Learning to Choose Branching Rules for
Nonconvex MINLPs

Timo Berthold![0000-0002-6320—-8154] 414 Fritz Geis?

! Fair Isaac Germany GmbH, Takustr. 7, 14195 Berlin, Germany
timoberthold@fico.com
2 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
fritzgeis@gmail.com

Abstract. Outer-approximation-based branch-and-bound is a common
algorithmic framework for solving MINLPs (mixed-integer nonlinear pro-
grams) to global optimality, with branching variable selection critically
influencing overall performance. In modern global MINLP solvers, it is
unclear whether branching on fractional integer variables should be pri-
oritized over spatial branching on variables, potentially continuous, that
show constraint violations, with different solvers following different de-
faults. We address this question using a data-driven approach. Based on
a test set of hundreds of heterogeneous public and industrial MINLP in-
stances, we train linear and random forest regression models to predict
the relative speedup of the FICO® Xpress Global solver when using a
branching rule that always prioritizes variables with violated integralities
versus a mixed rule, allowing for early spatial branches.

We introduce a practical evaluation methodology that measures the effect
of the learned model directly in terms of the shifted geometric mean
runtime. Using only four features derived from strong branching and
the nonlinear structure, our linear regression model achieves an 8-9%
reduction in geometric-mean solving time for the Xpress solver, with
over 10% improvement on hard instances. We also analyze a random
regression forest model. Experiments across solver versions show that
a model trained on Xpress 9.6 still yields significant improvements on
Xpress 9.8 without retraining.

Our results demonstrate how regression models can successfully guide
the branching-rule selection and improve the performance of a state-of-
the-art commercial MINLP solver.

Keywords: Nonlinear Optimization - Machine Learning - Branching.

1 Introduction
We consider MINLPs (mized-integer nonlinear programs) of the form
min{c'z | gr(z) <0,Vk € K,l <z <wu,z; € Z,Vj € T}, (1)

where all constraint functions g : R™ — R are factorable and all variable bounds
l,u € R:=RU{£oo}. The set K = {1,...,m},m € N, indexes the constraints

2 T. Berthold and F. Geis

and J C {1,...,n} the integer variables. A nonlinear objective can be eas-
ily modeled by introducing an auxiliary variable and an objective-transfer con-
straint, see, e.g., [25]. If all gi are linear, and J = () we call (1) a linear program
(LP). This work focuses on nonconvex MINLPs, i.e., problems of form (1), where
at least one g is nonconvex.

Note that factorable functions can be represented via a directed acyclic ez-
pression graph, with nodes representing operators or variables, and arcs repre-
senting the data flow of the computation. In this paper, we refer to this repre-
sentation as the DAG, for a good overview on the use of the DAG in MINLP
solving, we recommend [25].

For solving problems of the form (1), we use the FICO® Xpress Global
[11] MINLP solver, which we will refer to as Xpress. Xpress is based on the
branch-and-bound method (B& B), which recursively partitions the problem by
splitting the domain of selected variables, which is called branching. Selecting
good branching variables is crucial for the performance of B&B-based MINLP
solvers, see, e.g., [4]. For more details on the implementation in Xpress, see [3].

This paper studies a fundamental question: should we always branch on frac-
tional integer variables first, or consider spatial branches even when there are
fractional integers? Unlike most prior work on using ML for branching [17, 22,
20, 15, 2], we do not learn individual branching decisions or attempt to mimic
existing strategies such as strong branching; instead, we perform algorithm se-
lection between two established branching rules. Different from most prior work,
we consider a heterogeneous set of instances. The resulting model can be inte-
grated directly into solver code and does not require any pre-training on the
user side. This is akin to prior ML-based algorithm-selection work to choose
between scaling procedures [6]. local cut selection rules [5], linearization tech-
niques [8], or spatial branching strategies in the context of RLT for polynomial
optimization [14], respectively, and deliberately different from solver-free learn-
ing approaches for MINLP as in [23].

2 A Quick Recap of Branching for MINLPs

The B&B algorithm recursively partitions the problem into smaller subproblems
(branching) and solves LP relaxations to obtain bounds (bounding) until an
optimal solution or infeasibility proof is found.

An LP relaxation of an MINLP is obtained by dropping integrality con-
straints and replacing nonlinear constraints with linear underestimators where
possible. This relaxation is successively strengthened by outer-approrimation
cuts [10]. A well-designed cutting plane separation procedure often helps to re-
duce the branch-and-bound tree size while accelerating the overall solving pro-
cess [24]. Unlike in MIP solving, cutting planes are often additionally separated
immediately during branching-node creation in MINLPs.

