
DEGENERACY NO MORE: A SURPERISINGLY SIMPLE METHOD

A PREPRINT

Zhe Liang
School of Economics and Management

Tongji University
Shanghai, 200092

liangzhe@tongji.edu.cn

Siqi Guo
School of Economics and Management

Tongji University
Shanghai, 200092

guosiqi@tongji.edu.cn

January 15, 2026

ABSTRACT

Degeneracy remains a fundamental challenge in linear programming (LP), severely impacting both
the convergence of algorithms like the simplex method and the performance of widely-used de-
composition algorithms, such as column generation, Dantzig-Wolfe decomposition, and Benders’
decomposition. All these algorithms, which have been documented in tens of thousands of research
papers and applied across thousands of applications, critically rely on stable dual values, a requirement
that degeneracy directly undermines. Mathematically, a primal degenerate solution could correspond
to a great number of dual solutions, leading to issues like cycling, dual oscillations, slow convergence,
and misleading shadow prices. Although existing approaches attempt to mitigate degeneracy and
stabilize the dual values by all available means, they have not fully resolved this pervasive challenge.
In this paper, we propose the Low-Granularity Model (LGM), which completely eliminates LP
degeneracy and is remarkably simple to implement, requiring only a double for-loop of fewer than ten
lines of computer code. The key innovation of the LGM lies in the introduction of probe variables that
precisely regulate dual values throughout the optimization process. Despite its simplicity, the LGM
offers rich theoretical insights. We rigorously define the dual optimal central distance (DOCD) as a
quantitative metric for dual solution quality, and prove that the LGM deterministically identifies the
dual solution with the minimal DOCD among all dual optima for a degenerate primal optimal solution.
Computational experiments on the airline crew scheduling and cutting stock problems demonstrate
that the LGM and its extension substantially accelerate convergence while preserving optimality. By
delivering stable, high-quality, and unique dual solutions, our approach has the potential to benefit
the vast body of research, encompassing tens of thousands of studies, that relies on dual-guided
decomposition methods.

Keywords Degeneracy · linear programming · probe variables · dual optimal central distance

1 Introduction

On the long road that led linear programming to its monumental success, a constellation of great names and their
pioneering algorithms — such as the simplex method and revised simplex method proposed by Dantzig and Wolfe
[Dantzig et al., 1955], the column generation algorithm proposed by Kelley, Gilmore, and Gomory [Kelley, 1960,
Gilmore and Gomory, 1961], the ellipsoid method proposed by Khachiyan [Aspvall and Stone, 1980], the interior-point
algorithm proposed by Karmarkar [Karmarkar, 1984] — have all pushed the boundaries of effectiveness and efficiency
in solving linear programs. Echoing Lord Kelvin’s turn-of-the-century observation [Kelvin, 1901], the clear sky
of linear programming theory—a field whose profound beauty lies in the intricate dance between primal and dual
formulations—is now dimmed by a few lingering clouds. Among these, degeneracy stands as a persistent and troubling
one [Hoffman, 2003]. Once overlooked as a minor concern [Beale, 1955], degeneracy has, as linear programming (LP)
spread its dominion across academia and industry, struck unexpectedly and profoundly. Astonishingly, the vast majority
of real-world problems are degenerate, and the challenges of slow convergence and reduced efficiency introduced by
degeneracy remain unconquered to this day.

arXiv Template A PREPRINT

Theoretically, degeneracy not only slows down the linear programming convergence itself, but also has a broader
impact on a number of important decomposition algorithms, especially when tackling the large-scale combinatorial
optimization problems. For algorithms such as column generation, Dantzig–Wolfe decomposition, branch-and-price,
and Benders’ decomposition, the original problem is often decomposed into a master problem (MP) and a set of
subproblems, while dual values play a critical role in guiding optimal direction for master problem and subproblems
[Bazaraa et al., 2011]. Consequently, the convergence performance of such approaches primarily depends on the quality
of the dual solutions. For example, the effectiveness of generated columns [Lübbecke and Desrosiers, 2005] or the
strength of cuts [Rahmaniani et al., 2017]. However, when degeneracy occurs, one primal solution might correspond
to a large number of dual solutions with identical objective values, which may lead to random and/or less effective
columns and cuts, and thus slow down the convergence of the algorithms.

Practically, when applying the aforementioned decomposition algorithms to solve degenerate problems, practitioners
often rely on predefined stopping criteria to terminate the algorithms. For example, a time limit [Parmentier et al.,
2023], a maximum number of iterations with negligible improvement in the objective [Saddoune et al., 2012], or
a small tolerance between upper and lower bounds [Schälicke and Nachtigall, 2025]. These heuristic criteria can
generally ensure solutions of acceptable quality, yet they offer no theoretical guarantee of optimality. In many real-world
applications, such approximations may suffice; however, the absence of a provably optimal solution continues to
motivate the development of more principled and theoretically sound approaches.

Existing methods for addressing degeneracy can be broadly classified into primal-based and dual-based approaches.
Primal-side techniques typically introduce perturbations or modified pivoting rules to prevent cycling, whereas dual-side
strategies aim to stabilize or regularize the dual variables. While these methods have achieved notable progress in
improving convergence in certain cases, none have yet achieved both efficiency and general applicability, and several
theoretical and practical issues remain unresolved. The first key issue is about the uniqueness of the dual solution. Since
solving the primal model often leads to an optimal basis selected in a largely arbitrary manner, existing methods cannot
consistently map all dual solutions associated with a degenerate primal point to a unique representation. In this sense,
these methods tend to mitigate degeneracy rather than fundamentally eliminate it, as multiple dual optima may still
coexist.

Second, the long-standing question of what constitutes a “good" dual solution has not been satisfactorily answered. In
much of the literature, the quality of a dual solution is assessed heuristically. For example, being located near the center
of multiple dual solutions or within the interior of the dual space [Subramanian and Sherali, 2008]. Yet, no rigorous
quantitative criterion exists to evaluate and compare different dual solutions.

Third, many methods are empirically driven and sensitive to parameter choices, such as the box size in the “box" method
[Marsten et al., 1975], the criteria for partition updates in the dynamic constraint aggregation (DCA) [Elhallaoui et al.,
2005], the step size and centering parameter in the interior-point method, the weight parameter setting and adjusting
scheme in dual smoothing technique [Pessoa et al., 2018], the perturbation magnitude, or even the variable ordering in
simplex-type approaches. These parameter dependencies not only influence the convergence efficiency but may also
affect the final dual solution obtained. As highlighted in Lübbecke and Desrosiers [2005], degeneracy thus remains an
unsolved challenge in practice.

Building upon the above considerations, we propose a Low-Granularity Model (LGM) for a general LP problem,
in which auxiliary probe variables are introduced to automatically detect the unique dual solution. We prove that,
for any degenerate LP problems, the dual solution obtained from the LGM is unique while the primal optimality
remains unchanged. By deterministically regulating dual values through a structured mechanism, the LGM completely
eliminates degeneracy and guarantees a well-defined dual optimum, which provides a significant advance in dual
stabilization for degenerate optimization problems. In contrast, conventional approaches such as the simplex and
interior-point methods offer no mechanism to directly control dual values under degeneracy, leaving the dual solution
largely unpredictable.

Moreover, we define the dual optimal central distance (DOCD) as a rigorous and quantitative criterion for evaluating
dual solution quality, measured as the squared Euclidean distance between the given dual solution and the centroid
of the dual optimal polytope. We prove that, for a center-symmetric dual optimal polytope with equal weights across
all dimensions, the LGM attains the dual solution with the minimal DOCD among all dual optima corresponding to a
degenerate primal solution. To further generalize this property, we develop a weighted variant of the LGM (WLGM) that
accommodates heterogeneous dual optimal values. When the relative ratios among dual optimal values are known, the
WLGM deterministically guides the search toward a unique dual optimum with the minimal DOCD. Remarkably, this
yields a more realistic dual representation in practice, one that better reflects the true shadow price of each constraint.

We further validate the effectiveness of the proposed frameworks through two representative applications. Specifically,
the LGM is applied to the airline crew scheduling problem, modeled as a set covering problem and known to be

2

arXiv Template A PREPRINT

highly degenerate. In this problem, all flight legs are assumed to be equally important, so the dual optimal polytope is
center-symmetric with equal weights across all dimensions. The WLGM is applied to the cutting stock problem, where
the optimal dual values corresponding to item coverage constraints are roughly proportional to the widths of the items.
Computational results on both problems confirm that the proposed models significantly enhance solution efficiency
compared with classical formulations.

Finally, the LGM approach is extremely easy to implement. Fewer than ten lines of additional code, typically a double
for-loop, are sufficient to extend any original model. Furthermore, the introduction of probe variables is problem-
independent, making the method broadly applicable across diverse LP formulations. Consequently, Our proposed
method could have a very broad impact in the literature: because tens of thousands of research papers on column
generation, Dantzig-Wolfe decomposition, branch and price, and Benders’ decomposition suffer the slow convergence
due to degeneracy, we believe our method will benefit all these researches by providing stabilized, high-quality, and
unique dual values and therefore significantly alleviate or completely remove the negative impact of degeneracy.

The remainder of this paper is organized as follows. Section 2 briefly reviews existing research on degeneracy in linear
programming. Section 3 introduces the Low-Granularity Model (LGM) using the set covering problem as a benchmark.
Section 4 presents theoretical analyses demonstrating the ability of the LGM to deterministically identify the unique
dual solution. Section 5 defines the dual optimal central distance as a rigorous quantitative criterion for evaluating dual
solution quality, and develops a weighted variant of the LGM (WLGM) to accommodate heterogeneous dual optimal
values. Section 6 proposes a no-cycling pivot rule based on the LGM and analyzes the additional computational effort
incurred by introducing probe variables. Section 7 reports numerical experiments on the airline crew scheduling and
cutting stock problems to demonstrate the practical effectiveness of the proposed approach. Finally, Section 8 presents
the main conclusions of this study.

2 Literature review

In this section, we briefly review the studies that aim to alleviate degeneracy in linear programming. The discussion
is organized from two complementary perspectives: the primal and the dual. The remainder of this section outlines
representative approaches under each perspective.

From the primal perspective, early research primarily aimed to prevent infinite cycling caused by degeneracy by
enforcing deterministic pivot selection rules [Chvátal, 1983]. A representative example is the perturbation method
proposed by Charnes [1952], which introduces perturbations to the right-hand sides of the constraints to slightly shift
the intersection points of hyperplanes. Although not explicitly a pivot rule, this approach effectively imposes an implicit
lexicographic order among degenerate bases, thereby ensuring a unique pivot sequence and eliminating cycling. Wolfe
[1963] and Ryan and Osborne [1988] both validated the effectiveness of this strategy. Later developments introduced a
series of anti-cycling pivoting rules, such as Bland’s rule and the lexicographic pivot rule [Bland, 1977, Bazaraa et al.,
2011], to ensure finite termination under degeneracy.

From the dual perspective, existing methods aim to obtain more stable or improved dual solutions, thereby mitigating
degeneracy and improving convergence. Early approaches include the trust-region-based “box" method [Marsten
et al., 1975] that imposes bounds on the dual variables, and related penalization techniques that limit the deviation
from known optimal dual values [Wentges, 1997, Du Merle et al., 1999, Ben Amor et al., 2009]. An interior-point
stabilization approach [Rousseau et al., 2007] selects dual solutions within the dual space rather than at extreme points,
while smoothing and parameter self-adjusting schemes [Pessoa et al., 2018] further improve stability by averaging or
adapting dual values.

Another key approach reduces the dimensionality of the dual space by retaining a single representative constraint among
a set of constraints, thereby improving dual stability and computational efficiency. The dynamic constraint aggregation
(DCA) algorithm [Elhallaoui et al., 2005] reduces the number of primal constraints (and thus dual variables), resulting in
dual solutions that can be interpreted as projections of the original ones. Subsequent variants, including the multi-phase
DCA [Elhallaoui et al., 2010] and bi-DCA [Elhallaoui et al., 2008], improved performance by incorporating pricing
strategies or reducing the size of both the master problem and pricing subproblems. Building on this line of research,
the improved primal simplex (IPS) method [Elhallaoui et al., 2011] decomposes the original problem into a reduced
problem with fewer constraints and a complementary problem for computing the dual values of discarded constraints.
Later, the IPS was also shown to be successfully applied in column generation contexts [Desrosiers et al., 2014, Bouarab
et al., 2017].

A further widely applied strategy involves introducing valid inequalities in the dual space, which correspond to
additional variables in the primal formulation. For example, Valério de Carvalho [2005] proposed dual cuts for the
one-dimensional cutting stock problem, which were later extended by Clautiaux et al. [2011] through introducing cuts

3

arXiv Template A PREPRINT

to eliminate solutions considered as combinations of two other solutions, and by Alves and de Carvalho [2008] within
branch-and-price-and-cut frameworks. Ben Amor et al. [2006] formalized two classes of dual inequalities: dual-optimal
inequalities (DOIs), which preserve all dual-optimal solutions, and deep dual-optimal inequalities (DDOIs), which
retain only a subset of dual-optimal solutions. These approaches all operate by expanding the primal solution space, and
consequently require additional procedures to recover feasibility and optimality in the original problem. Subsequent
generalizations and applications include vector packing, vertex coloring, and bin packing with conflicts [Gschwind and
Irnich, 2016]. More recent variants, such as Flexible-DOIs (F-DOIs) [Lokhande et al., 2020], Smooth-Flexible DOIs
(SF-DOIs) [Haghani et al., 2022], and dynamic separation of aggregated rows (dyn-SAR) [Costa et al., 2022], further
refine dual-space cutting by selectively excluding regions of the dual feasible space, thereby controlling dual values and
improving stability in column generation. Recently, Guo et al. [2025] proposed a Lift-DDOI approach, which lifts the
dual space without enlarging the original primal solution space, introducing both variables and constraints solely to cut
off parts of the dual space.

In summary, existing approaches to mitigating degeneracy exhibit inherent limitations. Although the primal-based
methods successfully avoid cycling, this comes at a substantial cost: the search process is forced to traverse around a set
of the perturbed vertices that corresponds to a single origin degenerate vertex. Dual-based methods, by contrast, only
alleviate degeneracy and do not guarantee a unique dual solution at a degenerate point. As a result, these approaches
mitigate the symptoms of degeneracy but do not fundamentally resolve it.

3 Low-granularity model for set covering problem

For a rigorous analysis of degeneracy, we employ a classic and highly degenerate problem: the Set Covering Problem
(SCP). It serves as an ideal example for demonstrating the proposed model, theorem, and solution methods, in addition
to being one of the most widely adopted models in practice. Formally, let J denote the set of jobs that must be served
at least once, indexed by j, and let P represent the set of paths to cover these jobs, indexed by p. For instance, in
applications such as the crew pairing problem, vehicle routing problem, or task assignment problem, J may correspond
to the set of flights, visits, or tasks, while P may represent flight pairings, vehicle routes, or task sequences, respectively.
Each path p ∈ P is associated with a cost cp. A binary parameter ajp equals 1 if path p covers job j ∈ J , and 0
otherwise. The primary decision variable xp = 1 if path p is selected, and 0 otherwise. To ensure model feasibility,
we introduce an artificial variable uj for each job j ∈ J , where uj = 1 indicates that job j is not covered by any
selected path, and 0 otherwise. Each uj incurs a sufficiently large penalty θ, such that θ ≫ cp for all p ∈ P . With these
notations, the LP relaxation of the Set Covering Model (SCM) can be formulated as:

(SCM) min
∑
p∈P

cpxp +
∑
j∈J

θuj (1)

s.t.
∑
p∈P

ajpxp + uj ≥ 1, ∀j ∈ J, (2)

xp ≥ 0, ∀p ∈ P, (3)
uj ≥ 0, ∀j ∈ J. (4)

The objective function (1) aims to minimize the total cost, which includes the cost for selected paths and the penalty for
uncovered jobs. The set covering constraints (2) ensure that each job is either contained in at least a selected path or is
uncovered. The non-negative decision variable constraints are in (3)-(4).

Degeneracy is a common and often unavoidable phenomenon in solving SCMs, since each path variable xp typically
represents a combination of multiple jobs. For instance, a pairing in the crew pairing problem may contain up to 20 flight
legs [Saddoune et al., 2012], while a route in the vehicle routing problem can include as many as 50 customers [Fisher,
1995]. As a result, the number of selected path variables is usually much smaller than the number of constraints/jobs.
To construct a feasible basis, a large number of zero-valued variables must be included in the basis, which naturally
leads to a highly degenerate situation.

