
Fast Presolving Framework For Sparsity Constrained
Convex Quadratic Programming: Screening-Based Cut

Generation and Selection

Haozhe Tan1, Guanyi Wang1

1Department of Industrial Systems Engineering and Management,
National University of Singapore

February 14, 2026

Abstract

Screening is widely utilized for Mixed-Integer Programming (MIP) presolving. It aims
to certify a priori whether one or multiple specific binary variables can be fixed to optimal
values based on solutions from convex relaxations. This paper studies the challenge of solving
Sparsity-constrained (strongly) Convex Quadratic Programming (SCQP) and proposes the
Screening-based Cut Presolving Framework (SCPF). SCPF contains two parts: a Screening-
based Cut Generation (SCG) rule and a Screening-based Cut Selection (SCS) method. We show
that the SCG provides superior screening ability compared to existing screening methods, and
achieves a finer balance between screening effectiveness and computational overhead. We then
provide theoretical guarantees for the SCS method to ensure the selection of generated cuts with
high screening ability. Extensive numerical experiments validate the theoretical findings and
demonstrate that the proposed framework significantly outperforms state-of-the-art screening
methods. Notably, our SCPF achieves a 1.7× to 3.0× acceleration in total running time, especially
in challenging phases, across high-dimensional synthetic datasets, complex real-world instances,
and simulation libraries from sparse identification of nonlinear dynamics.

1 Introduction & Preliminary

Screening is a prevalently used presolving method for modern Mixed-Integer Programming (MIP)
solvers (Achterberg et al., 2020; Bestuzheva et al., 2021). It aims to certify a priori, before
implementing the exact Branch-and-Bound (BnB) algorithm, whether specific subsets of binary
variables can be fixed to their optimal values based on solutions obtained from convex relaxations,
thereby reducing the search space.

This paper studies screening methods for Sparsity-constrained (strongly) Convex Quadratic
Programming (SCQP). SCQP covers diverse applications in modern operations research (Gao and Li,
2013; Hazimeh and Mazumder, 2020), machine learning (Pilanci et al., 2015; Bertsimas et al., 2021),
and data analysis (which includes the widely studied Sparse Ridge Regression (SRR) (Bertsimas
and Van Parys, 2020; Askari et al., 2022) as a special case). SCQP is formulated as:

v∗ := min
β∈Rd

L(β) + γ∥β∥22 s.t. ∥β∥0 ≤ k , (1)

where L(β) := 1
2β

⊤Qβ + q⊤β is a convex quadratic function, γ > 0 is a parameter that describes
the level of strong convexity of objective. If the minimum eigenvalue of Q is strictly positive,
one can increase γ to γ + λmin(Q) while updating Q by a semidefinite matrix Q − λmin(Q)I.

1

The sparsity constraint ∥β∥0 ≤ k restricts the support size supp(β) := {i ∈ [[d]] | βi ≠ 0} to
at most k. In the MIP community, this sparsity constraint is typically modeled by introducing
“on-off” binary variables z ∈ Zk := {z ∈ {0, 1}d | 1⊤z ≤ k} and defining the feasible set as
Sk := {(β, z) ∈ Rd × Zk | βi(1− zi) = 0 ∀ i ∈ [[d]]}.

Screening methods rely on tractable convex relaxations of (1). To simplify the analysis, this
paper focuses on the widely adopted (Xie and Deng, 2020; Atamturk and Gomez, 2020; Liu et al.,
2023) perspective relaxation:

vrelax := minβ,z L(β) + γ
∑d

i=1 β
2
i /zi

s.t. z ∈ Zk
relax := {z ∈ [0, 1]d | 1⊤z ≤ k} ,

(2)

where the term β2
i /zi is defined as 0 if βi = zi = 0, and +∞ if βi ≠ 0, zi = 0. While tighter convex

relaxations based on decompositions of semidefinite matrices, polyhedral outer approximations,
and prospective reformulations exist (Frangioni et al., 2020; Han et al., 2022; Gómez and Xie,
2024; Atamturk and Gomez, 2025), establishing these decompositions by optimizing an additional
semidefinite programming is often computationally intractable, especially in presolving. Plus, finding
tighter relaxations is beyond the scope of this paper, and we emphasize that our proposed framework
can be directly applied to different convex relaxations.

For preliminary, variable screening certifies whether a single binary variable zi can be fixed to a
specific value zi ∈ {0, 1} by checking the optimality-based criterion: vrelax(zi) > vub. Here, vrelax(zi)
represents the (optimal) value function of the relaxation (2) restricted by an additional constraint
zi = zi, and vub is a valid upper bound for (1). If the criterion holds, zi is safely fixed to 1− zi in
(1). However, directly evaluating the optimality-based criterion is computationally expensive, as it
requires re-optimizing up to 2d restricted convex relaxations. To address this bottleneck, Atamturk
and Gomez (2020); Deza and Atamturk (2022) propose Safe Screening Rules (SSR) based on the
Fenchel dual reformulation of (2):

min(β,z)∈Rd×Zk
relax

L(β) + γ
∑d

i=1maxpi

(
piβi −

p2i
4 zi

)
= maxpmin(β,z)∈Rd×Zk

relax
L(β) + γ

∑d
i=1

(
piβi −

p2i
4 zi

)
.

(3)

Let its optimal primal-dual pair be (β̂, ẑ), p̂. Atamturk and Gomez (2020); Deza and Atamturk
(2022) derive computationally cheaper lower bounds on vrelax(zi) for screening, as summarized in
Proposition 1.

Proposition 1 (Restatement from Atamturk and Gomez (2020); Deza and Atamturk (2022); Safe
Screening Rules). 1

Given (β̂, ẑ), p̂ an optimal primal-dual pair of (3), assume there is no tie among components in
ŵ with ŵ := p̂ ◦ p̂. For any index j ∈ [[d]], the following SSR

zj =

{
0, if ŵj ≤ ŵ[k+1] and γ

ŵ[k]

4 − γ
ŵj

4 > vub − vrelax

1, if ŵj ≥ ŵ[k] and − γ
ŵ[k+1]

4 + γ
ŵj

4 > vub − vrelax

1We acknowledge that, a recent work, “Logic Rules and Chordal Graphs for Sparse Learning” by A. Deza, A.
Gómez, and A. Atamtürk (ISMP 2024), proposes a refined safe screening rule using chordal graphs. However, no
preprint is currently available (Jan/2026). Based on their presentation, our results differ significantly: we focus on a
novel Screening-based Cut Generation (SCG) rule that balances screening ability with computational overhead, and a
Screening-based Cut Selection (SCS) method with theoretical guarantees to improve computational efficiency.

2

screens whether a binary zj is zero or one in optimal solution set to (1). Here, we use ŵ[j] to denote
the j-th largest component of ŵ.

As a brief literature review, variable screening and its variants have proven effective across
various domains. In Mixed-Binary Linear Programming (MBLP), reduced-cost fixing methods
(Schürmann and Mutzel, 2023; Yang, 2025) perform efficiently by developing proper choice mechanisms
for Lagrangian dual multipliers. Recent advancements (Li et al., 2024; Jiang and Xie, 2025)
improve vanilla screening methods by considering multiple binary variables to derive optimality
cuts. Additionally, Dai and Chen (2025) demonstrates that prefixing pairs of binaries yields stronger
implications for screening. Beyond linear problems, Atamturk and Gomez (2020); Deza and Atamturk
(2022) provide scalable safe screening rules for SRR. Building on these concepts, Liu et al. (2023,
2025) propose a series of tailored BnB algorithms that incorporate screening-based safe lower bound
estimations for k-sparse generalized linear models.

However, as illustrated in Figure 1, challenges remain, especially in the relatively weak strong-
convexity regime (i.e., with low γ parameter, shaded light red and light yellow part, see subsection 4.2
part (T1) for details), across a wide range of typical SCQP problems. We observe that a significant
portion of binary variables remains difficult to certify using existing screening rules in presolving,
which motivates our central research question:

How and to what extent can we trade off between the effectiveness of screening and computational
cost based on given convex relaxations?