In this paper, we focus on variable branching, in which the domain of a single
variable is split into two or more intervals.

Two key types of variable branching are:

Learning to Choose Branching Rules for Nonconvex MINLPs 3

1. Integer branching, which is applied when an integer variable has a fractional
value Z; € R\ Z in the solution & of the current LP relaxation. Two sub-
problems are created that enforce z; < |Z;] and x; > [Z;], respectively.

2. Spatial branching [16] is applied when the violation of a nonconvex constraint
cannot be resolved by an outer-approximation cut, but requires partitioning
variable domains. Spatial branching candidates are often continuous vari-
ables, but can also include integer variables whose LP value happens to be
integral. Two created subproblems enforce z; < |&;] and x; > [&;], respec-
tively, for a branching point #; € R. Though the LP solution is not explicitly
excluded, subsequent outer-approximation cuts typically remove it.

3 Machine Learning Methodological Approach

Learning Task/Feature Space Our learning task consists of choosing, after
root node processing and right before the first branch, one of two rules of how to
combine integer branching and spatial branching for the remainder of the branch-
and-bound search: Either, always branch on integer candidates and conduct
spatial branches only when there is no integer branching candidate, which we will
refer to as "PreferInt" (this is the default, e.g., in the SCIP MINLP solver). Or
mix both candidate sets and always allow the choice of either type of candidate
(which is the default, e.g., in the Xpress solver), which we refer to as "Mixed".?

Although this is inherently a binary decision, we frame it as a regression
problem. This choice is motivated by two considerations. Firstly, our ultimate
goal is to improve the average runtime of the solver, which is a metric that is
numerical and not categorical. Secondly, our focus is on getting the prediction
right for those instances on which the performance of selecting "Mixed" and
"PreferInt" significantly differs, see also [5]. Regression allows us to model the
magnitude of this difference directly and thereby focus the learning on the cases
where it matters most.

To this end, we train regression models ; : R¢ — R that map a d-dimensional
feature vector f = (f1, ..., fq) onto the speedup or slowdown factor (the label) in
runtime by using "PreferInt" instead of "Mixed". We initially used 17 features,
see Table 1.

This includes features related to strong branching at the root node, such as
the average change in the dual bound resulting from integer and spatial strong
branching, AvgRe1BndChngSBLPInt and AvgRelBndChngSBLPSpat, respectively,
the number of variables fixed from strong branching on spatial branching candi-
dates #SpatBranchEntFixed 4, and the amount of deterministic work invested
in either strong branching, AvgWorkSBLPInt and AvgWorkSBLPSpat. Work is a
deterministic measure of computational effort implemented in Xpress. These fea-
tures give us an indication of how effective (and expensive) strong branching on

3 We ruled out always preferring spatial branches in a preliminary experiment, since
this option was a factor eight slower on average and rarely won against the others.

4 There were only a few instances where integer strong branching fixed variables;
hence, a corresponding feature would have been almost flat zero.

4 T. Berthold and F. Geis

integer or spatial variables is. Relatedly, #IntViols and #NonlinViols refer to
the number of integer and spatial branching candidates.

As problem structure features, we include the percentage of variables that are
integer, %IntVars, the percentage of constraints that are equations, %EqCouns,
the ratio of quadratic elements in the problem to variables, %QuadrElements,
and the percentage of constraints that contain nonlinearities, %NonlinCons. Fur-
ther, to measure the nonlinearity of the problem, we use information about the
DAG, in particular, the percentage of variables that are part of any nonlinearity,
%VarsDAG, and the ratio between nodes in the DAG and nonzeros in the linear
part of the problem, NodesInDAG. We further include the percentage of integer
and unbounded variables among all variables in the DAG, %VarsDAGInt and
%VarsDAGUnbnd, as for integer DAG variables, we "hit two birds with one stone"
and branching on unbounded variables can be crucial to get efficient dual bounds.
Finally, we consider %QuadrNodesDAG to measure whether the nonlinearities in
the problem are mostly quadratic.

