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Abstract

In modern Formula 1, strict regulations and highly optimized cars limit
performance gains through hardware, increasing the importance of strategic
decision-making. This work tackles the problem of computing a race strategy
that minimizes total race time by jointly optimizing tire stints, compound
selection, fuel load, and Energy Recovery System (ERS) deployment. We
present a high-performance simulation framework based on the solution of
an optimization model, designed for fast and reliable trackside use. The
system considers discrete stint allocation with ERS management and includes
real-time visualization tools for drivers and race engineers. Validation uses
semi-real data from a Formula 1 simulator and is further refined with a
professional simulation platform. Benchmarking shows improved fidelity and
performance compared to existing models.
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1. Introduction

Competitive performance in motorsport results from a delicate interplay
among mechanical design, driver skill, and strategic decision-making. While
historically a substantial portion of competitive advantage could be gained
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through engineering innovation, modern regulations have significantly re-
stricted the scope for technical differentiation, particularly in top-tier se-
ries such as Formula 1 (F1) [I]. The regulatory framework imposed by the
Fédération Internationale de I’Automobile (FIA) [2] aims to ensure safety
and fairness. Still, it also places stringent limits on vehicle development,
making strategic excellence an increasingly decisive factor in race outcomes.

Within this context, a race strategy can be defined as a comprehensive
and adaptive plan mainly designed to minimize total race time. This plan
encompasses a range of decisions made prior to the race start and refined
throughout the event. In practice, these decisions include the selection and
sequencing of tire compounds, the timing of pit stops, the initial fuel load, and
the management of hybrid energy systems. Although modern teams employ
sophisticated software tools and simulation environments, constructing a race
strategy remains a highly complex problem due to the interactions between
vehicle dynamics, tire behaviour, and energy management.

A central source of complexity stems from the tire performance. Each tire
compound exhibits a specific degradation profile, with lap time depending
not only on the compound’s intrinsic characteristics but also on how the tire
has been managed throughout the stint. The interplay between degradation
and energy deployment further complicates the optimization landscape. For
example, aggressive use of the Energy Recovery System (ERS) may yield
immediate time gains but can impose additional thermal and mechanical load
on the tires, accelerating wear and affecting performance on subsequent laps.
As aresult, strategic and energetic decisions cannot be treated independently:
the allocation of tire stints and the intra-lap energy deployment must be
modeled as coupled components of a single decision space.

The determination of a race strategy therefore requires the integration of
multiple interconnected decisions, including pit stop timing, compound se-
lection, race pace management, and ERS deployment. These decisions must
be evaluated over a fixed race distance and within a competitive environment
where small differences in lap time accumulate into significant performance
differentials. Despite the complexity of the problem, reliable solutions must
be obtained rapidly as strategic software is often used in real-time during race
events, especially in top series such as F1 where live telemetry is available
to the team. This work addresses this challenge by proposing a simulation
framework based on the solution of a mathematical model model to deter-
mine an optimal race strategy.



1.1. Literature Review

The optimization of race strategy in Formula 1 and related motorsport
categories has been approached through a variety of computational and math-
ematical frameworks. FExisting research spans from rigorous dynamic pro-
gramming formulations to high-fidelity simulation environments, each offer-
ing different strengths with respect to optimality guarantees, computational
tractability, and physical realism.

We now organize the principal contributions in the literature according
to the class of mathematical or algorithmic model employed.

e Dynamic Programming. A foundational and widely cited contri-
bution in this domain is the work of Carrasco Heine et al. [3], which
explicitly addresses the pit stop strategy problem by optimizing both
stopping laps and tire compound selection. Their approach formulates
the problem as a Dynamic Programming (DP) model that minimizes to-
tal race time under deterministic conditions. The DP captures essential
features of the strategy problem, including tire degradation, compound-
dependent performance, and the inherently sequential structure of stint
decisions.

The authors further extend the framework to a Stochastic Dynamic
Programming (SDP) formulation that accounts for uncertainties such
as variable weather and Safety Car interventions. This enables deci-
sions to be evaluated within a probabilistic race evolution, rather than
a single deterministic trajectory. The principal contribution of these
works is the establishment of a mathematically principled method for
handling the trade-off between delaying pit stops and exploiting po-
tential stochastic advantages, offering strong theoretical guarantees in
sequential decision-making contexts.

e Neural Networks. A prominent contribution in this category is the
Virtual Strategy Engineer (VSE) introduced by Heilmeier et al. [4].
While the authors show that, under highly simplified assumptions (no
opponents and tire degradation only), the optimal strategy can be com-
puted via a quadratic optimization problem, they argue that such for-
mulations are inadequate for professional motorsport applications. In
high-level series like Formula 1, realistic strategy evaluation requires
comprehensive race simulations capable of modeling dynamic interac-
tions among competitors.



To meet this need, the VSE employs two artificial neural networks that
automatically determine whether a driver should pit and which tire
compound to select. Trained on timing data from six Formula 1 sea-
sons (2014-2019), the networks infer strategic decisions directly from
real race conditions. Integration into a full simulation environment
demonstrates that the VSE produces context-aware and reasonable de-
cisions, thereby improving automation and realism in simulation-based
strategy assessment.

More recently, Wieckowski et al. [5] propose an Artificial Neural Net-
work Decision Support System (ANN-DSS) based on a Multilayer Per-
ceptron architecture. Hyperparameters are optimized via a Tree-structured
Parzen Estimator, and the resulting model is used to predict the best
lap times of Formula 1 drivers during a race. The predicted rankings
exhibit high consistency with reference rankings according to the WS
rank similarity metric. Although this approach does not formulate or
solve a race strategy problem directly, it highlights the expanding role
of machine learning techniques in motorsport decision-support and pro-
vides a foundation for integrating data-driven components into broader
strategic systems.

¢ Simulation-Based Optimization. A significant portion of the lit-
erature employs simulation-driven approaches, in which predefined or
heuristically generated strategies are evaluated using detailed race sim-
ulators [6 [7]. In these models, strategy is typically an input rather
than the output of an optimization procedure. While such methods do
not provide optimality guarantees, they excel at capturing high-fidelity
physical dynamics, including nonlinear tire wear, acrodynamic effects,
and operational uncertainties such as pit crew timing. Their principal
contribution lies in offering robust validation environments for math-
ematically derived strategies, enabling assessment under near-realistic
race conditions and unmodeled dynamic interactions.

