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Abstract

We generalize tilt stability, a fundamental concept in perturbation analysis
of optimization problems in Euclidean spaces, to the setting of Riemannian
manifolds. We prove the equivalence of the following conditions: Riemannian
tilt stability, Riemannian variational strong convexity, Riemannian uniform
quadratic growth, local strong monotonicity of Riemannian subdifferential,
strong metric regularity of Riemannian subdifferential, and positive definiteness
of generalized Riemannian Hessian. For Riemannian nonlinear programming, we
provide a characterization of Riemannian tilt stability under a weak constraint
qualification. Leveraging these results, we propose a generalized Riemannian
Newton method and establish its superlinear convergence under Riemannian tilt
stability.
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1 Introduction

Let M C R™ be an embedded Riemannian submanifold and consider an optimization
problem constrained on M:

f&l} f(x), (1.1)

where f : R" — R is C2. To find a solution (a local minimizer or at least a stationary
point), in Riemannian optimization, one typically runs an iterative algorithm which
generates a sequence {z; € M};>o of points on M and stops when the Riemannian
gradient vg := grad f(zk) at xx is small enough. However, a small gradient norm
does not necessarily guarantee proximity to a stationary point,' so it is important
to ask how close zx actually is to a solution Z. This problem is exactly the focus
of local convergence rate analysis. On the other hand, one can approach it from the
perspective of perturbation analysis. Indeed, consider the parametric optimization
problem defined by a tilt (i.e., linear) perturbation:

(P) min f(x) — {v,0 =), (1.2)

One can show that Z is a stationary point of (Py) and x i is a stationary point of (P, ).
Then the problem of whether xy is close to T when vk is small is translated into
the problem of whether the solution S(vk) of (P, ) is close to the solution S(0) = &
of (Py) when vk is a small tilt perturbation. Therefore, just as in Euclidean spaces
[2], numerical methodology and algorithm analysis in Riemannian optimization are
inherently linked to stability analysis of tilt perturbations.

Our goal in this paper is to study tilt stability of general optimization problems
(not necessarily smooth) on general Riemannian manifolds (not necessarily embedded
in Euclidean spaces). The first difficulty we encounter is the absence of a global lin-
ear structure on a Riemannian manifold, which obstructs a straightforward definition
of tilt perturbation as in (1.2). We address this issue by noting that tilt stability is a
local concept and can thus be defined by pullback to tangent spaces via the exponen-
tial map. To characterize Riemannian tilt stability, we propose appropriate extensions
of several basic concepts in stability analysis (such as strong metric regularity, strong
monotonicity, and uniform quadratic growth) and generalized differentiation (such as
generalized Hessian) to the Riemannian setting. We prove that the following conditions
are equivalent: Riemannian tilt stability, Riemannian variational strong convexity,
Riemannian uniform quadratic growth, local strong monotonicity of the Riemannian
subdifferential, strong metric regularity of the Riemannian subdifferential, and positive
definiteness of the generalized Riemannian Hessian. A notable feature of our results
is that we do not require subdifferential continuity (in its Riemannian form). Next we
obtain explicit characterization of Riemannian tilt stability for nonlinear programming
problems on Riemannian manifolds under the assumption of Riemannian metric sub-
regularity constraint qualification, which is weaker than other Riemannian constraint
qualifications such as Riemannian Mangasarian-Fromovitz constraint qualification. To

1This phenomenon already arises in Euclidean spaces [1]. Consider a function f:R™ — R that is nearly
flat over a large region containing z g, yet decreases sharply towards a minimizer Z located outside that
region. In this case both ||zx — Z|| and |f(xk) — f(&)| are large despite that |V f(z k)] is small.



illustrate the utility of Riemannian tilt stability in convergence analysis, we propose
a generalized Riemannian Newton method for nonsmooth Riemannian optimization
problems and establish its superlinear convergence under Riemannian tilt stability.

Now we briefly review related work in the literature.

Tilt stability in Euclidean spaces. Tilt stability is proposed in [2] for extended-
real-valued functions on Euclidean spaces, as a strong form of optimality condition
that supports computational practice. Under both prox-regularity and subdifferential
continuity, it is proved in [2] that the following conditions are equivalent: tilt stability,
variational strong convexity (though not explicitly named as such), local maximal
strong monotonicity of the subdifferential, and positive definiteness of the generalized
Hessian (introduced in [3, 4]). In [5], it is proved for prox-regular and C%-partly smooth
functions that tilt stability, strong criticality, and quadratic growth are equivalent.
In [6], under the assumption of both prox-regularity and subdifferential continuity, it
is shown that tilt stability, uniform quadratic growth, and strong metric regularity
of the subdifferential are equivalent. It is also revealed in [6] that prox-regularity is
essential for establishing characterizations of tilt stability since it is implied by either
uniform quadratic growth or strong metric regularity of the subdifferential. On the
other hand, as indicated by the results in [5], subdifferential continuity does not seem
to be essential for characterizing tilt stability. In [7, 8], as a byproduct of results
established for variational strong convexity, it is proved, under prox-regularity of f
and without assuming subdifferential continuity, that tilt stability, variational strong
convexity, f-attentive uniform quadratic growth, local strong monotonicity of the f-
attentive subdifferential, strong metric regularity of the f-attentive subdifferential,
and positive definiteness of the f-attentive generalized Hessian are all equivalent. In
[9], it is proved, under prox-regularity alone, that tilt stability is equivalent to uniform
positive definiteness of the quadratic bundle (introduced in [10-12]). To apply these
general results to problems with specific structures one needs calculations of second-
order information. In [13], calculus results for generalized Hessian are developed and
applied to second-order characterizations of tilt stable minimizers for important classes
of constrained optimization problems. In particular, for nonlinear programming, it is
shown in [13] that under the linear independence constraint qualification (LICQ), tilt
stability is equivalent to the strong second-order sufficient condition (SSOSC). Thus,
under LICQ), tilt stability for nonlinear programming is equivalent to Robinson’s strong
regularity [14] of the KKT system. However, without assuming LICQ (which is too
restrictive), tilt stability is weaker than strong regularity. Under both Mangasarian-
Fromovitz constraint qualification (MFCQ) and constant rank constraint qualification
(CRCQ), it is shown that SSOSC is sufficient for tilt stability [15] but not necessary
[16]. The uniform second-order sufficient condition (USOSC) is introduced in [16] and
is shown to be equivalent to tilt stability under MFCQ and CRCQ. In [17], point-
based sufficient conditions for tilt stability are obtained under some weak constraint
qualifications. In [18], under the metric subregularity constraint qualification (MSCQ,
which is weaker than either MFCQ or CRCQ), it is proved that tilt stability for
nonlinear programming is equivalent to the relaxed uniform second-order sufficient
condition (RUSOSC). Tilt stability of other structured optimization problems have
also been characterized under various assumptions [19-23].



Stability analysis on Riemannian manifolds. As Riemannian optimization
methods have become increasingly popular and successful in various fields [24-26],
stability analysis on Riemannian manifolds has begun to attract attention [27, 28]. To
our best knowledge, tilt stability on Riemannian manifolds has not been studied in
the literature. In [29], the concept of manifold augmented tilt stability is introduced.
It refers to stability of the solution map of certain Lagrangian function with respect
to both tilt perturbation and dual variable. Thus it is different from the Riemannian
tilt stability introduced in our paper and is also more specialized.

