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1 Introduction

Let M ⊂ Rn be an embedded Riemannian submanifold and consider an optimization
problem constrained on M :

min
x∈M

f(x), (1.1)

where f : Rn → R is C2. To find a solution (a local minimizer or at least a stationary
point), in Riemannian optimization, one typically runs an iterative algorithm which
generates a sequence {xk ∈ M}k≥0 of points on M and stops when the Riemannian
gradient vK := grad f(xK) at xK is small enough. However, a small gradient norm
does not necessarily guarantee proximity to a stationary point,1 so it is important
to ask how close xK actually is to a solution x̄. This problem is exactly the focus
of local convergence rate analysis. On the other hand, one can approach it from the
perspective of perturbation analysis. Indeed, consider the parametric optimization
problem defined by a tilt (i.e., linear) perturbation:

(Pv) min
x∈M

f(x)− ⟨v, x− x̄⟩ . (1.2)

One can show that x̄ is a stationary point of (P0) and xK is a stationary point of (PvK
).

Then the problem of whether xK is close to x̄ when vK is small is translated into
the problem of whether the solution S(vK) of (PvK

) is close to the solution S(0) = x̄
of (P0) when vK is a small tilt perturbation. Therefore, just as in Euclidean spaces
[2], numerical methodology and algorithm analysis in Riemannian optimization are
inherently linked to stability analysis of tilt perturbations.

Our goal in this paper is to study tilt stability of general optimization problems
(not necessarily smooth) on general Riemannian manifolds (not necessarily embedded
in Euclidean spaces). The first difficulty we encounter is the absence of a global lin-
ear structure on a Riemannian manifold, which obstructs a straightforward definition
of tilt perturbation as in (1.2). We address this issue by noting that tilt stability is a
local concept and can thus be defined by pullback to tangent spaces via the exponen-
tial map. To characterize Riemannian tilt stability, we propose appropriate extensions
of several basic concepts in stability analysis (such as strong metric regularity, strong
monotonicity, and uniform quadratic growth) and generalized differentiation (such as
generalized Hessian) to the Riemannian setting. We prove that the following conditions
are equivalent: Riemannian tilt stability, Riemannian variational strong convexity,
Riemannian uniform quadratic growth, local strong monotonicity of the Riemannian
subdifferential, strong metric regularity of the Riemannian subdifferential, and positive
definiteness of the generalized Riemannian Hessian. A notable feature of our results
is that we do not require subdifferential continuity (in its Riemannian form). Next we
obtain explicit characterization of Riemannian tilt stability for nonlinear programming
problems on Riemannian manifolds under the assumption of Riemannian metric sub-
regularity constraint qualification, which is weaker than other Riemannian constraint
qualifications such as Riemannian Mangasarian-Fromovitz constraint qualification. To

1This phenomenon already arises in Euclidean spaces [1]. Consider a function f : Rn → R that is nearly
flat over a large region containing xK , yet decreases sharply towards a minimizer x̄ located outside that
region. In this case both ∥xK − x̄∥ and |f(xK) − f(x̄)| are large despite that ∥∇f(xK)∥ is small.
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illustrate the utility of Riemannian tilt stability in convergence analysis, we propose
a generalized Riemannian Newton method for nonsmooth Riemannian optimization
problems and establish its superlinear convergence under Riemannian tilt stability.

Now we briefly review related work in the literature.
Tilt stability in Euclidean spaces. Tilt stability is proposed in [2] for extended-

real-valued functions on Euclidean spaces, as a strong form of optimality condition
that supports computational practice. Under both prox-regularity and subdifferential
continuity, it is proved in [2] that the following conditions are equivalent: tilt stability,
variational strong convexity (though not explicitly named as such), local maximal
strong monotonicity of the subdifferential, and positive definiteness of the generalized
Hessian (introduced in [3, 4]). In [5], it is proved for prox-regular and C2-partly smooth
functions that tilt stability, strong criticality, and quadratic growth are equivalent.
In [6], under the assumption of both prox-regularity and subdifferential continuity, it
is shown that tilt stability, uniform quadratic growth, and strong metric regularity
of the subdifferential are equivalent. It is also revealed in [6] that prox-regularity is
essential for establishing characterizations of tilt stability since it is implied by either
uniform quadratic growth or strong metric regularity of the subdifferential. On the
other hand, as indicated by the results in [5], subdifferential continuity does not seem
to be essential for characterizing tilt stability. In [7, 8], as a byproduct of results
established for variational strong convexity, it is proved, under prox-regularity of f
and without assuming subdifferential continuity, that tilt stability, variational strong
convexity, f -attentive uniform quadratic growth, local strong monotonicity of the f -
attentive subdifferential, strong metric regularity of the f -attentive subdifferential,
and positive definiteness of the f -attentive generalized Hessian are all equivalent. In
[9], it is proved, under prox-regularity alone, that tilt stability is equivalent to uniform
positive definiteness of the quadratic bundle (introduced in [10–12]). To apply these
general results to problems with specific structures one needs calculations of second-
order information. In [13], calculus results for generalized Hessian are developed and
applied to second-order characterizations of tilt stable minimizers for important classes
of constrained optimization problems. In particular, for nonlinear programming, it is
shown in [13] that under the linear independence constraint qualification (LICQ), tilt
stability is equivalent to the strong second-order sufficient condition (SSOSC). Thus,
under LICQ, tilt stability for nonlinear programming is equivalent to Robinson’s strong
regularity [14] of the KKT system. However, without assuming LICQ (which is too
restrictive), tilt stability is weaker than strong regularity. Under both Mangasarian-
Fromovitz constraint qualification (MFCQ) and constant rank constraint qualification
(CRCQ), it is shown that SSOSC is sufficient for tilt stability [15] but not necessary
[16]. The uniform second-order sufficient condition (USOSC) is introduced in [16] and
is shown to be equivalent to tilt stability under MFCQ and CRCQ. In [17], point-
based sufficient conditions for tilt stability are obtained under some weak constraint
qualifications. In [18], under the metric subregularity constraint qualification (MSCQ,
which is weaker than either MFCQ or CRCQ), it is proved that tilt stability for
nonlinear programming is equivalent to the relaxed uniform second-order sufficient
condition (RUSOSC). Tilt stability of other structured optimization problems have
also been characterized under various assumptions [19–23].
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Stability analysis on Riemannian manifolds. As Riemannian optimization
methods have become increasingly popular and successful in various fields [24–26],
stability analysis on Riemannian manifolds has begun to attract attention [27, 28]. To
our best knowledge, tilt stability on Riemannian manifolds has not been studied in
the literature. In [29], the concept of manifold augmented tilt stability is introduced.
It refers to stability of the solution map of certain Lagrangian function with respect
to both tilt perturbation and dual variable. Thus it is different from the Riemannian
tilt stability introduced in our paper and is also more specialized.

Nonsmooth Newton methods on Riemannian manifolds. Problems from
diverse applications can be formulated as (first/second-order) nonsmooth optimization
problems on Riemannian manifolds [30] and many algorithms have been proposed [31–
38]. In [39], a nonsmooth Riemannian Newton method for finding a zero of a locally
Lipschitz continuous vector field on a Riemannian manifold is proposed. The algorithm
of [39] is globalized in [40]. In [38], a globalized semismooth Riemannian Newton
method for minimizing a C1,1 function (i.e., a function whose Riemannian gradient
vector field is locally Lipschitz continuous) on a Riemannian manifold is proposed.
The major difference between our proposed generalized Riemannian Newton method
and those in [38–40] is that our algorithm can deal with more general problems where
the Riemannian gradient vector field may not exist (in which case it is replaced by the
Riemannian subdifferential) or may fail to be locally Lipschitz continuous (when it
does exist). We note that in these more general situations, Riemannian CD-regularity,
the regularity condition used in [38–40] to guarantee local superlinear convergence, is
not even well-defined. Nonetheless, under the assumption of Riemannian tilt stability,
we are able to establish local superlinear convergence of the proposed generalized
Riemannian Newton method, which underscores the importance of Riemannian tilt
stability for algorithm analysis on Riemannian manifolds.

The remainder of the paper is organized as follows. In Section 2 preliminaries from
Riemannian geometry and variational analysis are recalled. In Section 3 we define
and characterize Riemannian tilt stability by extending some key concepts in stability
analysis to Riemannian manifolds. For Riemannian nonlinear programming, we obtain
explicit characterization of Riemannian tilt stability in terms of the initial data. In
Section 4 we propose a generalized Riemannian Newton method and establish its
superlinear convergence under Riemannian tilt stability. We draw some conclusions
and discuss future directions in Section 5.

2 Preliminaries

We recall some preliminaries in Riemannian geometry and variational analysis.