1.2. Our Contribution

In light of the diverse computational approaches developed for motor-
sport decision-making, our work advances the state of the art by intro-
ducing a mathematically rigorous, optimization-driven framework based on
Mixed-Integer Linear Programming (MILP) for the formulation of modern



Formula 1 race strategies. Specifically, we provide a generalizable optimiza-
tion model that delivers demonstrable improvements in strategic consistency,
computational efficiency, and integration with realistic race dynamics.

Our main contributions are as follows:

e Acquisition of context-specific race data: For each Grand Prix, we con-
struct strategy inputs using real-world performance data sourced from
the available Free Practice sessions. The data acquisition process lever-
ages physics-based simulators such as F1 25 [§] and Assetto Corsa [9]
enriched with high-fidelity vehicle models such as the VRC Formula
Alpha 2025 [I0]. This enables the model to capture track-dependent
characteristics and contemporary vehicle behavior.

e Integration with realistic race simulation: Unlike models limited to
analytical evaluation or simplified abstractions, our framework allows
candidate strategies to be validated directly within the aforementioned
simulation environments. This provides an empirical loop between op-
timization output and race-dynamic evaluation, and our results demon-
strate that the optimized strategies exhibit high fidelity and practical
viability when tested under realistic conditions.

e Explicit ERS optimization: In contrast to all prior optimization-based
approaches, we incorporate the Energy Recovery System (ERS) as a de-
cision variable within the race-strategy formulation. The model jointly
optimizes ERS deployment and pit-stop scheduling, reflecting the cen-
tral role of hybrid powertrain management in contemporary Formula 1
competition.

e A computationally efficient method with sub-second runtimes: The
proposed MILP formulation achieves solution times on the order of
tenths of a second while maintaining high accuracy and robustness.
This represents a substantial improvement over existing optimization-
based models, which typically require several seconds to compute a
feasible strategy, thereby enabling real-time or near-real time strategic
evaluation.

These contributions collectively establish a comprehensive simulation frame-
work that bridges the gap between theoretical optimality and practical appli-
cability. The system is designed to operate seamlessly within the time-critical



environment of professional motorsport, where strategic decisions must be
computed rapidly and executed precisely.

The remainder of this work is organized as follows: Section [2| describes
the problem scope, explaining Formula 1 race operations in accessible terms
for non-expert readers, and detailing the regulatory constraints that gov-
ern strategic decision-making. Section (3| presents the simulation framework
that surrounds the optimization core. Section {4f presents the mathematical
formulation of the optimization problem. Section [5| reports the empirical
validation of the system through a multi-phase testing protocol. Initial val-
idation is conducted using the F1 2025 commercial simulator to establish
baseline performance against industry-standard Al strategies. Advanced val-
idation employs professional-grade simulation platforms (Assetto Corsa with
VRC Formula Alpha 2025) to assess robustness under high-fidelity physics
modeling. Finally, Section [6] synthesizes the findings and outlines promising
directions for future research.

2. Problem Description

This section introduces the operational structure of a Formula 1 Grand
Prix and the domain-specific concepts required to understand the nature
of the problem. It then presents the regulatory constraints that define the
boundaries within which race strategy is performed and formalizes the prob-
lem scope and assumptions.

2.1. Qverview of a Formula 1 Grand Priz

A Formula 1 Grand Prix is a circuit-based motorsport event in which
a fixed number of laps is completed, such that the total race distance is
approximately 305 km, with minor exceptions for specific venues. All drivers
start simultaneously from a standing grid, whose order is determined by a
qualifying session held prior to the race. The primary objective is to complete
the prescribed race distance in the shortest possible time.

During the race, each car’s performance is governed by a combination of
mechanical, aerodynamic, and operational factors. While the car specifica-
tion is fixed for the event, the lap time evolves as a function of fuel mass,
tire condition, energy deployment, and strategic decisions such as pit stops.
A race strategy therefore consists of a sequence of decisions made before
and during the event that aim to minimize total race time while respecting
sporting and technical regulations.



From a strategic perspective, the race can be decomposed into consecutive
stints. A stint is defined as a continuous sequence of laps completed using
the same set of tires, delimited by pit stops. At each pit stop, the car enters
the pit lane, where tires may be replaced and minor adjustments performed,
incurring a significant time loss relative to remaining on track. Consequently,
race strategy fundamentally involves a trade-off between longer stints with
degraded performance due to tire wear and shorter stints that incur addi-
tional pit stop time penalties.

2.2. Key Operational Concepts and Terminology

Several domain-specific concepts are central to the formulation of the
strategy optimization problem:

e Tire Compounds: In dry conditions, teams may select from multiple
slick tire compounds provided by the supplier, typically classified as
soft, medium, and hard. Softer compounds offer higher grip and faster
lap times but degrade more rapidly, while harder compounds are more
durable at the cost of reduced peak performance.

e Tire Degradation: Tire performance deteriorates as a function of usage
due to thermal and mechanical wear. This degradation manifests as
an increasing lap time over the duration of a stint and is one of the
dominant factors influencing optimal stint length.

e Fuel Load: Cars start the race with all the fuel required to reach the
finish, as refuelling during the race is prohibited. The fuel mass de-
creases over time, reducing the car’s weight and generally improving
lap times as the race progresses.

e ERS: Modern Formula 1 cars are equipped with hybrid power units that
recover and deploy electrical energy. The amount of energy that can
be harvested and deployed per lap is regulated, and its management
affects lap time and overall performance.

e Pit Stop Time Loss: A pit stop introduces a fixed and measurable time
penalty, consisting of pit lane entry, stationary service time, and pit
lane exit. This loss is circuit-dependent and is a critical parameter in
evaluating whether an additional stop is strategically advantageous.



The interaction between these elements gives rise to a highly structured
optimization problem, where decisions made early in the race influence per-
formance and feasibility in later stages.

2.3. Regulatory Constraints and FIA Compliance

The system considers the relevant FIA Formula 1 Sporting and Techni-
cal Regulations to ensure that every generated strategy is legally admissible.
These regulations define strict boundaries on vehicle operation and race con-
duct, and they are encoded in the model as hard constraints.

Key regulatory elements included in the formulation are:

e Mandatory Tire Compound Change: In dry races, each driver must use
at least two different slick tire compounds during the race, enforcing
the need for at least one pit stop.

e Fuel Constraints: The initial fuel load must respect the maximum fuel
mass allowed at the start of the race and must be sufficient to com-
plete the race while leaving a mandatory residual quantity for post-race
inspection.

e ERS and Power Unit Limits: Energy harvesting and deployment per
lap are constrained by regulatory limits, which bound the performance
gains achievable through hybrid system usage.

e Stint Feasibility and Pit Procedures: Stint lengths must remain within
compound-specific operational limits, and pit stops must comply with
procedural constraints and minimum safety requirements.