Nonsmooth Newton methods on Riemannian manifolds. Problems from
diverse applications can be formulated as (first/second-order) nonsmooth optimization
problems on Riemannian manifolds [30] and many algorithms have been proposed [31-
38]. In [39], a nonsmooth Riemannian Newton method for finding a zero of a locally
Lipschitz continuous vector field on a Riemannian manifold is proposed. The algorithm
of [39] is globalized in [40]. In [38], a globalized semismooth Riemannian Newton
method for minimizing a C1'! function (i.e., a function whose Riemannian gradient
vector field is locally Lipschitz continuous) on a Riemannian manifold is proposed.
The major difference between our proposed generalized Riemannian Newton method
and those in [38-40] is that our algorithm can deal with more general problems where
the Riemannian gradient vector field may not exist (in which case it is replaced by the
Riemannian subdifferential) or may fail to be locally Lipschitz continuous (when it
does exist). We note that in these more general situations, Riemannian CD-regularity,
the regularity condition used in [38-40] to guarantee local superlinear convergence, is
not even well-defined. Nonetheless, under the assumption of Riemannian tilt stability,
we are able to establish local superlinear convergence of the proposed generalized
Riemannian Newton method, which underscores the importance of Riemannian tilt
stability for algorithm analysis on Riemannian manifolds.

The remainder of the paper is organized as follows. In Section 2 preliminaries from
Riemannian geometry and variational analysis are recalled. In Section 3 we define
and characterize Riemannian tilt stability by extending some key concepts in stability
analysis to Riemannian manifolds. For Riemannian nonlinear programming, we obtain
explicit characterization of Riemannian tilt stability in terms of the initial data. In
Section 4 we propose a generalized Riemannian Newton method and establish its
superlinear convergence under Riemannian tilt stability. We draw some conclusions
and discuss future directions in Section 5.

2 Preliminaries

We recall some preliminaries in Riemannian geometry and variational analysis.

2.1 Riemannian geometry

We recall some concepts in Riemannian geometry [24, 25, 41, 42].

A smooth manifold of dimension n is a Hausdorff and second-countable topological
space that is locally homeomorphic to R™ via an atlas of charts whose transition
maps are smooth (i.e., C*). The tangent space at © € M is the linear space T, M of
derivations of the algebra of germs at x of C°*° functions on M. The disjoint union



of all tangent spaces of M is called the tangent bundle of M and is denoted by T'M.
The associated projection map is denoted by 7 : TM — M, (z,v) — w(z,v) :=z. A
Riemannian manifold is a smooth manifold with a Riemannian metric, i.e., a family
of inner products (-,-), : TxM x T, M — R that varies smoothly with & € M. The
associated norm at x € M is written || - ||,.

Let M be a Riemannian manifold and let X(M) denote the set of smooth vector
fields on M. The Levi—Civita connection on a Riemannian manifold M is the unique
map V : TM x X(M), (u,V) — V,V satisfying some nice properties. Let f: M — R
a differentiable function. The Riemannian gradient grad f(z) € T,M of f at x € M
is defined by

Df(z)(v) = (grad f(z),v),, VveT,M, (2.1)
where Df(x) : T,M — R is the derivative of f at Z. The Riemannian Hessian
Hess f(x) : T,M — T, M of f at z is a linear map defined by

Hess f(z)(u) :== V, grad f, (2.2)

where V is the Levi-Civita connection on M.

For z,y € M, the Riemannian distance between x and y is defined as d(z,y) :=
inf, f; | ()]letydt where the infimum is taken over all piecewise regular curves on
M which connect x to y. The Riemannian distance function defines a metric on each
connected component of M. A geodesic on M is a curve on M whose acceleration (with
respect to the Levi-Civita connection) is zero. Geodesics can also be characterized as
locally minimizing (with respect to the Riemannian distance) curves.

Let O be the subset of T'M consisting of (z,v) € TM such that the domain
of v, , contains [0, 1], where v, the unique maximal geodesic with initial point
and initial velocity v. The exponential map exp : O — M is defined by (z,v) —
exp(x,v) = exp,(v) := 7z ,(1). The exponential map is smooth, exp,(0) = =z, and
Dexp,(0) = Idg, p. If V C T, M is a sufficiently small open neighborhood of 0 € T,, M,
then exp, : V' — M is a diffeomorphism from V onto U := exp, (V) C M. In this case,
U is called a normal neighborhood of x and the inverse exp, ! : U — T, M is a well-
defined diffeomorphism from U onto V. For any « € M, there exists a neighborhood
W of x such that W is a normal neighborhood of 2’ for all ' € W, i.e., for all 2’ € W,
exp;/1 : W — T M is well-defined. In this case W is called a uniformly normal
neighborhood of x. Moreover, in a uniformly normal neighborhood W of x, for any
two x1, x5 € W, there exists a unique minimizing geodesic connecting x; to zs.

Let ¢ be a smooth curve on M. The parallel transport from T¢, M to Te, )M
along c is the map PT¢ ) o))  Te(to)M — Te(r,)M defined by PT¢ ;) 1,y (v) = Z(t1)
where Z is the unique parallel vector field with Z(tg) = v. Here “parallel” is defined
with respect to the Levi-Civita connection on M. When W is a uniformly normal
neighborhood of x € M, for any two o, 1 € W, we write PT,, ., for PT; . where
¢ is the unique minimizing geodesic connecting xg to x.

2.2 Variational analysis

We recall some concepts in variational analysis [43-45].



Let E be a Euclidean space (i.e., a Hilbert space of finite dimension). The
Fréchet /regular normal cone to Q@ C E at T € Q is

~

Ng(i‘) :

{v € E: limsup M < O}, (2.3)
U el

where z 5 7 indicates that z — z with € €. The Mordukhovich/limiting normal
coneto Q C F at z € Qs

Nq(z) ={v eR": Jz £ T,v, — v as k — oo with vy, € ]Vg(mk)} (2.4)
Let E, F be Euclidean spaces and S : F =% F a set-valued map with graph gph S C

E x F. The Fréchet /regular coderivative and the Mordukhovich/limiting coderivative
of S at (Z,7) € gph S are

D*S(z,7)(v) :={u € E: (u,—v) € Ny 5(Z,7)}, ve€F, (2.5)
D*S(z,g)(v) :={u € E: (u,—v) € Ngpns(Z,9)}, veF. (2.6)

When S is single-valued, we drop § = S(Z) from the notation. If S is single-valued
and C'-smooth around Z, then by [43, Example 8.34], D*S(z)(v) = D*S()(v) =
{DS(Z)*(v)}, where DS(Z) : E — F is the derivative of S at T and DS(Z)* : F — E
is the adjoint of DS(Z).

Let f: E — R := RU {co} be an extended-real-valued function with effective
domain dom f := {z € E| f(z) € R}. The Fréchet/regular subdifferential and the
Mordukhovich/limiting subdifferential of f at z € dom f are

9f(z) = {v € E | (v,-1) € Nepi (2, f(2))}, (2.7)
8f(x) == {v € E | (v,~1) € Nepi (%, f())}. (2.8)

For p > f(Z), the p-truncated f-attentive subdifferential of f is

gph 0, f :={(,v) € gph Of | f(z) < p}. (2.9)

Let f : E — R be an extended-real-valued function and # € dom f. The generalized
Hessian (or second-order subdifferential) of f at (Z,v) € gphdf is

0*f(z,v) := D*(0f)(z,v). (2.10)
For p > f(Z), the p-truncated f-attentive generalized Hessian of f at (z,v) € gphdf is

O2f(z,0) := D*(0,f)(Z,0). (2.11)

Definition 1 (tilt stability [2]) Let £ be a Euclidean space. A point Z € E is called a tilt
stable local minimizer of the function f : E — R if f(Z) € R and there exist a neighborhood



U C FE of z and a neighborhood V' C FE of 0 such that the following map is single-valued and
Lipschitz continuous:

Sy :V — E, v~ Sy(v) :=argmin {f(z) — (v,x — Z)}. (2.12)
zelU

We will abbreviate “lower semicontinuous” as “lsc”.