2.1 Riemannian geometry

We recall some concepts in Riemannian geometry [24, 25, 41, 42].
A smooth manifold of dimension n is a Hausdorff and second-countable topological

space that is locally homeomorphic to Rn via an atlas of charts whose transition
maps are smooth (i.e., C∞). The tangent space at x ∈ M is the linear space TxM of
derivations of the algebra of germs at x of C∞ functions on M . The disjoint union
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of all tangent spaces of M is called the tangent bundle of M and is denoted by TM .
The associated projection map is denoted by π : TM → M, (x, v) 7→ π(x, v) := x. A
Riemannian manifold is a smooth manifold with a Riemannian metric, i.e., a family
of inner products ⟨·, ·⟩x : TxM × TxM → R that varies smoothly with x ∈ M . The
associated norm at x ∈ M is written ∥ · ∥x.

Let M be a Riemannian manifold and let X(M) denote the set of smooth vector
fields on M . The Levi–Civita connection on a Riemannian manifold M is the unique
map ∇ : TM × X(M), (u, V ) 7→ ∇uV satisfying some nice properties. Let f : M → R
a differentiable function. The Riemannian gradient grad f(x) ∈ TxM of f at x ∈ M
is defined by

Df(x)(v) = ⟨grad f(x), v⟩x , ∀ v ∈ TxM, (2.1)

where Df(x) : TxM → R is the derivative of f at x̄. The Riemannian Hessian
Hess f(x) : TxM → TxM of f at x is a linear map defined by

Hess f(x)(u) := ∇u grad f, (2.2)

where ∇ is the Levi-Civita connection on M .
For x, y ∈ M , the Riemannian distance between x and y is defined as d(x, y) :=

infc
∫ b

a
∥c′(t)∥c(t)dt where the infimum is taken over all piecewise regular curves on

M which connect x to y. The Riemannian distance function defines a metric on each
connected component ofM . A geodesic onM is a curve onM whose acceleration (with
respect to the Levi-Civita connection) is zero. Geodesics can also be characterized as
locally minimizing (with respect to the Riemannian distance) curves.

Let O be the subset of TM consisting of (x, v) ∈ TM such that the domain
of γx,v contains [0, 1], where γx,v the unique maximal geodesic with initial point x
and initial velocity v. The exponential map exp : O → M is defined by (x, v) 7→
exp(x, v) = expx(v) := γx,v(1). The exponential map is smooth, expx(0) = x, and
D expx(0) = IdTxM . If V ⊂ TxM is a sufficiently small open neighborhood of 0 ∈ TxM ,
then expx : V → M is a diffeomorphism from V onto U := expx(V ) ⊂ M . In this case,
U is called a normal neighborhood of x and the inverse exp−1

x : U → TxM is a well-
defined diffeomorphism from U onto V . For any x ∈ M , there exists a neighborhood
W of x such that W is a normal neighborhood of x′ for all x′ ∈ W , i.e., for all x′ ∈ W ,
exp−1

x′ : W → Tx′M is well-defined. In this case W is called a uniformly normal
neighborhood of x. Moreover, in a uniformly normal neighborhood W of x, for any
two x1, x2 ∈ W , there exists a unique minimizing geodesic connecting x1 to x2.

Let c be a smooth curve on M . The parallel transport from Tc(t0)M to Tc(t1)M
along c is the map PTc

c(t0),c(t1)
: Tc(t0)M → Tc(t1)M defined by PTc

c(t0),c(t1)
(v) = Z(t1)

where Z is the unique parallel vector field with Z(t0) = v. Here “parallel” is defined
with respect to the Levi-Civita connection on M . When W is a uniformly normal
neighborhood of x ∈ M , for any two x0, x1 ∈ W , we write PTx0,x1 for PTc

x0,x1
where

c is the unique minimizing geodesic connecting x0 to x1.

2.2 Variational analysis

We recall some concepts in variational analysis [43–45].
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Let E be a Euclidean space (i.e., a Hilbert space of finite dimension). The
Fréchet/regular normal cone to Ω ⊂ E at x̄ ∈ Ω is

N̂Ω(x̄) :=
{
v ∈ E : lim sup

x
Ω→x̄

⟨v, x− x̄⟩
∥x− x̄∥

≤ 0
}
, (2.3)

where x
Ω→ x̄ indicates that x → x̄ with x ∈ Ω. The Mordukhovich/limiting normal

cone to Ω ⊂ E at x̄ ∈ Ω is

NΩ(x̄) = {v ∈ Rn : ∃xk
Ω→ x̄, vk → v as k → ∞ with vk ∈ N̂Ω(xk)}. (2.4)

Let E,F be Euclidean spaces and S : E ⇒ F a set-valued map with graph gphS ⊂
E×F . The Fréchet/regular coderivative and the Mordukhovich/limiting coderivative
of S at (x̄, ȳ) ∈ gphS are

D̂∗S(x̄, ȳ)(v) := {u ∈ E : (u,−v) ∈ N̂gphS(x̄, ȳ)}, v ∈ F, (2.5)

D∗S(x̄, ȳ)(v) := {u ∈ E : (u,−v) ∈ NgphS(x̄, ȳ)}, v ∈ F. (2.6)

When S is single-valued, we drop ȳ = S(x̄) from the notation. If S is single-valued

and C1-smooth around x̄, then by [43, Example 8.34], D̂∗S(x̄)(v) = D∗S(x̄)(v) =
{DS(x̄)∗(v)}, where DS(x̄) : E → F is the derivative of S at x̄ and DS(x̄)∗ : F → E
is the adjoint of DS(x̄).

Let f : E → R := R ∪ {∞} be an extended-real-valued function with effective
domain dom f := {x ∈ E | f(x) ∈ R}. The Fréchet/regular subdifferential and the
Mordukhovich/limiting subdifferential of f at x̄ ∈ dom f are

∂̂f(x̄) := {v ∈ E | (v,−1) ∈ N̂epi f (x̄, f(x̄))}, (2.7)

∂f(x̄) := {v ∈ E | (v,−1) ∈ Nepi f (x̄, f(x̄))}. (2.8)

For ρ > f(x̄), the ρ-truncated f -attentive subdifferential of f is

gph ∂ρf := {(x, v) ∈ gph ∂f | f(x) < ρ}. (2.9)

Let f : E → R be an extended-real-valued function and x̄ ∈ dom f . The generalized
Hessian (or second-order subdifferential) of f at (x̄, v̄) ∈ gph ∂f is

∂2f(x̄, v̄) := D∗(∂f)(x̄, v̄). (2.10)

For ρ > f(x̄), the ρ-truncated f -attentive generalized Hessian of f at (x̄, v̄) ∈ gph ∂f is

∂2
ρf(x̄, v̄) := D∗(∂ρf)(x̄, v̄). (2.11)

Definition 1 (tilt stability [2]) Let E be a Euclidean space. A point x̄ ∈ E is called a tilt
stable local minimizer of the function f : E → R if f(x̄) ∈ R and there exist a neighborhood
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U ⊂ E of x̄ and a neighborhood V ⊂ E of 0 such that the following map is single-valued and
Lipschitz continuous:

SU : V → E, v 7→ SU (v) := argmin
x∈U

{f(x)− ⟨v, x− x̄⟩} . (2.12)

We will abbreviate “lower semicontinuous” as “lsc”.

Definition 2 (prox-regularity) Let E be a Euclidean space. A function f : E → R is said to
be prox-regular at x̄ for v̄ ∈ ∂f(x̄) if it is lsc at x̄ and there exist ϵ > 0 and r > 0 such that

f(x′) > f(x) + ⟨v, x′ − x⟩ − r

2
∥x′ − x∥2 whenever

∥x′ − x̄∥ < ϵ, ∥x− x̄∥ < ϵ, x ̸= x′, |f(x)− f(x̄)| < ϵ, v ∈ ∂f(x).
(2.13)

Definition 3 (subdifferential continuity) Let E be a Euclidean space. A function f : E → R
is said to be subdifferentially continuous at x̄ for v̄ ∈ ∂f(x̄) if for every δ > 0, there exists
ϵ > 0 such that |f(x)− f(x̄)| < δ whenever v ∈ ∂f(x) with ∥x− x̄∥ < ϵ and ∥v − v̄∥ < ϵ.

An extended-real-valued function f : M → R on a Riemannian manifold is called
proper if its effective domain dom f := {x ∈ M | f(x) ∈ R} is nonempty. For C ⊂ M ,
its indicator function is the function δC : M → R with δC(x) = 0 for x ∈ C and
δC(x) = ∞ for x /∈ C. A function f : M → R on a Riemannian manifold is called lower

semicontinuous (lsc) at x̄ ∈ M if lim inf
x

M→x̄

= f(x̄) where lim inf
x

M→x̄

:= sup
V ∈N (x̄)

[
inf
x∈V

f(x)

]
.

It follows that f is lsc at x̄ if and only if f ◦ expx̄ : Tx̄M → R is lsc at 0 ∈ Tx̄M .