In a degenerate primal solution, the number of such zero-valued basic variables is referred to as the degree of degeneracy
[Bazaraa et al., 2011]. By selecting different sets of zero-valued variables, the same primal extreme point may correspond
to multiple feasible bases. Moreover, Guo et al. [2025] provided a comprehensive analysis of the relationship between
the degree of degeneracy and the number of degenerate bases. In other words, a degenerate primal solution can give rise
to a large set of dual solutions with identical dual objective values. Such multiplicity renders the dual variables unstable,
which in turn may significantly slow down or even obstruct the convergence of algorithms.

To overcome the degeneracy issue, we modify the SCM by introducing K+1 probe variables dj0, dj1, . . . , djk, . . . , djK
for each constraint, where K is a predefined constant. Each probe variable djk is assigned a cost cjk = θk

K , with bounds

4

arXiv Template A PREPRINT

1

�

���

��� � �

��� �
��

�

1

��

�

���

���

���

���

��� �
2�

�

��� �
�

�

Figure 1: Illustration of the range and cost of probe variables

0 ≤ djk ≤ ϵ = 1
MK , where M is a sufficiently large constant. By construction, the costs cj0, cj1, . . . , cjk, . . . , cjK are

in strictly increasing order, so the probe variables are naturally arranged by ascending cost, with cj0 = 0 and cjK = θ.
Intuitively, this setup discretizes the job penalty θ into K equal intervals. For each interval, we create a probe variable
djk with a tiny slice space ϵ = 1

MK , as illustrated in Figure 1. In this way, the probe variables are characterized by
two critical parameters, K and M . Specifically, K determines the number of probe variables, while M controls the
slice size of each probe variable. By increasing K and lowering the granularity of each interval, we will show that the
resulting formulation provides surprisingly favorable theoretical and computational properties. Therefore, we refer to
the modified model as the Low-Granularity Model (LGM).

(LGM) min
∑
p∈P

cpxp +
∑
j∈J

θuj +
∑
j∈J

K∑
k=0

cjkdjk (5)

s.t.
∑
p∈P

ajpxp + uj +

K∑
k=0

djk ≥ 1, ∀j ∈ J, (6)

xp ≥ 0, ∀p ∈ P, (7)
uj ≥ 0, ∀j ∈ J, (8)
0 ≤ djk ≤ ϵ, ∀j ∈ J, k ∈ {0, · · · ,K}. (9)

The model above requires only minor modifications to the SCM and is straightforward to implement. In fact, integrating
the probe variables into the original SCM requires fewer than ten lines of code within a simple double for-loop.
Moreover, the introduction of probe variables is independent of the problem structure. Despite its simplicity, the
approach proves highly effective in resolving degeneracy. For instance, in a small crew rostering case with 11 aircraft,
435 flight legs, and 68 crew members, the LGM demonstrated a striking improvement. As shown in Figure 2, the primal
and dual bounds converge rapidly under the LGM. Here, the primal bound corresponds to the current LP objective
value, while the dual bound is obtained by adding, for each crew member, the most negative reduced cost among their
potential variables (if it exists) to the objective value. With parameters K = 10, M = 1, 000, and θ = 15, 000, the
number of iterations decreased from 183 (using the SCM) to only 46, yielding a 76% reduction in computational time
and nearly eliminating the long-tail effect. As further demonstrated in Section 7, only tens of probe variables per
constraint are sufficient to achieve substantial improvement, which is relatively small for large-scale combinatorial
optimization problems. Based on our experience, this is likely one of the simplest and most effective methods available
in the literature to overcome degeneracy.

4 Theoretical advantages of the LGM

To elucidate the theoretical advantages of the LGM, this section proceeds as follows. First, we establish the relationship
between the SCM and the LGM. We then demonstrate that the introduction of probe variables enables precise

5

arXiv Template A PREPRINT

0 25 50 75 100 125 150 175
Iteration

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Pr

im
al

/d
ua

lb
ou

nd
×106

SCM Primal
SCM Dual
LGM Primal
LGM Dual

(a) Convergence over iterations

0 100 200 300 400
Time (s)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Pr
im

al
/d

ua
lb

ou
nd

×106

SCM Primal
SCM Dual
LGM Primal
LGM Dual

(b) Convergence over time

Figure 2: Primal and dual bound convergence in a crew rostering LP example

identification of the dual optimal values for each constraint. Furthermore, we prove that the dual solution obtained
via the LGM is unique for any degenerate primal solution, thereby establishing a rigorous theoretical basis for its
anti-degeneracy properties.

4.1 The relationship between the SCM and the LGM

In this section, we demonstrate that the introduction of probe variables in the LGM does not affect the optimality of
the original SCM, as long as the parameter M is chosen sufficiently large. Intuitively, although the probe variables
enlarge the feasible region, their impact can be made arbitrarily small, thereby ensuring that the LGM is asymptotically
equivalent to the SCM. Proposition 1 formally establishes the equivalence between the two models from the primal
perspective; the proof is provided in Appendix 9.1.

Proposition 1. Let (xM ,uM ,dM) denote an optimal solution of the LGM with parameter M . Then, as M →∞, the
components (xM ,uM) converge to an optimal solution of the original SCM. Conversely, given any optimal solution
(x∗,u∗) to the SCM, there exists a corresponding optimal solution (x∗,u∗,d∗) of the LGM such that d∗ → 0 as
M →∞.

Having established the primal equivalence, we now turn to the dual perspective to understand how the dual solutions
of the LGM relate to those of the SCM. Specifically, let π̂j denote the non-negative dual variables associated with
constraints (2), the corresponding dual problem of the SCM is given by

(DSCM) max
∑
j∈J

π̂j (10)

s.t.
∑
j∈J

ajpπ̂j ≤ cp, ∀p ∈ P, (11)

0 ≤ π̂j ≤ θ, ∀j ∈ J. (12)
Similarly, let πj denote the non-negative dual variables associated with constraints (6) of the LGM. Consider the probe
variable djk as a free variable with two bounded constraints djk ≥ 0 and djk ≤ ϵ. Let σ−

jk denote the non-positive
dual variables corresponding to djk ≤ ϵ, ∀j ∈ J, k ∈ {0, · · · ,K}, and let σ+

jk denote the non-negative dual variables
corresponding to djk ≥ 0, ∀j ∈ J, k ∈ {0, · · · ,K}, then the dual problem of the LGM is given by

(DLGM) max
∑
j∈J

πj +
∑
j∈J

K∑
k=0

ϵσ−
jk (13)

s.t.
∑
j∈J

ajpπj ≤ cp, ∀p ∈ P, (14)

πj + σ−
jk + σ+

jk = cjk, ∀j ∈ J, ∀k = {0, · · · ,K}, (15)

0 ≤ πj ≤ θ, ∀j ∈ J, (16)

σ−
jk ≤ 0, σ+

jk ≥ 0, ∀j ∈ J, ∀k = {0, · · · ,K}. (17)

6

arXiv Template A PREPRINT

Then, the following proposition shows that, as M →∞, the dual optimal solution of the LGM coincides with a dual
optimal solution of the SCM, and the proof is provided in Appendix 9.1.
Proposition 2. Denote by ∆DLGM and ∆DSCM the dual feasible regions of the DLGM and the DSCM, respectively.
Let projR|J|(∆DLGM) be the orthogonal projection of ∆DLGM onto the subspace R|J|, we have projR|J|(∆DLGM) ⊆
∆DSCM . Let (πM ,σM) be a dual optimal solution of the LGM with parameter M . Then, as M →∞, the component
(πM) converges to a dual optimal solution of the SCM.

Proposition 1 and 2 establish that, as M →∞, both the primal and dual solutions of the LGM converge to those of the
original SCM. In other words, while the LGM introduces probe variables, these modifications do not alter the primal
optimal solutions of the original SCM. These results confirm that the LGM is a faithful reformulation of the SCM at the
primal level, but with a smaller dual space. Building on this, we arrive at the following observation.
Observation 1. The LGM can be interpreted as a lexicographic optimization problem. Specifically, as M →∞, the
objective separates into two components with strictly ordered priorities:

1. Primary objective: minimize the original set covering cost
∑

p∈P cpxp +
∑

j∈J θuj;

2. Secondary objective: subject to the primary optimum, minimize the total probe variable cost∑
j∈J

∑K
k=0 cjkdjk.

Under this lexicographic interpretation, the LGM preserves the primal optimal solutions of the SCM, while the additional
probe costs serve only to refine the dual space. In the subsequent sections, we will demonstrate that, although the probe
costs are asymptotically negligible, the introduction of probe variables provides valuable properties and insights into
the SCM.

4.2 Dual values and the costs of probe variables

In the previous section, we introduced probe variables and showed that their inclusion does not affect the optimality
of the original problem. In this section, we demonstrate that the probe variables could help to gain more control over
the dual optimal solutions. Specifically, we formalize the connection between the dual optimal solution and the costs
of probe variables in the following theorem, then show how these costs provide explicit bounds on the dual optimal
solution of the LGM (proof in Appendix 9.1).
Theorem 1. Given optimal primal/dual solutions to the LGM, for any job j, let k∗ be the largest index such that
djk∗ > 0 and therefore djk∗+1 = 0. Then the dual optimal value πj for constraint j must satisfy cjk∗ ≤ πj ≤ cjk∗+1.

From Theorem 1, we can see that the probe variables automatically detect the range of dual value of each constraint.
In particular, a probe variable is pushed to its upper bound whenever its associated cost is less than the dual optimal
value πj . As the granularity of the cost intervals of probe variables becomes sufficiently small, the costs of the probe
variables can closely approximate the corresponding dual optimal values, providing a practical mechanism to detect and
bound the dual optimal solution of the LGM.

4.3 The uniqueness of the dual solution provided by the LGM

Next, we present the following theorem to demonstrate that the dual optimal solution produced by the LGM is unique.
Specifically, when the parameters K and M are sufficiently large, this unique dual minimizes

∑
j∈J(πj)

2. Thus,
among all originally degenerate dual optimal solutions, the LGM consistently selects a single and identical solution. A
complete proof is provided in Appendix 9.1.

Theorem 2. As K → ∞ and M → ∞, we have limK→∞,M→∞
∑

j∈J

∑K
k=0 cjkdjk = 1

2Mθ

∑
j∈J(πj)

2, and the
corresponding dual optimal solution π∗ obtained from the LGM is unique.

To interpret Theorem 2, when the LGM minimizes the objective associated with the probe variables, i.e.,∑
j∈J

∑K
k=0 cjkdjk, it simultaneously yields a unique dual solution that minimizes

∑
j∈J(πj)

2. Unlike traditional
approaches that address degeneracy from the dual side, our method introduces a general lifting procedure for the set
covering model (and, more broadly, for linear programs) without affecting primal feasibility and optimality. A related
attempt is the DOI/DDOI framework of Ben Amor et al. [2006], which also lifts the primal problem. However, in
contrast to our method, DOI/DDOI is highly problem-dependent and enlarges the feasible region of the primal problem.
Furthermore, our idea also fundamentally differs from the dynamic constraint aggregation approach of Elhallaoui et al.
[2005], which projects the primal problem into a lower-dimensional subspace to eliminate zero-valued variables in the
projected basis. In contrast, our lifting increases the dimensionality while preserving the original feasible region.

7

arXiv Template A PREPRINT

5 Dual optimal central distance

In the previous section, we showed that the LGM yields a unique dual optimal solution that minimizes∑
j∈J

∑K
k=0 cjkdjk, and, when M and K are sufficiently large, it approaches minimizing

∑
j∈J(πj)

2. Yet, these
results alone do not justify why this particular solution should be regarded as superior to other dual optima. Our aim is
not only to obtain uniqueness, but to identify a solution that can be deemed the best under a principled criterion. To
bridge this gap, we introduce the concept of dual optimal central distance as a quantitative measure of dual quality.
Building upon this idea, we extend the LGM to general linear programs and propose a weighted version to handle
heterogeneous dual structures. Finally, we demonstrate that the directional guidance embedded in the weighted LGM
framework provides the foundation for designing a polynomial-time algorithm to approximate the dual optimal center.

5.1 Dual optimal polytope, dual optimal center, and dual optimal central distance

In this section, in order to define a meaningful “center” of dual optimal solutions, we first formalize the set in which
this center will be located, i.e., dual optimal polytope.

Definition 1 (Dual Optimal Polytope). Let z∗ denote the optimal value of the SCM. Define the feasible region of
the DSCM as D := {π ∈ R|J| | A⊤π ≤ c}, and the hyperplane corresponding to the dual optimal value as
H := {π ∈ R|J| | 1Tπ = z∗}. The set of all dual optimal solutions, called the dual optimal polytope, is then defined
as D∗ := D ∩H, and the set of extreme points of D∗ is denoted by ∆D∗ .

Depending on the problem instance, D∗ may take various forms: it could be a single point (corresponding to a unique
dual optimal solution), a line segment, or, in degenerate cases, a higher-dimensional polyhedron containing multiple
optimal solutions. To capture a representative “center” of this set, we define the dual optimal center as the centroid of
D∗.

Definition 2 (Dual Optimal Center). Let π∗ denote the dual optimal center, defined as the centroid of the dual optimal
polytope D∗ : π∗ = 1

|∆D∗ |
∑

π∈∆D∗ π.

As noted in Goffin et al. [1993] and Martinson and Tind [1999], the center of the dual polyhedron typically provides
stronger and more stable dual cuts, resulting in significantly improved computational performance. Motivated by this,
we use the dual optimal center as a reference for evaluating the quality of any dual optimal solution. Specifically, we
measure the squared Euclidean distance between a given dual optimal solution and the dual optimal center, which we
term the dual optimal central distance, defined as follows:

Definition 3 (Dual Optimal Central Distance (DOCD)). Given a dual optimal solution π ∈ D∗, the dual optimal
central distance between π and the dual optimal center π∗ is defined by v(π) = ∥π − π∗∥22.

Intuitively, a dual optimal solution that lies far from the dual optimal center will have a large DOCD, whereas a solution
closer to the center will have a smaller DOCD. In the special case where the dual optimal solution coincides with the
dual optimal center, the DOCD is zero.

In practice, however, accurately characterizing the dual optimal polytope and identifying its center are often challenging,
which makes the direct computation of the DOCD intractable. To overcome this difficulty, we introduce the concept of
the dual optimal direction, which captures the relative contribution of each dual component at the dual optimal center.
Once this direction is known, the dual optimal center that minimizes the DOCD can be recovered through the following
Proposition 3 (proof in Appendix 9.1).

Definition 4 (Dual Optimal Direction). Define the normalized vector η = (η1, . . . , η|J|) as dual optimal direction,

where ηj =
π∗
j∑

j′∈J π∗
j′

and
∑

j∈J ηj = 1. Here, ηj represents the relative ratio of the j-th dimension in the dual optimal

center π∗.

Proposition 3. Given the dual optimal direction η, defined with the dual optimal center π∗ for the SCM, the dual
optimal solution to minπ∈D∗

∑
j∈J

(πj)
2

ηj
coincides with the solution to minπ∈D∗ v(π), which minimizes the DOCD,

and is precisely the dual optimal center π∗.

The implication of the above proposition is that it is not necessary to know the absolute value of each dual optimal
variable π∗ or the exact shape of the dual optimal polytope D∗; rather, we only need to consider the relative ratios
between different dual variables, i.e., the direction of dual optimal center. This requirement is often much easier to
satisfy in real-world applications. For example, in many set covering problems, where tasks typically have comparable
importance, the dual optimal polytope usually exhibits a nearly center-symmetric structure. Consequently, the relative

8

arXiv Template A PREPRINT

ratios among the dual optimal values of different tasks tend to be close to one, reflecting minor variations in their
shadow prices. Besides, in the case of a degenerate solution, it is reasonable to expect that all tasks along a selected path
share similar shadow prices. Conversely, a scenario in which a single task absorbs the entire dual value while others
receive none is generally unacceptable.

Recalling that the LGM minimizes the squared L2 norm of the dual values across all dual optima, we now establish a
more formal connection. When all components of the dual optimal direction are equal, i.e., ηj = 1/|J |,∀j ∈ J , this
minimization is equivalent to minimizing the DOCD. The following theorem formalizes this relationship and shows that
the dual optimal solution of the LGM indeed attains the minimum DOCD under this condition (proof in Appendix 9.1).

Theorem 3. When the dual optimal direction η = 1
|J|1, as K →∞ and M →∞, the LGM produces a unique dual

optimal solution, precisely the dual optimal center among all dual optimal solutions of the SCM.