Feature Feature Scaling

Problem Structure
%QuadrElements number quadratic elements over n
%IntVars #Integer variables after presolve over n
%EqCons #equality constraints over m
%NonlinCons #nonlinear constraints over m

Effect of Branching

#IntViols

#NonlinViols

#SpatBranchEntFixed

AvgWorkSBLPInt

AvgWorkSBLPSpat log,,(Value+1)
AvgRelBndChngSBLPInt
AvgRelBndChngSBLPSpat
AvgCoeffSpreadConvCuts

DAG
NodesInDAG NodesInDAG over NodesInDAG+M
%VarsDAG #vars in DAG over n
%VarsDAGUnbnd #unbounded vars over #vars in DAG
%VarsDAGInt #tinteger vars over #vars in DAG
%QuadrNodesDAG #quadratic operator nodes in DAG over all

nonlinear operator nodes in DAG
Table 1. m and n are the number of constraints and variables before presolving,
respectively; 7 and M the number of variables and linear nonzeros after presolving.

Learning to Choose Branching Rules for Nonconvex MINLPs 5

Data The data on which the models are trained comes from running Xpress
9.65 twice on a heterogeneous benchmark of 683 public and industrial MINLP
instances, each with two permutations to mitigate the effect of performance
variability [19,12], yielding 2049 data points. For each instance, we record the
runtimes produced by both branching rules and the complete feature set. In-
stances solved at the root or otherwise unsuitable for comparison are filtered
out, resulting in a final dataset of 797 data points, see [13] for details. Solving
at the root node was by far the most common reason for filtering.

Training For training the models, we split the data randomly into 80% training
and 20% test set. The models we train on the training set are a linear regressor
[9] and a random forest regressor, RF, [18]. We use the python library scikit-learn
[21], which provides us with the linear regressor by the function LinearRegression
and the random forest regressor by the function RandomForestRegressor.

Testing Instead of training one linear regressor and one random forest regressor,
we opted for training and testing one hundred models each with different random
seeds and average their performance scores to evaluate how promising this ML-
based approach is.

To measure the performance of the regression models, we use the accuracy
and the shifted geometric mean of the runtime (sgm_ runtime). The accuracy
is defined as the percentage of times the model predicted the faster rule. The
sgm_runtime is the shifted geometric mean of runtimes when solving each test
instance using the predicted branching rule over the shifted geometric mean time
using always the default rule.

Hence, accuracy is always between 0 and 100%, with larger values being
better. Sgm runtime can be smaller or larger than 1, with values larger than 1
indicating a deterioration and values smaller than 1 indicating an improvement:
the smaller the number, the better. This is the primary performance indicator
for solver development in practice.

To compute the shifted geometric mean [1] with a shift of 10, measurements

X = (Xy,...,X,) are aggregated via sgm(X) = —10+ [] (X;+10) 7. The use of

the shifted geometric mean is a commonly used method éo 1aggregate performance
measures, in particular running time, inn mathematical optimization [6].

For the linear model, feature importance is given by the absolute value of
the learned coefficients, whereas for the random forest it is measured as the
normalized total reduction in mean squared error induced by splits on that
feature (mean decrease impurity, MDI), which are the default importance metrics
in scikit-learn. For each random seed and each type of model, we computed
the feature importance for all features and sorted them from most important
to least important. Then we assigned a score of zero to the most important

5 More precisely: An internal version of the Xpress 9.6 that exposes those features
that are otherwise not available as public attributes.

6 T. Berthold and F. Geis

one, a score of one to the second most important one, and so on. Finally, we
added, for each model type, the scores across all one hundred runs together.
The four most important features per model type (as by this score sum) are
listed in Table 2. Although the top-ranked features differ between the linear
regression and random forest models, there is overlap in terms of the underlying
information captured. In particular, AvgRe1lBndChngSBLPSpat ranks first for the
linear model and second for the random forest, and %NonlinCons, ranked third
for the linear model, is a very close fifth for the random forest. Overall, five of
the eight highest-ranked features coincide across the two models. Differences are
expected given the different nature of the models: linear regression emphasizes
globally predictive, approximately linear effects with low collinearity, whereas
random forests prioritize features that enable strong local splits and nonlinear
interactions, for instance, capturing cases where a branching rule is beneficial
for either extreme but not for intermediate feature values.

Further Approaches In earlier versions, we tested the algorithm with different
features, unscaled or differently scaled features, on an earlier version of Xpress
and for the SCIP solver (where it also improved performance, but not as much
as in the Xpress case). Details can be found in the thesis [13]. This thesis also
contains a detailed description of how we selected the scaler and imputer for
the data set and a discussion of restricting the decision tree depth to five in the
random forest models.