3 Riemannian Tilt Stability

In this section we define and characterize tilt stability on Riemannian manifolds.
Let M be a Riemannian manifold. Consider an optimization problem on M

min
x∈M

f(x), (3.1)

where f : M → R is a proper, extended-real-valued function. This formulation allows
us to handle constraints C ⊂ M implicitly via the indicator function δC : M → R.

Tilt stability in Euclidean spaces (see Definition 1) is a local concept, i.e., it is
completely determined by the behavior of f around x̄. This motivates us to define
Riemannian tilt stability as follows.

Definition 4 (Riemannian tilt stability) A point x̄ ∈ M is called a Riemannian tilt stable
local minimizer of (3.1) if f(x̄) ∈ R and there exist a neighborhood U ⊂ M of x̄ and a
neighborhood V ⊂ Tx̄M of 0 ∈ Tx̄M such that the following map is single-valued and
Lipschitz continuous:

SU : V → M, v 7→ SU (v) := argmin
x∈U

{
f(x)− ⟨v, exp−1

x̄ (x)⟩x̄
}
, (3.2)
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where expx̄ : Ox̄ ⊂ Tx̄M → M is the exponential map at x̄,2 exp−1
x̄ : U ⊂ M → Tx̄M is

the locally defined inverse of expx̄, and ⟨·, ·⟩x̄ is the inner product on Tx̄M . The Lipschitz
continuity of SU is understood with respect to the Riemannian distance function d on M :
there exists a constant κ ≥ 0 such that d(SU (v), SU (v′)) ≤ κ∥v − v′∥ for all v, v′ ∈ V . The
infimum of all such κ is called the tilt stability modulus of f at x̄.

We list the following observations as evidence that the proposed Definition 4 is a
sensible generalization of tilt stability [2] to Riemannian manifolds.

• When M is a Euclidean space, Definition 4 reduces to the usual (i.e., Euclidean)
tilt stability [2] (see Definition 1) since exp−1

x̄ (x) = x− x̄ in this case.
• When M is embedded in a Euclidean space E so that a global linear structure is

available, Riemannian tilt perturbation is equivalent to Euclidean tilt perturbation
(defined via the global linear structure). More precisely, when f : E → R is C2,
we prove (in Proposition A.1) that x̄ ∈ M is a Riemannian tilt stable minimizer of
f |M : M → R if and only if x̄ is a Euclidean tilt stable minimizer of f̃ := f + δM :
E → R where δM is the indicator function of M .

• In Euclidean spaces, an arbitrary (smooth, additive) perturbation to the objective
function can be approximated, up to first-order, by a tilt perturbation. This remains
true for Riemannian tilt perturbations. To see this, suppose a smooth perturbation
h : P×M → R, (p, x) 7→ h(p, x) (where P is a Riemannian manifold of parameters) is
added to f in (3.1) to get the parametrized functions x 7→ fp(x) := f(x)+h(p, x) and
we are interested in the stability of the minimizer(s) S(p) of fp with respect to p. By
[25, Proposition 5.44], h(p, x) = h(p, x̄)+ ⟨gradx h(p, x̄), expx̄(x)⟩+ o(∥ expx̄(x)∥) =
h(p, x̄) + ⟨v, expx̄(x)⟩ + o(∥ expx̄(x)∥) where v := gradx h(p, x̄). Thus, up to first-
order, the general perturbation h(p, x) can be approximated by the tilt perturbation
⟨v, expx̄(x)⟩. This means that understanding Riemannian tilt stability is a first step
towards more general perturbation analysis in Riemannian optimization.

• In Euclidean spaces, tilt stability is closely related to numerical methodology and
convergence analysis for optimization algorithms. This remains true for Riemannian
tilt stability, as we now illustrate. Suppose a Riemannian optimization algorithm
generates {xk ∈ M}k≥0. A common stopping criterion is ∥ grad f(xK)∥xK

< ϵ. In
general, this condition cannot guarantee that xK is actually close to a minimizer x̄.
However, if x̄ is a Riemannian tilt stable minimizer, we can ensure that d(xK , x̄) <
Cϵ for some C > 0. See Proposition A.2 for details.

Riemannian tilt stability is related to Euclidean tilt stability as explained in the
lemma below, which follows from the fact that exp−1

x̄ is a diffeomorphism (see, e.g.,
[25, Corollary 10.25]).

Lemma 3.1 Let M be a Riemannian manifold and f : M → R. For a point x̄ ∈ dom f , a
neighborhood U ⊂ M of x̄ on which exp−1

x̄ is defined, and v ∈ Tx̄M , consider the following
two optimization problems:

min
x∈U⊂M

fmv (x) := f(x)− ⟨v, exp−1
x̄ (x)⟩ , (3.3)

2Here Ox̄ := O ∩ Tx̄M is the domain of expx̄.
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and
min

s∈exp−1
x̄ (U)⊂Tx̄M

fev (s) := f(expx̄(s))− ⟨v, s⟩ . (3.4)

Then xv ∈ M is a minimizer of (3.3) if and only if s = exp−1
x̄ (xv) is a minimizer of (3.4).

We recall the definition of Riemannian subdifferentials.

Definition 5 (Riemannian subdifferentials, [46]) Let M be a Riemannian manifold and
f : M → R be lsc at x̄ ∈ dom f . The Riemannian Fréchet/regular subdifferential of f at x̄ is

∂̂Rf(x̄) := ∂̂(f ◦ expx̄)(0),

where ∂̂(f ◦ expx̄)(0) ⊂ Tx̄M is the Fréchet/regular subdifferential of f ◦ expx̄ : Tx̄M → R at
0. The Riemannian Mordukhovich/limiting subdifferential of f at x̄ is

∂Rf(x̄) := {v ∈ Tx̄M | ∃xk ∈ M,∃vk ∈ ∂̂Rf(xk) ⊂ Tx̄kM, s.t. xk → x̄,PTxk,x̄(vk) → v}.

The Riemannian Mordukhovich/limiting normal cone of C ⊂ M at x̄ ∈ C is NR
C (x̄) :=

∂RδC(x̄) ⊂ Tx̄M where δC is the indicator function of C.

We define the f -attentive Riemannian subdifferential of f , which will be used in
our later characterizations of Riemannian tilt stability.

Definition 6 (f -attentive Riemannian subdifferential) LetM be a Riemannian manifold and
f : M → R be lsc at x̄ ∈ dom f . Given ρ > f(x̄), the f -attentive Riemannian subdifferential
∂R,ρf is defined by

gph ∂R,ρf := {(x, v) ∈ gph ∂Rf | f(x) < ρ}. (3.5)

The following special chain rule for Riemannian subdifferential plays an important
role in our later characterizations of Riemannian tilt stability.

Proposition 3.2 (special chain rule for Riemannian subdifferential) Let M be a Riemannian
manifold, f : M → R be lsc at x̄ ∈ dom f , and V ⊂ Tx̄M an open neighborhood of 0 ∈ Tx̄M
such that expx̄ : V → M a diffeomorphism from V onto expx̄(V ) ⊂ M . For s ∈ Tx̄M small,

∂(f ◦ expx̄)(s) = D expx̄(s)
∗(∂Rf(expx̄(s))), (3.6)

where D expx̄(s)
∗ : Texpx̄(s)

M → Tx̄M is the adjoint map of D expx̄(s) : Tx̄M → Texpx̄(s)
M

and ∂Rf(expx̄(s)) ⊂ Texpx̄(s)
M is the Riemannian subdifferential of f at expx̄(s).

Proof We first prove ∂(f ◦ expx̄)(s) ⊂ D expx̄(s)
∗(∂Rf(expx̄(s))). Given v ∈ ∂(f ◦ expx̄)(s),

by the definition of (Euclidean) limiting subdifferential, there exist sk ∈ Tx̄M with sk → s

and vk ∈ ∂̂(f ◦ expx̄)(sk) with vk → v. By the definition of ∂̂(f ◦ expx̄)(sk), we have

lim inf
s′k

Tx̄M−→ sk

f(expx̄(s
′
k))− f(expx̄(sk))− ⟨vk, s′k − sk⟩x̄

∥s′k − sk∥x̄
≥ 0. (3.7)
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Define xk := expx̄(sk) and v′k := D expx̄(sk)
∗,−1(vk). Then xk → expx̄(s) (since sk → s)

and PTxk, expx̄(s)
(v′k) = PTxk, expx̄(s)

(D expx̄(sk)
∗,−1(vk)) → D expx̄(s)

∗,−1(v) since the
exponential and parallel transport maps are smooth (and, in particular, continuous). Now

we only need to show that v′k ∈ ∂̂Rf(xk) to conclude that D expx̄(s)
∗,−1(v) ∈ ∂Rf(expx̄(s)),

which is equivalent to v ∈ D expx̄(s)
∗(∂Rf(expx̄(s))). Thus we need to show that

lim inf

s′
Txk

M
−→ 0

f(expxk
(s′))− f(expxk

(0))− ⟨v′k, s
′⟩xk

∥s′∥xk

≥ 0. (3.8)