5.2 Weighted LGM for general linear programming

In the previous section, we introduced the concept of the DOCD, which is well defined regardless of the problem
structure and provides a consistent basis for comparing multiple dual solutions. Furthermore, we show that in the
set covering problem, if the dual optimal polytope is relatively center-symmetric, that is, the components of the dual
optimal direction are similar across different jobs, the dual optimal solution with the minimal DOCD can be obtained by
the LGM as K →∞ and M →∞. However, such symmetry does not necessarily hold in more general settings. For
example, in the cutting stock problem, the demand associated with longer items typically yields larger dual values than
that of shorter items [Valério de Carvalho, 2005, Ben Amor et al., 2006]. Furthermore, the demand for different items
might no longer be the same. In this case, the components of the dual optimal direction are no longer uniform, and the
LGM in its original form may fail to produce the dual solution with the minimal DOCD. This observation motivates
an extension of the LGM to accommodate heterogeneous dual components, allowing it to compute the dual optimal
solution with the minimal DOCD even when the dual values vary across constraints.

Consider the linear program P below. For notational simplicity, relative to the SCM presented earlier, we modify the
right-hand side of constraint j from 1 to bj ∈ R+, and allow ajp ∈ R+ to be a general positive constant rather than
restricting it to {0, 1}. Additionally, the penalty θj for uj is now allowed to vary across different constraints, in contrast
to the previous setting where all uj shared the same cost parameter θ.

(P) min
∑
p∈P

cpxp +
∑
j∈J

θjuj (18)

s.t.
∑
p∈P

ajpxp + uj ≥ bj , ∀j ∈ J, (19)

xp ≥ 0, ∀p ∈ P, (20)
uj ≥ 0, ∀j ∈ J. (21)

To analyze the dual optimal direction of the LP problem P , we seek to transform the problem into a form that closely
resembles the SCM, allowing us to apply its conclusions. Specifically, we scale each constraint j by its right-hand side
bj , and introduce a variable substitution by defining ûj =

1
bj
uj . This modification preserves the problem’s structure

while normalizing the right-hand side to 1. The resulting scaled form of the LP problem P is given by:

(ScaledP) min
∑
p∈P

cpxp +
∑
j∈J

θjbj ûj (22)

s.t.
∑
p∈P

ajp
bj

xp + ûj ≥ 1, ∀j ∈ J, (23)

xp ≥ 0, ∀p ∈ P, (24)
ûj ≥ 0, ∀j ∈ J. (25)

Define the dual variables of the constraints in (23) as µj for all j ∈ J . It is straightforward to observe that after
scaling, µj = bjπj . According to Definition 4, the dual optimal direction of the scaled problem ScaledP is given by

ηj =
µ∗
j∑

j′∈J µ∗
j′
,∀j ∈ J , where µ∗ represents the dual optimal center of ScaledP . Since µj = bjπj , the dual optimal

direction of the scaled problem can be expressed in terms of the original dual optimal center π∗ of the problem P ,
leading to the following definition of the weighted dual optimal direction:

9

arXiv Template A PREPRINT

Definition 5 (Weighted Dual Optimal Direction). Let π∗ denote the dual optimal center of the LP problem P and
define the normalized vector η = (η1, . . . , η|J|) as the weighted dual optimal direction, where ηj =

bjπ
∗
j∑

j′∈J (bj′π
∗
j′)

and∑
j∈J ηj = 1. Here, each component ηj measures the relative weighted importance of the j-th dimension in π∗.

Geometrically, as illustrated in Figure 3, the weighted dual optimal direction points from the origin toward the dual
optimal center µ∗ of the scaled problem ScaledP . By reversing the scaling transformation applied to µ∗, we can
recover the exact dual optimal center π∗ of the original LP problem P . Similarly, once the weighted dual optimal
direction is determined, minimizing the DOCD leads to an optimal solution identical to that of minimizing the weighted
squared L2 norm of the dual values across all dual optimal solutions, as stated in Proposition 4 (proof in Appendix 9.1).

��

��

�

�
∗

��
∗

��

��

�

�∗

�������
∗

�

Figure 3: Illustration of weighted dual optimal direction

Proposition 4. Given the weighted dual optimal direction η, defined based on the dual optimal center π∗ for the
LP problem P , the optimal solution to minπ∈D∗

∑
j∈J

(bjπj)
2

ηj
coincides with the solution to minπ∈D∗ v(π), which

minimizes the DOCD and is precisely π∗.

To obtain the unique dual optimal solution that minimizes the DOCD, a variant of the LGM, based on the weighted dual
optimal direction η, is proposed and referred to as the WLGM:

(WLGM) min
∑
p∈P

cpxp +
∑
j∈J

θjuj +
∑
j∈J

K∑
k=0

cjkdjk (26)

s.t.
∑
p∈P

ajpxp + uj +

K∑
k=0

bjdjk ≥ bj , ∀j ∈ J, (27)

xp ≥ 0, ∀p ∈ P, (28)
uj ≥ 0, ∀j ∈ J, (29)
0 ≤ djk ≤ ϵ, ∀j ∈ J, k ∈ {0, · · · ,K}. (30)

Here, θj = θηj , and thus cjk =
θjk
K . That is, all θj values are adjusted according to the weighted dual optimal direction,

reflecting the weighted importance of each constraint. As a result, the costs of the probe variables for each constraint
are changed accordingly. Similar to Propositions 1 and 2, it can be shown that as M → ∞, the WLGM becomes
asymptotically equivalent to the problem P , and the dual optimal solution of the WLGM coincides with a dual optimal
solution of the problem P . Next, in the following theorem, we demonstrate that the WLGM precisely provides the dual
optimal solution with the minimal DOCD, even when the dual optimal polytope is asymmetric (proof in Appendix 9.1).
Theorem 4. Let D∗ denote the dual optimal polytope of the LP problem P , and let π∗ represent its dual optimal center.
Given the weighted dual optimal direction η defined with π∗, as K → ∞ and M → ∞, the unique dual optimal
solution proposed by the WLGM is exactly π∗.

When degeneracy arises, traditional approaches fail to control the search direction of the dual variables, often resulting
in uncertain or non-unique dual solutions. By introducing probe variables whose costs are calibrated according to the
weighted dual optimal direction, Theorem 4 shows that the WLGM explicitly steers the dual search along a prescribed
direction. Consequently, if a dual optimal solution exists in that direction, it will be attained. This mechanism enhances
both the stability and interpretability of dual solutions under highly degenerate instances, and offers a systematic means
of incorporating prior knowledge about the expected dual structure to improve computational reliability.

10

arXiv Template A PREPRINT

5.3 Directional guidance of the WLGM

In theory, if the exact weighted dual optimal direction η is known, it would guide the WLGM to recover the dual
optimal center, as established in Theorem 4. Specifically, by intersecting the ray {rη : r ≥ 0} with the dual optimal
polytope of the corresponding ScaledP , the intersection point can be scaled back to recover the dual optimal center of
the original LP problem P . In practice, however, the exact direction is rarely available. A natural approach is to begin
with an estimated direction derived from prior knowledge or experience, though such an estimate may deviate from the
exact value. This raises a fundamental question: what happens if the prescribed direction does not match any solution
in D∗?

Proposition 5 addresses this scenario. It shows that, depending on whether the specified direction intersects with the
scaled dual optimal polytope, the scaled dual optimal solution obtained from the WLGM either aligns with this direction
or, if the direction lies outside the scaled polytope, resides on its boundary (proof in Appendix 9.1).
Proposition 5. Let D∗ denote the dual optimal polytope of problem P , and D∗

ScaledP the dual optimal polytope of its
scaled counterpart. Given an estimated weighted dual optimal direction η̂, the dual optimal solution πη̂ produced by
the WLGM satisfies the following properties:

1. If the ray {rη̂ : r ≥ 0} has a nonempty intersection with D∗
ScaledP , then πη̂

j =
rη̂j

bj
,∃r ≥ 0.

2. Otherwise, πη̂ lies on the boundary of D∗.

In summary, Proposition 5 implies that if the estimated dual optimal direction η̂ is reasonable, it can guide the WLGM
to directly attain the target dual optimal solution. Such interior solutions are often sufficient in practice to alleviate
degeneracy, providing a stable and well-centered dual representation without requiring further refinement. Conversely,
the WLGM would adjust the estimated weighted dual optimal direction η̂ to a solution on the boundary of D∗. The
difference (z∗η̂ − πη̂) can then serve as a meaningful direction for updating the estimated weighted dual optimal
direction.

Leveraging this property, the WLGM can be used to probe the boundary of the dual optimal polytope. By purposely
setting the initial direction η and varying the costs associated with the probe variables, one can collect a diverse set of
boundary solutions, which in turn provides an approximation of the dual optimal polytope. This observation motivates
the following section, which presents a tractable boundary-sampling algorithm for estimating the dual optimal center
based on representative points generated by the WLGM.

5.4 Estimated dual optimal center

Building on the directional selection property of the WLGM, this section develops an algorithmic framework for
estimating the dual optimal center. Computing the exact physical center of the dual optimal polytope D∗ is known
to be NP-hard for general linear programs, but the boundary-sampling capability of the WLGM provides a tractable
alternative: by generating representative boundary points, we can construct a reliable approximation in polynomial time.

The intuition is as follows. Referring to Proposition 5, by deliberately varying the weighted dual optimal direction η,
we can guide the WLGM to produce a sufficiently rich set of dual solutions distributed across the boundary of D∗.
Collectively, the rays emanating from the origin and passing through these boundary points form a cone that encloses
D∗, while the boundary points themselves offer a discrete yet informative approximation of its geometry. In practice,
however, such exhaustive sampling is unnecessary. Instead, we propose a lightweight approximation scheme that
requires only a limited set of rays to capture the essential geometry of D∗. Specifically, we adopt directions of the form

η = ξ1 +
(
1− ξ|J |

)
ej , (31)

where ej is the j-th unit vector and ξ is a sufficiently small positive constant. Intuitively, this construction enforces one
dual component to be dominant while the others remain small. Repeating this process for each dimension j ∈ J yields
a collection of boundary solutions that approximate the geometry of the dual optimal polytope. By averaging these
solutions, we obtain a practical approximation of the dual optimal center. The procedure is summarized in Algorithm
1, and a simple, concrete example is provided in Example B.1 (Appendix 9.2) to illustrate both the construction and
sampling process.

Algorithm 1 might be valuable in applications such as column generation. In large-scale settings, it is infeasible to
enumerate all primal variables (equivalently, all dual constraints), and therefore the exact shape of D∗ is unattainable.
Nevertheless, by generating representative boundary points through the WLGM, we can form meaningful approx-
imations of the dual optimal center. These approximations, in turn, provide effective guidance for stabilizing and
accelerating the column generation process. Although our primary focus is on approximating the centroid of the dual

11

arXiv Template A PREPRINT

Algorithm 1: Approximation of the dual optimal center
Input: Parameter ξ
Output: Approximate dual optimal center π̂
Initialize Π̂← ∅;
for each constraint j ∈ J do

Construct weighted dual optimal direction η = ξ1+ (1− ξ|J |)ej ;
Solve the WLGM under direction η to obtain the dual optimal solution π;
Update the set Π̂← Π̂ ∪ {π};

Compute π̂ = 1
|J|
∑

π∈Π̂ π;
return π̂;

optimal polytope, the same approach can be extended to other notions of center—such as the analytic center, the
Chebyshev center, or the barycentric centroid. Since the WLGM inherently samples boundary points of D∗, once these
samples are obtained, different computational schemes can be readily applied to approximate the desired center.

From a practical perspective, however, computing the exact center—even with Algorithm 1—can still be time-consuming
and is not strictly necessary. While the true center may offer slightly better numerical performance, it is often sufficient
to select any direction corresponding to an interior point of D∗. This choice ensures effective control of the dual
solution, allowing the WLGM to consistently deliver a unique outcome that, after scaling, aligns with the prescribed
direction.

6 Implementation and computational issues

This section aims to address two important aspects of the proposed LGM. In Section 6.1, we introduce a pivoting rule
for the LGM that eliminates cycling, and in Section 6.2, we demonstrate that the introduction of probe variables leads
to only a marginal increase in computational complexity. While most commercial solvers can already handle cycling
issues, and this is typically not a concern for practitioners, we provide a rigorous proof that the proposed algorithm
can effectively prevent cycling, ensuring theoretical completeness. Similarly, although the number of probe variables
is usually much smaller than the general variables in a highly degenerate problem, and can be easily managed by
commercial solvers, we show that their introduction results in only minimal computational overhead.

6.1 Elimination of cycling under degeneracy

In the previous sections, we demonstrated that the LGM can select a unique dual optimal solution from the set of all
dual optimal solutions of the SCM, which correspond to a degenerate primal optimal solution. Building on this property,
we now propose a new pivoting rule to eliminate cycling caused by degeneracy.

The pivoting procedure follows a clear hierarchy in which probe variables are given absolute priority over non-probe
variables. A probe variable is always selected for update whenever its reduced cost is favorable, and only after all probe
variables have been processed and no further updates are possible do non-probe variables become eligible to enter the
basis. Notably, this priority is enforced even when a non-probe variable has a more attractive reduced cost than a probe
variable. The step-by-step implementation of this pivoting rule is summarized in the following algorithm.

Algorithm 2. Probe Cycling-Free Pivoting Rule

Initialize Given the current partition of the coefficient matrix [B,N1,N2], all decision variables (both x and d)
partitioned accordingly as (xB,xN1 ,xN2), where xB are the basic variables, and xN1 and xN2 are the
nonbasic variables at their lower and upper limits, respectively.

Step 0 Compute the basic feasible solution x̄B , the dual solution π, and the objective value z.

Step 1 Compute the reduced costs c̄jk = cjk − πj of all probe variables djk,∀j ∈ J, k ∈ {0, · · · ,K}.
Step 2 Consider all probe variables at their lower bounds with c̄jk < 0 and at their upper bounds with c̄jk > 0.

From this subset of probe variables, select the variable dj∗k∗ with the largest absolute reduced cost |c̄jk|. If
dj∗k∗ ∈ xN1 , proceed to Step 2.1; if dj∗k∗ ∈ xN2 , proceed to Step 2.2; if no such probe variable exists,
proceed to Step 3.

12

arXiv Template A PREPRINT

2.1 Compute the direction vector y = B−1ej∗ . The step size τ = min
{
minyi>0

x̄B,i

yi
,minyi<0

uB,i−x̄B,i

−yi
, ϵ
}
,

here uB,i is the upper bound for the i-th basic variable. The conventions are: minyi>0
x̄B,i

yi
= +∞ if no

yi > 0 exists, and minyi<0
uB,i−x̄B,i

−yi
= +∞ if no yi < 0 exists. Then:

• If τ = ϵ, move dj∗k∗ from xN1 to xN2 , set its value to τ , and return to Step 0.
• If τ < ϵ, perform a pivot with step size τ : dj∗k∗ enters the basis with value τ and the leaving basic

variable is determined by the minimum ratio test. Update the variable partition and return to Step 0.

2.2 Compute the direction vector y = B−1ej∗ . The step size τ = min
{
minyi>0

uB,i−x̄B,i

yi
,minyi<0

x̄B,i

−yi
, ϵ
}
,

here uB,i is the upper bound for the i-th basic variable. The conventions are: minyi>0
uB,i−x̄B,i

yi
= +∞ if no

yi > 0 exists, and minyi<0
x̄B,i

−yi
= +∞ if no yi < 0 exists. Then:

• If τ = ϵ, move dj∗k∗ from xN2 to xN1 , set its value to 0, and return to Step 0.
• If τ < ϵ, perform a pivot with step size τ : dj∗k∗ enters the basis with value ϵ− τ and the leaving basic

variable is determined by the minimum ratio test. Update the variable partition and return to Step 0.
Step 3 Compute the reduced costs of all non-probe non-basic variables.
Step 4 If any non-probe variable has a negative reduced cost, select the one with the most negative reduced cost to

enter the basis and determine the leaving variable using the classical minimum ratio test. If no such variable
exists, the current solution is optimal.

The following theorem rigorously establishes that this modified pivoting rule completely eliminates cycling in degenerate
situations (proof in Appendix 9.1).
Theorem 5. Consider a (possibly degenerate) basis B of the LGM. Under the Probe Cycling-Free Pivoting Rule,
by first updating all probe variables before selecting the entering non-probe variable, cycling due to degeneracy is
completely eliminated.

Although the above algorithm and theorem focus on the set covering model, the proposed pivot rule is applicable to
general linear programming problems. To demonstrate this generality, we revisit a classical example (Example B.2 in
Appendix 9.2) from Beale [1955], where the standard simplex method cycles and eventually returns to the initial basic
solution after six iterations.

6.2 Computational efficiency analysis of the LGM

In this section, we analyze the computational efficiency of the LGM from two perspectives. The first concerns the
per-iteration complexity when a probe variable enters the basis. Since the most computationally demanding step in such
an iteration is updating the inverse of the feasible basis matrix, we characterize the complexity of computing the inverse
of the new basis after a probe variable enters. The second concerns the number of additional iterations required to reach
the LGM optimal basis starting from a degenerate optimal basis of the SCM. Together, these two aspects capture the
extra computational effort incurred by the LGM compared with the SCM.