By embedding these regulatory requirements directly into the optimiza-
tion problem, the system guarantees that the resulting strategy is not only
optimal from a performance standpoint but also fully compliant and directly
implementable in a competitive race environment.

2.4. Problem Scope and Design Assumptions

The purpose of the system is to compute the fastest a priori race strategy
for a standard, uninterrupted dry-weather Grand Prix. The strategy is de-
fined as the optimal sequence of tire compound selections and corresponding
stint lengths that minimizes total race time.

To ensure tractability and interpretability, the model deliberately ex-
cludes stochastic and externally induced race events such as rainfall, yellow



flags, Virtual Safety Cars, or full Safety Car deployments. While such events
can have a substantial impact on real-world strategy, they are inherently un-
predictable and require real-time human judgment. By excluding them, the
optimization isolates the deterministic baseline strategy, which represents the
reference plan under nominal conditions.

The optimizer therefore provides a theoretically grounded benchmark
strategy. In practical applications, this strategy may be followed directly
or adapted by race engineers in response to unforeseen developments during
the race.

3. Simulation Framework

This section describes the simulation framework that enables the optimization-
driven race strategy planning, focusing on the data acquisition, simulation
validation, and decision support components that surround the mathematical
core.

The simulation framework encompasses:

e The acquisition and processing of empirical performance data from
practice sessions and simulation platforms

e The configuration and parameterization of the optimization inputs

e The validation of computed strategies through high-fidelity race simu-
lation

e The presentation of strategic outputs through user-facing interfaces

At a high level, the system operates in three stages: first, it collects and
structures data from practice sessions and simulation platforms; second, it in-
vokes the mathematical optimization engine to compute the fastest strategy;
and third, it validates the computed strategy through execution in realistic
simulation environments and presents the results through interfaces designed
for both race engineers and drivers. The following subsections detail each of
these components, with particular emphasis on the simulation-based data
acquisition and strategy validation processes.



3.1. Input Data Acquisition and Configuration

The starting point of the optimization process is the acquisition and pro-
cessing of empirical performance data. In a real-world Formula 1 environ-
ment, this data would be gathered during the three Free Practice sessions
of the race weekend, which collectively provide approximately three hours of
on-track running. These sessions offer essential observations for calibrating
vehicle behaviour, including tire degradation curves, fuel consumption rates,
and energy recovery characteristics specific to the circuit and prevailing con-
ditions.

For research and development purposes, and in the absence of access to
actual Formula 1 telemetry, this work leverages high-fidelity racing simulation
platforms to generate the necessary input data. Two primary simulation
environments are employed:

e F1 25 (Codemasters) [§]: The official Formula 1 racing simulator, pro-
viding FIA-licensed circuits with standardized vehicle models and ac-
cessible telemetry extraction capabilities. While employing a simplified
physics model compared to professional tools, it offers consistent and
reproducible data collection environments suitable for initial validation.

e Assetto Corsa with VRC Formula Alpha 2025 [9]: A professional-grade
simulation platform combined with a highly realistic Formula 1 vehicle
modification. This environment provides advanced tire thermal mod-
eling, computational fluid dynamics calculations, and detailed hybrid
powertrain simulation. The physics fidelity of this platform closely ap-
proximates real-world vehicle behavior, making it particularly valuable
for final validation testing.

These simulation platforms serve dual purposes within the framework:
first, they act as data sources for parameterizing the optimization model
through simulated practice sessions; second, they function as validation en-
vironments where computed optimal strategies are executed and empirically
evaluated under controlled yet realistic racing conditions. This closed-loop
approach enables iterative refinement of model parameters and strategy val-
idation without requiring prohibitively expensive real-world testing.

All derived parameters are supplied to the optimizer through a structured
configuration file (e.g., config. json), which serves as the central data source
for the entire system. This file contains the following domains of information:
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e Race Parameters: Total race distance (in laps), typical pit stop time
loss, and time penalties associated with standing starts.

e Tire Parameters: Base lap times for each compound, degradation rates
(seconds of time loss per lap), and the maximum number of laps per-
mitted or advisable per tire type.

e Fuel Parameters: Fuel consumption per lap and the performance penalty
per kilogram of fuel carried.

e ERS Parameters: Deployment and harvesting limits per lap, battery
capacity, and the time deltas associated with each ERS mode on each
tire compound.

e Circuit Parameters: A sector-level decomposition of the track, includ-
ing the number of corners per sector (important for harvesting mod-
elling) and a coefficient describing harvesting potential within that sec-
tor.

This structured data foundation ensures that the optimization problem
is fully informed by the physical, mechanical, and strategic realities of the
specific race weekend.

3.2. Optimization Engine Integration

At the core of the framework lies a Mixed-Integer Linear Programming
(MILP) formulation implemented in Python and solved via the high-performance
commercial solver FICO Xpress. The mathematical details of this optimiza-
tion model are presented comprehensively in Section [4] This section focuses
on how the optimization engine integrates within the broader simulation
framework.

The optimizer receives the structured configuration file as input and pro-
duces a complete race strategy as output. The objective function minimizes
total race time subject to structural, mechanical, and regulatory constraints
that ensure compliance with FIA regulations and physical feasibility.

A defining contribution of this work is the integrated management of
the Energy Recovery System (ERS). Whereas most existing strategic models
aggregate ERS effects into coarse lap-level adjustments, the proposed formu-
lation computes a precise and prescriptive energy deployment and harvesting
schedule at the sector level.

The optimization output includes:
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e Race Strategy: The optimal sequence of tire compounds and stint du-
rations, including exact pit stop laps.

e Fuel Load: The optimal starting fuel mass that balances race-time
minimization with regulatory requirements and performance consider-
ations.

e Per-Sector ERS Plan: A detailed schedule specifying the exact energy
to deploy or harvest in each sector of each lap, ensuring adherence
to battery constraints and maximizing performance over the full race
distance.

To support operational robustness, the optimization enforces a minimum
battery safety margin (e.g., 40%) throughout most of the race. This reserve
ensures that the driver retains enough electrical energy for defensive ma-
noeuvres even when the model’s projections are disrupted by competition
dynamics. In the final laps, this restriction is lifted, allowing full battery
depletion to maximize pace.

A graphical representation of the target battery state of charge per sector
is also produced, facilitating race execution and post-analysis.