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
gamma

750

800

850

900

950

tim
e(

s)

48.7%44.5%

0.0%0.0%0.0%
Synthetic config: d = 5000, n = 200, SNR = 2, k = 10

SSR total running time
SSR binaries screened (%)

0.005 0.006 0.007 0.008 0.009 0.010
gamma

200

400

600

800

tim
e(

s)

34.8%

0.0%

0.0%0.0%0.0%
Dataset PERIOD_CHANGER : k = 10

SSR total running time
SSR binaries screened (%)

0.0006 0.0007 0.0008 0.0009 0.0010
gamma

600

650

700

750

800

850

900

tim
e(

s)

0.0%

0.0%

0.0%

0.0%0.0%
Lorenz system w.r.t. X : k = 8

SSR total running time
SSR binaries screened (%)

0.001 0.002 0.003 0.004 0.005
gamma

0

200

400

600

800

tim
e(

s)

97.9%

0.0%0.0%0.0%0.0%
MHD system w.r.t. V3 : k = 8

SSR total running time
SSR binaries screened (%)

Figure 1. Changes in the percentage of binaries screened by SSR & corresponding total running time
under different γ parameters for instances from synthetic dataset, real-world dataset, and simulation
library for Sparse Identification of Nonlinear Dynamics (SINDy).

1.1 Main Contributions & Paper Organization

To address the above research question, this paper proposes the Screening-based Cut Presolving
Framework (SCPF). This framework contains two key parts: (1) a Screening-based Cut Generation
(SCG) rule that achieves a finer balance between screening effectiveness and computational efficiency
in presolving, and (2) a Screening-based Cut Selection (SCS) method, which provides theoretical
guarantees for selecting SCG cuts with high screening potential to reduce total running time further.
The main contributions are detailed below in correspondence with the paper’s organization.

1. section 2 introduces the SCG rule. The proposed SCG rule provides three advantages over
existing methods. First, the SCG rule balances computational efficiency with screening ability,
which informally refers to the capacity to generate cuts. This is achieved by (i) simultaneously
analyzing any specific support pattern, other than a single binary, and by (ii) designing efficient
underestimations of the value function. In contrast to existing methods, our SCG rule eliminates the

3

need to exactly re-optimize relaxations over all desired patterns for support-set reduction. Second,
SCG rule operates independently of the optimal solution ẑ to relaxations (3). This independence
provides the flexibility to generate SCG cuts from multiple supports in presolving. Third, from a
conceptual perspective, SCG can be interpreted as a generalized, optimality-based cutting plane
algorithm applied to support-space reduction, an application we believe to be novel in the context
of presolving. Additionally, section 2 characterizes the k-cardinality constrained Knapsack polytope
(k-Knap) and analyzes its connections to the enumeration of generated SCG cuts. We believe this
analysis will provide an initial step toward assessing the closure of tightness of SCG cuts as an outer
approximation of the optimal solution set to (1).

2. section 3 develops the SCS method to improve computational efficiency with theoretical
guarantees. We present necessary and sufficient conditions for certifying minimal SCG tuples that
generate undominated screening cuts. Using the properties of the k-Knap polytope, we translate the
geometric/set properties of generated SCG cuts into algebraic rules implementable in the SCPF.
Furthermore, subsection 3.2 introduces a criterion to quantify the “(potential) screening ability”
of the generated cuts, allowing us to focus on specific types of effective undominated cuts with
algorithmic guarantees. Integrating these two components, subsection 3.3 formalizes the complete
SCPF algorithm and establishes its algorithmic soundness.

3. Lastly, section 4 reports numerical experiments to validate our theoretical findings and
demonstrate the practical advantages of the proposed SCPF. The numerical results demonstrate that:
(i) the SCPF outperforms existing baselines, particularly in challenging scenarios, achieving a 1.7×
to 3.0× acceleration in total runtime; (ii) the multi-support SCPF variant exhibits strictly stronger
screening ability than the single-support SCPF, leading to significant runtime reductions in some
specific cases; and (iii) the SCS method is crucial in practice by ensuring that only undominated
and effective cuts are generated in our SCPF, which substantially improves the performance of the
subsequent BnB step.

The paper roadmap is presented below. Rectangular blocks represent the main contributions. A
solid arrow (A→ B) indicates mathematical derivation; a double-stemmed arrow (A⇒ B) indicates
establishment; a double-headed & double-stemmed arrow (A ⇔ B) indicates equivalence; and a
dashed arrow (A 99K B) indicates motivation.

Theorem 1
SCG rule

Theorem 2
SCS I. Undominatedness

Algorithms 1 and 2
SCPF design

Formulation (6)
k-Knap representation

Proposition 3
Enumerate undominated cuts

subsection 3.2
SCS II. Effectiveness

1.2 Notation

We use lowercase letters, e.g., x, boldface lowercase letters, e.g., x, and boldface uppercase letters,
e.g., X, to represent scalars, vectors, and matrices, respectively. Let 1 denote the all-ones vector.
For two integers a, b with a ≤ b, we write [[a, b]] := {a, . . . , b} and use [[b]] := {1, . . . , b} as shorthand.
Given two sets S, T , we use |S| to denote the cardinality of set S and S \ T to denote the set
difference.

Given a vector x ∈ Rd, for any i ∈ [[d]], we write (x)i or xi to denote the i-th component in
x without further explanations. We use square brackets (x)[k] or x[k] to denote the k-th largest

4

component, and x := x[d] to be the smallest component (i.e., mini∈[[d]] xi). Let supp(x) be the support
set of x, and Topp(x) be the index set with respect to top-p largest components in x (ties breaking
lexicographically). For vectors x,y ∈ Rd, the Hadamard product is x ◦ y, defined componentwise by
(x ◦ y)i := xiyi. For an index subset S ⊆ [[d]], let xS ∈ R|S| be the subvector of x with its entries
restricted on index subset S. We use eS ∈ Rd to denote the indicator vector of S ⊆ [[d]], with ones
on S and zeros otherwise.

2 SCG Rule

As outlined in subsection 1.1, the SCG rule optimizes the trade-off between screening ability and
computational efficiency. Unlike existing methods, our SCG rule (i) enhances screening ability by
jointly evaluating multiple binary variables, and (ii) employs efficient value function underestimations,
thereby eliminating the need to re-optimize relaxations for every support pattern. Formally, for
disjoint index subsets S,N ⊆ [[d]] with |S| ≤ k, SCG rule aims to certify the optimality-based criterion
vrelax(S,N) > vub, where the restricted (optimal) value function is defined as: vrelax(S,N) :=
min(β,z)∈Rd×Zk

relax
L(β) + γ

∑d
j=1 β

2
j /zj s.t. zi = 1 ∀i ∈ S, zi = 0 ∀i ∈ N. Validating this criterion

implies that any feasible support with zi = 1 for all i ∈ S and zi = 0 for all i ∈ N is strictly
non-optimal. However, since the number of potential tuples (S,N) grows exponentially with respect
to |S| and |N |, exhaustively re-optimizing vrelax(S,N) for all tuples of interest is computationally
intractable in presolving. Thus, the central challenge is to develop a scalable underestimation strategy,
which we present in Theorem 1.

We first introduce the definition of an SCG-tuple, which serves as the basis for the above
underestimations. Let z ∈ Zk

relax be any primal feasible support. Consider the corresponding
restricted Fenchel dual reformulation problem: vrelax(z) := minβ maxp L(β)+γ

∑d
i=1

(
piβi −

p2i
4 zi

)
.

Let
(
β̂(z), p̂(z)

)
be an optimal primal-dual pair to the above problem, and set ŵ(z) := p̂(z) ◦ p̂(z).

Definition 1 (SCG-tuple (z, S,N,C)). Assume there is no tie in ŵ = ŵ(z). For any two disjoint
index subsets S,N ⊆ [[d]] with |S| ≤ k, we define the quartet (z, S,N,C) as an SCG-tuple, where
C = C(ŵ(z), S,N) :=

{
i ∈ R | ŵi ≥ (ŵR)[c]

}
with R := [[d]] \ (S ∪N) and c := min{k − |S|, |R|}.

Specifically, when c = 0, we set C := ∅.

Notably, set C is uniquely determined by vector ŵ(z) and sets S,N as the “best” possible set
that, combining with S, forms a support set of size k to (1).

We are now poised to present the SCG rule in Theorem 1.

Theorem 1. Assume there is no tie in ŵ(z). Given a SCG-tuple (z, S,N,C), if the following
optimality-based criterion:

vlbrelax(z, S,N,C) := L(β̂(z)) + γ⟨p̂(z), β̂(z)⟩ − γ

4

∑
i∈(S∪C)

(ŵ(z))i > vub (4)

holds, the proposed SCG rule certifies the optimality-based criteria vrelax(S,N) > vub and equivalently,
the following screening-based cutting plane

∑
i∈S zi +

∑
i∈N (1− zi) ≤ |S|+ |N | − 1 eliminates some

non-optimal but remains all optimal solutions for (1). Additionally, we call a SCG-tuple (z, S,N,C)
a valid SCG-tuple if (z, S,N,C) also ensures the above inequality (4).