Definition 2 (prox-regularity) Let E be a Euclidean space. A function f : E — R is said to
be prox-regular at z for v € 0f(Z) if it is Isc at & and there exist € > 0 and r > 0 such that

@) > f@) + (v,2’ —2) - %Hx/ — al:||2 whenever

(2.13)
Hxl _jH <, Hil'—f” <6 ;é wlv ‘f(il') - f(a_:)l <&uveE 8.}0(:5)

Definition 3 (subdifferential continuity) Let E be a Euclidean space. A function f: E — R
is said to be subdifferentially continuous at Z for v € 9f(Z) if for every § > 0, there exists
€ > 0 such that |f(z) — f(Z)| < § whenever v € 9f(x) with ||z — Z|| < € and |jv — 7]| < e.

An extended-real-valued function f : M — R on a Riemannian manifold is called
proper if its effective domain dom f := {& € M | f(z) € R} is nonempty. For C C M,
its indicator function is the function ¢ : M — R with dc(x) = 0 for z € C and
Sc(z) = oo for x ¢ C. A function f : M — R on a Riemannian manifold is called lower

semicontinuous (Isc) at £ € M if liminf = f(Z) where liminf := sup {inf f(x)}
=Mz Mz VEN (z) zeV

It follows that f is Isc at z if and only if f o exp, : Tz M — R is Isc at 0 € Tz M.

3 Riemannian Tilt Stability

In this section we define and characterize tilt stability on Riemannian manifolds.
Let M be a Riemannian manifold. Consider an optimization problem on M

min f(2), (3.1)

where f : M — R is a proper, extended-real-valued function. This formulation allows
us to handle constraints C' C M implicitly via the indicator function d¢ : M — R.

Tilt stability in Euclidean spaces (see Definition 1) is a local concept, i.e., it is
completely determined by the behavior of f around Z. This motivates us to define
Riemannian tilt stability as follows.

Definition 4 (Riemannian tilt stability) A point Z € M is called a Riemannian tilt stable
local minimizer of (3.1) if f(Z) € R and there exist a neighborhood U C M of Z and a
neighborhood V- C Tz M of 0 € Tz M such that the following map is single-valued and
Lipschitz continuous:

Sy :V — M, v+~ Sy(v) := argmin {f(a:) — <’U,expgl(x))f} , (3.2)
zeU



where exp; : Oz C Tz M — M is the exponential map at 2"3,2 expgl U CM—TzM is
the locally defined inverse of expz, and (-,-); is the inner product on TzM. The Lipschitz
continuity of Sy is understood with respect to the Riemannian distance function d on M:
there exists a constant s > 0 such that d(Sy(v), Sy(v')) < &||lv —v'|| for all v,v" € V. The
infimum of all such & is called the tilt stability modulus of f at Z.

We list the following observations as evidence that the proposed Definition 4 is a
sensible generalization of tilt stability [2] to Riemannian manifolds.

® When M is a Euclidean space, Definition 4 reduces to the usual (i.e., Euclidean)
tilt stability [2] (see Definition 1) since expy *(z) = x — Z in this case.

® When M is embedded in a Euclidean space E so that a global linear structure is
available, Riemannian tilt perturbation is equivalent to Euclidean tilt perturbation
(defined via the global linear structure). More precisely, when f : E — R is C2,
we prove (in Proposition A.1) that & € M is a Riemannian tilt stable minimizer of
flar : M — R if and only if Z is a Euclidean tilt stable minimizer of fi=f+06m:
E — R where §; is the indicator function of M.

e In Euclidean spaces, an arbitrary (smooth, additive) perturbation to the objective
function can be approximated, up to first-order, by a tilt perturbation. This remains
true for Riemannian tilt perturbations. To see this, suppose a smooth perturbation
h:PxM — R, (p,z) — h(p,x) (where P is a Riemannian manifold of parameters) is
added to f in (3.1) to get the parametrized functions « — f,(x) := f(z)+h(p, ) and
we are interested in the stability of the minimizer(s) S(p) of f, with respect to p. By
[25, Proposition 5.44], h(p, z) = h(p, Z) + (grad, h(p, Z), expz(z)) + o(|| expz (2)||) =
h(p,Z) + (v,expz(z)) + o(|| expz(z)||) where v := grad, h(p,Z). Thus, up to first-
order, the general perturbation h(p, ) can be approximated by the tilt perturbation
(v, expz(x)). This means that understanding Riemannian tilt stability is a first step
towards more general perturbation analysis in Riemannian optimization.

® In Euclidean spaces, tilt stability is closely related to numerical methodology and
convergence analysis for optimization algorithms. This remains true for Riemannian
tilt stability, as we now illustrate. Suppose a Riemannian optimization algorithm
generates {xx € M}r>0. A common stopping criterion is || grad f(zx)|lz, < €. In
general, this condition cannot guarantee that xx is actually close to a minimizer .
However, if Z is a Riemannian tilt stable minimizer, we can ensure that d(zx,Z) <
Ce for some C' > 0. See Proposition A.2 for details.

Riemannian tilt stability is related to Euclidean tilt stability as explained in the
lemma below, which follows from the fact that exp; ! is a diffeomorphism (see, e.g.,
[25, Corollary 10.25]).

Lemma 3.1 Let M be a Riemannian manifold and f : M — R. For a point Z € dom f, a
neighborhood U C M of Z on which expz !is defined, and v € Tz M, consider the following
two optimization problems:

. m L —1
Lmin ) = (@) (v.expy ! (2), (3.3)

2Here Oz := O N T3z M is the domain of expg.



and

_Ilnin fo(s) = fexpz(s)) — (v, s). (3.4)
s€expy (U)CTzM

Then z, € M is a minimizer of (3.3) if and only if s = expg ' (v) is a minimizer of (3.4).
We recall the definition of Riemannian subdifferentials.

Definition 5 (Riemannian subdifferentials, [46]) Let M be a Riemannian manifold and
f: M — R belsc at T € dom f. The Riemannian Fréchet/regular subdifferential of f at T is

IRf(Z) = (f o expy)(0),

where 9(f o expz)(0) C Tz M is the Fréchet/regular subdifferential of f oexps : TeM — R at
0. The Riemannian Mordukhovich/limiting subdifferential of f at Z is

Orf(Z) :={v € TeM | Iz, € M, vy, € Opf(wr) C T, M, st. zp — 2, PTa, z(vi) — v}

The Riemannian Mordukhovich/limiting normal cone of C C M at T € C is Ng(:%) =
Ordc(Z) C Tz M where §¢ is the indicator function of C.

We define the f-attentive Riemannian subdifferential of f, which will be used in
our later characterizations of Riemannian tilt stability.