3.3. System Interfaces and Decision Support

The outputs of the optimization model are consumed by two complemen-
tary user-facing applications, each designed for a specific operational role
within the race environment:

e Race Engineer Dashboard: A comprehensive telemetry and strategy
interface intended for the pit wall. It displays real-time lap and sec-
tor times, vehicle parameters (e.g., setup, temperatures), tire and fuel
status, battery charge, and G-force readings. The optimized race strat-
egy and ERS plan are integrated directly into the dashboard, allowing
seamless reference during race execution.

e Driver-Facing Android Application: A streamlined mobile interface de-
signed for integration into the multi-page digital displays of modern
Formula 1 vehicles. It provides the driver with essential strategic infor-
mation, including fuel targets, tire management indicators, and sector-
level ERS deployment and harvesting instructions. The application
may function as a standalone strategy page or be embedded within an
existing dashboard page.
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These interfaces ensure that the optimization outputs are not only math-
ematically optimal but also actionable and accessible to the personnel re-
sponsible for executing the strategy in real time.

4. Optimization Model

This section presents the mathematical core of the simulation framework.
While the previous section described what the system does and how data are
acquired and managed, this section formalizes how the optimization problem
15 structured and solved.

The race strategy problem can be understood as finding the best answers
to several interconnected questions:

e Which tire compounds should be used?
e When should pit stops occur?

e How should the limited electrical energy be deployed throughout the
race?

These decisions are represented mathematically using variables, and the
relationships between them (such as tire wear increasing lap time, or energy
usage being limited by battery capacity) are expressed as equations and
inequalities.

The resulting optimization model is solved using specialized software that
explores millions of potential strategies and identifies the one that minimizes
total race time. The formulation belongs to a class of problems known as
Mixed-Integer Linear Programming (MILP), chosen for its balance between
expressive power and computational efficiency.

The remainder of this section provides a rigorous mathematical speci-
fication of the model, organized into definitions of sets and indices, input
parameters, decision variables, the objective function, and the constraints
that ensure the solution is both feasible and regulation-compliant.

4.1. Sets
e G: Set of tire compounds available, indexed by g € {0,1,...,|G| — 1}.

e S: Set of stints, indexed by s € {0,1,..., Smax — 1} where Spay is the
maximum number of stints.
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e L: Set of laps, indexed by ¢ € {0,1,...,L — 1} where L is the total
number of race laps.

e /C: Set of circuit sectors per lap, indexed by k € {0,1,..., K —1} where
K is the number of sectors.

e M: Set of ERS modes, indexed by m € {0,1,..., M — 1} where M is
the number of available ERS modes.

4.2. Parameters
1. Tire Parameters

e For each tire compound g € G:
— £,?°: Base lap time (seconds) for tire compound g.
— dg**: Maximum stint duration (laps) for tire compound g.
- 5‘gjeg: Degradation rate per lap (unitless) for tire compound g.
- ugerf: Performance degradation impact factor for tire g
- ugur: Duration reduction factor due to degradation for tire g

e Effective parameters with degradation:

5deg A ,uperf
tgff = t;’ase 1+ % (average degraded lap time)

(1)
5deg . dmax . dur
d;ﬁ = dy™ - (1 — 4 92 Ho > (effective max duration)

(2)

2. Race Parameters
e [: Total number of race laps.

o S.x: Maximum allowed number of stints.

tpir: Pit stop time loss (seconds).

lstare: Standing start time penalty (seconds).

G'min: Minimum number of different tire compounds to use (typi-
cally 2 by F1 regulations).

Ngeetors = L X K: Total number of sector instances in race,
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® Neombos = |G| X Smax: Total possible tire-stint combinations.
3. Fuel Parameters

o [lax: Maximum fuel capacity (kg).

® feons: Fuel consumption per lap (kg/lap).

® fies: Minimum required fuel reserve at race end (kg).

e \;: Fuel weight time penalty (seconds per kg).
4. ERS Parameters

e For each ERS mode m € M:

— rdeploy: Energy deployment rate (Joules/second).

— pharvest; Base energy harvest rate (Joules/second per corner).

— Aty 4 Lap time delta (seconds) for mode m on tire g (nega-

tive = faster).
e Global ERS parameters:
— E..p: Battery capacity (Joules), typically 4 x 10° J (4 MJ).

— Ei.,: Maximum energy deployment per lap (Joules), typi-
cally 4 x 10° J.

— EPex o Maximum energy harvest (charge) per lap (Joules),
typically 2 x 106 J.

— Bmin: Minimum battery level fraction to maintain until final
laps, typically 0.4.

— Qgector: Maximum deployment fraction per sector relative to
lap average, typically 2.0.

5. Circuit Parameters
e For each sector k € K:

- tze,?or: Time to complete sector k on tire g (seconds).
corners.

— ny : Number of corners in sector k.

— ~yparvest; Harvest multiplier for sector k (accounts for regener-
ative braking potential).

Sector-specific harvest rate: For mode m in sector k:

harvest corners harvest
H _ T'm "Ny "V . tsector
m,k — 35.0 0,k
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4.3. Decision Variables
1. Integer Variables

o v,, €2, VgeG,seS. Number of laps run on tire compound
g during stint s.

2. Binary Variables
e Stint activation:

— a5 € {0,1} Vs € S Equals 1 if stint s is active (used in the
race), 0 otherwise.

e Tire-stint assignment:

— ygs € {0,1} Vg € G,s € S Equals 1 if tire compound g is
used in stint s, 0 otherwise.

e Tire compound usage:

—uy € {0,1} Vg € G Equals 1 if tire compound ¢ is used at
any point during the race, 0 otherwise.

3. Continuous Variables
e ERS allocation variables:

— Gupmg € [0,1] Y€ L ke K,m e M,g € G Fraction of
sector k in lap ¢ spent in ERS mode m while on tire g.

e Battery state variables:

— By € [0,Ecp] V¢ € Lk € KU{0} Battery energy level
(Joules) at the start of sector & in lap ¢. Note: Bjq represents
initial battery level before the first sector.

o Fuel state variables:
— Iy € [0, Fiyax): Initial fuel load (kg).
— F, € [0, Fax] V¢ € L: Fuel remaining at the end of lap ¢
(kg).

4.4. Objective Function
The objective is to minimize the total race time:

min Z = tstart + Z Z tzﬁ *Lygs + tpit : (Z ag — 1> + quel + ZERS (3)

geG seS seS

where:
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o e represents the fuel weight penalty contribution.

e ggs represents the lap time adjustments due to ERS mode selection.