5

Proof. Consider the Fenchel dual reformulation of vrelax(S,N):

vrelax(S,N) = min(β,z)∈Rd×Zk
relax(S,N)maxp L(β) + γ

∑d
i=1(piβi −

p2i
4 zi)

= maxpmin(β,z)∈Rd×Zk
relax(S,N) L(β) + γ

∑d
i=1(piβi −

p2i
4 zi)

where Zk
relax(S,N) := Zk

relax∩{z ∈ Rd | zi = 1 ∀i ∈ S, zj = 0 ∀j ∈ N} and the second equality holds
by the strong duality based on linearity constraint qualification (LCQ). A lower bound of vrelax(S,N)
can be obtained by plugging in p̂(z) to the outer maximization vrelax(S,N) ≥ vlbrelax(z, S,N,C),
where vlbrelax(z, S,N,C) := minβ f1(β; p̂(z))−maxz∈Zk

relax(S,N) f2(z; p̂(z)) can be represented as the
difference of two subproblems with f1(β; p̂(z)) := L(β) + γ⟨p̂(z),β⟩ and f2(z; p̂(z)) :=

γ
4 ⟨ŵ(z), z⟩,

respectively.
To minimize f1(β; p̂(z)) over β, it is easy to verify that β̂(z) is an optimal solution due to β̂(z)

and p̂(z) are optimal primal-dual pairs to vrelax(z). To minimize f2(z; p̂(z)), we need to choose
k largest components in ŵ(z) while maintaining the feasibility requirement z ∈ Zk

relax(S,N). By
definition of SCG-tuple (z, S,N,C), we have zi = 1 for i ∈ (S ∪C) at optimality. Therefore, we have
vlbrelax(z, S,N,C) = L(β̂(z))+γ⟨p̂(z), β̂(z)⟩− γ

4

∑
i∈(S∪C)(ŵ(z))i. If the optimality-based criterion (4)

holds, we have vlbrelax(S,N) > vub, thus any feasible solution of (1) with zi = 1 for i ∈ S and zj = 0 for
j ∈ N cannot be optimal, and we can add screening-based cut

∑
i∈S zi+

∑
i∈N (1−zi) ≤ |S|+ |N |−1

to remove all such feasible points but maintain all optimal solutions.

One can relax the condition “assume there is no tie in ŵ(z)” by breaking ties lexicographically
for the set C. Furthermore, the proof of Theorem 1 extends to general sparsity-constrained convex
programming beyond the quadratic setting, thereby broadening the applicability of Theorem 1.

The SCG rule achieves a favorable trade-off between screening ability and computational efficiency.
By simultaneously constraining multiple binary variables, our SCG rule strengthens screening ability
compared to single-variable fixing techniques (Atamturk and Gomez, 2020; Deza and Atamturk,
2022; Yang, 2025; Yamagishi et al., 2026). Moreover, unlike methods that require re-optimizing
relaxations for every desired subset pair (S,N) (Li et al., 2024; Jiang and Xie, 2025; D’Ambrosio
et al., 2026), Theorem 1 efficiently estimates lower bounds of vrelax(S,N) based on a single relaxed
support z ∈ Zk

relax, which significantly reduces the computational burden from all interested pairs of
subsets (S,N) to one or several chosen relaxed supports, as discussed below.

Since Theorem 1 does not specify the choice of support z, a natural extension is to generate
cuts based on a sequence of deserved “relaxed” supports {z(t)}Tt=1 ∈ Zk

relax. If the multi-support
optimality-based criterion

T
max
t=1

vlbrelax(z
(t), S,N,C(t)) > vub (5)

holds, the corresponding SCG cut
∑

i∈S zi+
∑

i∈N (1− zi) ≤ |S|+ |N | − 1 is valid for (1). Numerical
experiments further indicate that, with a proper choice of multiple supports, the resulting SCG rule
provides a strictly stronger screening ability on most challenging settings, and leads to significant
runtime reductions on some specific instances, see Figure 3 in section 4. Note that a very recent
work by Yamagishi et al. (2026) introduces a dual-path fixing method, which performs single-variable
fixing using a path of dual feasible solutions generated from the root-node relaxation of MILPs. In
contrast, our multi-support SCG method employs a fundamentally different strategy. Rather than
relying solely on root-node information, we construct dual feasible solutions based on a sequence
of “relaxed” supports {z(t)}Tt=1 selected for their diversity and representativeness. This approach
essentially incorporates optimal relaxation information from targeted child nodes, thereby ensuring

6

a greater possibility to satisfy the multi-support optimality-based criterion (5). Further details on
multi-support SCG are provided in Appendix B.1.

For researchers of independent interest, the criterion in (4) can be interpreted as a generalized,
optimality-based cutting plane algorithm applied to support-space reduction. This is obtained by
reformulating (4) as:

vlbrelax(z, S,N,C) = vrelax(z) +
γ

4
⟨−ŵ(z), eS∪C − z⟩

with vrelax(z) = L(β̂(z))+γ⟨p̂(z), β̂(z)⟩− γ
4 ⟨ŵ(z), z⟩. While conceptually this framework aligns with

optimality-based cutting plane algorithms or outer approximations (Tawarmalani and Sahinidis, 2004;
Bertsimas and Cory-Wright, 2022; Wei and Küçükyavuz, 2024; Bui et al., 2025) and Lagrangian cut
generation (Zou et al., 2018; Chen and Luedtke, 2022; Deng and Xie, 2024), our method distinguishes
itself through its efficiency. Specifically, the SCG rule leverages dual multipliers from a single relaxed
support z ∈ Zk

relax to underestimate value functions across numerous subset pairs, without expensive
re-optimization. To the best of our knowledge, it is the first time that an efficient cutting plane
algorithm is applied specifically to support-space reduction in presolving.

We summarize the hierarchy of screening-based methods in the following diagram:

v∗(S,N)
[exact] ≥ vrelax(S,N)

[26; 24; 14]

exact optimize over all (S,N)

≥ vlbrelax({z(t)}, S,N, {C(t)})
[Theorem 1; 34∗]

≥ vlbrelax(ẑ, zi)
[3; 17]

underestimate by supports (cutting plane algo)

opt criteria
≥ vub ≥ v∗

∗: The dual-path fixing proposed in Yamagishi et al. (2026) only applies to single-variable case, i.e., |S ∪N | = 1.

Moving from left to right, the tightness of the lower bound decreases while computational
efficiency increases. The green dotted line separates methods based on exact re-optimization (left),
which are generally intractable for presolving, from our proposed estimation methods (right), which
leverage dual multipliers over specific supports to ensure efficiency.

We now give an equivalent condition for valid SCG-tuples, formalized in Corollary 1. These
conditions serve as a foundation for Theorem 2. The proof is provided in Appendix A.1.

Corollary 1. Given some z ∈ Zk
relax, assume there is no tie in ŵ = ŵ(z). We have (z, S,N,C) is

a valid SCG-tuple if and only if the following three conditions hold simultaneously:

(1) S,N,C ⊆ [[d]] are pair-wisely disjoint with |C| = min{k − |S|, d− |N | − |S|};

(2) If C ̸= ∅, then I(C) ⊆ (S ∪N ∪ C), where I(C) := {i ∈ [[d]] : ŵi ≥ ŵC};

(3) vlbrelax(z, S,N,C) > vub.

To facilitate the enumeration and selection of SCG cuts (as detailed in section 3), we refor-
mulate the validity condition (4) as a packing constraint

∑
i∈(S∪C)(ŵ(z))i < q(z) with q(z) :=

4
γ

(
L(β̂(z)) + γ⟨p̂(z), β̂(z)⟩ − vub

)
. Then, define k-cardinality-constrained binary knapsack polytope

K(z) as
K(z) :=

{
x ∈ {0, 1}d

∣∣∣ ∑d
i=1(ŵ(z))i · xi < q(z), ∥x∥0 ≤ k

}
. (6)

There is a direct connection between valid SCG-tuples and the set K(z). Specifically, every
valid SCG-tuple (z, S,N,C) maps to a feasible point x ∈ K(z) with supp(x) = S ∪ C. Conversely,

7

assuming K(z) ̸= ∅ and q(z) > 0, every x ∈ K(z) generates at least 2|supp(x)| valid SCG-tuples by
setting N = [[d]] \ supp(x) and partitioning supp(x) into disjoint sets S and C. Based on the above
connection, incorporating all corresponding SCG cuts to the original problem (1) is computationally
impractical. Consequently, section 3 utilizes the structure of K(z) to systematically enumerate and
select only those cuts that come with guarantees on their effectiveness.