To see this, note that by defining s′k := exp−1
x̄ (expxk

(s′)) we have s′ → 0 ⇐⇒ s′k → sk
(since sk = exp−1

x̄ (xk)) and

f(expxk
(s′))− f(expxk

(0))− ⟨v′k, s
′⟩xk

=f(expx̄(s
′
k))− f(expx̄(sk))− ⟨v′k, exp

−1
xk

(expx̄(s
′
k))⟩xk

=f(expx̄(s))− f(expx̄(sk))− ⟨v′k, D expx̄(sk)(s
′
k − sk)⟩xk

− ⟨v′k, o(∥s
′
k − sk∥x̄)⟩xk

=f(expx̄(s))− f(expx̄(sk))− ⟨D expx̄(sk)
∗(v′k), s

′
k − sk⟩x̄ + o(∥s′k − sk∥x̄)

=f(expx̄(s))− f(expx̄(sk))− ⟨vk, s′k − sk⟩x̄ + o(∥s′k − sk∥x̄)

≥o(∥s′k − sk∥x̄)

=o(∥s′∥xk ),

(3.9)

where the second equality follows from Lemma A.3, the fourth equality follows from the
definition of v′k, and the inequality follows from (3.7).

We next prove D expx̄(s)
∗(∂Rf(expx̄(s))) ⊂ ∂(f ◦ expx̄)(s). Given v = D expx̄(s)

∗(w)
with w ∈ ∂Rf(expx̄(s)), by Definition 5, there exist xk ∈ M with xk → expx̄(s) and v′k ∈
∂̂Rf(xk) ⊂ Tx̄kM with PTxk, expx̄(s)

(v′k) → w. By the definition of ∂̂Rf(xk), we have v′k ∈
∂̂(f ◦ expxk

)(0), which means that

lim inf

s′
Txk

M
−→ 0

f(expxk
(s′))− f(expxk

(0))− ⟨v′k, s
′⟩xk

∥s′∥xk

≥ 0. (3.10)

Define sk := exp−1
x̄ (xk) ∈ Tx̄M and vk := D expx̄(sk)

∗(v′k) ∈ Tx̄M . Then sk → s (since xk →
expx̄(s)) and vk = D expx̄(sk)

∗(v′k) = D expx̄(sk)
∗(PTexpx̄(s),xk

(PTxk,expx̄(s)
(v′k))) →

D expx̄(s)
∗(w) = v since PTxk,expx̄(s)

(v′k) → w and PTexpx̄(s),xk
→ PTexpx̄(s),expx̄(s)

= Id

and D expx̄(sk) → D expx̄(s). Now we only need to show that vk ∈ ∂̂(f ◦ expx̄)(sk) to
conclude that v ∈ ∂(f ◦ expx̄)(s). Thus we need to show that

lim inf
s′k

Tx̄M−→ sk

f(expx̄(s
′
k))− f(expx̄(sk))− ⟨vk, s′k − sk⟩x̄

∥s′k − sk∥x̄
≥ 0. (3.11)

To see this, note that by defining s′ := exp−1
xk

(expx̄(s
′
k)) we have s′ → 0 ⇐⇒ s′k → sk and

f(expx̄(s
′
k))− f(expx̄(sk))− ⟨vk, s′k − sk⟩x̄

=f(expxk
(s′))− f(xk)− ⟨D expx̄(sk)

∗(v′k), s
′
k − sk⟩x̄

=f(expxk
(s′))− f(expxk

(0))− ⟨v′k, D expx̄(sk)(s
′
k − sk)⟩xk

=f(expxk
(s′))− f(expxk

(0))− ⟨v′k, exp
−1
xk

(expx̄(s
′
k))⟩xk

− ⟨v′k, o(∥s
′
k − sk∥x̄)⟩xk

=f(expxk
(s′))− f(expxk

(0))− ⟨v′k, s
′⟩xk

+ o(∥s′k − sk∥x̄)

≥o(∥s′∥xk ) + o(∥s′k − sk∥x̄)

=o(∥s′k − sk∥x̄),

(3.12)
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where the third equality follows from Lemma A.3 and the inequality follows from (3.10). □

A corollary of Proposition 3.2 is that the Riemannian limiting subdifferential can
be computed via pullback.

Proposition 3.3 Let M be a Riemannian manifold and f : M → R be lsc at x̄ ∈ dom f .
Then one has

∂Rf(x̄) = ∂(f ◦ expx̄)(0), (3.13)

Proof This follows from Proposition 3.2 with s = 0 since D expx̄(0) = IdTx̄M . □

To obtain characterizations of Riemannian tilt stability, we need to extend several
key concepts in variational analysis to Riemannian manifolds. We first introduce set-
valued sections. The Riemannian subdifferential is a notable example.

Definition 7 (set-valued section) A set-valued section on a Riemannian manifold M is a
set-valued map S : M ⇒ TM such that π(S(x)) = {x} whenever S(x) ̸= ∅, i.e., S(x) ⊂ TxM
for all x ∈ M . The graph of S is gphS := {(x, v) ∈ TM | v ∈ S(x)}.

Note that when M = E is a Euclidean space, a set-valued section is just a set-
valued map S : E ⇒ E. In this case, the inverse of S is defined as S−1 : E ⇒ E, v 7→
S−1(v) := {x ∈ E | v ∈ S(x)}. However, when M is a Riemannian manifold and
S : M ⇒ TM is a set-valued section, if we strictly follow the definition of inverse in
Euclidean spaces, we would get S−1 = π for all S, which makes the concept useless.
Instead we propose the concept of localized inverse, which is motivated by our later
characterizations of Riemannian tilt stability.

Definition 8 (localized inverse of set-valued section) Let M be a Riemannian manifold and
S : M ⇒ TM a set-valued section. The localized inverse of S at x̄ ∈ domS is:

S−1,x̄ : Tx̄M → M, v 7→ S−1,x̄(v) :=
{
x ∈ M | v ∈ D expx̄(exp

−1
x̄ (x))∗(S(x))

}
. (3.14)

Note that x ∈ S−1,x̄(v) implicitly requires that x is close to x̄ so that exp−1
x̄ (x) is well-defined.

Definition 9 (localization of set-valued sections) Let M be a Riemannian manifold, S :
M ⇒ TM a set-valued section, and (x̄, v̄) ∈ gphS. Let U ⊂ M be a neighborhood of x̄
and V ⊂ Tx̄M a neighborhood of v̄. We assume that U is small enough so that exp−1

x̄ is
well-defined on U . The neighborhood U ×x̄ V ⊂ TM of (x̄, v̄) in TM is defined as follows:

U ×x̄ V :=
{
D expx̄(s)

∗,−1(v) | v ∈ V, s = exp−1
x̄ (x), x ∈ U

}
. (3.15)

A localization of S at (x̄, v̄) is a set-valued section with graph gphS ∩ (U ×x̄ V ).

Now we extend some key concepts in variational analysis to Riemannian manifolds.
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Definition 10 (local monotonicity of set-valued section) Let M be a Riemannian manifold.
A set-valued section S : M ⇒ TM is locally monotone at x̄ ∈ M if there exists a neighborhood
U of x̄ such that for all x, x′ ∈ U and v ∈ S(x), v′ ∈ S(x′),

⟨D expx̄(s
′)∗(v′)−D expx̄(s)

∗(v), s′ − s⟩x̄ ≥ 0, (3.16)

where s′ := exp−1
x̄ (x′) and s := exp−1

x̄ (x). S is locally strongly monotone with constant σ > 0
at x̄ if there exists a neighborhood U of x̄ such that for all x, x′ ∈ U and v ∈ S(x), v′ ∈ S(x′),

⟨D expx̄(s
′)∗(v′)−D expx̄(s)

∗(v), s′ − s⟩x̄ ≥ σ∥s′ − s∥2x̄, (3.17)

where s′ := exp−1
x̄ (x′) and s := exp−1

x̄ (x). The supremum over all such σ is called the
modulus of local strong monotonicity of S at x̄.

Definition 11 (Riemannian strong metric regularity) Let M be a Riemannian manifold.
A set-valued section S : M ⇒ TM is strongly metrically regular with constant κ ≥ 0 at
(x̄, v̄) ∈ gphS, if S−1,x̄ : Tx̄ ⇒ M , the localized inverse of S at x̄, has a localization at
(v̄, x̄) ∈ gphS−1,x̄ that is single-valued and Lipschitz continuous with constant κ. In other
words, there exist neighborhoods V ⊂ Tx̄M of v̄ and U ⊂ M of x̄ such that for all v ∈ V ,
S−1,x̄(v)∩U is a singleton and the single-valued map V → U : v 7→ S−1,x̄(v)∩U is Lipschitz
continuous with κ. The infimum of all such κ is called the strong metric regularity modulus
of S at (x̄, v̄).