4.5. Constraints

The model is subject to several classes of constraints:

4.5.1. Race Distance Constraint

The total number of laps across all stints must equal the race distance:

Z Z Tg,s = L (4)

geG seS

4.5.2. Tire Compound Diversity Constraint
At least G, different tire compounds must be used:

Zug Z Gmin (5)

4.5.8. Stint Duration Constraints
For each tire compound and stint, the number of laps is limited by the
tire’s maximum duration:

Tys < Ld;ﬁj Ygs VgEG,seES (6)

4.5.4. ERS Balance Constraints
Battery state evolution across sectors:

B&k—i-l = Bé,k: + Eharvest - Edeploy S ;C, kel (7)

4.5.5. Additional Constraints
The complete model includes additional constraints for:
Stint activation logic and precedence:

as > agy1 Vs € {0,1,..., Snax — 2} (8)

Tire compound assignment per stint:

Zyg,s <1 VseS 9)

geg
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Yg,s < as Vg S g,S S (10)

Ygs Suy VgEG,sES (11)
Fuel consumption and initial load:
Pt = [y — Z ng,s/ “ feons Vs €S (12)
geg s'<s
FOEL'fcons+fres (13>
ERS deployment and harvesting limits per lap:
D OESPY < ERS. Vel (14)
kek
D B < B VIEL (15)
kek

Battery capacity and minimum charge requirements:
0< By <FEeap VWELEkEK (16)
BZ,k‘Zﬁmin'Ecap VEG{O,...,L—?)},/'CEIC (17)

4.6. Preprocessing

The efficiency of Mixed-Integer Linear Programming (MILP) solvers de-
pends heavily on the quality of the linear relaxation and the compactness of
the search space. While modern solvers like FICO Xpress employ sophisti-
cated presolve routines to simplify formulations, relying solely on automated
preprocessing is often insufficient for complex dynamic strategy problems.

We now detail the specific strengthening techniques applied to the F1
Strategy Optimization model. We analyze the transition from the symbolic
definition to the numerical matrix, the implementation of tight-coefficient
constraints, and the hierarchical symmetry-breaking mechanisms that col-
lectively reduce the Linear Programming (LP) gap to near-zero levels before
branching begins.

To better highlight the impact of the preprocessing, in the next subsec-
tions we specialize the preprocessing to the Formula 1 Grand Prix at the
Albert Park Circuit (Australia), which is described in detail in the following
section. The same elaboration process is applied to all the tested races, al-
though the specific numerical values vary depending on circuit characteristics
and race distance.
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4.6.1. Symbolic Preprocessing and Variable Reduction

The problem instance is initially defined using high-level symbolic logic.
Before the matrix is passed to the solver, a symbolic substitution phase is
performed to reduce dimensionality.

The original problem space comprises 2,293 variables, consisting of:

e 1,753 continuous variables (primarily related to ERS energy flows: Echarged
Ehar'uested Edeployed)

e 25 integer variables (laps per stint, denoted as x);
e 15 binary variables (stint activation and tire usage, denoted as y).

To improve computational tractability, linear expressions defining energy
flows are substituted symbolically. Specifically, 522 variables representing
intermediate energy states are replaced by linear functions of the primary
decision variable, ers_fraction. This reduction results in a final operational
matrix containing 1,793 effective variables, minimizing the memory footprint
without loss of information.

4.6.2. Tight Big-M Constraints

The core of the model’s performance lies in the explicit strengthening of
constraints, ensuring that the continuous relaxation of the polytope closely
approximates the integer convex hull.

A common source of weak relaxations in scheduling problems is the use
of arbitrarily large constants (M) in logical implications (Big-M constraints).
Our formulation replaces generic constants with data-dependent tight bounds.

For a stint k using tire type ¢, the relationship between the number of
laps z; and the binary activation variable y; ;, is governed by:

Tik — Mfight ik <0 (18)

Where Mf ioht g strictly set to the floor of the maximum physical duration of
tire compound ¢, rather than a generic formulation horizon representing the
total race distance. For instance, if a soft tire compound has a maximum
sustainable duration of 17 laps and a hard tire compound can last up to 37
laps in a 58-lap race, these specific values are used instead of the generic race
length.

This calibration implies that if y;, = 0, z; is forced to 0 immediately.
Conversely, when relaxed (0 < v, < 1), the fractional value of x; ;, is bounded
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much more tightly than in standard formulations. This technique alone ac-
counts for a significant reduction in the integrality gap.

4.6.3. Hierarchical Symmetry Breaking via Tie-Breaking
The problem exhibits inherent symmetries (e.g., identical tires used in
different stint permutations) which can stall the Branch-and-Bound (B&B)
algorithm. To mitigate this, we implement a lexicographical tie-breaking
strategy directly into the objective function and energy balance constraints.
We introduce strictly ordered, e-small perturbations to the cost coeffi-
cients:
min Z' = Zorigina + »_ Y (k- [T +5) € ypy (19)

keK jed

where € ~ 10712,
Similar perturbations are applied to the ERS energy balance constraints
with coefficients in the order of 10~2!. This approach:

1. Eliminates Permutation Symmetry: Distinguishes between mathemat-
ically equivalent solutions, guiding the solver toward a canonical solu-
tion.

2. Preserves Optimality: The magnitude of € is sufficiently small to avoid
altering the practical optimal strategy but large enough to break sym-
metries in floating-point arithmetic.

Experimental validation confirms that this technique reduces the B&B tree
size by approximately 60.6% compared to the symmetric baseline.

4.6.4. Logical and Precedence Constraints
To further refine the feasible region, we incorporate logical cuts that en-
force structural consistency:

e Precedence Constraints: stint _activer > stint _activeg,,. This forces
stints to be utilized sequentially, allowing the solver to propagate do-
main reductions (if stint 1 is inactive, stint 2 is automatically inactive).

e Cardinality Constraints: Modeled as clique inequalities ) iUk <1
these ensure only one tire is selected per stint. Since these define a
polytope with the intersection property, they facilitate the automatic
generation of clique and cover cuts by the solver.
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4.6.5. Computational Implications
The combination of the aforementioned techniques yields rigorous perfor-
mance metrics:

e Root Node Gap: The LP relaxation gap at the root node is reduced to
0.02%, compared to 2.1% in a standard formulation.

e Branching Efficiency: The tightened formulation requires fewer than
100 B&B nodes to prove optimality, with a total solve time of under
0.3 seconds.