3 SCS Method

Building upon the SCG rule, this section studies the enumeration and selection methods of screening
cuts (see subsection 3.1 and subsection 3.2) to enhance SCG performance and reduce total running
time. These two parts are then unified to establish our Screening-based Cut Presolving Framework
(SCPF), as detailed in subsection 3.3. To streamline the exposition and without loss of generality,
we adopt the following assumption throughout this section.

Assumption 1. For any fixed z ∈ Zk
relax, (i) there is no tie in ŵ(z); and (ii) components in ŵ(z)

are in a decreasing order, i.e., ŵ(z)1 > · · · > ŵ(z)d.

3.1 Selection by Undominatedness

We begin by establishing a proposition regarding cut domination.

Proposition 2. Given any z ∈ Zk
relax, suppose (z, S,N,C) is a valid SCG-tuple. We have any

SCG-tuple (z, S′, N ′, C ′) with S ⊆ S′ and N ⊆ N ′ is also valid. Moreover, the cut generated by
(z, S′, N ′, C ′) is dominated by the cut generated by (z, S,N,C).

The proof is given in Appendix A.2. As an illustrative example, consider an index i ∈ [[d]] for
which the SCG rule generates zi = 0 based on the valid SCG-tuple

(
z, {i}, ∅, Topk−1(ŵ(z))

)
. Then

all cuts of the form zi + zj ≤ 1 with j ∈ [[d]] \ {i} are also technically valid. However, Proposition 2
ensures that these cuts of form zi + zj ≤ 1, ∀ j ∈ [[d]] \ {i} are redundant and need not be added
to (1). Motivated by Proposition 2, we introduce the definition of a minimal SCG-tuple to avoid
dominated cuts and enhance computational efficiency.

Definition 2. We call a valid SCG-tuple (z, S,N,C) a minimal SCG-tuple if the following two
conditions hold simultaneously:

(1) N = ∅, or (z, S,N \ {i}, C) cannot form a valid SCG-tuple for any i ∈ N ,

(2) S = ∅, or (z, S \ {i}, N,C ∪ {i}) cannot form a valid SCG-tuple for any i ∈ S.

We now establish necessary and sufficient algebraic conditions for the minimality of a valid
SCG-tuple.

Theorem 2. Suppose Assumption 1 holds. Given any z ∈ Zk
relax, for a valid SCG-tuple (z, S,N,C),

we have:

• Case 1. If |N | > d− k, then (z, S,N,C) is minimal if and only if S = ∅.

• Case 2. If |N | ≤ d − k and C = ∅, then (z, S,N,C) is minimal if and only if N = ∅ and
maxi∈S (ŵ)i < (ŵ)[1].

8

• Case 3. If |N | ≤ d− k and C ≠ ∅, then (z, S,N,C) is minimal if and only if the following
two conditions hold simultaneously:

(1) N = ∅, or ŵN ≥ ŵC ;

(2) S = ∅, or there exists some index j /∈ (S ∪N ∪ C) such that ŵC > (ŵ)j > maxi∈S (ŵ)i.

Proof. To establish minimality of a valid SCG-tuple, we verify that every single-element modification
breaks validity by checking the conditions in Corollary 1. Our approach primarily relies on proof by
contradiction.

Proof of Case 1. Assume |N | > d− k. Thus S ∪N ∪ C = [[d]] and |S ∪ C| < k.
(⇐): If S = ∅, it suffices to show that (z, ∅, N \ {i}, C) is not valid for any i ∈ N . It violates (1)

in Corollary 1 where |C| = d− |N | ≠ min{k, d− |N |+ 1}.
(⇒): Prove by contradiction. Suppose S ̸= ∅. Then for any i ∈ S, (z, S \ {i}, N,C ∪{i}) is valid

SCG-tuple by verifying Corollary 1. This contradicts minimality, so S = ∅.
Proof of Case 2. Assume |N | ≤ d− k and C = ∅. Thus |S| = k. Denote i∗ = argmaxi(ŵ)i.
(⇐): If N = ∅ and i∗ /∈ S, it suffices to show that for any j ∈ S, (z, S \ {j}, ∅, {j}) is not valid.

It violates (2) in Corollary 1 where ŵi∗ > ŵj but i∗ /∈ S.
(⇒): If (z, S,N, ∅) is minimal, we first show N = ∅ and then i∗ /∈ S.

• Prove by contradiction. If N ≠ ∅, for any i ∈ N , (z, S,N \ {i}, ∅) is valid by verifying
Corollary 1, contradicting minimality. Thus N = ∅.

• Now we have (z, S, ∅, ∅) is minimal. Prove by contradiction. If i∗ ∈ S, consider SCG-tuple
(z, S \ {i∗}, ∅, {i∗}), which is valid by verifying Corollary 1, contradicting minimality. Thus
i∗ /∈ S.

Proof of Case 3. Assume |N | ≤ d− k and C ̸= ∅. Thus |S|+ |C| = k. We prove the case in
two parts: first establishing the equivalence on minimality conditions for N , then conclude the proof.

Minimality on set N . We first establish the equivalence of condition (1) in Definition 2 with
condition (1) in Theorem 2. Without loss of generality, assume N ̸= ∅.

(⇐): If ŵN ≥ ŵC , for any i ∈ N , the SCG-tuple (z, S,N \ {i}, C) is not valid since i ∈ I(C)
but i /∈ (S ∪ (N \ {i}) ∪ C), violating (2) in Corollary 1.

(⇒): Prove by contradiction. Suppose there exists j ∈ N such that ŵj < ŵC . Thus j /∈ I(C).
Consider SCG-tuple (z, S,N \ {j}, C), which is valid by verifying Corollary 1. Contradiction with
minimality on N .

Minimality on set S. To complete the proof, it is sufficient to show that the minimality conditions
on S is equivalent between Definition 2 and Theorem 2, with N = ∅, or ŵN ≥ ŵC holds. For the
nontrivial case, assume S ̸= ∅.

(⇐): If such j exists, for any i′ ∈ S, consider SCG-tuple (z, S \ {i′}, N,C ∪ {i′}). It is not valid
since we have ŵj > maxi∈S(ŵ)i ≥ ŵi′ , and thus ŵj > ŵC∪{i′}, but j /∈ (S \ {i′}) ∪N ∪ (C ∪ {i′}),
violating (2) in Corollary 1.

(⇒): There are two steps to prove such j exists.

• Suppose there exists some i′ ∈ S such that ŵi′ ≥ ŵC . Consider SCG-tuple (z, S \ {i′}, N,C ∪
{i′}). Then I(C ∪ {i′}) = I(C) ⊆ S ∪ N ∪ C, thus it is valid by verifying Corollary 1.
Contradiction, and we have maxi∈S ŵi < ŵC .

9

• Since we know N = ∅, or ŵN ≥ ŵC , it suffices to prove that there exists some j /∈ (S∪C) such
that ŵC > ŵj > maxi∈S ŵi. Suppose not. Denote i′ = argmaxi∈S ŵi. Consider SCG-tuple
(z, S \ {i′}, N,C ∪ {i′}). Then I(C ∪ {i′}) = I(C) ∪ {i′} ⊆ S ∪N ∪ C. It is valid by verifying
Corollary 1. Contradiction, and we are done.

Note that the validity and minimality of an SCG-tuple depend on the chosen support z ∈ Zk
relax.

As illustrated in Appendix D.2, the multi-support SCG rule can generate minimal screening cuts
that are inaccessible to the single-support SCG rule.

To analyze the connection between any point x ∈ K(z) and corresponding minimal SCG-tuples
(based on Theorem 2 and (6)), we introduce the following definitions regarding index partitioning.

Definition 3 (Consecutive index set & Minimum consecutive partition). A non-empty index set
A ⊆ [[d]] is called a consecutive index set if, for every index i ∈ A, one of the following three cases
holds: {i} = A, i+ 1 ∈ A, or i− 1 ∈ A.

The minimum consecutive partition of an index set is the unique partition that decomposes the
set into the minimum number of disjoint consecutive index sets.

For example, there are several ways to partition an index set I = {2, 3, 5, 6, 9} into disjoint
consecutive index sets, such as {2, 3}∪{5, 6}∪{9} or {2}∪{3}∪{5, 6}∪{9} or {2}∪{3}∪{5}∪{6}∪{9},
respectively. Among all above partitions, the minimum consecutive partition of I is {2, 3}∪{5, 6}∪{9}.
Recall that under Assumption 1, the components of ŵ(z) are strictly decreasing. We define the
complementary index set as follows.

