 1951.

Herbert Robbins and David Siegmund. A convergence theorem for nonnegative almost supermartingales
and some applications. In Jagdish S. Rustagi, editor, Optimizing Methods in Statistics. Academic Press,
1971.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk
Pfliiger, and Mathias Niepert. PDEBench: An Extensive Benchmark for Scientific Machine Learning.
In Advances in Neural Information Processing Systems. arXiv:2210.07182, 2023.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5. RMSPROP: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, Ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antonio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261-272, 2020.

Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An Expert’s Guide to Training
Physics-informed Neural Networks. arXiv preprint arXiv:2308.08468, 2023.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial
differential equations with physics-informed DeepONets. Science Advances, 7(40), October 2021.

26

https://github.com/benmoseley/harmonic-oscillator-pinn/blob/main/Harmonic%20oscillator%20PINN.ipynb
https://github.com/benmoseley/harmonic-oscillator-pinn/blob/main/Harmonic%20oscillator%20PINN.ipynb

[34]

[35]

[36]

[37]

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P Gummadi. Fairness
beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment.
In Proceedings of the 26th International Conference on World Wide Web, 2017.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, and Krishna P. Gummadi. Fairness
Constraints: A Flexible Approach for Fair Classification. Journal of Machine Learning Research, 20:1—
42, 2019.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P Gummadi. Fairness
constraints: Mechanisms for fair classification. In Artificial intelligence and statistics, AISTATS, 2017.

Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification with-
out labeled data. Journal of Computational Physics, 394:56-81, October 2019.

27

	Introduction
	Outline

	Problem Formulation and Stochastic Newton-SQP Framework
	Stochastic Momentum-based Algorithms
	Projected Stochastic Heavy-Ball SQP
	Projected Stochastic Adam SQP

	Informed Supervised Machine Learning and Implementation Details
	Numerical Experiments
	1D Spring
	Chemical engineering problem
	1D Burgers' equation
	2D Darcy flow

	Conclusion