Definition 6 (f-attentive Riemannian subdifferential) Let M be a Riemannian manifold and
f: M — R belsc at ¥ € dom f. Given p > f(%), the f-attentive Riemannian subdifferential
OR,pf is defined by

gphOr,pf := {(x,v) € gph IR [ | f(z) < p}. (3.5)

The following special chain rule for Riemannian subdifferential plays an important
role in our later characterizations of Riemannian tilt stability.

Proposition 3.2 (special chain rule for Riemannian subdifferential) Let M be a Riemannian
manifold, f: M — R be lsc at T € dom f, and V C Tz M an open neighborhood of 0 € Tz M
such that expg : V. — M a diffeomorphism from V onto expz(V) C M. For s € Tz M small,

9(f o expz)(s) = D expz(s)™ (Orf(expz(s))), (3.6)

where D expz ()™ : Toyp (syM — TzM is the adjoint map of Dexpg(s) : TeM — Ty, (5)M
and OR f(expz(s)) C Texp, (s)M is the Riemannian subdifferential of f at expz(s).

Proof We first prove 9(f o expz)(s) C Dexpz(s)*(Orf(expz(s))). Given v € 9(f o expz)(s),
by the definition of (Euclidean) limiting subdifferential, there exist s, € Tz M with s — s
and vg € 9(f o expz)(sk) with vy — v. By the definition of 9(f o expz)(sk), we have

fiing L€ (54)) = £(exPs (51)) = ok, 5} = 50)

EALON s} — skllz

z>0. (3.7)




Define zj, := exp(sy) and v}, := Dexpz(sy)™ ' (vx). Then z — expy(s) (since s — s)
and PTack,expi(s)('U;c) = PTJck,expi(s)(Dexpi(sk)*7_1(vk)) - Dexpg—c(s)*’_l(v) since the
exponential and parallel transport maps are smooth (and, in particular, continuous). Now
we only need to show that v}, € Or f(zy) to conclude that D expy(s)* "1 (v) € Opf(expz(s)),
which is equivalent to v € D expz(s)* (9 f(expz(s))). Thus we need to show that

flexpy, (s)) — flexp,, (0) — (vg, s')

lls"llzs

lim inf

Ty p M
s’ — 0

Tk > 0. (3.8)

To see this, note that by defining s}, := expgl(expgjk(s/)) we have s’ — 0 <= s}, — s
(since s, = expy (z1)) and

F(expg, (s) = flexpg, (0)) = (v 8') 4,
= f(expg (sk)) — f(expz(sk)) — (vk, expy, (exps(sh))), -
=f(expz(s)) — f(expz(sy)) — (vk, D expz(si) (s — 51))g, — (ks ollsk — sillz))s,
=/ (expz(s)) — fexpz(sk)) — (D expz(sk)" (vk), sk — s1)5 + ollsk, — skllz) (3.9)
=f(expz(s)) — fexpz(si)) — (vk, sk — s1)5 + olllsk — sllz)
>o([s%, — silz)
=o(s' 2,

where the second equality follows from Lemma A.3, the fourth equality follows from the
definition of v}, and the inequality follows from (3.7).

We next prove D expz(s)*(Orf(expz(s))) C O(f o expz)(s). Given v = Dexpz(s)*(w)
vAvith w € O f(expz(s)), by Definition 5, there exist zy, € M with T) = expz(s) and v}, €
Orf(xg) C Tz, M with Pka’expi(s)(vfﬂ) — w. By the definition of dg f(zy), we have v}, €

5(f o exp,, )(0), which means that
hrn lnf f(eXpwk (S/)) B f(eXpIk (0)) - <’U;c7 5/>

e [

Tk > 0. (3.10)

Define s, := exp; ' (z},) € Tz M and vy, := D expy(sp,)* (v},) € Tz M. Then s, — s (since zj, —
expz(s)) and vy = Dexpz(sk)*(v) = Dexpz(sk)* (PTexp, (s)ax P Ty exp, (s) () —
D expz(s)*(w) = v since PTIk’expi(s)(v;) — wand PTexp (s),2, = PTexp, (s),exp,(s) = 1d
and Dexpz(sy) — Dexpz(s). Now we only need to show that v, € A(f o expz)(sg) to
conclude that v € 9(f o expz)(s). Thus we need to show that
f(expg(sy,)) — flexpz(sk)) = (vk, sk — sk)z
, To M Is% — skllz

> 0. (3.11)

To see this, note that by defining s’ := exp;kl (expz(s).)) we have s’ — 0 <= s}, — s and
Flexpz(sk)) — f(expz(sk)) — (vk, sk — sk)z

=/ (expy, (s) = f(xx) — (Dexpz(sk)" (vk), sk — sk)z

=f(expy, () — flexpy, (0)) — (vk, D expz(sk) (s} — 5k))q,
=/ (expy, (s') = f(expy, (0) = (vh, expy, (expz(sk))),, — (Wkrolllsh — sklla))y,  (3.12)
=f expzk(sl)) Fexpy, (0) = (v, ')y, +ollls), — sillz)

10



where the third equality follows from Lemma A.3 and the inequality follows from (3.10). O

A corollary of Proposition 3.2 is that the Riemannian limiting subdifferential can
be computed via pullback.

Proposition 3.3 Let M be a Riemannian manifold and f : M — R be Isc at & € dom f.
Then one has

Orf(T) = O(f o expz)(0), (3.13)

Proof This follows from Proposition 3.2 with s = 0 since D expz(0) = Idz, ps. O

To obtain characterizations of Riemannian tilt stability, we need to extend several
key concepts in variational analysis to Riemannian manifolds. We first introduce set-
valued sections. The Riemannian subdifferential is a notable example.

Definition 7 (set-valued section) A set-valued section on a Riemannian manifold M is a
set-valued map S : M = T'M such that 7(S(x)) = {z} whenever S(z) # 0, i.e., S(z) C Tx M
for all x € M. The graph of S is gph S := {(z,v) € TM | v € S(z)}.

Note that when M = FE is a Euclidean space, a set-valued section is just a set-
valued map S : E = E. In this case, the inverse of S is defined as S™! : E = F,v —
S7Y(v) .= {x € E | v € S(x)}. However, when M is a Riemannian manifold and
S : M = TM is a set-valued section, if we strictly follow the definition of inverse in
Euclidean spaces, we would get S~! = 7 for all S, which makes the concept useless.
Instead we propose the concept of localized inverse, which is motivated by our later
characterizations of Riemannian tilt stability.

Definition 8 (localized inverse of set-valued section) Let M be a Riemannian manifold and
S : M = TM a set-valued section. The localized inverse of S at £ € dom S is:

STV T M = Mv s STV () = {x eEM|ve Dexpj(expgl(a:))*(S(m))} . (3.14)
Note that z € §~1% (v) implicitly requires that z is close to Z so that expgl (z) is well-defined.
Definition 9 (localization of set-valued sections) Let M be a Riemannian manifold, S :
M = TM a set-valued section, and (Z,7) € gphS. Let U C M be a neighborhood of &

and V' C Tz M a neighborhood of 5. We assume that U is small enough so that exp; ' is
well-defined on U. The neighborhood U xz V' C TM of (Z,v) in TM is defined as follows:

UxzV:= {Dexpi(s)*’_l(v) | veV, s=exp; (z), z € U}. (3.15)

A localization of S at (Z, ) is a set-valued section with graph gph SN (U xz V).