Moreover, an analysis of the Xpress presolve log reveals that the presolve
routine eliminates less than 1% of the rows and columns. This indicates that
the model is effectively “pre-solved” by design. Indeed, since the formulation
already incorporates tight bounds, calibrated Big-M coefficients, and symme-
try breaking, the standard presolve reductions (such as bound strengthening
and coefficient tightening) find few opportunities for improvement.

In conclusion, by shifting the computational burden from the solver’s
runtime to the modeling phase, we achieve a robust formulation suitable for
real-time strategic decision-making.

5. Model Validation and Results Analysis

This section presents a comprehensive empirical validation of the simula-
tion framework.Validation in motorsport strategy presents unique challenges.
Real-world testing on actual Formula 1 circuits is prohibitively expensive, lo-
gistically complex, and subject to countless uncontrollable variables such as
weather, traffic, and mechanical reliability. Furthermore, strategy evaluation
requires multiple runs under identical conditions—something impossible to
achieve in real racing.

To address these challenges, we adopted a simulation-based validation
approach using high-fidelity racing simulators. These platforms replicate ve-
hicle physics, tire behavior, and energy systems with sufficient accuracy to
serve as credible proxies for real-world performance, while offering the re-
peatability and control necessary for rigorous evaluation. The progression
from commercial to professional-grade simulators, combined with validation
against actual Grand Prix results, provides a multi-layered empirical founda-
tion for assessing the practical viability of the optimization system. On this
basis, we used a validation methodology structured in multiple phases, each
designed to progressively increase the realism and rigor of the evaluation:
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1. Phase 1 (Section [5.1]): Initial validation using the F1 2025 commercial
simulator, establishing baseline performance against industry-standard
AT strategies under controlled, reproducible conditions.

2. Phase 2 (Section [5.2): Advanced validation using professional-grade
simulation (Assetto Corsa with VRC Formula Alpha 2025), evaluating
robustness under high-fidelity physics modeling and LIDAR-scanned
circuits.

3. Phase 3 (Section [5.3)): Performance analysis and comparison with real-
world race results, demonstrating the practical accuracy and predictive
power of the optimized strategies.

5.1. Initial Validation: F1 2025 Official Simulator

The first phase of validation was conducted using the official F'1 2025
commercial simulator developed by Codemasters. This platform was selected
as the initial testing environment for several strategic reasons:

e Standardization and Reproducibility: Official FTA-licensed tracks with
standardized regulations, ensuring consistency with real Formula 1
championship conditions.

e Comprehensive Data Availability: Unlike custom circuit modifications,
the official circuits in F1 2025 include complete telemetry systems, de-
tailed track surface data, and validated tire compound models devel-
oped in collaboration with Pirelli.

e Accessibility for Comparative Studies: As a widely available platform,
it provides a reproducible research environment for baseline validation
and comparative benchmarking.

e Built-in Strategy Benchmark: The simulator includes an industry-
standard Al strategy system that serves as a credible baseline for
comparison, representing the state-of-the-art in commercial simulation-
based strategy optimization.

While the physics model in F1 2025 is intentionally simplified compared
to professional simulation tools (to maintain playability and computational
efficiency), it provides a controlled and consistent environment for initial vali-
dation. The trade-off between physical realism and data completeness makes
it particularly suitable for this first validation phase, where the primary ob-
jective is to demonstrate the optimizer’s ability to outperform existing base-
line strategies under standardized conditions.
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5.1.1. Track Selection and Data Acquisition
Three different Grand Prix were selected to have tracks with different
characteristics and consequently different possible strategic choices:

e Circuit of The Americas, Texas: A modern circuit with mixed-speed
corners and significant tire degradation.

e Marina Bay Street Circuit, Singapore: A low-speed street circuit with
high downforce requirements and minimal tire wear.

e Albert Park Circuit, Australia: A semi-street circuit combining perma-
nent sections with temporary barriers, featuring medium-speed corners
and moderate degradation.

For each circuit, we conducted three complete 60-minute Free Practice
sessions under controlled conditions. The simulation platform’s telemetry
output was captured in real-time, extracting:

e Per-lap timing data for all tire compounds (Soft, Medium, Hard).
e Tire degradation rates measured through lap time delta analysis.
e Fuel consumption patterns across different racing modes.

e Base lap times for each compound under optimal conditions.

These data formed the input configuration files for our optimization model,
ensuring that the model’s predictions were grounded in simulation-derived

empirical measurements. A graphical representation of the collected data is
shown in Fig.

23



Figure 1: Lap times collected for each tire compound during Free Practice sessions. The
progressive degradation pattern is clearly visible across stint length.

5.1.2. Comparative Race Protocol

Following data acquisition, three full-distance Grand Prix races were ex-
ecuted for each circuit under identical conditions (dry weather and no Safety
Car interventions). The three test scenarios were:

e Test 1 (Simulator Baseline): The race was completed using the default
strategy proposed by the F1 2025 simulator’s built-in Al system.

e Test 2 (Our strategy): The race was executed following the optimal
strategy and detailed per-sector ERS management plan generated by
our model. The strategy output was manually followed throughout the
race to ensure exact adherence to the optimization directives.

e Test 3 (Alternative strategy): The race was conducted using the strat-
egy determined by the dynamic programming model presented by Car-
rasco Heine et al. [3], providing a comparison against another mathe-
matical approach.

For Test 3, which used the dynamic programming model from the lit-
erature, the experiment was performed using the original code provided by
the authors. The model was carefully calibrated and run with exactly the
same input data collected during the Free Practice sessions as for the other
tests. All relevant performance metrics—such as total race time, pit stop
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strategy, and computational time—were monitored and recorded in a con-
sistent manner across all test scenarios. This ensured the most direct and
precise comparison possible between the simulator baseline, our optimization
system, and the dynamic programming approach.

For each test, comprehensive performance metrics were recorded:

e Total race completion time (seconds).

Computational time required for strategy generation.

Pit stop strategy employed (number of stops, tire compounds, stint
lengths).

Final race position relative to Al competitors.

e Time gaps to the cars immediately ahead and behind.

5.2. Advanced Validation: Professional Simulation Platform

To validate the robustness of our optimization framework under more real-
istic conditions, a second validation phase was conducted using a professional-
grade simulation environment. This phase represents a significant step to-
ward real-world applicability, as it employs physics models substantially
closer to actual Formula 1 vehicle dynamics.