Ranking|Linear Forest
1. AvgRelBndChngSBLPSpat |AvgCoeffSpreadConvCuts
2. %IntVars AvgRelBndChngSBLPSpat
3. %NonlinCons #NonlinViols
4. %#VarsDAGInt #EqCons

Table 2. Four most important features for either model type.

4 Computational Experiments

Our computational experiments consist of three parts: Firstly, we evaluate the
regression models trained on the full 17-feature set, and then examine how their
performance evolves as we iteratively remove the least important features. This
reduction process provides insights into which features drive prediction quality
and whether a more compact feature set can yield comparable performance with
presumably better robustness. Secondly, we analyze the final reduced models in
more detail and provide an analysis of their performance with respect to accuracy
and runtime. Finally, we compare how those models continue to perform as the
underlying branch-and-bound method is improved (in this case, through a solver
version update).

Learning to Choose Branching Rules for Nonconvex MINLPs 7

For feature-reduction in the first experiment, we use the ranking by 100
different seeds described in Section 3. We remove one feature at a time (the
least important) and retrain after each step. The impact on both accuracy and
sgm_runtime for the linear models and the random forest models is shown in
Figures 1 and 2, respectively. The z-axis shows the number of features used, the
y-axis shows the two performance measures. The dotted red line represents the
sgm_runtime, and the dotted salmon-colored constant represents the best pos-
sible sgm _runtime score, achievable only if a model made a correct prediction in
all cases. The green solid line represents the accuracy score on all test instances,
while the blue shows the accuracy score on instances with a label, i.e., a speedup
or slowdown factor, larger than four, here called LargeLabel Accuracy. These are
the most important instances to predict accurately when the goal is to reduce
the mean runtime.

In Figure 1 we can see that the performance of the initial linear model with
all features is at about 85% overall accuracy, more than 90% LargeLabel ac-
curacy, and a sgm_runtime factor of a little over 0.91. The accuracy and the
sgm_runtime factor of the random forest is a bit better, at 87% and a little over
0.9, respectively. LargeLabel accuracy is about the same. The feature-reduction
experiments reveal a remarkably stable behavior: both model types maintain
essentially constant accuracy and runtime performance as long as at least four
features are retained. The LargeLabel accuracy drops slightly when going down
from 17 to 4 features. Once the feature count drops below this threshold, all
measures deteriorate noticeably. Based on the aggregated importance scores, we
identified the four most influential features for each model type, see Table 2, and
use them for the subsequent experiments.

— Overall Accuracy
— LargeLabel Accuracy
-~ Predicted Run Time
00 Virtual Best Run Time 10 100

7 16 15 14 13 12 1 0 9 8 7 6 5 4 3 2 1 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Number of Features Number of Features

Fig. 1. Impact of feature-reduction on ac- Fig. 2. Impact of feature-reduction on ac-
curacy and runtime for linear regression curacy and runtime for random forest re-
models gression models

Training and testing both model types using only their respective four most
important features yields the performance scores depicted in Table 3. The scores
are divided by model type and, for checking possible overfitting, by training

8 T. Berthold and F. Geis

and test set. Again, the accuracy score is calculated Overall and on LargelLabel
instances. The two bottom rows contain the sgm_runtime scores. As before, all
scores are averages across one hundred runs for each model type.

The linear model performs almost identical on training and test set; there
is no indication of overfitting. On the test set, it predicts the better branching
rule with an accuracy of about 84% overall and more than 90% on the sub-
set of instances with the largest performance differences. Most importantly, the
sgm_runtime score is 0.919 on the test set, indicating a significant 8% speedup.
The standard deviation was 2.8%. On models that take more than 100 seconds
to solve by either of the two variants, we observed a speedup of over 10% with
a standard deviation of 6.8%. These results show that a linear model, based on
a handful of carefully designed features, provides meaningful and robust per-
formance gains, with an easy-to-implement and interpretable model, which is
highly desirable in practice.

For the random forest, however, there is a significant difference between the
training and the test set. The almost perfect accuracy on the training set drops
t0 93.6% on the test set, a clear sign of overfitting, and the sgm runtime clearly
deteriorates as well. With a value of 3.2%, the standard deviation was also higher
compared to the linear model. From a practical perspective, the linear model
seems preferable, even though its performance is slightly worse even on the test
set.

The linear model predicted the "Mixed" rule to be faster for around 60%
of the instances and "PreferInt" to be faster for 40% of the instances. For the
random forest, the split is close to 50:50. For the linear model, in 51% of the
cases, switching to the "PreferInt" rule improves performance by at least 10%,
in 11% of the cases performance got at least 10% worse, in the remaining 38%,
it stayed roughly the same. For the random forest, this split was 43% wins, 11%
losses, 36% within +10% runtime.