Now we extend some key concepts in variational analysis to Riemannian manifolds.
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Definition 10 (local monotonicity of set-valued section) Let M be a Riemannian manifold.
A set-valued section S : M = T'M is locally monotone at & € M if there exists a neighborhood
U of & such that for all 2,2’ € U and v € S(z),v’ € S(z'),

(Dexpy(s')" (v') — Dexpg(s)*(v), s’ —s), >0, (3.16)

where s := exp%1 (') and s := exp%1 (z). S is locally strongly monotone with constant o > 0
at Z if there exists a neighborhood U of Z such that for all z,2’ € U and v € S(x),v’ € S(2),

(Dexpz(s')*(v') — Dexpg(s)*(v), s’ —s); > olls — 5|3, (3.17)

where s’ := exp;'(z') and s := exp; '(z). The supremum over all such o is called the
modulus of local strong monotonicity of S at z.

Definition 11 (Riemannian strong metric regularity) Let M be a Riemannian manifold.
A set-valued section S : M = TM is strongly metrically regular with constant x > 0 at
(z,7) € gphS, if R M, the localized inverse of S at Z, has a localization at
(v,Z) € gph S ~L% that is single-valued and Lipschitz continuous with constant . In other
words, there exist neighborhoods V' C Tz M of v and U C M of Z such that for all v € V,
S~L% (1) NU is a singleton and the single-valued map V — U : v — S~5%(v)NU is Lipschitz
continuous with x. The infimum of all such « is called the strong metric regularity modulus
of S at (z,0).

Definition 12 (Riemannian uniform quadratic growth condition) An Isc function f : M — R
on a Riemannian manifold M is said to satisfy the Riemannian uniform quadratic growth
condition with constant o > 0 at & € dom f if there exist p > f(Z) and neighborhoods
UCMofzand V C Tz M of 0 € Tz M such that for all (z,v) € gphdrf N (U xz V) with
f(z) < p and for all 2’ € U,

F(@') = f(x)+(Dexpg(expz | (@) (v), expz * (2) — expz ' ()5 +0l| exps ' () —expz ' (2) 3.

The following concept is introduced in [29]. Our formulation is slightly different.

Definition 13 (Riemannian variational strong convexity) Let M be a Riemannian manifold.
An Isc function f : M — R satisfies Riemannian variational strong convexity at & € M for
¥ € Orf(Z) if there exists an Isc function h : M — R such that (1) A < f in a neighborhood of
z; (2) hi=ho expz : T M — R is locally strongly convex with modulus o around 0 € Tz M;
(3) there exist p > f(Z) and neighborhoods U C M of £ and V C TzM of 0 such that
gph OrhN(U xzV) = gph OrfN(Up xz V) and h(z) = f(z) for all € m(gph dphN(U xzV)),
where Uy := {z € U| f(z) < p} and 7 : TM — M is the projection.

Now we extend the generalized Hessian [3] to Riemannian manifolds.

Definition 14 (generalized Riemannian Hessian) Let M be a Riemannian manifold and
f: M — Rbelscat Z € dom f. The generalized Riemannian Hessian of f at (Z,7) € gphdr f
is the set-valued map 0% f(&|0) : Tz M = Tz M defined as follows:

Vu € TeM, 0% f(7[0)(u) := 8°(f 0 expz)(0]0)(u) = D* (9(f o expz)) (018)(u),  (3.18)
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where 9(f o exp;) is the Euclidean subdifferential of f o exp; : TeM — R. Given p > f(Z),
the p-truncated f-attentive generalized Riemannian Hessian of f at (Z,7) € gphdgf is the
set-valued map 8%37pf(:2|17) : Tz M = Tz M defined as follows:

Vu € TsM, 0% , f(2]0)(u) := 95 (f 0 expz)(0[0)(u) = D* (9p(f 0 expz)) (00)(w),  (3.19)
where 0,(f o exp;) is the Euclidean p-truncated f-attentive subdifferential of f o expg.

Definition 15 (Riemannian prox-regularity) An lsc function f : M — R on a Riemannian
manifold M is called prox-regular at Z for © € g f(Z) if foexp; : TsM — R is prox-regular
at 0 € Tz M for v.

Definition 16 (Riemannian subdifferential continuity) An lsc function f : M — R on a
Riemannian manifold M is called subdifferentially continuous at z for v € O f () if foexpz :
Tz M — R is subdifferentially continuous at 0 € Tz M for o.

The following proposition follows from the definitions.

Proposition 3.4 Let M be a Riemannian manifold and f : M — R be subdifferentially
continuous at (z,v) € gphOrf. Then for any p > f(Z), Or,,f = Orf and aé)pf(;i,ﬂ) =

ORf (z,0).
We now characterize Riemannian tilt stability in a quantitative way.

Theorem 3.5 (characterizations of Riemannian tilt stability) Let f : M — R be Isc on a
Riemannian manifold M and T € M with 0 € Orf(z). Let k > 0 be a real number and write
f:: foexps : TeM — R. Then the following statements are equivalent:

(i) f satisfies Riemannian variational strong convezity at (Z,0) with modulus %

(ii) f satisfies Riemannian uniform quadratic growth condition at T with modulus %

(iii) There exists p > f(Z) such that Or ,f has a localization gphOg ,f N (U xz V) at
(Z,0) that is locally strongly monotone at T with modulus %

(iv) There exists p > f(ZT) such that Or ,f is strongly metrically reqular at (Z,0) with
modulus k;

(v) f satisfies Riemannian prox-regularity at (T,0) and T is a Riemannian tilt stable
minimizer of f with modulus k;

(vi) f satisfies Riemannian proz-regularity at (Z,0) and there exists p > f(Z) such that
8123)pf(£|0) 1s positive definite with modulus %

1 _
(zy0); > ||} whenever = € 07 ,f(7/0)(w). (3.20)

Proof We first prove the following claims. R
Claim 1: f : M — R satisfies (i) if and only if f is variationally strongly convex at
(0,0). Suppose that (i) holds. We need to show that gphﬁ N (expgl(U) X V) = gphfﬂ

(expgl(U)p X V) with h(s) = f(s) for all s € m (gphh N (expgl(U) X V)) where m :
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Tz M x Tz M — Tz M, (s,v) — m1(s,v) := s is the projection to the first component. By the
definition of localization, for z € U and v € Dexpg(exp; ()"~ [V], v € dgh(x) if and
only if v € dpf(x). Write s := exp, *(z). By Proposition 3.2, we have v € dgh(z) if and
only v € Dexpi(s)_laﬁ(s) and similarly for f. Then the conclusion follows. The converse
implication can be proved similarly. _

Claim 2: f satisfies (ii) if and only if f satisfies the uniform quadratic growth condition
at 0 € Tz M. To see this, suppose that f satisfies (ii). Write s := expgl(:c). Then for z, 2’ € U
with f(z) < p and v € dpf(x) N Dexpy(s)* V], we have

f(@") = f(2) + (Dexpz(s)"[v],s" — ) + illsl —s]%. (3.21)

By Proposition 3.2, D expz(s)*[v] € 81?(8). Then (3.21) implies that f satisfies the uniform
quadratic growth condition at 0 € Tz M. The converse implication can be proved similarly.