5.2.1. Simulation Platform Configuration

The advanced validation utilized the Assetto Corsa simulation platform
combined with the VRC' Formula Alpha 2025 modification. This transition
from F1 2025 to Assetto Corsa represents a strategic progression in the vali-
dation methodology, motivated by several key factors:

e Physics Accuracy Progression: Having established baseline performance
in a controlled environment (F1 2025), this phase evaluates the opti-
mizer’s robustness under substantially more realistic physical model-
ing. The Assetto Corsa physics engine, particularly when combined
with high-quality vehicle modifications, is widely recognized within the
professional motorsport simulation community for its accuracy in repli-
cating real-world vehicle dynamics.
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e Advanced Data Availability: For the circuits tested in this phase, we
had access to high-precision track data, including LIDAR-scanned cir-
cuit surfaces and professionally validated vehicle setups. These circuits
represent a significantly higher level of environmental accuracy com-
pared to the standardized tracks available in commercial simulators.
The availability of such data enabled a more rigorous validation of the
optimizer’s sensitivity to realistic input parameters.

e Professional-Grade Physics Models: The VRC Formula Alpha 2025
modification provides advanced simulation features specifically designed
for realism rather than playability:

— Advanced Tire Model: Multi-layer thermal simulation with realis-
tic degradation curves based on slip angles, camber, and temper-
ature distribution across the tire contact patch.

— Computational Fluid Dynamics: Real-time aerodynamic calcula-
tions including ground effect, wing efficiency, and drag reduction
system (DRS) behavior that respond dynamically to vehicle pitch,
roll, and ride height.

— Detailed Powertrain Simulation: Accurate hybrid power unit mod-
eling with realistic ERS deployment characteristics, battery state-
of-charge management, and energy recovery efficiency curves.

— Fuel Load Dynamics: Precise weight distribution changes through-
out the race affecting vehicle balance, tire loading, and aerody-
namic platform stability.

This simulation environment has been validated by professional racing
teams and is widely recognized in the motorsport simulation community for
its accuracy in replicating real-world vehicle behavior. The combination of
superior physics modeling and access to high-quality track data (including
LIDAR-scanned surfaces not available for all circuits in commercial simula-
tors) makes this platform particularly well-suited for final-stage validation
where the objective is to assess performance under conditions approximating
real Formula 1 operations.

Full details on the equipment configuration and the professional sim rac-
ing driver who conducted the advanced validation tests are provided in

pendix Al
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5.2.2. Advanced Validation: Track Selection

For the advanced validation phase, two circuits were carefully selected
based on the availability of LIDAR-scanned track surfaces, which provide the
highest level of geometric accuracy and surface detail for simulation purposes:

e Suzuka International Racing Course, Japan: A classic high-speed tech-
nical circuit featuring a unique figure-eight layout with a mix of fast
sweeping corners (such as the renowned 130R and Spoon Curve) and
tight chicanes. The track demands high aerodynamic efficiency and
places significant stress on tires, particularly on the front-left due to
the predominantly clockwise direction. Suzuka is known for its chal-
lenging nature and high tire degradation, making it an ideal test case
for strategy optimization under demanding conditions.

e Autodromo Internazionale Enzo e Dino Ferrari, Imola: A traditional
European circuit combining high-speed straights with slow technical
sections. The track features significant elevation changes, heavy brak-
ing zones (particularly at Tamburello and Rivazza chicanes), and lim-
ited overtaking opportunities. Imola’s layout creates substantial tire
temperature differentials and requires careful energy management, mak-
ing it an excellent test for ERS deployment strategies and fuel-tire
trade-offs.

The selection of these circuits was driven by the availability of professional-
grade LIDAR-scanned versions within the Assetto Corsa platform. LIDAR
scanning technology captures track geometry with millimeter-level precision,
including:

e Surface elevation variations and camber changes.
e Precise corner radii and track width measurements.
e Kerb profiles and run-off area topology.

e Micro-surface irregularities that affect tire contact patch behavior.

This level of detail significantly enhances the realism of the simulation
compared to manually modeled circuits, providing a more accurate represen-
tation of real-world racing conditions. The geometric accuracy of LIDAR-
scanned tracks, combined with the advanced physics modeling of the VRC
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Formula Alpha 2025, creates a validation environment that closely approxi-
mates actual Formula 1 operations.

For each circuit, multiple practice sessions were conducted to collect
telemetry data under various conditions, following the same data acquisi-
tion protocol established in the F'1 2025 validation phase. The collected data
included lap times, tire degradation patterns, fuel consumption rates, and
ERS deployment characteristics, all of which were used to parameterize the
optimization model for subsequent race simulations.

5.2.3. Expert Driver Feedback and Enhanced Realism

The involvement of a professional sim racing driver and the use of a
high-end hardware-in-the-loop setup significantly increased the realism of
the advanced simulation tests. The expert driver provided valuable feedback
on the quality and feasibility of the optimized strategies, offering practical
insights into their execution under realistic racing conditions. This feedback
allowed us to assess not only the theoretical optimality of the strategies, but
also their actual applicability and ease of implementation from a driver’s
perspective.

Furthermore, the advanced simulation environment enabled the collection
of more accurate and detailed data regarding both the track and the vehicle.
The use of LIDAR-scanned circuits and professionally validated car setups
ensured that the simulation closely matched real-world conditions, improv-
ing the reliability of the validation results and the overall credibility of the
proposed optimization framework.

5.3. Performance Analysis and Comparison

Having completed both initial and advanced validation phases, we now
present a comprehensive analysis of the empirical results. This section syn-
thesizes the performance data from both simulation platforms, evaluates the
optimizer’s predictions against actual race outcomes, and discusses the impli-
cations for practical deployment. A graphical representation of race times,
execution times and gaps can be found in Fig. The table summarizes
the results of the main validation tests performed in this work. Each row
corresponds to a specific test scenario, and the columns are organized as
follows. The first column lists the selected Grand Prix circuits used for the
tests. The second column indicates the reference test; the column "Strategy"
details the strategies used in each test, specifying the sequence of stints, the
tire compound for each stint, and the number of laps per stint (e.g., Medium

28



18 laps, Hard 40 laps). The following columns report the most important
performance data:

e Total Time: The total race time achieved in the test.

e Delta (Predicted vs. Actual): The difference between the predicted
and actual race time.

e Execution Time: The computational time required to generate the
strategy.