Definition 4 (Complementary index set). Given a non-empty index subset A ⊆ [[d]], the comple-
mentary index set of A is defined as comp(A) := {i ∈ [[d]] | i /∈ A and ∃ j ∈ A such that i < j}.

Using these definitions, consider any non-trivial point 0 ̸= x ∈ K(z). Let the minimum consecu-
tive partition of its support be supp(x) =

⋃m
j=1Aj(x) for some m ≤ k, where each consecutive set is

written as Aj(x) := {i(j)1 , . . . , i
(j)
|Aj |}. Then the minimum consecutive partition of the complementary

set comp(supp(x)) can be expressed as ∪mj=1Bj(x), where Bj(x) := {i(j−1)
|Aj−1| + 1, . . . , i

(j)
1 − 1} ∀j =

1, . . . ,m, with i
(0)
|A0| = 0. Note that B1(x) may be empty. This structure allows us to characterize

minimal SCG-tuples based on feasible points in K(z).

Proposition 3. Suppose Assumption 1 holds. For any non-trivial x ∈ K(z) with z ∈ Zk
relax,

let the minimum consecutive partitions of supp(x) and comp(supp(x)) be supp(x) = ∪mj=1Aj(x)
and comp(supp(x)) = ∪mj=1Bj(x) with some m ≤ k. Then, one can construct minimal SCG-tuple
(z, S,N,C) with S ∪ C = supp(x) as follows:

(1) If |supp(x)| < k, then

(z, S,N,C) = (z, ∅, [[d]] \ supp(x), supp(x))

is a minimal SCG-tuple.

(2) If |supp(x)| = k, for ℓ = 1, . . . ,m− 1, we have the following SCG-tuple

(z, S,N,C) =
(
z,∪mj=ℓ+1Aj(x), ∪ℓj=1Bj(x), ∪ℓj=1Aj(x)

)
10

is minimal. For boundary cases ℓ = 0 and ℓ = m, define

(z, S1, N1, C1) = (z, supp(x), ∅, ∅), and
(z, S2, N2, C2) = (z, ∅, comp(supp(x)), supp(x)),

respectively. The SCG-tuple (z, S2, N2, C2) is always minimal. Moreover, if B1(x) ̸= ∅, the
SCG-tuple (z, S1, N1, C1) is minimal as well.

The proof is presented in Appendix A.3. Based on this construction, one can generate at most
m+ 1 minimal SCG-tuples (and corresponding screening cuts) from any non-trivial point x ∈ K(z).

3.2 Selection by Effectiveness

However, undominatedness is a necessary but insufficient condition to ensure computational effective-
ness for cut selection (see Appendix D.1 for details). Consider a minimal SCG-tuple (z, supp(x), ∅, ∅)
characterized in Proposition 3, where B1(x) ̸= ∅. The resulting cut,

∑
i∈supp(x) zi ≤ |supp(x)| − 1,

eliminates only a single feasible support from (1), which offers negligible reduction in support space.
To address this issue, we introduce the concept of (potential) screening ability, which quantifies the
maximum number of feasible supports eliminated by a cut.

Definition 5. Given a valid SCG-tuple (z, S,N,C) and corresponding screening cut
∑

i∈S zi +∑
i∈N (1−zi) ≤ |S|+ |N |−1, its (potential) screening ability refers to the number of feasible solutions

eliminated by incorporating the above cut into the original problem (1), which is
∑|C|

i=0

(
d−|S∪N |

i

)
.

The proof of this bound is given in Appendix A.4. We distinguish Definition 5 from the screening
ability of an algorithm, which informally refers to the algorithm’s capacity to generate cuts.

It follows from Definition 5 that minimizing |S ∪N | while maximizing |C| enhances potential
screening ability. In practice, however, cuts are incorporated sequentially and collectively. The
number of additional non-optimal supports removed by a specific cut, based on the set of previously
selected cuts, is termed by (marginal) screening ability. Since marginal screening ability is state-
dependent and difficult to estimate, we use potential screening ability as a tractable performance
metric in section 4.

To simplify the analysis, we focus on two specific types of cuts2: inclusive cuts and exclusive
cuts, which enforce that at least one candidate binary variable is included in or excluded from the
optimal support, respectively. Recall that we proceed under Assumption 1.

Inclusive cuts. The first type of screening cuts takes the form:
∑

i∈N zi ≥ 1. These inclusive cuts
ensure that any optimal solution to (1) must contain at least one index from the set N . Applying
Proposition 3 with S = ∅ and C = supp(x) for some x ∈ K(z), we derive the corresponding minimal
SCG-tuple:

(z, S,N,C) =

{
(z, ∅, [[d]] \ supp(x), supp(x)) if |supp(x)| < k
(z, ∅, comp(supp(x)), supp(x)) if |supp(x)| = k

When |supp(x)| < k, the cardinality of N becomes d−|supp(x)|, which is typically large. As noted in
Definition 5, a larger |N | significantly weakens the potential screening ability. Therefore, we restrict

2Preliminary experiments also considered one-dominate-another cuts of the form zi ≤ zj , which, however, were less
effective in practice: they offer weaker potential screening ability than inclusive cuts and are more difficult to generate
than exclusive cuts in challenging phases. Thus, this type of cut is omitted in the manuscript.

11

our focus to the subset of full-cardinality supports, defined as T (z) := {x ∈ K(z) | |supp(x)| = k}.
The corresponding minimal SCG-tuples are (z, ∅, comp(supp(x)), supp(x)).

To analyze these inclusive cuts efficiently, we partition T (z) based on the largest index in support
supp(x) as T (z) = ∪di=1Ti(z), where

Ti(z) := {x ∈ T (z)
∣∣ supp(x) ⊆ [[i]], i ∈ supp(x)} . (7)

Under Assumption 1 (descending weights), it follows that Ti(z) = ∅ for all i ≤ k. Specifically,
for i = k, the only candidate is supp(x) = [[k]]. However, the optimality-based criterion (4) leads
⟨ŵ(z),x⟩ ≥ q(z), which contradicts x ∈ K(z). Thus, we consider only the range i ∈ {k + 1, . . . , d}
with T (z) = ∪di=k+1Ti(z). The following Claim 1 characterizes the non-emptiness of these subsets.

Claim 1. Given Ti(z) with i ∈ [[k + 1, d]], Ti(z) ̸= ∅ if and only if there exists some x′ ∈ K(z) with
supp(x′) = [[i− (k − 1), i]]. Moreover, if Ti(z) ̸= ∅, we have Tj(z) ̸= ∅ for all j = i+ 1, . . . , d.

The proof is provided in Appendix A.5. This monotonicity property implies that identifying all
non-empty sets Ti(z) is equivalent to finding the smallest index s ∈ [[k + 1, d]] such that Ts(z) ̸= ∅.
This equivalence is applied in designing Algorithm 1.

Exclusive cuts. The second type of screening cuts takes the form
∑

i∈S zi ≤ |S| − 1. These
exclusive cuts ensure that the indices in S cannot simultaneously constitute a subset of the support
in any optimal solution to (1).

Recall the minimal consecutive partitions of supp(x) and comp(supp(x)) are supp(x) = ∪mj=1Aj(x)
and comp(supp(x)) = ∪mj=1Bj(x). According to Proposition 3, for any x ∈ K(z) with |supp(x)| = k,
the resulting minimal SCG-tuples are

(z, S,N,C) =

{
(z, supp(x), ∅, ∅) if B1(x) ̸= ∅
(z,∪mj=2Aj(x), ∅, A1(x)) if B1(x) = ∅

.

When B1(x) ̸= ∅, the corresponding exclusive cut eliminates only a single feasible solution, which
gives negligible screening ability. Therefore, the exclusive cut generation method restricts attention
to the subset with B1(x) = ∅ (implying 1 ∈ supp(x)), which is defined as

T ′(z) := {x ∈ T (z)
∣∣ B1(x) = ∅} = {x ∈ T (z)

∣∣ 1 ∈ supp(x)} .

The minimal SCG-tuples for the above set are (z,∪mj=2Aj(x), ∅, A1(x)), which yields minimal cuts
with |

∑m
j=2Aj(x)| = k−|A1(x)| binaries. Similarly, we partition T ′(z) based on the first consecutive

index set A1(x) as T ′(z) = ∪di=1T ′
i (z), where

T ′
i (z) := {x ∈ T (z)

∣∣ A1(x) = [[i]]} (8)

Similarly, under Assumption 1, it follows that T ′
i (z) = ∅ for all i ∈ {k, . . . , d}. Thus, we consider

only the range i ∈ {1, . . . , k − 1}. Claim 2 provides a necessary and sufficient condition to certify
the non-emptiness of T ′

i (z).