First, the following proposition formalizes the computational cost of updating the basis inverse when a probe variable
enters the basis (proof in Appendix 9.1).

Proposition 6. Let B ∈ R|J|×|J| = {b1, b2, . . . , bj , . . . , b|J|} be a feasible basis of the LGM, and let B−1 denote its
inverse. Suppose a probe variable dj∗k∗ enters the basis and the i∗-th basic variable leaves. The new basis can be
expressed as B′ = B + (ej∗ − bi∗)e

T
i∗ , where ej∗ and ei∗ are unit vectors with 1 in the j∗-th and i∗-th components,

respectively. The inverse of the new basis B′ can be computed in O(|J |2) time.

This result shows that although the basis inverse needs to be updated in each iteration, the cost remains quadratic in the
basis dimension, which is significantly cheaper than updating the inverse when a general variable enters the basis, i.e.,
O(|J |3).
We now analyze the number of additional iterations required for the LGM to reach its optimal basis from a degenerate
optimal basis of the SCM. According to Theorem 1, the optimal dual value of constraint j in the LGM lies within the
interval bounded by the probe variable with the largest cost among those with positive values and the probe variable with
the smallest cost among those with zero values. Intuitively, for constraints whose optimal dual values have already been
attained, the reduced costs of their associated probe variables no longer satisfy the conditions for entering the basis, and
hence no further pivoting is needed. In contrast, for those constraints whose dual values have not yet converged to the
optimal ones, the corresponding probe variables will continue to be adjusted through successive iterations. Therefore,

13

arXiv Template A PREPRINT

the upper bound on the number of additional iterations required by the LGM is intrinsically determined by the optimal
dual values, which directly leads to the following proposition (proof provided in Appendix 9.1).

Proposition 7. Given a degenerate optimal basis of the SCM, the number of iterations required to obtain the optimal
basis of the corresponding LGM is bounded above by

∑
j∈J

⌈
π∗
jK

θ

⌉
.

This bound characterizes the worst-case number of probe-variable entering steps needed to eliminate degeneracy and
reach the LGM optimal basis, providing a theoretical guarantee on the global convergence efficiency of the LGM.
Taken together, Propositions 6 and 7 quantify the marginal computational overhead introduced by the LGM relative to
the SCM. The first shows that the additional per-iteration cost remains polynomially manageable, while the second
provides a bound on the number of extra iterations required to reach the LGM optimal basis. These findings demonstrate
that the improved dual solution quality delivered by the LGM can be achieved with limited and well-characterized
computational effort.

7 Case study and computational results

In this section, we demonstrate the performance of the proposed LGM/WLGM with probe variables through two
representative applications: the airline crew scheduling problem and the cutting stock problem. Our focus is on the
convergence of LP relaxations rather than solving the integer programs (IP). Furthermore, since a high-quality LP
solution provides a solid foundation for the IP, integer programming approaches, such as branch-and-price, are also
expected to benefit from the LGM/WLGM framework.

7.1 Airline crew scheduling problem

In the airline crew scheduling problem, sequences of flights, referred to as rosters, are assigned to crews such that each
flight is operated by at least one qualified crew. Let R denote the set of feasible rosters, indexed by r, where each
roster r incurs a cost cr reflecting practical operational considerations. In line with common practice, the roster cost is
decomposed into four components: duty time cost, deadhead cost, layover cost, and duty-day cost. Formally, for a
roster r ∈ R, cr is calculated as

cr = chour
∑
l∈Lr

(
tarr
l − tdep

l

)
+ cddh nddh

r + clay nlay
r + cday nday

r , (32)

where Lr is the set of duties contained in roster r, and each duty l ∈ Lr may include one or more flights or deadhead
segments. The departure time of the first segment and the arrival time of the last flight within duty l are denoted by
tdep
l and tarr

l , respectively, so that the first term represents the total duty time multiplied by the per-hour cost chour. The
second term accounts for the total number of deadhead segments nddh

r , with cddh as the associated cost per deadhead.
The third term captures layover expenses, computed as the number of overnight stays nlay

r multiplied by the per-night
cost clay. Finally, the duty-day cost reflects fixed payments for each calendar day on which the crew is assigned duties,
calculated as cday times nday

r . Together, these four components provide a comprehensive measure of the operational
costs associated with a crew roster.

Let F be the set of planned flights indexed by f , and M the set of crew members indexed by m. For each crew member
m, denote Rm as the subset of feasible rosters available for crew m. The binary coefficient afr equals 1 if flight f is
included in roster r, and 0 otherwise. The decision variable xr indicates whether roster r is selected, while the artificial
variable uf represents whether flight f is canceled. In the LP relaxation, both xr and uf are treated as non-negative
continuous variables. With these definitions, the airline crew scheduling problem can be formulated as a set covering
model with side constraints, and its LP relaxation is given by:

(ACSM) min
∑
r∈R

crxr +
∑
f∈F

θuf (33)

s.t.
∑
r∈R

afrxr + uf ≥ 1, ∀f ∈ F, (34)∑
r∈Rm

xr ≤ 1, ∀m ∈M, (35)

xr ≥ 0, ∀r ∈ R, (36)
uf ≥ 0, ∀f ∈ F. (37)

14

arXiv Template A PREPRINT

The objective function (33) minimizes the total cost of the resulting crew schedule. The flight covering constraints (34)
ensure that each flight is either covered by at least one selected roster or canceled, while the crew assignment
constraints (35) ensure that each crew member is assigned to at most one roster. Constraints (36)–(37) define the
feasible range of the decision variables. The ACSM is solved using a column generation framework, with the detailed
algorithmic procedure provided in Appendix 9.3.

7.1.1 Test cases

To evaluate the computational efficiency of the proposed LGM, a set of test instances was generated based on real-world
operational data from a major Chinese airline. All instances share a planning horizon of one week. Specifically, Cases
1, 3, 5, 7, and 9 are derived from the same week that contains public holidays, Cases 2, 4, 6, 8, and 10 are derived
from a regular operational week. The detailed characteristics of these test cases are summarized in Table 1, including
the numbers of aircraft, flights, deadheads, layover stations, crew members, and pre-assigned ground activities (e.g.,
training or vacation) for specific crew members. It is also noteworthy that all flights are eligible to serve as deadheads
for crew repositioning.

Table 1: Characteristics of test cases
Case # Aircraft # Flight # Deadhead # Layover Station # Crew # Ground Activity

Case1 24 767 1,188 49 142 62
Case2 24 722 1,188 49 142 86
Case3 31 962 1,188 49 176 78
Case4 31 932 1,188 49 176 102
Case5 42 1,212 1,188 49 228 218
Case6 42 1,185 1,188 49 228 234
Case7 55 1,606 1,188 49 305 396
Case8 55 1,521 1,188 49 305 370
Case9 64 1,841 1,188 49 356 456
Case10 64 1,799 1,188 49 356 388

7.1.2 Computational and parameters settings

All test problems were solved on a computer with a 3.60 GHz Intel Xeon Gold 6544Y CPU, 128 GB RAM, and 64
threads running Windows Server 2019. The models and algorithms were implemented in C++ using Visual Studio 2022,
and all LP models were solved using the commercial solver CPLEX 22.1.0 with default settings [IBM Corporation,
2022]. All subproblems were solved in parallel using 64 threads. The maximum number of variables added to the
master problem at each iteration is set to 3|M |, i.e., at most three new beneficial rosters per crew. The total runtime
for all cases is limited to 10 hours, and the algorithm terminates either when the optimal solution is obtained or upon
reaching the predefined time limit. The relevant cost parameters are summarized in Table 2.

Table 2: Parameter settings for roster cost calculation
Parameter Value Description

chour 300 Unit cost per duty hour
cddh 500 Unit cost per deadhead
clay 1,000 Unit cost per layover
cday 2,000 Fixed cost per calendar duty day

7.1.3 Effectiveness of the LGM

In this section, we evaluate the computational efficiency of the proposed LGM. The baseline is the ACSM, while the
proposed LG-ACSM extends each flight covering constraint (34) by adding K = 10 probe variables (with the first
probe variable, which has a cost of 0, omitted for simplicity). The comparison between the ACSM and the LG-ACSM
is presented in Table 3. For each case, the table reports the number of iterations (# Iter), the number of constraints
(# Cons), the numbers of roster and probe variables (# Roster Var and # Probe Var), the LP optimal objective value
(LP Obj), the total computation time of the master problems (MP Time), the total computation time of the pricing
subproblems (SP Time), and the overall time required to obtain the LP optimal solution (Time). In particular, we
compute the optimal total roster cost (Opt LP Roster Cost) by using all the roster variables in the final LG-ACSM and

15

arXiv Template A PREPRINT

setting the upper bounds of the probe variables to 0, which serves as the LP optimal objective value of the ACSM.
All computational times are measured in seconds. The “Saving # Iter" and “Saving Time" metrics are calculated as
(ACSM - LG-ACSM)/ (ACSM) ×100% based on the number of iterations and total computation time, respectively.

Table 3: Comparison between the ACSM and the LG-ACSM
ACSM LG-ACSM Saving

Case # Iter # Cons # Roster
Var LP Obj MP

Time
SP

Time Time # Iter # Cons # Roster
Var

Probe
Var LP Obj Opt LP

Roster Cost
MP

Time
SP

Time Time # Iter (%) Time (%)

Case1 4,149 971 1,253,209 1,565,250 2,099 31,511 34,363 151 971 47,679 8,290 1,564,870 1,565,250 67 459 554 96.36 98.39
Case2 3,813 950 1,470,402 1,603,750 3,101 32,239 36,000 157 950 58,510 8,080 1,602,660 1,603,040 91 599 711 >95.88 >98.03
Case3 2,345 1,216 1,049,499 1,948,380 2,369 33,197 36,000 197 1,216 84,513 10,400 1,939,610 1,940,050 153 1,628 1,814 >91.60 >94.96
Case4 2,317 1,210 989,875 1,986,120 2,546 33,047 36,000 190 1,210 73,070 10,340 1,981,050 1,981,510 147 1,458 1,633 >91.80 >95.46
Case5 1,005 1,658 692,534 2,695,770 3,820 32,014 36,000 210 1,658 133,565 14,300 2,680,510 2,681,200 497 3,159 3,690 >79.10 >89.75
Case6 910 1,647 629,913 2,632,310 4,033 31,773 36,000 204 1,647 128,080 14,190 2,616,820 2,617,500 488 3,148 3,671 >77.58 >89.80
Case7 1,135 2,307 1,039,611 3,619,420 5,613 30,150 36,000 280 2,307 239,537 20,020 3,587,520 3,588,450 1,055 4,005 5,109 >75.33 >85.81
Case8 724 2,196 622,735 3,562,490 5,807 30,071 36,000 237 2,196 192,055 18,910 3,534,190 3,535,090 1,250 5,483 6,769 >67.27 >81.20
Case9 588 2,653 654,941 4,060,480 5,875 30,044 36,000 314 2,653 335,065 22,970 3,975,490 3,976,420 2,181 8,083 10,333 >46.60 >71.30
Case10 566 2,543 612,006 4,256,750 6,645 29,247 36,000 270 2,543 288,185 21,870 4,159,660 4,160,840 2,209 8,050 10,328 >52.30 >71.31
Avg. - - - - - - - - - - - - - - - - >77.38 >87.60

As shown in Table 3, only the first case achieves an LP optimal solution within the ten-hour time limit using the ACSM,
highlighting significant degeneracy in the remaining instances. Due to the time constraint, larger cases even exhibit
fewer iterations but are farther from the optimal solution. In contrast, the LG-ACSM significantly accelerates the
solution process without sacrificing optimality, reducing the number of iterations and total computation time by 77.38%
and 87.60% on average, respectively. Notably, we expect the actual savings to be much greater, given that the ACSM
does not provide an optimal solution within the time limit, which compromises the fairness of the comparison. These
results demonstrate that probe variables effectively select a unique dual solution from the multiple optima caused by
degeneracy, thereby stabilizing the dual values and facilitating the convergence of the column generation procedure.

To illustrate the convergence behavior of the ACSM and the LG-ACSM, we plotted the objective values over the
iterations, as shown in Figure 4. It can be seen that the long-tail effect is significantly less pronounced for the LG-ACSM
than for the ACSM, indicating that the inclusion of probe variables substantially mitigates this effect. Furthermore,
across all cases, a sharp drop can be observed at a certain iteration. This phenomenon arises from a heuristic strategy
adopted in the column generation process: during the early stages, a simplified dominance rule was applied in the
multi-label shortest path algorithm to accelerate computation. When the objective value began to decrease slowly, the
full dominance rule was reinstated to ensure the optimality of the final solution.

7.1.4 Comparison with interior point method

In this section, we compare the proposed LGM framework with a classical interior point method. Specifically, the
ACSM is solved using CPLEX’s built-in Barrier method without crossover, which directly produces an interior point
dual solution without converting it into a basic feasible solution, providing a natural baseline for comparison with the
LG-ACSM. In practice, this is achieved by setting IloCplex::RootAlg = IloCplex::Algorithm::Barrier and
IloCplex::Param::SolutionType = 2 [IBM Corporation, 2022]. The results are summarized in Table 4. For each
instance, the table reports the number of iterations (# Iter), the numbers of constraints (# Cons), the number of roster
and probe variables (# Roster Var and # Probe Var), the LP optimal objective value (LP Obj), the optimal roster cost
(Opt LP Roster Cost), the total computation time of the master problems (MP Time), the total computation time of the
pricing subproblems (SP Time), and the overall time to reach the LP optimal solution (Time), all measured in seconds.
The metrics “Saving # Iter" and “Saving Time" denote the relative reductions in iterations and total computation time,
respectively, computed as (ACSM− LG-ACSM)/ACSM× 100%.

Table 4: Comparison with interior point method
ACSM + barrier LG-ACSM Saving

Case # Iter # Cons # Roster
Var LP Obj MP

Time
SP

Time Time # Iter # Cons # Roster
Var

Probe
Var LP Obj Opt LP

Roster Cost
MP

Time
SP

Time Time # Iter (%) Time (%)

Case1 267 971 87,043 1,565,250 67 1,337 1,459 151 971 47,679 8,290 1,564,870 1,565,250 67 459 554 43.45 62.03
Case2 226 950 84,718 1,603,040 78 1,173 1,286 157 950 58,510 8,080 1,602,660 1,603,040 91 599 711 30.53 44.71
Case3 704 1,216 299,886 1,940,050 357 9,132 9,623 197 1,216 84,513 10,400 1,939,610 1,940,050 153 1,628 1,814 72.02 81.15
Case4 251 1,210 96,716 1,981,510 113 2,378 2,529 190 1,210 73,070 10,340 1,981,050 1,981,510 147 1,458 1,633 24.30 35.43
Case5 975 1,658 649,255 2,688,690 1,356 34,465 36,000 210 1,658 133,565 14,300 2,680,510 2,681,200 497 3,159 3,690 >78.46 >89.75
Case6 983 1,647 657,174 2,624,710 1,367 34,432 36,000 204 1,647 128,080 14,190 2,616,820 2,617,500 488 3,148 3,671 >79.25 >89.80
Case7 1,154 2,307 978,737 3,603,860 1,959 33,821 36,000 280 2,307 239,537 20,020 3,587,520 3,588,450 1,055 4,005 5,109 >75.74 >85.81
Case8 765 2,196 613,436 3,549,880 1,768 34,072 36,000 237 2,196 192,055 18,910 3,534,190 3,535,090 1,250 5,483 6,769 >69.02 >81.20
Case9 599 2,653 624,404 4,060,480 1,804 34,037 36,000 314 2,653 335,065 22,970 3,975,490 3,976,420 2,181 8,083 10,333 >47.58 >71.30
Case10 480 2,543 486,095 4,256,750 1,743 34,156 36,000 270 2,543 288,185 21,870 4,159,660 4,160,840 2,209 8,050 10,328 >43.75 >71.31
Avg. - - - - - - - - - - - - - - - - >56.41 >71.25

16

arXiv Template A PREPRINT

0 1000 2000 3000 4000
Iteration

1.50

1.75

2.00

2.25

2.50

2.75

3.00
O

bj
ec

tiv
e

×106

ACSM
LG-ACSM

(a) Case 1

0 1000 2000 3000 4000
Iteration

1.50

1.75

2.00

2.25

2.50

2.75

3.00

O
bj

ec
tiv

e

×106

ACSM
LG-ACSM

(b) Case 2

0 500 1000 1500 2000
Iteration

1.5

2.0

2.5

3.0

3.5

4.0

O
bj

ec
tiv

e

×106

ACSM
LG-ACSM

(c) Case 3

0 500 1000 1500 2000
Iteration

1.5

2.0

2.5

3.0

3.5

4.0

O
bj

ec
tiv

e

×106

ACSM
LG-ACSM

(d) Case 4

0 200 400 600 800 1000
Iteration

2.0

2.5

3.0

3.5

4.0

4.5

5.0

O
bj

ec
tiv

e

×106

ACSM
LG-ACSM

(e) Case 5

0 200 400 600 800
Iteration

2.0

2.5

3.0

3.5

4.0

4.5

5.0

O
bj

ec
tiv

e

×106

ACSM
LG-ACSM

(f) Case 6

0 200 400 600 800 1000
Iteration

3

4

5

6

7

O
bj

ec
tiv

e

×106

ACSM
LG-ACSM

(g) Case 7

0 100 200 300 400 500 600 700
Iteration

3

4

5

6

7

O
bj

ec
tiv

e

×106

ACSM
LG-ACSM

(h) Case 8

Figure 4: Convergence of objectives for the ACSM and the LG-ACSM

17

arXiv Template A PREPRINT

0 100 200 300 400 500 600
Iteration

3

4

5

6

7

8
O

bj
ec

tiv
e

×106

ACSM
LG-ACSM

(i) Case 9

0 100 200 300 400 500
Iteration

3

4

5

6

7

8

O
bj

ec
tiv

e

×106

ACSM
LG-ACSM

(j) Case 10

Figure 4: Convergence of objectives for the ACSM and the LG-ACSM

As shown in Table 4, the LG-ACSM consistently outperforms the classical interior point method (Barrier without
crossover) across all test instances. On average, the LG-ACSM reduces the number of iterations by 56.41% and the
total computation time by 71.25%. Notably, for Cases 5 to 10, the solutions obtained by the ACSM with the interior
point method were not optimal within the given time limit, suggesting that the actual performance improvements could
be even greater than those reported. While the interior point method mitigates degeneracy by avoiding traversal of the
extreme points in dual space, its lack of control over the dual solutions can still lead to inefficiencies. In contrast, the
LG-ACSM ensures a unique dual solution, stabilizing the process and accelerating convergence. These results confirm
the practical advantage of the proposed LGM framework over standard interior point approaches.