With our final experiment, we approach the question of how sensitive the
results are to the changes in the underlying MINLP solving algorithm, more
specifically, the robustness across solver versions. Therefore, we apply the models
trained on Xpress 9.6 to data generated by Xpress 9.8. The latter version intro-
duces substantial algorithmic improvements that make it roughly 50% faster on
average for difficult MINLP instances, including changes to presolving, cut gen-
eration, heuristics, and branching logic. Despite these differences, both learned
models continue to yield computational benefits: the linear model achieves an
average speedup of about 3.3% and the random forest about 4.5%.

This leaves the question of whether the smaller performance gain is inherent
to the other changes in the solver or to the trained models not being as accurate
for predicting performance of the newer solver version. In an additional experi-
ment, we trained new models from scratch on the data of Xpress 9.8, and to our
positive surprise, both the accuracy and the time factors were very similar to the
ones shown in Table 4. The linear model trained on Xpress 9.8 data achieved the
same sgm__runtime score of 0.967, whereas the random forest slightly improved,
presumably again a result of overfitting. Furthermore, the sets of the four most

Learning to Choose Branching Rules for Nonconvex MINLPs 9

important features were almost identical, with only one feature differing in the
linear model and none in the random forest. This robustness is particularly valu-
able for practical deployment, as it suggests that models need not be retrained
for every release cycle.

Linear Forest Linear|Forest
Accuracy |Train| Test |Train| Test Accuracy
Overall 84.2% (84.1%|89.1% |86.4% Overall 80.8% | 85.2%
LargeLabel [91.9%[90.7%99.7%|93.6% LargeLabel | 77.0% | 82.2%
Time Factor Time Factor
Predicted |0.914 |0.919|0.884 | 0.910 Predicted 0.967 | 0.955
Virtual Best | 0.862 | 0.863 | 0.862 | 0.863 Virtual Best | 0.866 | 0.866
Table 3. Comparison of accuracy and run- Table 4. Results when using mod-
time factors on training and test sets for els trained on Xpress 9.6 for pre-
final linear and random forest models dicting 9.8 performance

5 Conclusion

In this paper, we investigated whether a global MINLP solver should always
prioritize branching on fractional integer variables or whether allowing spatial
branching earlier can lead to faster overall performance. Using a heterogeneous
dataset of public and industrial MINLP instances, we trained linear and random
forest regression models to predict the relative performance of two established
branching rules. Our experiments demonstrated that linear models can achieve
an 8% reduction in mean solving time. We further showed that the learned mod-
els remain effective across solver versions, indicating robustness to underlying
algorithmic changes.

A natural next step is to implement the regressor directly inside the FICO®
Xpress Global solver to validate its impact in a production setting and to extend
them to other solvers, like the SCIP open-source MINLP solver. Finally, while
our models select a single branching rule for the entire branch-and-bound tree,
a more fine-grained approach, such as dynamically choosing rules for different
phases of the solve [7] or adaptively at individual nodes of the branch-and-bound
tree, represents a promising direction for further research.

Disclosure of Interests. Timo Berthold is an employee of FICO.

Acknowledgements. The work for this article was supported through the Research
Campus Modal funded by the German Federal Ministry of Education and Research
(fund numbers 05M14ZAM,05M20ZBM).

References

1. Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Univer-
sitat Berlin (2007). https://doi.org/10.14279 /depositonce-1634

10

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

T. Berthold and F. Geis

. Alvarez, A.M., Louveaux, Q., Wehenkel, L..: A machine learning-based approxima-

tion of strong branching. INFORMS Journal on Computing 29(1), 185-195 (2017).
https://doi.org/10.1287 /ijoc.2016.0723

Belotti, P., Berthold, T., Gally, T., Gottwald, L., Pélik, I.: Solving MINLPs
to global optimality with FICO Xpress Global. Optimization pp. 1-19 (2025).
https://doi.org/10.1080/02331934.2025.2595437

Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan,
A.: Mixed-integer nonlinear optimization. Acta Numerica 22, 1-131 (2013).
https://doi.org/10.1017/S0962492913000032

Berthold, T., Francobaldi, M., Hendel, G.: Learning to wuse local
cuts. Mathematical Programming Computation 17(3), 437-450 (2025).
https://doi.org/10.1007 /s12532-025-00278-y