Claim 2. Given T ′
i (z) with i ∈ [[1, k − 1]], we have T ′

i (z) ̸= ∅ if and only if there exists some
x′ ∈ K(z) with supp(x′) = [[i]] ∪ [[d− (k − i− 1), d]]; Furthermore, if T ′

i (z) ̸= ∅, we have T ′
j (z) ̸= ∅,

for all j = 1, . . . , i− 1.

12

Algorithm 1: SCPF(K(z), ♯max, ♯len)
Input : knapsack polytope K(z), max number of cuts ♯max, max length of cuts ♯len
Output :Generated screening cuts Scuts
Initialize Scuts = ∅;
Set SR = SRinc or SR = SRexc from (9) or (10), set stopflag = false;
Initialize starting search index sinc or sexc from (11); // STEP 1
while stopflag ̸= true do

Enumerate supports in Ts(z) or T ′
s (z), see e.g. Algorithm 3; // STEP 2

foreach x ∈ Ts(z) or T ′
s (z) do

Add inclusive/exclusive cut into Scuts;
Update ♯max = ♯max − 1;
if ♯max ≤ 0 then

set stopflag = true;
break;

Update search index: s← s+ 1 (inclusive) or s← s− 1 (exclusive);
if s ∈ SR then

set stopflag = false;
else

set stopflag = true;

return Scuts;

The proof of Claim 2 is given in Appendix A.6. This claim is then used in the design of
Algorithm 1.

In summary, the SCPF selects undominated cuts with greater potential screening ability, which
corresponds to minimizing the number of variables involved in the cut (i.e., minimizing |S ∪N |). For
inclusive cut generation, given x ∈ Ti(z) ̸= ∅, the cut involves i− k binary variables. To maximize
screening ability, our SCPF searches for the smallest index i ∈ {k + 1, . . . , d} such that Ti(z) ̸= ∅.
In contrast, for exclusive cut generation, given x ∈ T ′

i (z) ̸= ∅, the cut involves k − i binary variables.
To maximize screening ability, the SCPF searches for the largest index i ∈ {1, . . . , k − 1} such that
T ′
i (z) ̸= ∅.

3.3 SCPF Design

Combining the results from subsection 3.1 and subsection 3.2, we present the SCPF in Algorithm 1.
The SCPF balances the effectiveness of the generated cuts against the computational cost of
incorporating these cuts into the original problem (1). The cut selection process follows a hierarchical
criteria structure (in descending order of priority): (1) ensuring undominatedness; (2) maximizing
potential screening ability; and (3) maximizing the left-hand side value of the inequality in (6).

Algorithm 1 contains two hyperparameters: ♯max, which controls the total number of generated
cuts, and ♯len, which restricts the maximum number of binary variables involved in a cut (thereby
directly ensuring potential screening ability). We give brief discussions on two key steps of Algorithm 1
as follows:

STEP 1. The hyperparameter ♯len restricts the number of binary variables involved in a cut. Thus,

13

it suffices to consider indices i such that i ≤ k + ♯len for inclusive cuts, or i ≥ k − ♯len for exclusive
cuts. Therefore, the SCPF algorithm restricts the search to feasible points in Ti(z) or T ′

i (z) within
the following ranges:

i ∈ SRinc := [[k + 1,min{k + ♯len, d}]] for inclusive cuts, (9)
i ∈ SRexc := [[max{1, k − ♯len}, k − 1]] for exclusive cuts. (10)

Using the monotonicity properties established in Claim 1 and Claim 2, the starting search index s is
initialized by:

sinc := argmin
{
i ∈ SRinc

∣∣ ∃ x′ ∈ K(z) s.t. supp(x′) = [[i− (k − 1), i]]
}

sexc := argmax
{
i ∈ SRexc

∣∣ ∃ x′ ∈ K(z) s.t. supp(x′) = [[i]] ∪ [[d− (k − i− 1), d]]
} (11)

If Ti(z) = ∅ or T ′
i (z) = ∅ for all i within the respective searching ranges SRinc, SRexc, no feasible

support exists in K(z) that satisfies the criteria, and the algorithm terminates.
STEP 2. If the current search index s lies within SRinc or SRexc, we enumerate feasible supports in
Ts(z) or T ′

s (z) using Algorithm 3. Note that exhaustive enumeration (i.e., ♯max = ∞) is generally
computationally intractable to incorporate all possible cuts in presolving, then ♯max is usually set to
some relatively large number based on problem size. In addition, our numerical experiments (see
Figure 6 in Appendix D.1) suggest that screening cuts involving more than two binary variables
offer diminishing returns for tested SCQP problems. Thus, we give a small limit (e.g., ♯len = 2)
to ensure computational efficiency in practice. Furthermore, to be consistent with the prioritized
criteria structure, the recursive algorithm (Algorithm 3) in Step 2 first enumerates solutions yielding
larger left-hand-side values in (6).

Then, the search index s is updated (adding one for inclusive cuts, deleting one for exclusive
cuts). Based on previous claims (Claim 1 and Claim 2), the updated search index ensures the
non-emptiness of the target sets. The algorithm terminates when either the max number of cuts ♯max
is achieved, or the searching index s beyond its searching range SRinc or SRexc

Based on the above analysis, we claim the following result.

Claim 3. By setting the maximal number of inclusive or exclusive cuts to ♯max = +∞, Algorithm 1
outputs, for a given K(z), all minimal inclusive cuts satisfying ♯len ≤ d− k, or all minimal exclusive
cuts satisfying ♯len ≤ k − 1, respectively.

The proof of Claim 3 is given in Appendix A.7, which ensures that, Algorithm 1 theoretically
captures all minimal screening cuts of the specified length.

4 Numerical Experiment

This section conducts numerical experiments to address the following three key tasks: (T1) To what
extent does the proposed SCPF improve upon existing screening methods in terms of both screening
ability and computational efficiency? (T2) How many gains in screening ability and total runtime
are achieved by the multi-support SCPF compared to the single-support SCPF? (T3) How does the
SCS method contribute to the overall efficiency of the framework?

We compare the proposed SCPF (Algorithm 1) and its multi-support variant, SCPF-m (Algo-
rithm 2), with the existing baseline, Safe Screening Rules (SSR, Atamturk and Gomez (2020)), in

14

presolving. The comparison works on three distinct data sources: synthetic datasets, real-world
datasets, and the simulation library for Sparse Identification of Nonlinear Dynamics (SINDy).
Detailed descriptions of data generation, background, and parameter settings are provided in
Appendix C.

All experiments are conducted on a Dell Precision 7920 workstation equipped with a 3GHz
48-Core Intel Xeon CPU and 128GB of 2934MHz DDR4 RAM. The proposed methods and baselines
are implemented in Python 3.12.8 using the Gurobi 12.0.0 solver. The source code for the experiments
will be released on GitHub later.

4.1 Experimental Setup and Implementation

Numerical experiments are conducted based on the following sparse linear ridge regression (SLRR):

v∗ = min
β, z

1

n
∥Y −Xβ∥22 + γ∥β∥22 (comp)

s.t. β ◦ (1− z) = 0, 1⊤z ≤ k, z ∈ {0, 1}d,

= min
β, z, t≥0

1

n
∥Y −Xβ∥22 + γ1⊤t (SOC)

s.t. t ◦ z ≥ β ◦ β, 1⊤z ≤ k, z ∈ {0, 1}d,

where we use n as the number of samples, d as the dimension of each input sample and decision
variable β, coefficient matrix X ∈ Rn×d is the input sample matrix with its i-th row Xi,: as the i-th
input sample, coefficient vector Y ∈ Rn is the output (response) vector with its i-th component Yi

as the response of Xi,:, γ > 0 is a pre-determined parameter for ℓ2-norm regularization, and k is the
sparsity level.

Remark 1. While (comp) and (SOC) are equivalent in mathematics, their computational perfor-
mances in Gurobi are different. Among all choices of dimensions in our experiments, (SOC) ensures
smaller total running times compared with (comp), based on our preliminary numerical experiments3.
Furthermore, we observe that in high-dimensional settings, the substantial memory requirements of
the BnB step can cause the Gurobi solver to stall at a relatively high MIPGap in our platform. Such
stalling behavior will significantly impact the recorded performance metrics.