Definition 12 (Riemannian uniform quadratic growth condition) An lsc function f : M → R
on a Riemannian manifold M is said to satisfy the Riemannian uniform quadratic growth
condition with constant σ > 0 at x̄ ∈ dom f if there exist ρ > f(x̄) and neighborhoods
U ⊂ M of x̄ and V ⊂ Tx̄M of 0 ∈ Tx̄M such that for all (x, v) ∈ gph ∂Rf ∩ (U ×x̄ V ) with
f(x) < ρ and for all x′ ∈ U ,

f(x′) ≥ f(x)+⟨D expx̄(exp
−1
x̄ (x))∗(v), exp−1

x̄ (x′)− exp−1
x̄ (x)⟩x̄+σ∥ exp−1

x̄ (x′)−exp−1
x̄ (x)∥2x̄.

The following concept is introduced in [29]. Our formulation is slightly different.

Definition 13 (Riemannian variational strong convexity) Let M be a Riemannian manifold.
An lsc function f : M → R satisfies Riemannian variational strong convexity at x̄ ∈ M for
v̄ ∈ ∂Rf(x̄) if there exists an lsc function h : M → R such that (1) h ≤ f in a neighborhood of

x̄; (2) ĥ := h ◦ expx̄ : Tx̄M → R is locally strongly convex with modulus σ around 0 ∈ Tx̄M ;
(3) there exist ρ > f(x̄) and neighborhoods U ⊂ M of x̄ and V ⊂ Tx̄M of 0 such that
gph ∂Rh∩(U×x̄V ) = gph ∂Rf∩(Uρ×x̄V ) and h(x) = f(x) for all x ∈ π(gph ∂Rh∩(U×x̄V )),
where Uρ := {x ∈ U | f(x) < ρ} and π : TM → M is the projection.

Now we extend the generalized Hessian [3] to Riemannian manifolds.

Definition 14 (generalized Riemannian Hessian) Let M be a Riemannian manifold and
f : M → R be lsc at x̄ ∈ dom f . The generalized Riemannian Hessian of f at (x̄, v̄) ∈ gph ∂Rf
is the set-valued map ∂2Rf(x̄|v̄) : Tx̄M ⇒ Tx̄M defined as follows:

∀u ∈ Tx̄M, ∂2Rf(x̄|v̄)(u) := ∂2(f ◦ expx̄)(0|v̄)(u) = D∗ (∂(f ◦ expx̄)) (0|v̄)(u), (3.18)
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where ∂(f ◦ expx̄) is the Euclidean subdifferential of f ◦ expx̄ : Tx̄M → R. Given ρ > f(x̄),
the ρ-truncated f -attentive generalized Riemannian Hessian of f at (x̄, v̄) ∈ gph ∂Rf is the
set-valued map ∂2R,ρf(x̄|v̄) : Tx̄M ⇒ Tx̄M defined as follows:

∀u ∈ Tx̄M, ∂2R,ρf(x̄|v̄)(u) := ∂2ρ(f ◦ expx̄)(0|v̄)(u) = D∗ (∂ρ(f ◦ expx̄)) (0|v̄)(u), (3.19)

where ∂ρ(f ◦ expx̄) is the Euclidean ρ-truncated f -attentive subdifferential of f ◦ expx̄.

Definition 15 (Riemannian prox-regularity) An lsc function f : M → R on a Riemannian
manifold M is called prox-regular at x̄ for v̄ ∈ ∂Rf(x̄) if f ◦ expx̄ : Tx̄M → R is prox-regular
at 0 ∈ Tx̄M for v̄.

Definition 16 (Riemannian subdifferential continuity) An lsc function f : M → R on a
Riemannian manifold M is called subdifferentially continuous at x̄ for v̄ ∈ ∂Rf(x̄) if f ◦expx̄ :
Tx̄M → R is subdifferentially continuous at 0 ∈ Tx̄M for v̄.

The following proposition follows from the definitions.

Proposition 3.4 Let M be a Riemannian manifold and f : M → R be subdifferentially
continuous at (x̄, v̄) ∈ gph ∂Rf . Then for any ρ > f(x̄), ∂R,ρf = ∂Rf and ∂2R,ρf(x̄, v̄) =

∂2Rf(x̄, v̄).

We now characterize Riemannian tilt stability in a quantitative way.

Theorem 3.5 (characterizations of Riemannian tilt stability) Let f : M → R be lsc on a
Riemannian manifold M and x̄ ∈ M with 0 ∈ ∂Rf(x̄). Let κ ≥ 0 be a real number and write

f̂ := f ◦ expx̄ : Tx̄M → R. Then the following statements are equivalent:
(i) f satisfies Riemannian variational strong convexity at (x̄, 0) with modulus 1

κ .

(ii) f satisfies Riemannian uniform quadratic growth condition at x̄ with modulus 1
κ .

(iii) There exists ρ > f(x̄) such that ∂R,ρf has a localization gph ∂R,ρf ∩ (U ×x̄ V ) at

(x̄, 0) that is locally strongly monotone at x̄ with modulus 1
κ .

(iv) There exists ρ > f(x̄) such that ∂R,ρf is strongly metrically regular at (x̄, 0) with
modulus κ;

(v) f satisfies Riemannian prox-regularity at (x̄, 0) and x̄ is a Riemannian tilt stable
minimizer of f with modulus κ;

(vi) f satisfies Riemannian prox-regularity at (x̄, 0) and there exists ρ > f(x̄) such that
∂2R,ρf(x̄|0) is positive definite with modulus 1

κ :

⟨z, w⟩x̄ ≥ 1

κ
∥w∥2x̄ whenever z ∈ ∂2R,ρf(x̄|0)(w). (3.20)

Proof We first prove the following claims.
Claim 1: f : M → R satisfies (i) if and only if f̂ is variationally strongly convex at

(0, 0). Suppose that (i) holds. We need to show that gph ĥ ∩
(
exp−1

x̄ (U)× V
)

= gph f̂ ∩(
exp−1

x̄ (U)ρ × V
)

with ĥ(s) = f̂(s) for all s ∈ π1(gph ĥ ∩
(
exp−1

x̄ (U)× V
)
) where π1 :
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Tx̄M × Tx̄M → Tx̄M, (s, v) 7→ π1(s, v) := s is the projection to the first component. By the
definition of localization, for x ∈ U and v ∈ D expx̄(exp

−1
x̄ (x))∗,−1[V ], v ∈ ∂Rh(x) if and

only if v ∈ ∂Rf(x). Write s := exp−1
x̄ (x). By Proposition 3.2, we have v ∈ ∂Rh(x) if and

only v ∈ D expx̄(s)
−1∂ĥ(s) and similarly for f . Then the conclusion follows. The converse

implication can be proved similarly.
Claim 2: f satisfies (ii) if and only if f̂ satisfies the uniform quadratic growth condition

at 0 ∈ Tx̄M . To see this, suppose that f satisfies (ii). Write s := exp−1
x̄ (x). Then for x, x′ ∈ U

with f(x) < ρ and v ∈ ∂Rf(x) ∩D expx̄(s)
∗,−1[V ], we have

f(x′) ≥ f(x) + ⟨D expx̄(s)
∗[v], s′ − s⟩+ 1

2κ
∥s′ − s∥2x̄. (3.21)

By Proposition 3.2, D expx̄(s)
∗[v] ∈ ∂f̂(s). Then (3.21) implies that f̂ satisfies the uniform

quadratic growth condition at 0 ∈ Tx̄M . The converse implication can be proved similarly.
Claim 3: ∂R,ρf satisfies (iii) if and only if ∂ρf̂ has a localization gph ∂ρf̂∩(exp−1

x̄ (U)×V )

at (0, 0) ∈ gph ∂f̂ that is locally strongly monotone with modulus 1
κ . To see this, suppose

first that ∂R,ρf satisfies (iii). Write s = exp−1
x̄ (x). Then for x, x′ ∈ U and v ∈ ∂R,ρf(x) ∩

D expx̄(s)
∗,−1[V ], v′ ∈ ∂R,ρf(x

′) ∩D expx̄(s
′)∗,−1[V ], we have

⟨D expx̄(s
′)∗[v′]−D expx̄(s)

∗[v], s′ − s⟩x̄ ≥ 1

κ
∥s′ − s∥2x̄. (3.22)

By Proposition 3.2, we have D expx̄(exp
−1
x̄ (x′))∗[v′] ∈ ∂ρ(f ◦ expx̄)(s

′). Thus (3.22) implies

that the localization gph ∂ρf̂ ∩ (exp−1
x̄ (U) × V ) is locally strongly monotone with modulus

1
κ at 0 ∈ Tx̄M . The converse implication can be proved similarly.