Claim 3: Op , f satisfies (iii) if and only if 9, f has a localization gph Bpfﬂ(expgl (U)xV)
at (0,0) € gph Of that is locally strongly monotone with modulus % To see this, suppose
first that Og ,f satisfies (iii). Write s = expgl(x). Then for z,2’ € U and v € dg ,f(z) N
Dexpz(s) V], v € Or,pf(a")N Dexpy(s')*71[V], we have

(D expy () 1]~ Dexpa(5) [l 8 = s)g > |18 — 5|2 (3:22)

By Proposition 3.2, we have D exp;(exp; ' (z'))*[v'] € 8,(f o expz)(s’). Thus (3.22) implies
that the localization gph apfﬂ (expgl(U) x V) is locally strongly monotone with modulus
% at 0 € Tz M. The converse implication can be proved similarly.

Claim 4: Op , f satisfies (iv) if and only if 8pfis strongly metrically regular with modulus
k at (0,0) € gph df. To see this, suppose that OR,pf satisfies (iv). By definition, v +
(Or,p f)"Y% () N U is a single-valued and Lipschitz continuous with constant x. Write s =
exp; (z). By Proposition 3.2, (aRypf)_l’f(v) ={z € M | v € Dexpz(s)*[0r,pf(2)] =
Bpf(s)} = expj(((?pf)fl(v)). Then (8pf)71 = exp; ! o(@R,pf)fl’j. Since exp; ! is Lipschitz
continuous, it follows that (8pf)_1 is single-valued and Lipschitz continuous, i,e., 8,)/? is
strongly metrically regular at (0,0). Moreover, since the exact Lipschitz modulus of expZ Lis
1 (see [46, Theorem 1]), we conclude that the Lipschitz modulus of ((%f)_l coincides with
that of (BR)pf)fl’i. The converse implication is similar.

Claim 5: Z satisfies (v) if and only if f is prox-regular at (0,0) € gphdf and 0 € Tz M
is a Riemannian tilt stable minimizer of f This follows from Lemma 3.1.

Claim 6: 8}23)pf(£|0) satisfies (vi) if and only if agf(()\()) is positive definite. This follows
from the definition of 81237pf(:i|0).

In view of Claims 1-6, it follows from [8, Theorem 5.1, Proposition 3.5] that (i) <=
(v) < (vi). It follows from [8, Theorem 5.2] that (iv) <= (v). If we can verify that
0 € 5]?(0)7 then it follows from [7, Theorem 2| that (i) <= (ii) <= (iii). To verify the
condition 0 € 5?(0), we note that by [47, Theorem 1], prox-regularity of Fat0for0e (9)?(0)
is implied by each one of the conditions (i)(ii)(iii). This implies, by the definition of prox-

~

regularity, that 0 is a proximal subgradient of f at 0 and therefore 0 is a regular subgradient
of f at 0, i.e., 0 € 9f(0). The proof is thus completed. O

Theorem 3.6 (Riemannian tilt stability under Riemannian subdifferential continuity) Let
f: M — R be lsc on a Riemannian manifold M and T € M with 0 € Orf(T). Assume that f

is subdifferentially continuous at (z,0). Let k > 0 be a real number and write f := f oexpz :
Tz M — R. Then the following statements are equivalent:
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(i) f satisfies Riemannian variational strong convezity at (Z,0) with modulus %

(ii) f satisfies Riemannian uniform quadratic growth condition at T with modulus %

(iii) Orf has a localization gph Orf N (U xz V) at (Z,0) that is locally strongly monotone
at T with modulus %

(iv) Orf is strongly metrically reqular at (Z,0) with modulus k;

(v) f satisfies Riemannian prox-regularity at (Z,0) and T is a Riemannian tilt stable
minimizer of f with modulus k;

vi) f satisfies Riemannian proz-reqularity at (%,0) and 0% f(z]0) is positive definite with

R

modulus %

(z,w), > ~|w|2 whenever =z € 8%f(Z|0)(w). (3.23)

x|

Proof This follows from Theorem 3.5 and Proposition 3.4. O

Next we study Riemannian tilt stability for nonlinear programming problems on
Riemannian manifolds. Let M be a Riemannian manifold and consider the Riemannian
nonlinear programming problem

arcrél]\r/} f(x), st g(z)eoO, (3.24)

where f : M — R, g : M — R! are C? functions and © := {0} x R"> ¢ R (with
li +1lp =1). Write T' := {z € M |g(z) € ©} and f := f +0p : M — R where dr is

the indicator function of I'. Problem (3.24) is the same as mij\ri f(z). A point T € M
re

is called a Riemannian tilt stable minimizer of (3.24) if it is a Riemannian tilt stable
local minimizer of f.

Definition 17 (Riemannian MSCQ) For the nonlinear programming problem (3.24), the
Riemannian metric subregularity constraint qualification (Riemannian MSCQ) is said to hold
at T € I if the set-valued map G : M = Rl7 z — G(z) := g(x) — O is metrically subregular at
(z,0) € gph G, i.e., there exist a neighborhood U C M of T and a constant x > 0 such that
for all z € U,

d(z;T) = d(z; G (0)) < kd(0; G(z)) = kd(g(x); ©), (3.25)

where d is the Riemannian distance on M and d(z;T") := ian d(w, ).
z’'e

Consider the following nonlinear programming problem in Euclidean spaces:

olin | flexpg(s)), st glexpz(s)) €6, (3.26)

where V' is a neighborhood of 0 € Tz M on which exp; is well-defined.

Proposition 3.7 The Riemannian MSCQ holds at T for problem (3.24) if and only if the
(Euclidean) MSCQ holds at 0 € Tz M for problem (3.26).
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Proof Suppose that (Euclidean) MSCQ holds at 0 € Tz M for problem (3.26). Write @(s) =
G(exp;z(s)) — ©. This means that there exists a neighborhood V' C TxM of 0 and a constant
& > 0 such that for all s € V/,

d(s;G7(0)) < kd(0; G(s)) = kd(g(expz(s)); ). (3.27)
Note that G~1(0) = expy *(I"). Then
d(z;T) = d(expg(s); expz (G~ 1(0))) < Ld(s;G~1(0)) < Lrd(g(expz(5)); ©),  (3.28)

where L is a Lipschitz constant for expz. The converse implication is similar. O

Proposition 3.8 Suppose that Riemannian MSCQ holds at T € T' for (3.24). Then there
exists a neighborhood U C M of T such that for allz e T NU,

Ni'(z) = Dg(x)* (Ne (9(x)))- (3.29)

Moreover, dr satisfies Riemannian proz-regularity and Riemannian subdifferential continuity
at (Z,0) for all v € ORop(T).

Proof This follows from Proposition 3.7 and [18, Lemma 4.2]. O

Proposition 3.9 (Riemannian KKT conditions) If Z is a local minimizer of (3.24) and the
Riemannian MSCQ holds at T, then the following KKT conditions hold: there exists A € R!
with A\j, 41, .., Aj;+1, = 0 such that

0 = grad f(Z) + Dg(Z)*(\), X\ =0Vi¢gI(z), g(x) €O, (3.30)
where Dg(z)* : R — Tz M is the adjoint of the derivative Dg(z) : TeM — R' and I(z) =
{i | gi(z) = 0}. Denote by L : M x R — R, (z,\) — L(z,\) = f(z) + (A g(z)) the
Riemannian Lagrangian function. Then the KKT conditions can be reformulated as

grad, L(Z,\) =0, MNgi(z) =0(Vie[l]), g(z)€O. (3.31)

Proof This follows from Proposition 3.7 and [18, (4.6)]. O
For x € T and v € N (x), we define
Az, v) == {N €R [ Ns1, .. Ayt > 0, Dg(2)*(N) = v, Ny =0(Vi ¢ I(2))}.