7.1.5 Sensitivity analysis of the number of probe variables

In this section, we investigate the sensitivity of the LG-ACSM with respect to the parameter K. As defined in Section 3,
the cost interval between two consecutive probe variables is given by θ/K. Intuitively, the narrower the interval, the
smaller the range of dual oscillations. In this test, we conduct experiments with four different values of K, corresponding
to probe cost intervals of 100, 250, 500, and 1000. For each setting, we evaluate the computational performance across
all test cases. The detailed results are presented in Table 5, which reports the number of iterations (# Iter), the number
of constraints (# Cons), the numbers of roster and probe variables (# Roster Var and # Probe Var), the LP optimal
objective value (LP Obj), the total computation time of the master problems (MP Time), the total computation time of
the pricing subproblems (SP Time), and the overall time required to obtain the LP optimal solution (Time).

As shown in Table 5, the sensitivity analysis confirms that increasing the number of probe variables per constraint and
using a smaller cost interval, which narrows the range of allowable dual oscillations, generally accelerates convergence
and reduces the number of iterations needed to reach the LP optimal solution. Remarkably, even adding only five probe
variables per constraint yields a clear improvement in computational efficiency compared with the baseline ACSM. This
demonstrates that even a relatively small number of probe variables can substantially stabilize dual values, improve the
column generation process, and accelerate convergence.

7.2 Cutting stock problem

In the cutting stock problem, given a kind of rolls with width W , the objective is to determine a set of cutting patterns
that satisfy the demands of different item types. Let I denote the set of items indexed by i, each with demand di and
width wi. Let S be the set of feasible cutting patterns. Each pattern s ∈ S is represented by a vector (a1s, . . . , a|I|s),
where ais denotes the number of items of type i included in pattern s. A pattern is feasible if it satisfies the width
constraint

∑
i∈I aiswi ≤ W,ais ∈ N,∀i ∈ I . The cost of pattern s is defined as cs = c0 + cw

(
W −∑i∈I aiswi

)
,

where c0 is the fixed cost associated with using a pattern, and cw denotes the cost per unit of unused width (waste).
Let xs be the decision variable indicating whether pattern s is selected. In the LP relaxation, xs is a non-negative
continuous variable, while ui represents the unsatisfied demand for item i. With these definitions, the LP relaxation is

18

arXiv Template A PREPRINT

Table 5: Sensitivity analysis of the number of probe variables
Case K θ/K # Iter # Cons # Roster Var # Probe Var LP obj MP Time SP Time Time

Case1 5 1,000 155 971 49,038 4,145 1,565,100 62 515 604
10 500 151 971 47,679 8,290 1,564,870 67 459 554
20 250 162 971 49,666 16,580 1,564,420 72 524 622
50 100 160 971 57,189 41,450 1,563,060 82 516 629

Case2 5 1,000 167 950 59,329 4,040 1,602,880 75 703 804
10 500 157 950 58,510 8,080 1,602,660 91 599 711
20 250 134 950 47,594 16,160 1,602,190 68 480 567
50 100 139 950 48,234 40,400 1,600,810 77 569 665

Case3 5 1,000 206 1,216 86,717 5,200 1,939,880 154 1,701 1,879
10 500 197 1,216 84,513 10,400 1,939,610 153 1,628 1,814
20 250 201 1,216 84,991 20,800 1,939,080 146 1,178 1,359
50 100 190 1,216 79,211 52,000 1,937,470 185 1,524 1,739

Case4 5 1,000 193 1,210 73,188 5,170 1,981,330 133 1,533 1,691
10 500 190 1,210 73,070 10,340 1,981,050 147 1,458 1,633
20 250 179 1,210 70,125 20,680 1,980,500 145 1,280 1,444
50 100 182 1,210 68,985 51,700 1,978,840 190 1,364 1,574

Case5 5 1,000 212 1,658 134,435 7,150 2,680,910 461 3,307 3,799
10 500 210 1,658 133,565 14,300 2,680,510 497 3,159 3,690
20 250 203 1,658 129,714 28,600 2,679,690 564 2,996 3,595
50 100 192 1,658 122,769 71,500 2,677,230 532 2,881 3,452

Case6 5 1,000 208 1,647 132,420 7,095 2,617,210 429 3,230 3,695
10 500 204 1,647 128,080 14,190 2,616,820 488 3,148 3,671
20 250 207 1,647 131,858 28,380 2,616,020 577 3,005 3,618
50 100 196 1,647 126,104 70,950 2,613,630 540 2,714 3,291

Case7 5 1,000 308 2,307 280,594 10,010 3,588,070 1,258 4,979 6,311
10 500 280 2,307 239,537 20,020 3,587,520 1,055 4,005 5,109
20 250 270 2,307 236,026 40,040 3,586,420 1,230 3,882 5,175
50 100 269 2,307 234,057 100,100 3,583,100 1,269 4,028 5,349

Case8 5 1,000 235 2,196 190,797 9,455 3,534,720 1,144 5,648 6,839
10 500 237 2,196 192,055 18,910 3,534,190 1,250 5,483 6,769
20 250 240 2,196 189,046 37,820 3,533,120 1,569 5,804 7,411
50 100 218 2,196 179,941 94,550 3,529,900 1,400 4,878 6,322

Case9 5 1,000 351 2,653 391,263 11,485 3,976,040 2,482 10,589 13,159
10 500 314 2,653 335,065 22,970 3,975,490 2,181 8,083 10,333
20 250 316 2,653 338,904 45,940 3,974,360 2,507 8,435 11,019
50 100 304 2,653 330,391 114,850 3,970,990 2,052 7,819 9,949

Case10 5 1,000 327 2,543 342,071 10,935 4,160,340 2,748 11,645 14,460
10 500 270 2,543 288,185 21,870 4,159,660 2,209 8,050 10,328
20 250 264 2,543 250,489 43,740 4,158,290 2,330 7,817 10,211
50 100 264 2,543 250,350 109,350 4,154,160 2,181 8,028 10,265

formulated as follows:

(CSM) min
∑
s∈S

csxs +
∑
i∈I

θiui (38)

s.t.
∑
s∈S

aisxs + ui ≥ di, ∀i ∈ I, (39)

xs ≥ 0, ∀s ∈ S, (40)
ui ≥ 0, ∀i ∈ I. (41)

The objective function (38) minimizes the total cost of the selected cutting patterns along with the penalties for unmet
demands, while the demand covering constraints (39) ensure that the demand for each item is satisfied. Constraints
(40)–(41) specify the feasible range of the decision variables. The CSM is solved using a column generation approach,
with the detailed algorithmic procedure provided in Appendix 9.4.

7.2.1 Test cases

To evaluate the performance of the proposed WLGM framework, we conduct computational experiments on the
classical cutting stock problem. The instance generation procedure follows that described in Valério de Carvalho

19

arXiv Template A PREPRINT

[2005]. Specifically, three roll widths are considered: 100, 120, and 150. For each roll width, two instance sizes are
generated, containing 200 and 500 item types, respectively. The item widths are generated using two distributions: the
first is a uniform distribution over the interval [10, roll width− 10), and the second is a multi-peak distribution, where
5–6 random peak values are chosen within [10, 90), each corresponding to a randomly determined quantity of items,
resulting in clusters of item widths around these peaks. For each configuration (distribution, roll width, item size), 20
random instances are generated. In our tests, each cutting pattern has a fixed cost c0 = 50, a unit waste cost cw = 0.5,
and a demand di = 1 for each item i. The computational settings follow those described in Section 7.1.2, with only the
single most beneficial variable (if it exists) added in each iteration.

7.2.2 Effectiveness of the WLG-CSM

We compare the baseline CSM, given in Eq.(38)-(41), to the CSM with width-weighted probe variables (WLG-CSM).
We consider that the cost of covering an item is roughly proportional to its width. Accordingly, we define ηi = wi to
estimate the relative importance of each item’s dual value. Note that, in contrast to the theoretical definition of the
weighted dual optimal direction, we omit the normalization denominator

∑
i∈I wi here. This simplification allows us to

directly control the absolute penalty for uncovering each item, setting θi = 100× ηi = 100× wi. In the WLG-CSM,
the parameter K is set to 200×wi for each item i, such that the cost of the k-th probe variable in constraint i is given by
k × θi

K = 0.5× k. To improve computational efficiency, for each item i, we compute the target dual π̃i = wi

roll width × c0.
Probe variables are then added to the WLG-CSM only when their corresponding cost cik lies within the interval
[π̃i − 3, π̃i + 3].

Table 6 summarizes the computational results for the CSM and the WLG-CSM. Specifically, the results presented are
averages over 20 random instances for each configuration, showing the number of iterations (# Iter), the number of
degenerate iterations (# Dege-iter), and the total running time required to reach the LP optimal solutions, measured in
seconds (Time). The definition of degenerate iteration follows Valério de Carvalho [2005]: a degenerate iteration occurs
when the objective value does not improve after inserting a new column into the restricted master problem. Additionally,
the “Saving # Iter" and “Saving # Dege-iter" metrics are calculated as (CSM−WLG-CSM)/(CSM)× 100%, based
on the reductions in the number of iterations and degenerate iterations, respectively.

Table 6: Comparison between the CSM and the WLG-CSM
Distribution Roll Width # Item Model # Iter # Dege-iter Time Saving # Iter (%) Saving # Dege-iter (%)

Normal 100 200 CSM 347.80 136.35 0.09 - -
WLG-CSM 240.55 1.50 0.25 30.84 98.90

100 500 CSM 906.00 376.25 0.42 - -
WLG-CSM 601.30 2.75 2.36 33.63 99.27

120 200 CSM 346.10 133.30 0.10 - -
WLG-CSM 236.55 1.50 0.23 31.65 98.87

120 500 CSM 916.35 337.40 0.49 - -
WLG-CSM 624.30 2.75 2.49 31.87 99.18

150 200 CSM 356.35 117.00 0.12 - -
WLG-CSM 257.70 2.75 0.32 27.68 97.65

150 500 CSM 898.60 325.15 0.48 - -
WLG-CSM 619.65 3.00 2.49 31.04 99.08

Multi-peak 100 200 CSM 1,153.50 954.70 0.32 - -
WLG-CSM 253.80 13.50 0.30 78.00 98.59

100 500 CSM 5,019.80 4,535.90 10.86 - -
WLG-CSM 1,169.90 35.20 4.80 76.69 99.22

120 200 CSM 950.80 741.70 0.25 - -
WLG-CSM 246.10 15.00 0.30 74.12 97.98

120 500 CSM 5,140.50 4,643.45 10.63 - -
WLG-CSM 953.95 42.15 3.91 81.44 99.09

150 200 CSM 1,258.00 1,068.45 0.36 - -
WLG-CSM 264.65 20.05 0.33 78.96 98.12

150 500 CSM 4,537.70 3,848.80 11.30 - -
WLG-CSM 920.55 45.30 4.09 79.71 98.82

Avg. CSM 1,819.29 1,434.87 2.94 - -
WLG-CSM 532.42 15.45 1.82 70.73 98.92

As shown in Table 6, the WLG-CSM significantly reduces the total number of iterations compared to the classical
CSM. On average, the WLG-CSM achieves a substantial 70.73% reduction in iterations. This improvement is due
to the proportional control of each item’s contribution, which helps generate dual solutions closer to the ideal center,

20

arXiv Template A PREPRINT

thereby accelerating convergence more effectively. The impact on degenerate iterations is even more pronounced:
the WLG-CSM reduces them by 98.92%, demonstrating that the introduction of probe variables effectively mitigates
degeneracy. Notably, degeneracy is more severe in multi-peak instances, where the classical CSM experiences hundreds
or even thousands of degenerate iterations. In these challenging cases, the WLG-CSM significantly reduces degenerate
iterations, highlighting its robustness across both uniform and multi-peak item distributions.

8 Conclusion

In this work, we introduce the Low-Granularity Model (LGM), a surprisingly simple yet highly effective method that
incorporates probe variables to achieve precise control over dual values during the solution process. We rigorously
show that the dual value of each constraint is bounded within an interval defined by the probe variable with the largest
cost among those with positive values and the probe variable with the smallest cost among those with zero values.
Furthermore, we define the dual optimal central distance (DOCD) as a quantitative criterion for evaluating the quality
of a given dual solution. The DOCD is measured as the squared Euclidean distance between the dual solution and
the centroid of the dual optimal polytope. We prove that, for a center-symmetric dual optimal polytope with equal
weights across all dimensions, the LGM attains the dual solution with the minimal DOCD among all dual optima
corresponding to a degenerate primal solution. We then extend the LGM to general linear programs through the
Weighted LGM (WLGM) framework. When the relative ratios among dual optimal values are known, the WLGM can
deterministically guide the search toward a unique dual optimum with the minimal DOCD. This property provides a
theoretically grounded approach to mitigating the adverse effects of degeneracy and, in practice, yields a more realistic
dual representation that better reflects the true shadow price of each constraint. Computational experiments on airline
crew scheduling and cutting stock problems confirm that our methods substantially accelerate convergence while
maintaining optimality.

Building on these foundational results, our proposed approach has the potential for broad impact across the optimization
literature. Tens of thousands of studies on column generation, Dantzig-Wolfe decomposition, branch-and-price,
and Benders decomposition are affected by slow convergence due to degeneracy. By providing stabilized and high-
quality unique dual solutions, our method can significantly mitigate, or even entirely eliminate, the negative effects of
degeneracy, benefiting a wide range of optimization research involving dual-guided decomposition methods.