Claim 4: ∂R,ρf satisfies (iv) if and only if ∂ρf̂ is strongly metrically regular with modulus

κ at (0, 0) ∈ gph ∂f̂ . To see this, suppose that ∂R,ρf satisfies (iv). By definition, v 7→
(∂R,ρf)

−1,x̄(v) ∩ U is a single-valued and Lipschitz continuous with constant κ. Write s =

exp−1
x̄ (x). By Proposition 3.2, (∂R,ρf)

−1,x̄(v) = {x ∈ M | v ∈ D expx̄(s)
∗[∂R,ρf(x)] =

∂ρf̂(s)} = expx̄((∂ρf̂)
−1(v)). Then (∂ρf̂)

−1 = exp−1
x̄ ◦(∂R,ρf)

−1,x̄. Since exp−1
x̄ is Lipschitz

continuous, it follows that (∂ρf̂)
−1 is single-valued and Lipschitz continuous, i,e., ∂ρf̂ is

strongly metrically regular at (0, 0). Moreover, since the exact Lipschitz modulus of exp−1
x̄ is

1 (see [46, Theorem 1]), we conclude that the Lipschitz modulus of (∂ρf̂)
−1 coincides with

that of (∂R,ρf)
−1,x̄. The converse implication is similar.

Claim 5: x̄ satisfies (v) if and only if f̂ is prox-regular at (0, 0) ∈ gph ∂f̂ and 0 ∈ Tx̄M

is a Riemannian tilt stable minimizer of f̂ . This follows from Lemma 3.1.
Claim 6: ∂2R,ρf(x̄|0) satisfies (vi) if and only if ∂2ρ f̂(0|0) is positive definite. This follows

from the definition of ∂2R,ρf(x̄|0).
In view of Claims 1-6, it follows from [8, Theorem 5.1, Proposition 3.5] that (i) ⇐⇒

(v) ⇐⇒ (vi). It follows from [8, Theorem 5.2] that (iv) ⇐⇒ (v). If we can verify that

0 ∈ ∂̂f̂(0), then it follows from [7, Theorem 2] that (i) ⇐⇒ (ii) ⇐⇒ (iii). To verify the

condition 0 ∈ ∂̂f̂(0), we note that by [47, Theorem 1], prox-regularity of f̂ at 0 for 0 ∈ ∂f̂(0)
is implied by each one of the conditions (i)(ii)(iii). This implies, by the definition of prox-

regularity, that 0 is a proximal subgradient of f̂ at 0 and therefore 0 is a regular subgradient
of f̂ at 0, i.e., 0 ∈ ∂̂f̂(0). The proof is thus completed. □

Theorem 3.6 (Riemannian tilt stability under Riemannian subdifferential continuity) Let
f : M → R be lsc on a Riemannian manifold M and x̄ ∈ M with 0 ∈ ∂Rf(x̄). Assume that f

is subdifferentially continuous at (x̄, 0). Let κ ≥ 0 be a real number and write f̂ := f ◦ expx̄ :
Tx̄M → R. Then the following statements are equivalent:
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(i) f satisfies Riemannian variational strong convexity at (x̄, 0) with modulus 1
κ .

(ii) f satisfies Riemannian uniform quadratic growth condition at x̄ with modulus 1
κ .

(iii) ∂Rf has a localization gph ∂Rf ∩ (U ×x̄ V ) at (x̄, 0) that is locally strongly monotone
at x̄ with modulus 1

κ .
(iv) ∂Rf is strongly metrically regular at (x̄, 0) with modulus κ;
(v) f satisfies Riemannian prox-regularity at (x̄, 0) and x̄ is a Riemannian tilt stable

minimizer of f with modulus κ;
(vi) f satisfies Riemannian prox-regularity at (x̄, 0) and ∂2Rf(x̄|0) is positive definite with

modulus 1
κ :

⟨z, w⟩x̄ ≥ 1

κ
∥w∥2x̄ whenever z ∈ ∂2Rf(x̄|0)(w). (3.23)

Proof This follows from Theorem 3.5 and Proposition 3.4. □

Next we study Riemannian tilt stability for nonlinear programming problems on
Riemannian manifolds. LetM be a Riemannian manifold and consider the Riemannian
nonlinear programming problem

min
x∈M

f(x), s.t. g(x) ∈ Θ, (3.24)

where f : M → R, g : M → Rl are C2 functions and Θ := {0}l1 × Rl2
− ⊂ Rl (with

l1 + l2 = l). Write Γ := {x ∈ M | g(x) ∈ Θ} and f̃ := f + δΓ : M → R where δΓ is
the indicator function of Γ. Problem (3.24) is the same as min

x∈M
f̃(x). A point x̄ ∈ M

is called a Riemannian tilt stable minimizer of (3.24) if it is a Riemannian tilt stable
local minimizer of f̃ .

Definition 17 (Riemannian MSCQ) For the nonlinear programming problem (3.24), the
Riemannian metric subregularity constraint qualification (Riemannian MSCQ) is said to hold
at x̄ ∈ Γ if the set-valued map G : M ⇒ Rl, x 7→ G(x) := g(x)−Θ is metrically subregular at
(x̄, 0) ∈ gphG, i.e., there exist a neighborhood U ⊂ M of x̄ and a constant κ ≥ 0 such that
for all x ∈ U ,

d(x; Γ) = d(x;G−1(0)) ≤ κ d(0;G(x)) = κ d(g(x);Θ), (3.25)

where d is the Riemannian distance on M and d(x; Γ) := inf
x′∈Γ

d(x, x′).

Consider the following nonlinear programming problem in Euclidean spaces:

min
s∈V⊂Tx̄M

f(expx̄(s)), s.t. g(expx̄(s)) ∈ Θ, (3.26)

where V is a neighborhood of 0 ∈ Tx̄M on which expx̄ is well-defined.

Proposition 3.7 The Riemannian MSCQ holds at x̄ for problem (3.24) if and only if the
(Euclidean) MSCQ holds at 0 ∈ Tx̄M for problem (3.26).
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Proof Suppose that (Euclidean) MSCQ holds at 0 ∈ Tx̄M for problem (3.26). Write Ĝ(s) :=
G(expx̄(s))−Θ. This means that there exists a neighborhood V ′ ⊂ Tx̄M of 0 and a constant
κ ≥ 0 such that for all s ∈ V ′,

d(s; Ĝ−1(0)) ≤ κ d(0; Ĝ(s)) = κ d(g(expx̄(s));Θ). (3.27)

Note that Ĝ−1(0) = exp−1
x̄ (Γ). Then

d(x; Γ) = d(expx̄(s); expx̄(Ĝ
−1(0))) ≤ Ld(s; Ĝ−1(0)) ≤ Lκd(g(expx̄(s));Θ), (3.28)

where L is a Lipschitz constant for expx̄. The converse implication is similar. □

Proposition 3.8 Suppose that Riemannian MSCQ holds at x̄ ∈ Γ for (3.24). Then there
exists a neighborhood U ⊂ M of x̄ such that for all x ∈ Γ ∩ U ,

NR
Γ (x) = Dg(x)∗(NΘ(g(x))). (3.29)

Moreover, δΓ satisfies Riemannian prox-regularity and Riemannian subdifferential continuity
at (x̄, v̄) for all v̄ ∈ ∂RδΓ(x̄).

Proof This follows from Proposition 3.7 and [18, Lemma 4.2]. □

Proposition 3.9 (Riemannian KKT conditions) If x̄ is a local minimizer of (3.24) and the
Riemannian MSCQ holds at x̄, then the following KKT conditions hold: there exists λ̄ ∈ Rl

with λ̄l1+1, . . . , λ̄l1+l2 ≥ 0 such that

0 = grad f(x̄) +Dg(x̄)∗(λ̄), λ̄i = 0 ∀ i /∈ I(x̄), g(x) ∈ Θ, (3.30)

where Dg(x)∗ : Rl → Tx̄M is the adjoint of the derivative Dg(x) : Tx̄M → Rl and I(x̄) :=
{i | gi(x̄) = 0}. Denote by L : M × Rl → R, (x, λ) 7→ L(x, λ) := f(x) + ⟨λ, g(x)⟩ the
Riemannian Lagrangian function. Then the KKT conditions can be reformulated as

gradx L(x̄, λ̄) = 0, λ̄igi(x) = 0 (∀i ∈ [l]), g(x) ∈ Θ. (3.31)

Proof This follows from Proposition 3.7 and [18, (4.6)]. □

For x ∈ Γ and v ∈ NR
Γ (x), we define

Λ(x, v) := {λ ∈ Rl |λl1+1, . . . , λl1+l2 ≥ 0, Dg(x)∗(λ) = v, λi = 0 (∀i /∈ I(x))}.