Berthold, T., Hendel, G.: Learning to scale mixed-integer programs. Proceed-
ings of the AAATI Conference on Artificial Intelligence 35(5), 3661-3668 (2021).
https://doi.org/10.1609 /aaai.v35i5.16482

Berthold, T., Hendel, G., Koch, T.: From feasibility to improvement to proof: three
phases of solving mixed-integer programs. Optimization Methods and Software
33(3), 499-517 (2018)

Bonami, P., Lodi, A., Zarpellon, G.: A classifier to decide on the linearization of
mixed-integer quadratic problems in cplex. Operations research 70(6), 3303-3320
(2022)

Chambers, J.M., Hastie, T.: Statistical models in S. Chapman & Hall (1992)
Duran, M.A., Grossmann, [.LE.: An outer-approximation algorithm for a class of
mixed-integer nonlinear programs. Mathematical Programming 36(3), 307-339
(1986). https://doi.org/10.1007/BF02592064

FICO Xpress Optimizer, https://www.fico.com/en/products/fico-xpress-solver
Gamrath, G., Berthold, T., Salvagnin, D.: An exploratory computational analysis
of dual degeneracy in mixed-integer programming. EURO Journal on Computa-
tional Optimization 8(3), 241-261 (2020)

Geis, F.: Selecting branching rules for MINLPs via machine learning. Master’s
thesis, Technische Universitét Berlin (2025)

Ghaddar, B., Gomez-Casares, 1., Gonzalez-Diaz, J., Gonzilez-Rodriguez, B.,
Pateiro-Lopez, B., Rodriguez-Ballesteros, S.: Learning for spatial branching: An
algorithm selection approach. INFORMS Journal on Computing 35(5), 1024-1043
(2023)

Gupta, P., Gasse, M., Khalil, E., Mudigonda, P., Lodi, A., Bengio, Y.: Hybrid
models for learning to branch. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., Lin, H. (eds.) Advances in Neural Information Processing Systems. vol. 33, pp.
18087-18097. Curran Associates, Inc. (2020)

Horst, R., Tuy, H.: Global optimization: Deterministic approaches. Springer (1996).
https://doi.org,/10.1007/978-3-662-03199-5

Khalil, Elias B.and Le Bodic, P., Song, L., Nemhauser, G.L., Dilk-
ina, B.: Learning to branch in mixed integer programming. Proceedings
of the AAAI Conference on Artificial Intelligence 30(1), 724-731 (2016).
https://doi.org/10.1609/aaai.v30i1.10080

Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3),
18-22 (2002)

Lodi, A., Tramontani, A.: Performance variability in mixed-integer programming.
In: Theory driven by influential applications, pp. 1-12. INFORMS (2013)

20.

21.

22.

23.

24.

25.

Learning to Choose Branching Rules for Nonconvex MINLPs 11

Nair, V., Bartunov, S., Gimeno, F.; von Glehn, I., Lichocki, P., Lobov, L.,
O’Donoghue, B., Sonnerat, N., Tjandraatmadja, C., Wang, P., Addanki, R., Ha-
puarachchi, T., Keck, T., Keeling, J., Kohli, P., Ktena, I., Li, Y., Vinyals, O.,
Zwols, Y.: Solving mixed integer programs using neural networks. arXiv preprint
arXiv:2012.13349 (2020). https://doi.org/10.48550/arXiv.2012.13349

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., Edouard Duchesnay: Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research 12, 2825-2830
(2011)

Scavuzzo, L., Aardal, K., Lodi, A., Yorke-Smith, N.: Machine learning augmented
branch and bound for mixed integer linear programming. Mathematical Program-
ming (2024). https://doi.org/10.1007/s10107-024-02130-y

Tang, B., Khalil, E.B., Drgona, J.: Learning to optimize for mixed-integer non-
linear programming with feasibility guarantees. arXiv preprint arXiv:2410.11061
(2024)

Turner, M., Berthold, T., Besangon, M., Koch, T.: Cutting plane selection with
analytic centers and multiregression. In: Cire, A.A. (ed.) Integration of Constraint
Programming, Artificial Intelligence, and Operations Research. pp. 52-68. Springer
(2023). https://doi.org/10.1007/978-3-031-33271-5_4

Vigerske, S.: Decomposition in multistage stochastic programming and a constraint
integer programming approach to mixed-integer nonlinear programming. Ph.D.
thesis, Humboldt-Universitdt zu Berlin, Mathematisch-Naturwissenschaftliche
Fakultét II (2013). https://doi.org/10.18452/16704