References
George B Dantzig, Alex Orden, and Philip Wolfe. The generalized simplex method for minimizing a linear form under

linear inequality restraints. Pacific Journal of Mathematics, 5(2):183–195, 1955.
James E Kelley, Jr. The cutting-plane method for solving convex programs. Journal of the Society for Industrial and

Applied Mathematics, 8(4):703–712, 1960.
Paul C Gilmore and Ralph E Gomory. A linear programming approach to the cutting-stock problem. Operations

Research, 9(6):849–859, 1961.
Bengt Aspvall and Richard E Stone. Khachiyan’s linear programming algorithm. Journal of Algorithms, 1(1):1–13,

1980.
Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of the Sixteenth

Annual ACM Symposium on Theory of Computing, pages 302–311, 1984.
Lord Kelvin. Nineteenth century clouds over the dynamical theory of heat and light. The London, Edinburgh, and

Dublin Philosophical Magazine and Journal of Science, 2(7):1–40, 1901.
AJ Hoffman. Cycling in the simplex algorithm. In Charles A Micchelli, editor, Selected Papers of Alan J Hoffman with

Commentary. World Scientific Publishing Company, 2003.
E. M. L. Beale. Cycling in the dual simplex algorithm. Naval Research Logistics Quarterly, 2(4):269–275, 1955.
Mokhtar S Bazaraa, John J Jarvis, and Hanif D Sherali. Linear Programming and Network Flows. John Wiley & Sons,

Hoboken, New Jersey, 2011.
Marco E Lübbecke and Jacques Desrosiers. Selected topics in column generation. Operations Research, 53(6):

1007–1023, 2005.
Ragheb Rahmaniani, Teodor Gabriel Crainic, Michel Gendreau, and Walter Rei. The Benders decomposition algorithm:

A literature review. European Journal of Operational Research, 259(3):801–817, 2017.
Axel Parmentier, Rafael Martinelli, and Thibaut Vidal. Electric vehicle fleets: Scalable route and recharge scheduling

through column generation. Transportation Science, 57(3):631–646, 2023.

21

arXiv Template A PREPRINT

Mohammed Saddoune, Guy Desaulniers, Issmail Elhallaoui, and François Soumis. Integrated airline crew pairing and
crew assignment by dynamic constraint aggregation. Transportation Science, 46(1):39–55, 2012.

Maik Schälicke and Karl Nachtigall. Solving the real-time train dispatching problem by column generation. Trans-
portation Science, 59(3):587–602, 2025.

Shivaram Subramanian and Hanif D Sherali. An effective deflected subgradient optimization scheme for implementing
column generation for large-scale airline crew scheduling problems. INFORMS Journal on Computing, 20(4):
565–578, 2008.

Roy E Marsten, William W Hogan, and Jacob Watson Blankenship. The boxstep method for large-scale optimization.
Operations Research, 23(3):389–405, 1975.

Issmail Elhallaoui, Daniel Villeneuve, François Soumis, and Guy Desaulniers. Dynamic aggregation of set-partitioning
constraints in column generation. Operations Research, 53(4):632–645, 2005.

Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François Vanderbeck. Automation and combination of linear-
programming based stabilization techniques in column generation. INFORMS Journal on Computing, 30(2):339–360,
2018.

Vašek Chvátal. Linear programming. Macmillan, 1983.

Abraham Charnes. Optimality and degeneracy in linear programming. Econometrica, 20(2):160–170, 1952.

Philip Wolfe. A technique for resolving degeneracy in linear programming. Journal of the Society for Industrial and
Applied Mathematics, 11(2):205–211, 1963.

David Murray Ryan and Michael Robert Osborne. On the solution of highly degenerate linear programmes. Mathemati-
cal Programming, 41(1):385–392, 1988.

Robert G Bland. New finite pivoting rules for the simplex method. Mathematics of Operations Research, 2(2):103–107,
1977.

Paul Wentges. Weighted Dantzig-Wolfe decomposition for linear mixed-integer programming. International Transac-
tions in Operational Research, 4(2):151–162, 1997.

Olivier Du Merle, Daniel Villeneuve, Jacques Desrosiers, and Pierre Hansen. Stabilized column generation. Discrete
Mathematics, 194(1-3):229–237, 1999.

Hatem Ben Amor, Jacques Desrosiers, and Antonio Frangioni. On the choice of explicit stabilizing terms in column
generation. Discrete Applied Mathematics, 157(6):1167–1184, 2009.

Louis-Martin Rousseau, Michel Gendreau, and Dominique Feillet. Interior point stabilization for column generation.
Operations Research Letters, 35(5):660–668, 2007.

Issmail Elhallaoui, Abdelmoutalib Metrane, François Soumis, and Guy Desaulniers. Multi-phase dynamic constraint
aggregation for set partitioning type problems. Mathematical Programming, 123:345–370, 2010.

Issmail Elhallaoui, Guy Desaulniers, Abdelmoutalib Metrane, and François Soumis. Bi-dynamic constraint aggregation
and subproblem reduction. Computers & Operations Research, 35(5):1713–1724, 2008.

Issmail Elhallaoui, Abdelmoutalib Metrane, Guy Desaulniers, and François Soumis. An improved primal simplex
algorithm for degenerate linear programs. INFORMS Journal on Computing, 23(4):569–577, 2011.

Jacques Desrosiers, Jean Bertrand Gauthier, and Marco E Lübbecke. Row-reduced column generation for degenerate
master problems. European Journal of Operational Research, 236(2):453–460, 2014.

Hocine Bouarab, Issmail El Hallaoui, Abdelmoutalib Metrane, and François Soumis. Dynamic constraint and variable
aggregation in column generation. European Journal of Operational Research, 262(3):835–850, 2017.

José M Valério de Carvalho. Using extra dual cuts to accelerate column generation. INFORMS Journal on Computing,
17(2):175–182, 2005.

François Clautiaux, Cláudio Alves, José Valério de Carvalho, and Jürgen Rietz. New stabilization procedures for the
cutting stock problem. INFORMS Journal on Computing, 23(4):530–545, 2011.

Cláudio Alves and JM Valério de Carvalho. A stabilized branch-and-price-and-cut algorithm for the multiple length
cutting stock problem. Computers & Operations Research, 35(4):1315–1328, 2008.

Hatem Ben Amor, Jacques Desrosiers, and José Manuel Valério de Carvalho. Dual-optimal inequalities for stabilized
column generation. Operations Research, 54(3):454–463, 2006.

Timo Gschwind and Stefan Irnich. Dual inequalities for stabilized column generation revisited. INFORMS Journal on
Computing, 28(1):175–194, 2016.

22

arXiv Template A PREPRINT

Vishnu Suresh Lokhande, Shaofei Wang, Maneesh Singh, and Julian Yarkony. Accelerating column generation via
flexible dual optimal inequalities with application to entity resolution. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 1593–1602, 2020.

Naveed Haghani, Claudio Contardo, and Julian Yarkony. Smooth and flexible dual optimal inequalities. INFORMS
Journal on Optimization, 4(1):29–44, 2022.

Luciano Costa, Claudio Contardo, Guy Desaulniers, and Julian Yarkony. Stabilized column generation via the dynamic
separation of aggregated rows. INFORMS Journal on Computing, 34(2):1141–1156, 2022.

Siqi Guo, Fan Xiao, and Zhe Liang. Nested set-covering/packing problem: Degeneracy alleviation and dual stabilization.
Operations Research, online first:1–28, 2025.

Marshall Fisher. Vehicle routing. Handbooks in Operations Research and Management Science, 8:1–33, 1995.

J-L Goffin, Alain Haurie, J-Ph Vial, and Dao Li Zhu. Using central prices in the decomposition of linear programs.
European Journal of Operational Research, 64(3):393–409, 1993.

Ruben Kirkeby Martinson and Jørgen Tind. An interior point method in Dantzig–Wolfe decomposition. Computers &
Operations Research, 26(12):1195–1216, 1999.

IBM Corporation. IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual, 2022. URL https://www.ibm.
com/docs/en/icos/22.1.0?topic=optimization-cplex-users-manual. Version 22.1.0.

9 Proofs of Statements and Additional Material

9.1 Proof of statements

Proposition 1: Let (xM ,uM ,dM) denote an optimal solution of the LGM with parameter M . Then, as M →∞, the
components (xM ,uM) converge to an optimal solution of the original SCM. Conversely, given any optimal solution
(x∗,u∗) to the SCM, there exists a corresponding optimal solution (x∗,u∗,d∗) of the LGM such that d∗ → 0 as
M →∞.

Proof. Proof Denote by ∆LGM and ∆SCM the feasible regions of the LGM and the SCM, respectively. Let
projR|P |+|J|(∆LGM) be the orthogonal projection of ∆LGM onto the subspace R|P |+|J|.

First, given any feasible solution (x̃, ũ) ∈ ∆SCM , choosing d̃ = 0 yields a feasible solution (x̃, ũ, d̃) ∈ ∆LGM . Thus,

∆SCM ⊆ projR|P |+|J|(∆LGM). (A.1)

Conversely, given a feasible solution (x̂, û, d̂) ∈ ∆LGM , the additional contribution of the probe variables to the set
covering constraint for each j is bounded by

K∑
k=0

d̂jk ≤ (K + 1)ϵ =
K + 1

MK
, (A.2)

where K is a fixed and given constant representing the number of probe variables. Hence, for an arbitrarily small δ,
we can always find a sufficiently large M ≥ K+1

Kδ so
∑K

k=0 d̂jk ≤ δ, which implies limM→∞
∑

p∈P ajpx̂p + ûj +∑K
k=0 d̂jk = 1, ∀j ∈ J . Therefore, we have

lim
M→∞

(projR|P |+|J|(∆LGM)) ⊆ ∆SCM . (A.3)

From Eq.(A.1) and Eq.(A.3), we can obtain

lim
M→∞

(projR|P |+|J|(∆LGM)) = ∆SCM . (A.4)

Next, consider the objective function. In the LGM, the additional contributions from all probe variables are bounded by

∑
j∈J

K∑
k=0

cjkd
M
jk ≤

∑
j∈J

K∑
k=0

kθ

K
· 1

MK
=
∑
j∈J

θ

MK2

K∑
k=0

k =
∑
j∈J

θ(K + 1)

2MK
=

θ(K + 1)|J |
2MK

. (A.5)

23

https://www.ibm.com/docs/en/icos/22.1.0?topic=optimization-cplex-users-manual
https://www.ibm.com/docs/en/icos/22.1.0?topic=optimization-cplex-users-manual

arXiv Template A PREPRINT

Thus, for an arbitrarily small δ, we can always find a sufficiently large M ≥ θ(K+1)|J|
2Kδ so

∑
j∈J

∑K
k=0 cjkd

M
jk ≤

θ(K+1)|J|
2MK ≤ δ, which implies the two objectives of the SCM and the LGM coincide:

lim
M→∞

∑
p∈P

cpxp +
∑
j∈J

θuj +
∑
j∈J

K∑
k=0

cjkdjk

 =
∑
p∈P

cpxp +
∑
j∈J

θuj . (A.6)

Finally, we establish the correspondence of optimal solutions:

• Let (xM ,uM ,dM) be an optimal solution of the LGM. Its projection (xM ,uM) lies in the feasible region of
the SCM, and the objective value converges to the SCM optimal value as M →∞. Hence, any limit point of
(xM ,uM) is an optimal solution of the SCM.

• Given an optimal solution (x∗,u∗) of the SCM, take d∗ = 0. Then (x∗,u∗,d∗) is feasible for the LGM and
achieves the same objective value as in the SCM. Therefore, it is also an optimal solution of the LGM.

Proposition 2: Denote by ∆DLGM and ∆DSCM the dual feasible regions of the DLGM and the DSCM, respectively.
Let projR|J|(∆DLGM) be the orthogonal projection of ∆DLGM onto the subspace R|J|, we have projR|J|(∆DLGM) ⊆
∆DSCM . Let (πM ,σM) be a dual optimal solution of the LGM with parameter M . Then, as M →∞, the component
(πM) converges to a dual optimal solution of the SCM.

Proof. Proof Let (π̃, σ̃) ∈ ∆DLGM be a feasible dual solution of the LGM. By definition, the components (π̃) satisfies
the dual constraints (14) and (16) in the DLGM, which coincide with the constraints defining the dual feasible region
∆DSCM of the SCM. Hence, we have π̃ ∈ ∆DSCM , and consequently, projR|J|(∆DLGM) ⊆ ∆DSCM .

Then, given a pair of optimal primal and dual solutions of the LGM, denoted as (xM ,uM ,dM) and (πM ,σM).
From Proposition 1, as M → ∞, (xM ,uM) converges to an optimal primal solution to the SCM, and we have
limM→∞(

∑
p∈P cpx

M
p +

∑
j∈J θuM

j +
∑

j∈J

∑K
k=0 cjkd

M
jk) =

∑
p∈P cpx

M
p +

∑
j∈J θuM

j . Next, we are going to
prove that (πM) could converge to a dual optimal solution of the SCM.

From constraints (15) of the DLGM, we have σ−M
jk = cjk − πM

j − σ+M
jk . Since 0 ≤ πM

j ≤ θ, and σ+M
jk > 0 implies

that djk = 0 (hence σ−M
jk = 0), it follows that cjk − θ ≤ σ−M

jk ≤ 0. Therefore, the contribution of σ−M
jk to the dual

objective (13) is bounded below by∑
j∈J

K∑
k=0

ϵσ−M
jk ≥

∑
j∈J

K∑
k=0

ϵ(cjk − θ) ≥
∑
j∈J

K∑
k=0

k
θ

K

1

MK
−
∑
j∈J

K∑
k=0

1

MK
θ = −θ(K + 1)|J |

2MK
. (A.7)

As M →∞, we have
∑

j∈J

∑K
k=0 ϵσ

−M
jk ≥ − θ(K+1)|J|

2MK → 0. Additionally, since
∑

j∈J

∑K
k=0 ϵσ

−M
jk ≤ 0, it follows

that limM→∞

(∑
j∈J

∑K
k=0 ϵσ

−M
jk

)
= 0. Thus, the objective of the DLGM reduces to

lim
M→∞

(
∑
j∈J

πM
j +

∑
j∈J

K∑
k=0

ϵσ−M
jk) =

∑
j∈J

πM
j . (A.8)

Furthermore, referring to strong duality theorem, we have∑
p∈P

cpx
M
p +

∑
j∈J

θuM
j +

∑
j∈J

K∑
k=0

cjkd
M
jk =

∑
j∈J

πM
j +

∑
j∈J

K∑
k=0

ϵσ−M
jk . (A.9)

Thus, as M →∞, we can obtain ∑
p∈P

cpx
M
p +

∑
j∈J

θuM
j =

∑
j∈J

πM
j , (A.10)

which shows that πM achieves the dual optimal objective of the SCM. Finally, since projR|J|(∆DLGM) ⊆ ∆DSCM ,
πM is a dual feasible solution of the SCM, Hence, πM is a dual optimal solution of the SCM.

24

arXiv Template A PREPRINT

Theorem 1: Given optimal primal/dual solutions to the LGM, for any job j, let k∗ be the largest index such that
djk∗ > 0 and therefore djk∗+1 = 0. Then the dual optimal value πj for constraint j must satisfy cjk∗ ≤ πj ≤ cjk∗+1.

Proof. Proof Given an optimal solution to the LGM, we have the following cases for each of the probe variable,

• If djk = ϵ, by complementary slackness we have σ−
jk ≤ 0 and σ+

jk = 0, then from Constraint (15), it implies
cjk − πj ≤ 0;

• If 0 < djk < ϵ, by complementary slackness we have σ−
jk = 0 and σ+

jk = 0, then from Constraint (15), it
implies cjk − πj = 0;

• If djk = 0, by complementary slackness we have σ−
jk = 0 and σ+

jk ≥ 0, then from Constraint (15), it implies
cjk − πj ≥ 0.

Therefore, we have cjk∗ ≤ πj and πj ≤ cjk∗+1, and hence complete the proof.

Theorem 2: As K → ∞ and M → ∞, we have limK→∞,M→∞
∑

j∈J

∑K
k=0 cjkdjk = 1

2Mθ

∑
j∈J(πj)

2, and the
corresponding dual optimal solution π∗ obtained from the LGM is unique.

Proof. Proof

According to Theorem 1, for constraint j, the largest index k∗j such that djk = ϵ is determined as k∗j =
⌊
πjK
θ

⌋
. Thus,

djk = ϵ if k ≤ k∗j , and djk = 0 if k > k∗j . Then, the contribution of the probe variables corresponding to job j to the
objective function (5) can be computed as:

K∑
k=0

cjkdjk =

k∗
j∑

k=0

cjkdjk +

K∑
k=k∗

j+1

cjkdjk =

k∗
j∑

k=0

cjkϵ. (A.11)

Substituting cjk = k θ
K and ϵ = 1

MK into Eq.(A.11), we have

K∑
k=0

cjkdjk =

k∗
j∑

k=0

cjkϵ =

k∗
j∑

k=0

(k
θ

K
)

1

MK
=

θ

MK2

k∗
j∑

k=0

k

=
θ

MK2
× 1

2

⌊πjK

θ

⌋
(
⌊πjK

θ

⌋
+ 1) =

θ

2MK2

⌊πjK

θ

⌋⌈πjK

θ

⌉
. (A.12)

Take the limit K →∞, the sum in Eq.(A.12) converges to

lim
K→∞

K∑
k=0

cjkdjk = lim
K→∞

θ

2MK2

⌊πjK

θ

⌋⌈πjK

θ

⌉
=

θ

2MK2

πjK

θ

πjK

θ
=

(πj)
2

2Mθ
. (A.13)

Because θ is constant, Eq.(A.13) shows that, in the limit K → ∞, minimizing
∑

j∈J

∑K
k=0 cjkdjk is equivalent to

minimizing
∑

j∈J(πj)
2.