By Proposition 3.8, if Riemannian MSCQ holds at z € I, then A(Z,¥) is a nonempty
convex polyhedral set for any v € N{i(z). For each s € Tz M, consider the following
linear program:

m}%n—<8,Hessm()\Tg)(5c)(s)> , st AeAz,0). (3.32)

x

Its optimal solution set is denoted by A(Z, ; s).
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Definition 18 (Riemannian relaxed uniform second-order sufficient condition) For (3.24),

the Riemannian relaxed uniform second-order sufficient condition (Riemannian RUSOSC)
holds at z € I with modulus { > 0 if there exists 7 > 0 such that

(Hesszo L(z, \)(w), w) > Ufw]?, (3.33)

whenever (z,v) € gphdr fN(By(Z) xz By(0)) and A € A(z, v—grad f(z); w) with w satisfying

(grad g;(x),w) =0, Vie IT(\) and (gradg;(z),w) >0, Vie I(z)/IT(N\).  (3.34)

Theorem 3.10 (Riemannian tilt stability in Riemannian nonlinear programming) Consider
the Riemannian nonlinear programming problem (3.24) where f,g are C% Letz €T be a
stationary point of (3.24) at which the Riemannian MSCQ holds. Then T is a Riemannian
tilt stable minimizer if and only if the Riemannian RUSOSC holds at T.

Proof This follows from Lemma 3.1 and [18, Theorem 4.5]. O

4 Generalized Riemannian Newton Methods

In this section we propose a generalized Riemannian Newton methods for minimizing
a function f : M — R that is prox-regular and subdifferentially continuous in the
Riemannian sense. This covers a large class of both unconstrained and constrained
Riemannian optimization problems, including unconstrained C''! minimization and
Riemannian nonlinear programming problems. Under Riemannian tilt stability, we
establish superlinear convergence of the algorithm .

Consider the following optimization problem:

min (), (4.1)

where M is a Riemannian manifold and f : M — R is lsc.

Definition 19 (surrogate Riemannian Hessian) Let M be a Riemannian manifold and
f: M — R an Isc function. A surrogate Riemannian Hessian of f is a map H : (z,v) €
gphOrf — H(z,v) : TxM = TpM such that for all (z,v) € gphOrf, gph H(z,y) C
T:M x Tp M is a cone, i.e., 0 € H(z,v)(0) and Aw € H(z,v)(Au) whenever w € H(z,v)(u)
and A > 0.

For applications in Newton-type methods, we require that Orf is g-semismooth
with respect to the surrogate Riemannian Hessian H.

Definition 20 (g-semismoothness with respect to surrogate Riemannian Hessian) Let f :
M — R be an Isc function on a Riemannian manifold M. We say that O f is g-semismooth
at (Z,y) € gphdgrf with respect to the surrogate Riemannian Hessian H if for any € > 0,
there exists a neighborhood U of Z and a neighborhood V' C Tz M of § such that for all
(z,y) €U xz V,

IPTy.g(y+w) = gllz < ed(z,7), Vw € H(x,y)(exp, ' (2)). (4.2)
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Generalized derivatives in the Euclidean setting can be extended (via pullback) to
the Riemannian setting to serve as surrogate Riemannian Hessian. Examples include
Riemannian versions of graphical derivative DOgf(x|y) := DI(f o exp,)(0]y), sub-
space containing derivative Dg.Or f (2, y) (introduced in [48] for the Euclidean setting),
limiting graphical derivative D*0g f(x,y) [48], strict graphical derivative D.Or f(z,v),
coderivative D*0r f(x,y), and adjoint subspace containing derivative D} ,0rf(x,y)
[48]. When f is C1! (i.e., its Riemannian gradient is locally Lipschitz continuous), one
can also consider Riemannian versions of B-subdifferential 0p grad f(z) and Clarke’s
generalized Jacobian d¢ grad f(x) [38—40]. In practice, one can construct a surrogate
Riemannian Hessian by exploiting the specific structure of dgf (such as using an
upper estimate of certain generalized derivative of O f).

Given a surrogate Riemannian Hessian H, we define

Aveg H(2,y) == {A: T,M — T, M | Ais linear and Yw, A(w) € H(z,y) *(w)}.

For example, when f is C? and H (z, grad f(z)) = Hess f(z), then A,cq H (z, grad f(z))
is nonempty if and only if Hess f(x) is invertible, in which case Ayeg H (2, grad f(z)) =
{Hess f(z)~1}.

We propose a framework of generalized Riemannian Newton methods below as
Algorithm 1, which is similar in spirit to several generalized Newton methods in
Euclidean spaces [49-52]. We remark that in the Newton step, we do not need to find
Ay, explicitly and the Newton direction d* is computed by solving a linear system.
We also note that implementation of the correction step is non-trivial in general; how-
ever, if f is O as in [38-40], we can easily implement the correction step by setting
% = 2% and §* = grad f(2*) = grad f(2*). Finaly we mention that in Riemannian
optimization, iterates are updated by a retraction R : TM — M [24-26], which is
more efficient than the exponential map.

Algorithm 1 A Framework of Generalized Riemannian Newton Methods

Input: problem (4.1), retraction R on M and initial iterate z° € M.
1: for k=0,1,... do

If 0 € Orf(x*), stop.

3: Correction Step: Compute (2%, 9%) € gphdrf that is close to (z*,0) with
AregH(‘ik7 gk) 7é @

4 Newton Step: Compute d¥ = —A(§*) with Ay € AegH (2%, 9%) and set
l‘k'H = R@k (dk)

5: end for

N

Theorem 4.1 (general convergence theorem) Consider problem (4.1) and Algorithm 1. We
assume the following conditions:
(1) Orf is g-semismooth at (Z,0) € gph Or f with respect to H;
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(2) There exist constants L,k > 0 and a neighborhood U of T such that for all z € U, the
following set is nonempty:

g (@) = {(3,9,4) | d(@2) + |§]ls < Ld(z,7), A € AregH(2,9), |All <k} (4.3)

(3) (2", 9", A) € G2 (2*) for all k > 0.
Then there exists a neighborhood Uz of T such that whenever ¥ e Uz, Algorithm 1 either
stops at a stationary point after finitely many iterations or converges superlinearly to T.

Proof We only have to consider the case where Algorithm 1 produces an infinite sequence of
iterates {z* € M}i>o0-

We first estimate ||d¥ — expg;‘,1 (Z)|| 3+ By the definition of d¥, we have

ld" — exp3! ()

"
=l — Ap(5") — expl ()| g

=14 (") + A (AL (expL! (2))) 50
<|| ARl 17 + Aj; (expyid (2)) ] 45
<ke d(fck,a"c)

<kLe d(xk,:i),

where the second inequality follows from the g-semismoothness of Orf with respect to H
at (Z,0) and the third inequality follows from assumption (3). By [38, Lemma 4.2] and the
triangle inequality, there exists C' > 0 such that

d(Rgi(d"), ) < d(expye (d*), &) + C[ld*| 3. (4.5)
By definition and assumption (3),
k ~k ~k k -
ldllzx = [ = A(@)llzr < ARG Iz < wLd(z, Z). (4.6)
By [38, Lemma 4.1, (ii)], we get
d(expzx (d"), @)
=d(expzr (d"), expgn (exp,y ())) )
=[|d" — expy.! ()| 5

<kLe d(l’k, z),
where the second equality follows from definition of the exponential map. Thus
d(Rz (d¥),2) < kLed(a",2) + Ck*L? d(a*, 7) < ed(2¥, 7). (4.8)
By induction on k, all claims follow. O

Now we use the above general result to establish the superlinear convergence of a
specific generalized Riemannian Newton method under Riemannian tilt stability.