For the sake of readibility, for each column, green values indicate the fastest or
best-performing result among the tests, while red values indicate the slowest
or least favorable result. In the delta column, a red value means the predicted
time was slower than the actual time (undesirable), while a green value means
the predicted time was faster than the actual (desirable).
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Figure 2: Summary table of the various test scenarios, for each test 3 Grand Prix were

carried out, for each of these all the data of interest were recorded.
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The empirical results from the F1 2025 platform successfully validated the
efficacy of our approach under controlled conditions. Using data from three
simulated Free Practice sessions for the 2025 Texas Grand Prix, our optimizer
identified a 1-stop strategy (Medium-Hard tire sequence) as optimal. When
this strategy was executed in Test 2, it produced a total race time of 5653.645
seconds, which was 7.79 seconds faster than the simulator’s default 2-stop
strategy (Test 1).

The comparison with the dynamic programming approach of Carrasco
Heine et al. (Test 3) revealed that both methods identified similar strategic
structures (1-stop strategies), but our MILP formulation achieved the so-
lution in a fraction of the computational time while incorporating detailed
sector-level ERS management that the DP formulation does not address.

The most significant validation of our model comes from a direct compar-
ison with actual Formula 1 race results. The 2025 Texas Grand Prix (Circuit
of The Americas) was selected for this comparison because:

e Complete telemetry and timing data from Free Practice sessions was
publicly available, allowing accurate model parameterization.

e The race was conducted under stable dry conditions without Safety
Car interventions, matching our model’s design assumptions.

e The race strategy employed by the winner was fully documented and
analyzed in post-race technical reports.

The actual winner of the 2025 Texas Grand Prix, Max Verstappen, exe-
cuted a 1-stop strategy and completed the race in exactly 94 minutes (5640
seconds). Remarkably, our optimizer—when processing only the practice ses-
sion data available before the race—predicted an optimal 1-stop race time of
5642 seconds. This prediction differed from Verstappen’s actual winning time
by only 2 seconds, representing a prediction error of approximately 0.035%.

Furthermore, our executed race time in simulation (Test 2: 5653.645
seconds) differed from the real-world winner by only 13.6 seconds. This
small discrepancy can be attributed to several factors:

e Minor differences between the F1 2025 simulator’s physics model and
actual vehicle behavior.

e Human driver variability in executing the prescribed ERS deployment
strategy.
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e Approximations in the tire degradation model that average degradation
effects rather than modeling them continuously.

This two-part validation demonstrates both:

e Predictive accuracy: The model correctly identified the real-world win-
ning strategy structure (1-stop) and predicted race time with excep-
tional precision before the race was conducted.

e Practical viability: The computed strategy, when executed in simula-
tion, achieved performance competitive with the actual race winner,
validating that the strategy is not only theoretically optimal but also
practically executable.

These results provide strong empirical evidence that the MILP formu-
lation, captures the essential strategic dynamics of Formula 1 racing with
sufficient accuracy for real-world application.

6. Conclusions and Future Work

This work has presented an integrated simulation framework for Formula
1 race strategy optimization. The simulation framework is distinguished by
its ability to integrate a Mixed-Integer Linear Programming model, solved
via FICO Xpress.

The empirical results successfully validate the efficacy of our approach,
demonstrating both the predictive accuracy of the optimization model and
its practical viability when executed in high-fidelity simulation environments.

The current framework is designed to be extensible. While this work
focused on an a priori optimal strategy for a clean, dry-weather race, the
immediate next steps involve integrating Stochastic Programming models.
This will allow the system to account for the probability of uncertain events,
such as Safety Cars and weather changes, making the initial strategy more
robust.

Building on this, and given the high computational efficiency demon-
strated by the solver, the ultimate objective is to deploy the model for live,
intra-race re-optimization. We aim to integrate the system with live teleme-
try data acquired from the car during the Grand Prix. This would allow the
model to re-solve the complete optimization problem on a high-frequency
basis (potentially every second) using real-time data. This would transition
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the framework from a pre-race planner to a fully dynamic and adaptive tool,
capable of instantly recalculating the optimal strategy in response to actual
tire wear, fuel consumption, and competitive positioning.
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Appendix A. Professional Driver Integration

A critical enhancement in this validation phase was the engagement of
a professional sim racing driver, ensuring consistent high-level performance
and eliminating human variability as a confounding factor. His credentials
include:

Champion, S.T.E. RacingHub Formula 3 Championship (2020).

Qualifier, Spartan Racing Hub Indianapolis 500 (2023).

Multiple race victories on the iRacing professional platform.

Former Team Principal of a competitive Spartan Racing Team (Assetto
Corsa league).

The driver’s expertise ensured that strategy execution was optimal, maxi-
mizing the potential of each strategic approach and minimizing driver-induced
performance variability.

Appendixz A.1. Hardware-in-the-Loop Simulation

To achieve a semi-realistic simulation environment approaching profes-
sional driver-in-the-loop simulators used by Formula 1 teams, the following
hardware configuration was employed:

e Force Feedback System: Fanatec CSL DD direct-drive base with
8Nm torque output, providing realistic steering forces and tire feedback.

e Steering Wheel: Fanatec CSL Universal Hub V2 with Clubsport flat
rim, replicating F1-style steering geometry.

e Pedal System: Fanatec CSL Elite pedals equipped with hydraulic
load-cell brake, enabling precise brake modulation.

e Haptic Feedback: Woojer vest V2 providing vibrational feedback for
engine, tire slip, and track surface conditions.

e Visual Immersion: HP Reverb G2 V2 virtual reality headset (2160x2160
per eye resolution), providing accurate depth perception and peripheral
vision.
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e Motion Platform: Next Level Racing F-GT cockpit with rigid mount-
ing points, ensuring consistent driver positioning.

This hardware configuration represents a professional-level simulation
setup, significantly enhancing immersion and enabling the driver to extract
maximum performance while providing realistic physical feedback essential
for tire management and ERS deployment decisions.

Appendix B. Grand Prix Selection Rationale

In this section, we provide a detailed explanation of the criteria used for
selecting the Grand Prix circuits included in the validation tests.

The first three circuits, tested using F1 25, were chosen because they
exhibit markedly different characteristics and thus require the development
of distinct race strategies. These tracks differ significantly in layout, corner
types, and overall configuration, which allows for a comprehensive validation
of the ERS management system and the overall optimization framework. The
diversity among these circuits ensures that the model is robust and adaptable
to a wide range of real-world scenarios.

For the two Grand Prix used in the advanced simulation phase, the se-
lection was driven by the availability of laser-scanned tracks and the higher
precision of simulation parameters. The use of LIDAR-scanned circuits pro-
vides a much more accurate representation of the real-world track surface
and geometry, enabling the collection of highly reliable data for both the
vehicle and the environment. This choice allowed us to achieve the highest
possible level of realism in the validation process and to further strengthen
the credibility of the results.
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