By Proposition 3.8, if Riemannian MSCQ holds at x̄ ∈ Γ, then Λ(x̄, v̄) is a nonempty
convex polyhedral set for any v̄ ∈ NR

Γ (x̄). For each s ∈ Tx̄M , consider the following
linear program:

min
λ

−⟨s,Hessxx(λ
T g)(x̄)(s)⟩x̄ , s.t. λ ∈ Λ(x̄, v̄). (3.32)

Its optimal solution set is denoted by Λ(x̄, v̄; s).
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Definition 18 (Riemannian relaxed uniform second-order sufficient condition) For (3.24),
the Riemannian relaxed uniform second-order sufficient condition (Riemannian RUSOSC)
holds at x̄ ∈ Γ with modulus l > 0 if there exists η > 0 such that

⟨Hessxx L(x, λ)(w), w⟩ ≥ l∥w∥2, (3.33)

whenever (x, v) ∈ gph ∂Rf̃∩(Bη(x̄)×x̄ Bη(0)) and λ ∈ Λ(x, v−grad f(x);w) with w satisfying

⟨grad gi(x), w⟩ = 0, ∀i ∈ I+(λ) and ⟨grad gi(x), w⟩ ≥ 0, ∀i ∈ I(x)/I+(λ). (3.34)

Theorem 3.10 (Riemannian tilt stability in Riemannian nonlinear programming) Consider
the Riemannian nonlinear programming problem (3.24) where f, g are C2. Let x̄ ∈ Γ be a
stationary point of (3.24) at which the Riemannian MSCQ holds. Then x̄ is a Riemannian
tilt stable minimizer if and only if the Riemannian RUSOSC holds at x̄.

Proof This follows from Lemma 3.1 and [18, Theorem 4.5]. □

4 Generalized Riemannian Newton Methods

In this section we propose a generalized Riemannian Newton methods for minimizing
a function f : M → R that is prox-regular and subdifferentially continuous in the
Riemannian sense. This covers a large class of both unconstrained and constrained
Riemannian optimization problems, including unconstrained C1,1 minimization and
Riemannian nonlinear programming problems. Under Riemannian tilt stability, we
establish superlinear convergence of the algorithm .

Consider the following optimization problem:

min
x∈M

f(x), (4.1)

where M is a Riemannian manifold and f : M → R is lsc.

Definition 19 (surrogate Riemannian Hessian) Let M be a Riemannian manifold and
f : M → R an lsc function. A surrogate Riemannian Hessian of f is a map H : (x, v) ∈
gph ∂Rf 7→ H(x, v) : TxM ⇒ TxM such that for all (x, v) ∈ gph ∂Rf , gphH(x, y) ⊂
TxM × TxM is a cone, i.e., 0 ∈ H(x, v)(0) and λw ∈ H(x, v)(λu) whenever w ∈ H(x, v)(u)
and λ ≥ 0.

For applications in Newton-type methods, we require that ∂Rf is g-semismooth
with respect to the surrogate Riemannian Hessian H.

Definition 20 (g-semismoothness with respect to surrogate Riemannian Hessian) Let f :
M → R be an lsc function on a Riemannian manifold M . We say that ∂Rf is g-semismooth
at (x̄, ȳ) ∈ gph ∂Rf with respect to the surrogate Riemannian Hessian H if for any ϵ > 0,
there exists a neighborhood U of x̄ and a neighborhood V ⊂ Tx̄M of ȳ such that for all
(x, y) ∈ U ×x̄ V ,

∥PTy,ȳ(y + w)− ȳ∥x̄ ≤ ϵ d(x, x̄), ∀w ∈ H(x, y)(exp−1
x (x̄)). (4.2)
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Generalized derivatives in the Euclidean setting can be extended (via pullback) to
the Riemannian setting to serve as surrogate Riemannian Hessian. Examples include
Riemannian versions of graphical derivative D∂Rf(x|y) := D∂(f ◦ expx)(0|y), sub-
space containing derivativeDsc∂Rf(x, y) (introduced in [48] for the Euclidean setting),
limiting graphical derivative D♯∂Rf(x, y) [48], strict graphical derivative D∗∂Rf(x, y),
coderivative D∗∂Rf(x, y), and adjoint subspace containing derivative D∗

scd∂Rf(x, y)
[48]. When f is C1,1 (i.e., its Riemannian gradient is locally Lipschitz continuous), one
can also consider Riemannian versions of B-subdifferential ∂B grad f(x) and Clarke’s
generalized Jacobian ∂C grad f(x) [38–40]. In practice, one can construct a surrogate
Riemannian Hessian by exploiting the specific structure of ∂Rf (such as using an
upper estimate of certain generalized derivative of ∂Rf).

Given a surrogate Riemannian Hessian H, we define

AregH(x, y) := {A : TxM → TxM | A is linear and ∀w, A(w) ∈ H(x, y)−1(w)}.

For example, when f is C2 and H(x, grad f(x)) = Hess f(x), then AregH(x, grad f(x))
is nonempty if and only if Hess f(x) is invertible, in which case AregH(x, grad f(x)) =
{Hess f(x)−1}.

We propose a framework of generalized Riemannian Newton methods below as
Algorithm 1, which is similar in spirit to several generalized Newton methods in
Euclidean spaces [49–52]. We remark that in the Newton step, we do not need to find
Ak explicitly and the Newton direction dk is computed by solving a linear system.
We also note that implementation of the correction step is non-trivial in general; how-
ever, if f is C1,1 as in [38–40], we can easily implement the correction step by setting
x̂k = xk and ŷk = grad f(x̂k) = grad f(xk). Finaly we mention that in Riemannian
optimization, iterates are updated by a retraction R : TM → M [24–26], which is
more efficient than the exponential map.

Algorithm 1 A Framework of Generalized Riemannian Newton Methods

Input: problem (4.1), retraction R on M and initial iterate x0 ∈ M .

1: for k = 0, 1, . . . do
2: If 0 ∈ ∂Rf(x

k), stop.
3: Correction Step: Compute (x̂k, ŷk) ∈ gph ∂Rf that is close to (xk, 0) with

AregH(x̂k, ŷk) ̸= ∅.
4: Newton Step: Compute dk = −Ak(ŷ

k) with Ak ∈ AregH(x̂k, ŷk) and set
xk+1 = Rx̂k(dk).

5: end for

Theorem 4.1 (general convergence theorem) Consider problem (4.1) and Algorithm 1. We
assume the following conditions:

(1) ∂Rf is g-semismooth at (x̄, 0) ∈ gph ∂Rf with respect to H;
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(2) There exist constants L, κ > 0 and a neighborhood U of x̄ such that for all x ∈ U , the
following set is nonempty:

GL,κ,H
x̄ (x) := {(x̂, ŷ, A) | d(x̂, x̄) + ∥ŷ∥x̂ ≤ Ld(x, x̄), A ∈ AregH(x̂, ŷ), ∥A∥ ≤ κ}; (4.3)

(3) (x̂k, ŷk, Ak) ∈ GL,κ,H
x̄ (xk) for all k ≥ 0.

Then there exists a neighborhood Ux̄ of x̄ such that whenever x0 ∈ Ux̄, Algorithm 1 either
stops at a stationary point after finitely many iterations or converges superlinearly to x̄.

Proof We only have to consider the case where Algorithm 1 produces an infinite sequence of
iterates {xk ∈ M}k≥0.

We first estimate ∥dk − exp−1
x̂k (x̄)∥x̂k . By the definition of dk, we have

∥dk − exp−1
x̂k (x̄)∥x̂k

=∥ −Ak(ŷ
k)− exp−1

x̂k (x̄)∥x̂k

=∥Ak(ŷ
k) +Ak(A

−1
k (exp−1

x̂k (x̄)))∥x̂k

≤∥Ak∥ ∥ŷk +A−1
k (exp−1

x̂k (x̄))∥x̂k

≤κϵ d(x̂k, x̄)

≤κLϵ d(xk, x̄),

(4.4)

where the second inequality follows from the g-semismoothness of ∂Rf with respect to H
at (x̄, 0) and the third inequality follows from assumption (3). By [38, Lemma 4.2] and the
triangle inequality, there exists C > 0 such that

d(Rx̂k (d
k), x̄) ≤ d(expx̂k (d

k), x̄) + C∥dk∥2x̂k . (4.5)

By definition and assumption (3),

∥dk∥x̂k = ∥ −Ak(ŷ
k)∥x̂k ≤ ∥Ak∥∥ŷk∥x̂k ≤ κLd(xk, x̄). (4.6)

By [38, Lemma 4.1, (ii)], we get

d(expx̂k (d
k), x̄)

=d(expx̂k (d
k), expx̂k (exp

−1
x̂k (x̄)))

=∥dk − exp−1
x̂k (x̄)∥x̂k

≤κLϵ d(xk, x̄),

(4.7)

where the second equality follows from definition of the exponential map. Thus

d(Rx̂k (d
k), x̄) ≤ κLϵ d(xk, x̄) + Cκ2L2 d(xk, x̄) ≤ ϵd(xk, x̄). (4.8)

By induction on k, all claims follow. □

Now we use the above general result to establish the superlinear convergence of a
specific generalized Riemannian Newton method under Riemannian tilt stability.