Furthermore, it is easy to see that the set of all dual optimal solutions of the SCM is a nonempty closed convex set.
The function f(π) =

∑
j∈J(πj)

2 is strictly convex, and thus admits a unique minimizer over this convex set. Since
the LGM selects precisely this minimizer in the limit K →∞ and M →∞, the π∗-component of the dual optimal
solution provided by the LGM is unique.

Proposition 3: Given the dual optimal direction η, defined with the dual optimal center π∗ for the SCM, the dual
optimal solution to minπ∈D∗

∑
j∈J

(πj)
2

ηj
coincides with the solution to minπ∈D∗ v(π), which minimizes the DOCD,

and is precisely the dual optimal center π∗.

25

arXiv Template A PREPRINT

Proof. Proof For any π ∈ D∗, we have

v(π) =
∑
j∈J

(πj − π∗
j)

2 =
∑
j∈J

π2
j − 2

∑
j∈J

πjπ
∗
j +

∑
j∈J

(π∗
j)

2. (A.14)

Since the last term is constant with respect to π, minimizing v(π) is equivalent to minimizing
∑

j π
2
j − 2

∑
j πjπ

∗
j . By

the definition of ηj , we have π∗
j = ηj

∑
j′∈J π∗

j′ ≡ ηjz
∗, where z∗ denotes the optimal objective value of the SCM and

z∗ =
∑

j∈J π∗
j . By substituting π∗

j , the objective becomes
∑

j π
2
j − 2z∗

∑
j ηjπj . This is a strictly convex quadratic

function in π and achieves its unique minimum when πj = z∗ηj ,∀j ∈ J .

We now show that minπ∈D∗
∑

j∈J
(πj)

2

ηj
attains the same minimizer πj = z∗ηj ,∀j ∈ J . To do so, we decompose the

problem into a constrained optimization problem as follows:

min
π∈D

∑
j∈J

π2
j

ηj
s.t.

∑
j∈J

πj = z∗. (A.15)

Introducing a Lagrange multiplier λ, the Lagrangian is given by L(π, λ) =∑j∈J

π2
j

ηj
−λ
(∑

j∈J πj − z∗
)

. Taking the
first-order condition with respect to each πj yields ∂L/∂πj = 2πj/ηj − λ = 0,∀j ∈ J , implying πj = ληj/2,∀j ∈ J .
Enforcing the normalization

∑
j πj = z∗ gives

∑
j∈J(ληj/2) = z∗, and since

∑
j ηj = 1, we obtain λ = 2z∗.

Substituting back, we finally have πj = z∗ηj ,∀j ∈ J .

Consequently, the unique minimizer of minπ∈D∗
∑

j∈J
(πj)

2

ηj
coincides with the minimizer found for minπ∈D∗ v(π).

Theorem 3: When the dual optimal direction η = 1
|J|1, as K →∞ and M →∞, the LGM produces a unique dual

optimal solution, precisely the dual optimal center among all dual optimal solutions of the SCM.

Proof. Proof From Proposition 3, we know that when η = 1
|J|1, the dual optimal solution to minπ∈D∗

∑
j∈J(πj)

2

coincides with the solution to minπ∈D∗ v(π), which is precisely the dual optimal center.

From Theorem 2, as K → ∞ and M → ∞, we have limK→∞,M→∞
∑

j∈J

∑K
k=0 cjkdjk = 1

2Mθ

∑
j∈J(πj)

2,
which shows that the unique dual optimal solution produced by the LGM corresponds to the dual optimal solution to
minπ∈D∗

∑
j∈J(πj)

2.

In conclusion, we have demonstrated that when η = 1
|J|1, as K →∞ and M →∞, the LGM produces a unique dual

optimal solution, which is precisely the dual optimal center among all dual optimal solutions of the SCM.

Proposition 4: Given the weighted dual optimal direction η, defined based on the dual optimal center π∗ for the
LP problem P , the optimal solution to minπ∈D∗

∑
j∈J

(bjπj)
2

ηj
coincides with the solution to minπ∈D∗ v(π), which

minimizes the DOCD and is precisely π∗.

Proof. Proof The key idea is that the minimizer of v(π), which defines the dual optimal central distance (DOCD),
is exactly the dual optimal center π∗. Therefore, to prove this proposition, it suffices to show that the solution to
minπ∈D∗

∑
j∈J

(bjπj)
2

ηj
coincides with π∗.

To demonstrate this, let z∗ denote the optimal objective value of the LP problem P , we decompose
minπ∈D∗

∑
j∈J

(bjπj)
2

ηj
into a constrained optimization problem as follows:

min
π∈D

∑
j∈J

(bjπj)
2

ηj
s.t.

∑
j∈J

bjπj = z∗. (A.16)

26

arXiv Template A PREPRINT

By introducing a Lagrange multiplier λ, its Lagrangian relaxation is given as follows:

L(π, λ) =
∑
j∈J

(bjπj)
2

ηj
− λ

(∑
j∈J

bjπj − z∗
)
. (A.17)

The first-order optimality condition with respect to each πj gives

∂L
∂πj

=
2(bj)

2πj

ηj
− λbj = 0 =⇒ πj =

λ

2bj
ηj . (A.18)

Then, substituting πj =
λ
2bj

ηj into the constraint
∑

j∈J bjπj = z∗, and noting that
∑

j∈J ηj = 1, we obtain

∑
j∈J

bjπj =
λ

2

∑
j∈J

ηj = z∗ =⇒ λ = 2z∗. (A.19)

By combining Eq.(A.18) and Eq.(A.19), we obtain the closed-form optimal solution:

π̂j =
ηj
bj

z∗, ∀j ∈ J. (A.20)

Next, from the definition of the weighted dual optimal direction (Definition 5), we have

ηj =
(bjπ

∗
j)∑

j′∈J(bj′π
∗
j′)

, ∀j ∈ J. (A.21)

Substitute this expression into Eq.(A.20), and since
∑

j′∈J(bj′π
∗
j′) = z∗, we have

π̂j =
(bjπ

∗
j)/
∑

j′∈J(bj′π
∗
j′)

bj
z∗ =

(bjπ
∗
j)/z

∗

bj
z∗ = π∗

j , ∀j ∈ J. (A.22)

Therefore, the optimal solution to minπ∈D∗
∑

j∈J
(bjπj)

2

ηj
coincides with the dual optimal center π∗, which completes

the proof.

Theorem 4: Let D∗ denote the dual optimal polytope of the LP problem P , and let π∗ represent its dual optimal center.
Given the weighted dual optimal direction η defined with π∗, as K → ∞ and M → ∞, the unique dual optimal
solution proposed by the WLGM is exactly π∗.

Proof. Proof Consider the dual constraint corresponding to the probe variable djk in the WLGM, given by bjπj +σ−
jk +

σ+
jk = cjk. Recall from the proof of Theorem 1, we analyze the following cases for each probe variable in the context

of an optimal solution to the WLGM:

• If djk = ϵ, complementary slackness implies σ−
jk ≤ 0 and σ+

jk = 0, which gives k θj
K − bjπj ≤ 0;

• If 0 < djk < ϵ, complementary slackness implies σ−
jk = 0 and σ+

jk = 0, leading to k
θj
K − bjπj = 0;

• If djk = 0, complementary slackness implies σ−
jk = 0 and σ+

jk ≥ 0, hence k
θj
K − bjπj ≥ 0.

Therefore, for constraint j, the largest index k∗j such that djk = ϵ is determined as k∗j =
⌊
bjπjK

θj

⌋
. So the probe

variables satisfy: djk =

{
ϵ, if k ≤ k∗j
0, if k > k∗j

.

27

arXiv Template A PREPRINT

Next, the contribution of the probe variables corresponding to constraint j to the objective function (26) can be computed
as:

K∑
k=0

cjkdjk =

k∗
j∑

k=0

cjkϵ =

k∗
j∑

k=0

(k
θj
K

)
1

MK
=

θj
MK2

k∗
j∑

k=0

k

=
θj

MK2
× 1

2

⌊bjπjK

θj

⌋
(
⌊bjπjK

θj

⌋
+ 1) =

θj
2MK2

⌊bjπjK

θj

⌋⌈bjπjK

θj

⌉
. (A.23)

Take the limit K →∞, the expression in Eq.(A.23) converges to

lim
K→∞

K∑
k=0

cjkdjk = lim
K→∞

θj
2MK2

⌊bjπjK

θj

⌋⌈bjπjK

θj

⌉
=

θj
2MK2

bjπjK

θj

bjπjK

θj
=

(bjπj)
2

2Mθj
=

(bjπj)
2

2Mθηj
. (A.24)

In summary, as M →∞ and K →∞, the unique dual optimal solution of the WLGM minimizes
∑

j∈J
(bjπj)

2

ηj
. By

Proposition 4, the minimizer of this weighted squared L2 norm coincides with the dual optimal center π∗. Hence, the
WLGM yields the unique dual optimal center π∗, as claimed.

Proposition 5: Let D∗ denote the dual optimal polytope of problem P , and D∗
ScaledP the dual optimal polytope of its

scaled counterpart. Given an estimated weighted dual optimal direction η̂, the dual optimal solution πη̂ produced by
the WLGM satisfies the following properties:

1. If the ray {rη̂ : r ≥ 0} has a nonempty intersection with D∗
ScaledP , then πη̂

j =
rη̂j

bj
,∃r ≥ 0.

2. Otherwise, πη̂ lies on the boundary of D∗.

Proof. Proof In the case where the ray {rη̂ : r ≥ 0} has a nonempty intersection with D∗
ScaledP , the WLGM produces

a unique dual optimal solution given by πη̂
j = rη̂j/bj for some scalar r ≥ 0, as established in the proof of Theorem 4.

This solution satisfies the condition that the scaled dual variables bjπ
η̂
j maintain constant ratios defined by η̂ across all

constraints j ∈ J .

When the ray {rη̂ : r ≥ 0} does not intersect D∗
ScaledP , the objective function

∑
j∈J

(bjπj)
2

ηj
(from Proposition 4)

can be interpreted as the squared weighted Euclidean distance from the origin along the direction η̂ in the scaled dual
optimal polytope. Thus, minimizing this function over D∗

ScaledP is equivalent to finding the point in D∗
ScaledP that

is closest to the ray. Since the ray does not intersect the feasible set, the minimizer πη̂ must lie on the boundary of
D∗

ScaledP . Through the inverse scaling transformation, this boundary point corresponds to a point on the boundary of
the original dual optimal polytope D∗, where one or more constraints are tight. Geometrically, πη̂ is the orthogonal
projection (in the weighted norm) of the ray onto D∗

ScaledP , and this projection lies on the boundary of both the scaled
and the original dual optimal polytopes.

Theorem 5: Consider a (possibly degenerate) basis B of the LGM. Under the Probe Cycling-Free Pivoting Rule,
by first updating all probe variables before selecting the entering non-probe variable, cycling due to degeneracy is
completely eliminated.

Proof. Proof To prove that no cycling occurs under the Probe Cycling-Free Pivoting Rule, we first demonstrate that if
an entering variable xp satisfies c̄p < 0 and allows a positive pivot direction, then after updating all probe variables, the
pivot results in a strictly improved objective value. This ensures that no cycling occurs among the xp variables. Next,
we show that cycling cannot arise during the update process of the probe variables themselves.

Part 1: No Cycling Among the xp Variables.

Consider a non-probe variable xp entering the basis. If the pivot is non-degenerate, i.e., the step size is strictly positive,
then xp increases to a positive value, and the objective decreases strictly because c̄p < 0 and the step size is positive.
If the pivot is degenerate, i.e., the step size is zero and xp remains at zero after the pivot. In this case, let B0 denote
the basis after pivoting xp, with the corresponding non-basic variables at their upper bounds denoted by N2(B

0).

28

arXiv Template A PREPRINT

The objective values corresponding to B and B0 are identical. However, the dual solution associated with B0 differs
from that of B. Consequently, by Theorem 1, there exists at least one probe variable djk whose reduced cost violates
the optimality conditions, and need to be updated. After pivoting all such beneficial probe variables, we denote the
resulting basis as B0

d, with non-basic variables at upper bounds given by N2(B
0
d). In the following, we show that the

objective value corresponding to B0
d strictly differs from that of B0; that is, updating all probe variables leads to a

strictly improved objective value.

Th objective value of the LGM corresponds to basis B is computed by

zLGM (B) = cBB−1
(
1− ϵ

∑
djk∈N2(B)

ej

)
+ ϵ

∑
djk∈N2(B)

cjk = cBB−11+ ϵ
(∑

djk∈N2(B)

(
cjk − cBB−1ej

))
= cBB−11+ ϵ

(∑
djk∈N2(B)

(
cjk − πj

))
(A.25)

Due to the different dual solutions, the set of probe variables attaining their upper bounds must change. This
change can manifest in two ways. First, the set of non-basic probe variables at their upper bounds changes, i.e.,
N2(B

0
d) ̸= N2(B

0). According to Eq. (A.25), the first term remains unchanged because xp = 0, thus this change
immediately implies zLGM (B0) ̸= zLGM (B0

d). Second, the values of probe variables within the basis that reach their
upper bounds may change. Specifically, either a probe variable originally at its upper bound leaves the basis and attains
its lower bound, or a probe variable originally at its lower bound enters the basis and attains its upper bound. In both
cases, the corresponding step size in that iteration is strictly positive, and thus the objective value must change, i.e.,
zLGM (B0) ̸= zLGM (B0

d).

Part 2: No Cycling During the Probe Variable Update Process.

Given a primal basic solution and its corresponding dual solution, the probe variables enter the basis in a well-defined
order. At first, the algorithm selects a probe variable dj0 with minimal cost cj0 whose corresponding dual value πj is
maximal, ensuring the reduced cost is maximized. Once dj0 enters the basis, the dual value is updated to π′

j = cj0, which
implies that for all other probes djk, k ∈ {1, . . . ,K}, associated with the same constraint, cjk − π′

j = cjk − cj0 > 0,
so no other probe from the same constraint can immediately enter the basis. The algorithm then proceeds to select the
next probe variable among those with the same cost but associated with different constraints. In this way, all probes
sharing the same cost but belonging to different constraints are updated as a group.

We next aim to show that pivoting among probe variables within a same-cost group cannot cycle. To do so, consider a
set of feasible bases of the LGM that share |J | − 1 vectors b1, . . . , b|J|−1, with each basis including a distinct standard
unit vector ej for j ∈ J . Let c = (c1, . . . , c|J|−1, cd) denote the cost vector, where cd corresponds to the probe variable
included in the basis, and let the dual vector corresponding to any feasible basis B be π = cB−1. Consider any
sequence of pivot bases

B1 → B2 → · · · → Bo, (A.26)

where each pivot replaces one basic vector with a nonbasic one whose reduced cost is negative, and let the corresponding
dual vectors be π1, . . . ,πo. Denote A = [b1, . . . , b|J|−1], which has rank |J | − 1. Let v be a nonzero row vector such
that vA = 0. By construction,

π1A = · · · = πoA = (c1, . . . , c|J|−1), (A.27)

so for any two consecutive bases Bi and Bi+1, there exists a scalar λi,i+1 ̸= 0 such that

πi − πi+1 = λi,i+1v. (A.28)

Consider the (i+ 1)-th component. Since πi+1
i+1 = cd, we have

πi
i+1 − cd = λi,i+1vi+1. (A.29)

As the (i+1)-th variable is selected to enter the basis at Bi, it follows that πi
i+1 > cd, and consequently λi,i+1vi+1 > 0.

Next, examine the pivot feasibility. Let y = (Bi)−1ei+1, so that Biy = ei+1, which can be written as

AyA + y|J|ei = ei+1, (A.30)

where yA contains the first |J | − 1 components of y. Left-multiplying Eq.(A.30) by v yields

vAyA + y|J|vi = vi+1. (A.31)

29

arXiv Template A PREPRINT

Since vA = 0, we obtain y|J| =
vi+1

vi
. Pivot feasibility requires y|J| > 0, implying that vi and vi+1 have the same sign.