For the SCPF and SCPF-m, we set the max number of cuts to ♯max = k for inclusive cuts and
♯max = d for exclusive cuts. While higher ♯max values tighten the outer approximation to the optimal
set, they may impede overall computational efficiency; thus, these limits are chosen to balance
support-space tightness with computational efficiency. To ensure the effectiveness of individual
cuts, the maximum cut length is fixed at ♯len = 2 (see Figure 6 in Appendix D.1). Regarding
support selection, SCPF utilizes the optimal relaxation support ẑ, whereas SCPF-m employs the
multi-support sequence detailed in Appendix B.1. For all three algorithms, the upper bound vub
is computed using the greedy algorithm proposed by Xie and Deng (2020), as summarized in
Appendix B.3.

Numerical performance is measured based on the following two metrics:
3To ensure consistency, we only report numerical results corresponding to (SOC) in the main paper. Preliminary

comparisons for d < 6000 showed that (SOC) significantly outperforms (comp); and these results are omitted for brevity.
However, comparative results for relatively high-dimensional cases (d = 6000) are provided in Appendix D.3.

15

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
gamma

0

200

400

600

800
tim

e
(s

)
Synthetic config: d = 1000, n = 100, SNR = 2, k = 10

SSR
SSR(BnB)
SCPF
SCPF(BnB)
SCPF-m
SCPF-m(BnB)

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
gamma

200

400

600

800

tim
e

(s
)

Synthetic config: d = 3000, n = 150, SNR = 2, k = 10
SSR
SSR(BnB)
SCPF
SCPF(BnB)
SCPF-m
SCPF-m(BnB)

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
gamma

200

400

600

800

1000

tim
e

(s
)

Synthetic config: d = 5000, n = 200, SNR = 2, k = 10
SSR
SSR(BnB)
SCPF
SCPF(BnB)
SCPF-m
SCPF-m(BnB)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
gamma

0

200

400

600

800

1000

1200

tim
e

(s
)

Synthetic config: d = 6000, n = 225, SNR = 2, k = 10
SSR
SSR(BnB)
SCPF
SCPF(BnB)
SCPF-m
SCPF-m(BnB)

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
gamma

0

500

1000

1500

2000

2500

3000

nu
m

be
r o

f c
ut

s

Synthetic config: d = 1000, n = 100, SNR = 2, k = 10
SSR
SCPF
SCPF-m

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
gamma

0

2000

4000

6000

8000

nu
m

be
r o

f c
ut

s

Synthetic config: d = 3000, n = 150, SNR = 2, k = 10
SSR
SCPF
SCPF-m

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
gamma

0

2000

4000

6000

8000

10000

12000

14000

nu
m

be
r o

f c
ut

s

Synthetic config: d = 5000, n = 200, SNR = 2, k = 10
SSR
SCPF
SCPF-m

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
gamma

0

2500

5000

7500

10000

12500

15000

17500

nu
m

be
r o

f c
ut

s

Synthetic config: d = 6000, n = 225, SNR = 2, k = 10
SSR
SCPF
SCPF-m

Figure 2. Synthetic datasets. Parameter configurations are listed in the title of each panel, with
further details provided in Appendix C. The first row shows the TRT and BnB solving time (tsolA),
and the second row reports the SA of the three methods under different γ values. Each dot represents
the averaged value over 10 independent instances. The shaded area denotes the inter-quartile range
(25th–75th percentiles) of TRT and SA, respectively.

1. Screening Ability (SA): This metric quantifies the reduction in the support space. For the
SSR baseline, SA corresponds to the number of binary variables fixed in presolving. For SCPF
and SCPF-m (with ♯len = 2), SA is reported as the number of inclusive and exclusive cuts
incorporated.

2. Total Running Time (TRT): For any screening method A, this metric is defined as tA :=
t
pre
A + tsolA , where t

pre
A is the presolving time (cut generation) for A, and tsolA is the BnB solving

time required to reach a specific MIPGap for SLRR with incorporated cuts. Here, the term
MIPGap is defined as MIPGap := |vp − vd|/|vp| with vp and vd the primal and dual objective
bounds, respectively.

For each instance (X,Y) with regularization parameter γ and sparsity level k, we take a two-stage
performance evaluation procedure:

1. Baseline SSR: We first solve SLRR using the SSR method via Gurobi. The solver terminates
if one of the following two stopping criteria (SC) is satisfied: (SSR-SC1) the time limit reaches
15 minutes, or (SSR-SC2) the MIPGap falls below 1%. We record the final solving time tsolSSR
and the final MIPGap GapSSR.

2. Proposed Frameworks (SCPF/SCPF-m): We subsequently solve SLRR using the proposed
frameworks (SCPF/SCPF-m). To ensure a rigorous comparison, the solver for framework
A ∈ {SCPF, SCPF-m} terminates if: (A-SC1) the solving time reaches 15 minutes, or (A-SC2)
the MIPGap improves upon the baseline, specifically MIPGap < max{GapSSR − ε, 1%} with
tolerance ε = 0.1%. This criterion is included to address situations where the baseline method
is stuck at a specific MIPGap level.

4.2 Discussions on Numerical Results

Based on the numerical results, we address the three key tasks proposed at the beginning of section 4.

16

0.0024 0.0032 0.0040 0.0048 0.0056
gamma

200

300

400

500

600

700

800

900
tim

e(
s)

Dataset TOXIC : k = 10
SSR
SSR(BnB)
SCPF
SCPF(BnB)
SCPF-m
SCPF-m(BnB)

0.0024 0.0030 0.0036 0.0042 0.0048 0.0054
gamma

0

500

1000

1500

2000

2500

3000

3500

nu
m

be
r o

f c
ut

s

Dataset TOXIC : k = 10
SSR
SCPF
SCPF-m

0.0060 0.0075 0.0090
gamma

200

400

600

800

tim
e(

s)

Dataset PERIOD_CHANGER : k = 10
SSR
SSR(BnB)
SCPF
SCPF(BnB)
SCPF-m
SCPF-m(BnB)

0.005 0.006 0.007 0.008 0.009 0.010
gamma

0

500

1000

1500

2000

2500

3000

3500

nu
m

be
r o

f c
ut

s

Dataset PERIOD_CHANGER : k = 10
SSR
SCPF
SCPF-m

Figure 3. Real datasets. Instance name and parameter configurations are listed in the title of
every panel, and details for the real datasets are provided in Appendix C. From left to right, the 1st
and 3rd panels show the TRT and BnB solving time (tsolA) over the Toxicity and Period Changer
instances under different γ values, respectively. The 2nd and 4th panels report the corresponding SA.

(T1) To what extent does the proposed SCPF improve upon existing screening methods in terms
of both screening ability and computational efficiency?

We first evaluate the extent to which SCPF improves upon the SSR baseline in terms of Screening
Ability (SA) and Total Running Time (TRT). In general, the results presented in Figures 2 to 5
show that the performance of both methods heavily depends on the parameter γ to the level of
strong convexity. As γ decreases, the metric SA exhibits a distinct “three-phase” trend, which
also significantly reflects on metric TRT. We illustrate this trend using the synthetic dataset with
dimensions (d, n) = (5000, 250) (see Figure 2) as an example.

1. Easy Phase (High γ): Strong SSR vs. Strong SCPF. When γ is relatively large (e.g., γ ≥ 1.25
in the example), both SSR and SCPF successfully fix the majority of binary variables with a similar
performance on SA. Thus, SCPF cannot generate sufficiently many additional cuts, resulting in a
TRT comparable to that of SSR.

2. Challenging Phase (Intermediate γ): Weak SSR vs. Strong SCPF. As γ decreases, the SA
of SSR weakens significantly. In contrast, SCPF maintains relatively robust performance in SA by
generating effective inclusive and exclusive cuts in presolving. This difference creates a substantial
performance gap to TRT; in our example (γ ∈ [0.8, 1.25]), SCPF achieves a roughly 2.0× acceleration
compared to SSR on average.

3. Hard Phase (Low γ): Weak SSR vs. Weak SCPF. At sufficiently low γ regime (e.g., γ < 0.8),
the capacity of both methods to generate screening cuts becomes negligible. Therefore, the whole
solving procedure reduces to a pure BnB procedure without presolving benefits, i.e., no effective
screening cuts generated in presolving.

Overall, computational efficiency is strongly driven by SA. The “three-phase” trend is consistent
across most instances, with SCPF demonstrating superior performance primarily in the Challenging
Phase, typically yielding 1.7× to 3.0× improvements in TRT. We note that the specific γ-intervals
defining these phases are instance-dependent, as illustrated in Figures 1 to 5.

(T2) How many gains in screening ability and total runtime are achieved by the multi-support
SCPF compared to the single-support SCPF?