Theorem 4.2 (convergence under Riemannian tilt stability) Consider problem (4.1) and
Algorithm 1 with H(x, y) := D♯∂Rf(x|y) := D♯∂(f ◦ expx)(0|y) where D♯ is the limiting
graphical derivative [48]. We assume the following conditions:

(1) ∂Rf is g-semismooth at x̄ with respect to H := D♯∂Rf ;
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(2) f is prox-regular and subdifferentially continuous (in the Riemannian sense) at
(x̄, 0) ∈ gph ∂Rf and x̄ is a Riemannian tilt stable minimizer of f .

Then there exists a neighborhood Ux̄ of x̄ such that when x0 ∈ Ux̄, Algorithm 1 with
H(x, y) := D♯∂Rf either stops at a stationary point after finitely many steps or converges
superlinearly to x̄.

Proof By Theorem 4.1, we only need to show that GL,κ,H
x̄ (x) ̸= ∅ for x close to x̄. Take x̂

close to x. By Theorem 3.6, ∂Rf is strongly metrically regular at (x̄, 0). By the definition of
localized inverse (Definition 8), we have

S−1,x̂(vx̂) := {x | v̂x̂ ∈ D expx̂(exp
−1
x̂ (x))∗(S(x))} (4.9)

and
S−1,x̄(vx̄) := {x | vx̄ ∈ D expx̄(exp

−1
x̄ (x))∗(S(x))}. (4.10)

We will write S−1,x̄ ∩U for the map v 7→ S−1,x̄(v)∩U . Since S−1,x̄ ∩U is single-valued and
vx̂ = Tx̂,x ◦ T−1

x̄,x(vx̄) where Tx̂,x := D expx̂(exp
−1
x̂ (x))∗ and similarly for Tx̄,x, it follows that

S−1,x̂ ∩ U is also single-valued. Moreover,

d(S−1,x̂(vx̂), S
−1,x̂(v′x̂)) = d(S−1,x̄(vx̄), S

−1,x̄(v′x̄)) ≤ κ∥vx̄ − v′x̄∥ ≤ κK∥vx̂ − v′x̂∥, (4.11)

where K > 0 is an upper bound of Lipschitz constants of Tx̂,x ◦ T−1
x̄,x (which exists if we

restrict to a uniformly normal neighborhood of x̄ in which the exponential maps expx are local
diffeomorphisms with exact Lipschitz modulus 1). Since S−1,x̂ ∩ U is Lipschitz continuous,
we can take A ∈ ∂B(exp−1

x̂ ◦∂Rf−1,x̂ ∩ U)(ŷ), which always exists [53]. Then ∥A∥ ≤ κ and
for any w ∈ Tx̂M , we get from [48, Lemma 3.10,Lemma 3.11]

Aw ∈ D♯(exp−1
x̂ ◦∂Rf−1,x̂ ∩ U)(ŷ)(w), (4.12)

which is equivalent to

w ∈ D♯(exp−1
x̂ ◦∂Rf−1,x̂ ∩ U)−1(0, ŷ)(Aw) (4.13)

Moreover, we have
(exp−1

x̂ ◦∂Rf−1,x̂ ∩ U)−1 = ∂(f ◦ expx̂). (4.14)

Thus it follows that
w ∈ D♯∂(f ◦ expx̂)(0, ŷ)(Aw), (4.15)

i.e.,

Aw ∈ D♯∂(f ◦ expx̂)(0, ŷ)
−1(w) = D♯∂Rf(x̂, ŷ)−1(w) = H(x̂, ŷ)−1(w). (4.16)

Thus A ∈ AregH(x̂, ŷ) and GL,κ,H
x̄ (x) ̸= ∅. The proof is then completed. □

Remark 1 Our convergence result is local and we expect that the proposed algorithm can be
globalized by using line search or other strategies. This is left as future work.

Remark 2 Since our emphasis in this section is mainly on the theoretical side, i.e., to illustrate
the utility of Riemannian tilt stability for convergence analysis of generalized Riemannian
Newton methods, we do not include implementations for concrete problems and corresponding
numerical experiments, which will be explored in future work.
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5 Conclusions

We extended tilt stability from Euclidean spaces to Riemannian manifolds. We proved
comprehensive general characterizations of Riemannian tilt stability and also derived
explicit conditions for Riemannian nonlinear programming under a weak constraint
qualification. We proposed a generalized Riemannian Newton method and proved
its superlinear convergence under Riemannian tilt stability. In the future, we will
study Riemannian tilt stability in other structured optimization problems and explore
applications of the proposed generalized Riemannian Newton method to nonsmooth
optimization problems on Riemannian manifolds.

Appendix A Appendix

Proposition A.1 Let M be an embedded submanifold of a Euclidean space E equipped with
the induced metric and f : E → R is a C2 function. Then x̄ ∈ M is a Riemannian tilt stable
minimizer of f |M : M → R if and only if x̄ if a tilt stable minimizer of f̃ := f + δM .

Proof By Theorem 3.6, x̄ is a Riemannian tilt stable minimizer of f |M if and only if the
Riemannian Hessian Hess f(x̄) : Tx̄M → Tx̄M is positive definite. On the other hand, x̄ is a
Euclidean tilt stable minimizer of f̃ if and only if the generalized Hessian ∂2f̃(x̄|0) : E ⇒ E
is positive definite. By [5, Theorem 2.12], grad f |M (x̄) = 0 if and only if 0 ∈ ∂f̃(x̄) and
moreover,

∂2f̃(x̄|0)(w) =

{
Hess f(x̄)(w) +Nx̄M, w ∈ Tx̄M,

∅, w /∈ Tx̄M,
(A1)

where Nx̄M is the normal space of M at x̄ (which is identical with the normal cone of M at
x̄). From this it follows that ∂2f̃(x̄|0) is positive definite if and only if Hess f(x̄) is positive
definite. Then the claim follows. □

Proposition A.2 Let M be a Riemannian manifold and f : M → R a C2 function. Suppose
that a Riemannian optimization algorithm generates {xk ∈ M}k≥0. If x̄ is a Riemannian
tilt stable minimizer within a neighborhood U ⊂ M with constant κ > 0, then there exist
constants C > 0 and ϵ > 0 such that whenever xK enters U with ∥ grad f(xK)∥xK < ϵ, one
has d(xK , x̄) ≤ C∥ grad f(xK)∥xK < Cϵ.

Proof Consider the problem in (3.2) with v = vK :=
(
D exp−1

x̄ (xK)
)∗,−1

(grad f(xK)). It

follows from the chain rule that grad fvK (xK) = 0 where fvK is the objective function in (3.2)
with v = vK . Since x̄ is a Riemannian tilt stable minimizer, by Theorem 3.6, a localization
(specified by some ϵ > 0) of (grad f)−1,x̄ is single-valued within U . By Definition 8, we
conclude that xK is the only stationary point of fvK within U and therefore xK = SU (vK),
i.e., xK is the solution to the tilted problem with tilt perturbation vK . Then d(xK , x̄) =

d(S(vK), S(0)) ≤ κ∥vK − 0∥x̄ ≤ κ

∥∥∥∥(D exp−1
x̄ (xK)

)∗,−1
∥∥∥∥ ∥ grad f(xK)∥ < Cϵ for some C >

0. Here C exists since expx̄ is Lipschitz continuous around 0 ∈ Tx̄M . □
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Lemma A.3 Let M be a Riemannian manifold and x̄ ∈ M . Let s̄ ∈ Tx̄M is small enough
so that x := expx̄(s̄) lies in a totally normal neighborhood of x̄. For s ∈ Tx̄M small,

exp−1
x (expx̄(s)) = D expx̄(s̄)[s− s̄] + o(∥s− s̄∥x̄) as s → s̄. (A2)

Proof We denote by g the map s ∈ Tx̄M 7→ g(s) := exp−1
x (expx̄(s)) ∈ Texpx̄(s̄)

M where
x := expx̄(s̄). By assumption, the map g is well-defined and smooth for s sufficiently small.
We compute the derivative of g at s̄ using the chain rule:

Dg(s̄) =D exp−1
x (expx̄(s̄)) ◦D expx̄(s̄)

=D exp−1
x (x) ◦D expx̄(s̄)

= (D expx(0))
−1 ◦D expx̄(s̄)

=IdTxM ◦D expx̄(s̄)

=D expx̄(s̄).

(A3)

Then we have, by the definition of derivative,

exp−1
x (expx̄(s)) = g(s) = g(s̄)+Dg(s̄)(s−s̄)+o(∥s−s̄∥x̄) = D expx̄(s̄)+o(∥s−s̄∥x̄) as s → s̄,

where the last equality follows from g(s̄) = exp−1
x (expx̄(s̄)) = exp−1

x (x) = 0 and (A3). □
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