Theorem 4.2 (convergence under Riemannian tilt stability) Consider problem (4.1) and
Algorithm 1 with H(z,y) := D*dgrf(z|ly) := D*O(f o exp,)(0ly) where D* is the limiting
graphical derivative [48]. We assume the following conditions:

(1) Orf is g-semismooth at T with respect to H :== D*pf;
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(2) [ is proz-regular and subdifferentially continuous (in the Riemannian sense) at
(z,0) € gph Orf and T is a Riemannian tilt stable minimizer of f.

Then there exists a neighborhood Uz of T such that when 20 € Uz, Algorithm 1 with
H(z,y) = DﬁaRf either stops at a stationary point after finitely many steps or converges
superlinearly to .

Proof By Theorem 4.1, we only need to show that QZL’K’H(x) # () for x close to z. Take &

close to z. By Theorem 3.6, Or f is strongly metrically regular at (Z,0). By the definition of
localized inverse (Definition 8), we have

1. ~ -1
S (vz) i= {x |93 € Dexpg(exp; ()" (S(z))} (4.9)
and B
S™H%(vz) = { |vz € Dexpy(exp; ' (z)*(S(2))}- (4.10)
We will write S~1% N U for the map v — S™1%(v) NU. Since S™1F NU is single-valued and
Vg =T 40 Ti; (vz) where T, = Dexpy (expgl(m))* and similarly for T% 4, it follows that
S~ MU is also single-valued. Moreover,
d(S™1 (0s), 87 (w5) = d(ST 1 (v2), STV (vR)) < mllvs — vill < wK]js — v, (4.11)
where K > 0 is an upper bound of Lipschitz constants of Tj , o T i (which exists if we
restrict to a uniformly normal neighborhood of Z in which the exponential maps exp,, are local
diffeomorphisms with exact Lipschitz modulus 1). Since S “LEAU s Lipschitz continuous,

we can take A € 8B(exp;1 0drf~ 1% N U)(§), which always exists [53]. Then ||A|| < & and
for any w € T; M, we get from [48, Lemma 3.10,Lemma 3.11]

Aw € D*(exp; t 0dr f T N U)(9) (w), (4.12)
which is equivalent to
w € D¥(exp; ' 0dr 1 N 1)1 (0,9)(Aw) (4.13)
Moreover, we have
(exp; L 0drf M NU) ™! = 8(f o expy). (4.14)
Thus it follows that
w € D*O(f o exp;)(0, §)(Aw), (4.15)
ie.,
Aw € D*0(f 0 exp;)(0,9) " (w) = D*ORf(2,9) ™ (w) = H(2,9) " (w). (4.16)
Thus A € AvegH(Z,9) and gé’“’H(x) # (). The proof is then completed. O

Remark 1 Our convergence result is local and we expect that the proposed algorithm can be
globalized by using line search or other strategies. This is left as future work.

Remark 2 Since our emphasis in this section is mainly on the theoretical side, i.e., to illustrate
the utility of Riemannian tilt stability for convergence analysis of generalized Riemannian
Newton methods, we do not include implementations for concrete problems and corresponding
numerical experiments, which will be explored in future work.
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5 Conclusions

We extended tilt stability from Euclidean spaces to Riemannian manifolds. We proved
comprehensive general characterizations of Riemannian tilt stability and also derived
explicit conditions for Riemannian nonlinear programming under a weak constraint
qualification. We proposed a generalized Riemannian Newton method and proved
its superlinear convergence under Riemannian tilt stability. In the future, we will
study Riemannian tilt stability in other structured optimization problems and explore
applications of the proposed generalized Riemannian Newton method to nonsmooth
optimization problems on Riemannian manifolds.

Appendix A Appendix

Proposition A.1 Let M be an embedded submanifold of a Fuclidean space E equipped with
the induced metric and f: E — R is a c? function. Then T € M is a Riemannian tilt stable
manimizer of flar : M — R if and only if T if a tilt stable minimizer of f := f 4+ dpr.

Proof By Theorem 3.6, T is a Riemannian tilt stable minimizer of f|p; if and only if the
Riemannian Hessian Hess f(Z) : Tz M — Tz M is positive definite. On the other hand, Z is a
Euclidean tilt stable minimizer of f if and only if the generalized Hessian 82f~(a"c\0) :E=FE
is positive definite. By [5, Theorem 2.12], grad f|y;(Z) = 0 if and only if 0 € df(z) and
moreover,

Hess f(Z)(w) + Nz M, w € Tz M,
0, wé¢ Tz M,

where Nz M is the normal space of M at Z (which is identical with the normal cone of M at
). From this it follows that 82 f(%|0) is positive definite if and only if Hess f(Z) is positive
definite. Then the claim follows. O

0 J(z|0)(w) = { (A1)

Proposition A.2 Let M be a Riemannian manifold and f : M — R a C? function. Suppose
that a Riemannian optimization algorithm generates {xj, € M}y>o. If T is a Riemannian
tilt stable minimizer within a neighborhood U C M with constant k > 0, then there exist
constants C > 0 and € > 0 such that whenever xx enters U with || grad f(zx)|lzx < €, one
has d(zg,z) < C|l grad f(zx)||zx < Ce.

*,—1
Proof Consider the problem in (3.2) with v = vk = (D exp%l(a:K)) (grad f(zg)). It
follows from the chain rule that grad fu, (zx) = 0 where fy, is the objective function in (3.2)
with v = vg. Since Z is a Riemannian tilt stable minimizer, by Theorem 3.6, a localization

-1,z

(specified by some ¢ > 0) of (grad f)™ % is single-valued within U. By Definition 8, we
conclude that zx is the only stationary point of fy, within U and therefore zx = Sy (vk),

i.e.,, xk is the solution to the tilted problem with tilt perturbation vg. Then d(zf,Z) =
*,—1
d(S(vk), 5(0)) < kv~ Olls < x| (Dexpz ! (@) )

0. Here C' exists since expy is Lipschitz continuous around 0 € Tz M.

llgrad f(z k)| < Ce for some C >
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Lemma A.3 Let M be a Riemannian manifold and T € M. Let § € Tz M is small enough
so that x := expz(5) lies in a totally normal neighborhood of Z. For s € Tz M small,

expgl(expj(s)) = Dexpz(5)[s — 3] + o(||s — 5||z) as s — 5. (A2)

Proof We denote by g the map s € Tz M + g(s) := exp, (expz(s)) € Texp, (s)M where
z := expz(§). By assumption, the map g is well-defined and smooth for s sufficiently small.
We compute the derivative of g at 5§ using the chain rule:

Dg(3) =D exp;1 (expz(8)) o D expz(3)

=D exp;1 () o Dexpz(5)

= (Dexp,(0)) " o Dexpy(5) (A3)

=Idp, ps o D expz(3)

=D expz(3).
Then we have, by the definition of derivative,
expy  (expy () = 9(s) = 9(5)+ Dg(5) (s—5)+o(ls—51|z) = D expy(5)+o(lls—5la) as 5 — 5,
where the last equality follows from g(5) = exp; *(exp;(5)) = exp; !(x) = 0 and (A3). O
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