Repeating this argument shows that all vi,∀i ∈ {1, 2, · · · , o} share the same sign. Without loss of generality, assume
vi > 0 for all i (the case vi < 0 for all i is symmetric). Then, from λi,i+1vi+1 > 0, it follows that λi,i+1 > 0. Now
suppose the sequence of pivots returns to the initial basis B1. The total change in dual vectors would be

πo − π1 =

o−1∑
i=1

(πi+1 − πi) = −
(o−1∑

i=1

λi,i+1

)
v. (A.32)

Considering the first component, we obtain

πo
1 − π1

1 = −
(o−1∑

i=1

λi,i+1

)
v1. (A.33)

Since v1 > 0 and λi,i+1 > 0 for all i, we conclude that πo
1 < π1

1 = cd. This contradicts the requirement for pivoting
back to B1, which would need πo

1 > cd. Therefore, the sequence cannot revisit any previously visited basis, and
pivoting among probe variables within a same-cost group cannot cycle.

Thus, within such a group, either at least one probe variable eventually reaches its upper bound, causing a strict
improvement in the objective value, or all probe variables are completed, with no further adjustments possible. Once
the updates for this group are finished, the algorithm either proceeds to the next set of probe variables with a different
cost, or terminates the probe update procedure if no further probe variables can improve the objective. Hence, it follows
that the entire probe update process will not cycle.

By combining the two parts above, the Probe Cycling-Free Pivoting Rule effectively eliminates any cycling induced by
degeneracy. □

Proposition 6: Let B ∈ R|J|×|J| = {b1, b2, . . . , bj , . . . , b|J|} be a feasible basis of the LGM, and let B−1 denote
its inverse. Suppose a probe variable dj∗k∗ enters the basis and the i∗-th basic variable leaves. The new basis can be
expressed as B′ = B + (ej∗ − bi∗)e

T
i∗ , where ej∗ and ei∗ are unit vectors with 1 in the j∗-th and i∗-th components,

respectively. The inverse of the new basis B′ can be computed in O(|J |2) time.

Proof. Proof According to Sherman–Morrison rank-one update, when 1 + ei∗B
−1(ej∗ − bi∗) ̸= 0, the inverse of the

new basis B′ is computed as

B′−1 = B−1 − B−1(ej∗ − bi∗)(e
T
i∗B

−1)

1 + eTi∗B
−1(ej∗ − bi∗)

. (A.34)

From Eq.(A.34), with the inverse B−1 already available, the updated inverse B′−1 can be computed using a single
matrix–vector multiplication B−1(ej∗ − bi∗) and a single vector–matrix multiplication eTi∗B

−1, after which an outer
product and a scalar division yield the final result. Thus, the time complexity of each update of B′−1 is O(|J |2).

Proposition 7: Given a degenerate optimal basis of the SCM, the number of iterations required to obtain the optimal
basis of the corresponding LGM is bounded above by

∑
j∈J

⌈
π∗
jK

θ

⌉
.

Proof. Proof

According to the probe cycling-free pivoting rule described in Algorithm 2, probe variables corresponding to different
constraints are processed sequentially without repetition, ensuring that no cycling occurs during the update process.
Next, consider a specific constraint j. The consecutive probe variables for this constraint have costs that differ by θ

K .
Therefore, each pivot involving a probe variable for constraint j changes its dual variable by at least θ

K . In the worst

case, the dual component πj requires
⌈
π∗
jK

θ

⌉
updates to reach its optimal value π∗

j . Summing over all constraints j ∈ J ,
we obtain a conservative upper bound on the total number of probe-processing iterations required for the LGM to reach
the optimal basis from the degenerate optimal basis of the SCM:

∑
j∈J

⌈
π∗
jK

θ

⌉
.

30

arXiv Template A PREPRINT

9.2 Supplementary examples

Example B.1. Consider the following linear program:

min 1000x1 + 400x2 + 1000u1 + 1000u2 + 1000u3 (B.1)
s.t. x1 + x2 + u1 = 1, (B.2)

x1 + x2 + u2 = 1, (B.3)
x1 + u2 = 1. (B.4)

The corresponding dual optimal polytope is

D∗ = {π1 + π2 + π3 = 1000, π1 + π2 ≤ 400, π1 ≤ 1000, π2 ≤ 1000, π3 ≤ 1000}.
Its extreme points are (π1, π2, π3) = (0, 400, 600), (0, 0, 1000), and (400, 0, 600). The exact dual optimal center is
(133.3, 133.3, 733.3).

We next apply the WLGM formulation:

min 1000x1 + 400x2 + 1000η1u1 + 1000η2u2 + 1000η3u3

+

5∑
k=0

(200η1k)d1k +

5∑
k=0

(200η2k)d2k +

5∑
k=0

(200η3k)d3k (B.5)

s.t. x1 + x2 + u1 +

5∑
k=0

d1k = 1, (B.6)

x1 + x2 + u2 +

5∑
k=0

d2k = 1, (B.7)

x1 + u2 +

5∑
k=0

d3k = 1, (B.8)

0 ≤ djk ≤ 0.001, j ∈ {1, 2, 3}, k ∈ {0, 1, 2, 3, 4, 5}. (B.9)

According to Algorithm 1, we first apply the weighted dual optimal direction η = (0.998, 0.001, 0.001), which
yields the dual solution (π1, π2, π3) = (399.6, 0.4, 600). Next, with η = (0.001, 0.998, 0.001), the solution is
(π1, π2, π3) = (0.6, 399.4, 600). Finally, with η = (0.001, 0.001, 0.998), we obtain (π1, π2, π3) = (1, 1, 998).

By averaging these representative boundary points, the estimated dual optimal center is (133.7, 133.6, 732.7), which is
very close to the exact center.

Example B.2. Consider the following linear program P with four variables and three constraints. We first normalize it
into standard form. Then, to demonstrate the proposed approach, we augment each constraint with four probe variables,
then apply the simplex method with the probe cycling-free pivoting rule to solve the resulting LGM-P:

min �
3

4
���20���

1

2
���6��

�
1

4
��� 8�� � ���9���0

�
1

2
���12�� �

1

2
���3���0

 � �� ��1

��, ��, ��, �� � 0

min �
3

4
���20���

1
2

���6���∑
��1
3

∑
��0

3
����

��� �
1

4
��� 8�� � ���9���∑

��0

3
��� � 0

 ��� �
1

2
���12���

1
2

���3���∑
��0

3
��� � 0

 ��� � �� �∑
��0

3
��� � �1

��, ��, ��, ��, ��, ��, �� � 0

0 � ��� � 0.001, � � �1,2,3�, � � �0,1,2,3�

�P� �LGM-P�

The simplex iterations to solve the LGM-P under the proposed pivot rule proceed as follows:

31

arXiv Template A PREPRINT

• Iteration 1: Basic variables (x1, x2, x3) = (0, 0, 1), dual solution (0, 0, 0), objective value 0.

At the first stage of the pivoting process, no probe variable at lower bound has a negative reduced cost, and
thus no update is required.

Next, among the non-probe variables, x4, which has the most negative reduced cost, enters the basis while x2

leaves.

• Iteration 2: Basic variables (x1, x3, x4) = (0, 1, 0), dual solution (0, 1.5, 0), objective value 0.

At the first stage of the pivoting process, the probe variables are updated as follows:

– d20 enters the basis while x1 leaves. The resulting basic and dual solutions are (d20, x3, x4) = (0, 1, 0)
and (3, 0, 0), respectively, with objective value 0.

– d10 enters the basis while d20 leaves at its upper bound. The updated solutions become (d10, x3, x4) =
(0.0005, 1, 0.002) and (0, 1.5, 0), with objective value −0.0015.

– d21 is directly updated to its upper bound, yielding (d10, x3, x4) = (0.001, 1, 0.004) and dual (0, 1.5, 0),
with objective value −0.002.

Next, among the non-probe variables, x6, which has the most negative reduced cost, enters the basis while d10
leaves.

• Iteration 3: Basic variables (x3, x4, x6) = (1, 0.004, 0), dual solution (−5/3, 7/3, 0), objective value
−0.002.

At the first stage of the pivoting process, the probe variables are updated as follows:

– d22 is directly updated to its upper bound, resulting in (x3, x4, x6) = (0.9993, 0.0067, 0.0007) and dual
(−5/3, 7/3, 0), with objective value −0.002375.

Next, among the non-probe variables, x1, which has the most negative reduced cost, enters the basis while x3

leaves.

• Iteration 4: Basic variables (x1, x4, x6) = (0.7495, 1.006, 1), dual solution (0, 1.5, 1.25), objective value
−1.2515.

At the first stage of the pivoting process, the probe variables are updated as follows:

– d30 is directly updated to its upper bound, resulting in (x1, x4, x6) = (0.75025, 1.007, 1.001) and dual
(0, 1.5, 1.25), with objective value −1.25275.

– d22 is directly updated to its lower bound, giving (x1, x4, x6) = (0.75075, 1.005, 1.001) and dual
(0, 1.5, 1.25), with objective value −1.25325.

– d31 is directly updated to its upper bound, yielding (x1, x4, x6) = (0.7515, 1.006, 1.002) and dual
(0, 1.5, 1.25), with objective value −1.2535.

Since all nonbasic variables now have nonnegative reduced costs, no variable enters the basis, and the simplex
iterations terminate.

This example illustrates that by adjusting the probe variables in the first stage of each pivot, the objective value
decreases strictly even under degeneracy, thereby ensuring finite termination and preventing cycling.

9.3 The column generation algorithm for the ACSM

In this section, we adopt a column generation framework to solve the ACSM efficiently. The framework iteratively
solves a restricted master problem (RMP) containing a subset of roster variables, and generates beneficial new rosters
through pricing subproblems (PSP).

Let αf ≥ 0 denote the dual variable associated with the flight covering constraint (34) and ωm ≤ 0 denote the dual
variable associated with the crew assignment constraint (35). According to the roster cost defined in Eq.(32), the
reduced cost of a roster variable xr for crew member m is computed as follows:

c̄r = cr −
∑
f∈F

afrαf − ωm

= chour
∑
l∈Lr

(
tarr
l − tdep

l

)
+ cddh nddh

r + clay nlay
r + cday nday

r −
∑
f∈F

afrαf − ωm. (C.1)

32

arXiv Template A PREPRINT

The PSP aims to identify new roster variables with negative reduced cost, i.e., to minimize c̄r over all feasible rosters
r ∈ Rm for each crew m. This problem can be formulated as a shortest path problem in a flight connection network
Gm(Nm, Em), as illustrated in Figure C.1. The node set Nm consists of a source node and task nodes representing
flights, deadheads, or ground activities, while the arc set Em consists of:

1. Start arcs, linking the source node to tasks departing from the source station.

2. Same-day connection arcs, connecting two tasks on the same day if the time interval exceeds the minimum
turn time and stations match.

3. Cross-day connection arcs, linking two tasks on different days if the time interval exceeds the minimum
overnight rest time, and both the stations match and allow crew members to layover.

��

��ℎ�

�� ��ℎ�

��

��ℎ�

��

��ℎ�

����

��

��ℎ�

��

��ℎ�

��

��ℎ�

��

��ℎ�

��

��ℎ�

Figure C.1: Flight connection network for crew member m.

Due to the acyclic nature of the network, a multi-label algorithm is employed to solve the PSP efficiently. Each label
maintains a reduced cost component and multiple resource components, such as duty flying time, duty duration, the
number of flights per duty, the number of deadheads per duty, consecutive duty days, and cumulative periodic working
time. To compute the reduced cost c̄r during the shortest path search process, the reduced cost Eq.(C.1) is decomposed,
with its components assigned to the corresponding nodes and arcs in the network. Specifically, each deadhead node
incurs a cost of cddh, while each cross-day connection arc incurs a layover cost of claynlay

e , where nlay
e represents the

number of layover days associated with arc e. Additionally, the dual value −αf is assigned to each flight node, and
−ωm is associated with the source node. Furthermore, the duty time cost and fixed duty day cost are determined during
the search process, whenever the duty component is identified.

The overall procedure of the multi-label setting algorithm is as follows. At first, we sort all nodes in topological order
according to their departure times. A single initial label is then created for the source node to record the historical
state information of crew m. Subsequently, the label sets of the remaining nodes are updated sequentially following
the topological order. When a partial path represented by a label at node n is extended along an arc e = (n, n′), the
reduced cost and resource components are updated through predefined extension functions, generating a new label for
node n′. If this new label satisfies all roster feasibility constraints, it is inserted into the label set of node n′, and any
dominated labels are removed. The dominance rule is defined as follows: label 1 dominates label 2 if and only if all
components of label 1 are less than or equal to those of label 2, and at least one component of label 1 is strictly less than
the corresponding component of label 2.

After processing all nodes, non-dominated labels corresponding to feasible rosters are extracted from task nodes that
permit overnight stays for the crew. These labels are then sorted by ascending reduced cost, and a predefined number of
the most beneficial rosters (if any exist) are added to the RMP. The RMP is then resolved, updating the dual variables
for the next iteration. This process is repeated iteratively until no roster with negative reduced cost can be found, at
which point the ACSM reaches its optimal solution.

33

arXiv Template A PREPRINT

9.4 The column generation algorithm for the CSM

The CSM is solved using a column generation framework, which decomposes the problem into a restricted master
problem (RMP) and a pricing subproblem (PSP). At each iteration, the RMP is solved over a limited subset of patterns,
and the corresponding dual information is used to identify new patterns that can potentially improve the objective value.

Let βi denote the non-negative dual variable associated with the demand constraint (39), the reduced cost of a variable
xs is computed as

c̄s = cs −
∑
i∈I

aisβi = c0 + cw

(
W −

∑
i∈I

aiswi

)
−
∑
i∈I

aisβi (C.1)

A pattern s with c̄s < 0 indicates a potential improvement to the current solution and should be added to the RMP.
Hence, the PSP aims to find the pattern with the most negative reduced cost, which can be formulated as

min c0 + cw

(
W −

∑
i∈I

aiswi

)
−
∑
i∈I

aisβi (C.2)

s.t.
∑
i∈I

aiswi ≤W, (C.3)

ais ∈ N, ∀i ∈ I. (C.4)

When the demand for each item equals 1, we have ais ∈ {0, 1}. In this case, the subproblem reduces to a 0–1 knapsack
problem, where each item i is assigned a “value" of cwwi + βi and a “weight" of wi, and the knapsack capacity
corresponds to the roll width W . The goal is to identify the combination of items that maximizes the total value without
exceeding W . Formally, the PSP can be written as

max
∑
i∈I

(cwwi + βi)ais (C.5)

s.t.
∑
i∈I

wiais ≤W, (C.6)

ais ∈ {0, 1}, ∀i ∈ I. (C.7)

To solve this problem, a standard dynamic programming approach is employed. The detailed steps of the algorithm are
presented in the pseudocode provided in Algorithm C.1

By iteratively solving the RMP and PSP, at most one new pattern with a negative reduced cost is added to the RMP in
each iteration (if such a pattern exists). This process continues until no further patterns with negative reduced cost can
be identified, at which point the CSM attains its optimal solution.

34

arXiv Template A PREPRINT

Algorithm C.1: Dynamic Programming for the PSP of the CSM
Input: |I| items with values (cww1 + β1), . . . , (cww|I| + β|I|) and weights w1, . . . , w|I|, roll width W
Output: Set of selected items that yield the maximum total value without exceeding capacity
Initialize DP [0 . . . |I|, 0 . . .W]← 0, Flag[0 . . . |I|]← False;
Initialize I∗ ← ∅;
for i← 1 to |I| do

for w ← 0 to W do
if wi ≤ w then

DP [i, w]← max(DP [i− 1, w], DP [i− 1, w − wi] + cwwi + βi);
if DP [i, w] = DP [i− 1, w − wi] + cwwi + βi then

Flag[i]← True;

else
DP [i, w]← DP [i− 1, w];

Initialize w ←W ;
for i← |I| to 1 do

if Flag[i] = True then
I∗ ← I∗ ∪ {i};
w ← w − wi;

return I∗;

35

	Introduction
	Literature review
	Low-granularity model for set covering problem
	Theoretical advantages of the LGM
	The relationship between the SCM and the LGM
	Dual values and the costs of probe variables
	The uniqueness of the dual solution provided by the LGM

	Dual optimal central distance
	Dual optimal polytope, dual optimal center, and dual optimal central distance
	Weighted LGM for general linear programming
	Directional guidance of the WLGM
	Estimated dual optimal center

	Implementation and computational issues
	Elimination of cycling under degeneracy
	Computational efficiency analysis of the LGM

	Case study and computational results
	Airline crew scheduling problem
	Test cases
	Computational and parameters settings
	Effectiveness of the LGM
	Comparison with interior point method
	Sensitivity analysis of the number of probe variables

	Cutting stock problem
	Test cases
	Effectiveness of the WLG-CSM

	Conclusion
	Proofs of Statements and Additional Material
	Proof of statements
	Supplementary examples
	The column generation algorithm for the ACSM
	The column generation algorithm for the CSM