We next quantify the gains in SA and TRT achieved by the SCPF-m compared to the SCPF.
The numerical results across all datasets confirm that SCPF-m consistently exhibits superior SA.
As evidenced in Figures 2 to 5, SCPF-m generates a strictly larger set of screening cuts, including
cuts inaccessible to the SCPF even when ♯max =∞ (see Appendix D.2). Note that this enhanced
screening ability incurs a higher computational cost in the presolving step.

Regarding the TRT, SCPF-m does not consistently outperform SCPF, suggesting a complex
trade-off between the effectiveness of cut generation and the overall solver efficiency. Specifically, for

17

0.0006 0.0007 0.0008 0.0009 0.0010
gamma

200

400

600

800
tim

e(
s)

Lorenz system w.r.t. X : k = 8
SSR
SSR(BnB)
SCPF
SCPF(BnB)
SCPF-m
SCPF-m(BnB)

0.006 0.009 0.012 0.015 0.018 0.021 0.024
gamma

0

200

400

600

800

tim
e(

s)

Lorenz system w.r.t. Y : k = 8
SSR
SSR(BnB)
SCPF
SCPF(BnB)
SCPF-m
SCPF-m(BnB)

0.0015 0.0018 0.0021 0.0024 0.0027 0.0030 0.0033 0.0036
gamma

200

400

600

800

tim
e(

s)

Lorenz system w.r.t. Z : k = 8
SSR
SSR(BnB)
SCPF
SCPF(BnB)
SCPF-m
SCPF-m(BnB)

0.0006 0.0007 0.0008 0.0009 0.0010
gamma

0

1000

2000

3000

4000

5000

nu
m

be
r o

f c
ut

s

Lorenz system w.r.t. X : k = 8
SSR
SCPF
SCPF-m

0.006 0.009 0.012 0.015 0.018 0.021 0.024
gamma

0

1000

2000

3000

4000

5000

nu
m

be
r o

f c
ut

s

Lorenz system w.r.t. Y : k = 8
SSR
SCPF
SCPF-m

0.0015 0.0018 0.0021 0.0024 0.0027 0.0030 0.0033 0.0036
gamma

0

250

500

750

1000

1250

1500

1750

nu
m

be
r o

f c
ut

s

Lorenz system w.r.t. Z : k = 8
SSR
SCPF
SCPF-m

Figure 4. Lorenz system from SINDy. The parameter configurations are listed in the title of
every panel, and details are given in Appendix C. For each dimension, the panels are arranged to
show TRT and BnB solving time (tsolA) in the first 3 panels, followed by the corresponding SA in the
last 3 panels under different γ values. Each dot represents the averaged value over 10 independent
trajectories. The shaded area denotes the inter-quartile range (25th–75th percentiles) of the TRT and
SA metric, respectively.

synthetic datasets, performance is comparable in low-dimensional instances (e.g., (d, n) = (1000, 100)
and (3000, 150)). However, in high-dimensional settings (e.g., (d, n) = (5000, 200) and (6000, 225)),
SCPF achieves a lower TRT; while the BnB solving times are similar, SCPF-m suffers from significant
presolving overhead. For SINDy datasets, SCPF outperforms SCPF-m across all tested dimensions
(see Figures 4 and 5). For real-world datasets, results are mixed: performance is comparable on the
Period Changer dataset, whereas SCPF-m proves superior on the Toxicity dataset (see Figure 3).

These findings suggest that incorporating a larger set of undominated and effective screening
cuts does not monotonically reduce TRT. This phenomenon likely results from diminishing returns
in support-space reduction relative to the increased presolving overhead and the computational cost
of managing newly incorporated constraints.

(T3) How does the SCS method contribute to the overall efficiency of the framework?

This part validates the effectiveness and necessity of the proposed SCS method, which selects cuts
based on dual criteria: undominatedness and effectiveness. To clearly identify the contribution of each
criterion, we compare the standard SCPF against variants lacking complete SCS method on synthetic
datasets (details in Appendix D.1). The numerical results (see Figure 6) ensure that satisfying
both conditions is critical. Specifically, incorporating undominated but ineffective cuts (i.e., those
involving three or more binary variables) degrades BnB efficiency by expanding the constraint pool
with cuts of negligible (potential) screening ability. Conversely, relying on effective but dominated
cuts (e.g., generating zi + zj ≤ 1 when the tighter cut zi = 0 is valid) significantly increases TRT, as
their dominatedness weakens solver performance relative to the standard SCS. These experiments
demonstrate that excluding either criterion leads to notable performance regression, whereas applying
both criterion proposed in standard SCS is essential for reducing TRT.

18

0.0009 0.0012 0.0015 0.0018 0.0021 0.0024 0.0027 0.0030
gamma

0

200

400

600

800

tim
e(

s)
MHD system w.r.t. V1 : k = 8

SSR
SSR(BnB)
SCPF
SCPF(BnB)
SCPF-m
SCPF-m(BnB)

0.0018 0.0024 0.0030 0.0036 0.0042 0.0048 0.0054 0.0060
gamma

0

200

400

600

800

1000

tim
e(

s)

MHD system w.r.t. V2 : k = 8
SSR
SSR(BnB)
SCPF
SCPF(BnB)
SCPF-m
SCPF-m(BnB)

0.0012 0.0018 0.0024 0.0030 0.0036 0.0042 0.0048
gamma

0

200

400

600

800

tim
e(

s)

MHD system w.r.t. V3 : k = 8
SSR
SSR(BnB)
SCPF
SCPF(BnB)
SCPF-m
SCPF-m(BnB)

0.04 0.05 0.06 0.07 0.08 0.09 0.10
gamma

200

400

600

800

1000

tim
e(

s)

MHD system w.r.t. B1 : k = 8
SSR
SSR(BnB)
SCPF
SCPF(BnB)
SCPF-m
SCPF-m(BnB)

0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040
gamma

0

200

400

600

800

tim
e(

s)

MHD system w.r.t. B2 : k = 8
SSR
SSR(BnB)
SCPF
SCPF(BnB)
SCPF-m
SCPF-m(BnB)

0.0030 0.0033 0.0036 0.0039 0.0042 0.0045 0.0048 0.0051
gamma

0

200

400

600

800

tim
e(

s)

MHD system w.r.t. B3 : k = 8
SSR
SSR(BnB)
SCPF
SCPF(BnB)
SCPF-m
SCPF-m(BnB)

0.0009 0.0012 0.0015 0.0018 0.0021 0.0024 0.0027 0.0030
gamma

0

2000

4000

6000

8000

nu
m

be
r o

f c
ut

s

MHD system w.r.t. V1 : k = 8
SSR
SCPF
SCPF-m

0.0018 0.0024 0.0030 0.0036 0.0042 0.0048 0.0054 0.0060
gamma

0

2000

4000

6000

8000

nu
m

be
r o

f c
ut

s

MHD system w.r.t. V2 : k = 8
SSR
SCPF
SCPF-m

0.0012 0.0018 0.0024 0.0030 0.0036 0.0042 0.0048
gamma

0

2000

4000

6000

8000

nu
m

be
r o

f c
ut

s

MHD system w.r.t. V3 : k = 8
SSR
SCPF
SCPF-m

0.04 0.05 0.06 0.07 0.08 0.09 0.10
gamma

0

2000

4000

6000

8000

nu
m

be
r o

f c
ut

s

MHD system w.r.t. B1 : k = 8
SSR
SCPF
SCPF-m

0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040
gamma

0

1000

2000

3000

4000

5000

6000

nu
m

be
r o

f c
ut

s

MHD system w.r.t. B2 : k = 8
SSR
SCPF
SCPF-m

0.0030 0.0033 0.0036 0.0039 0.0042 0.0045 0.0048 0.0051
gamma

0

2000

4000

6000

8000

nu
m

be
r o

f c
ut

s

MHD system w.r.t. B3 : k = 8
SSR
SCPF
SCPF-m

Figure 5. MHD system from SINDy. The parameter configurations are listed in the title of
every panel, and details are given in Appendix C. For each dimension, the panels are arranged to
show TRT and BnB solving time (tsolA) in the first 6 panels, followed by the corresponding SA in the
last 6 panels under different γ values. Each dot represents the averaged value over 10 independent
trajectories. The shaded area denotes the inter-quartile range (25th–75th percentiles) of the TRT and
SA metric, respectively.

4.3 Summary of Numerical Experiments

Based on these numerical experiments, the proposed SCPF and SCPF-m (i) offer clear advantages in
SA, which validates the theoretical results presented in section 2 and section 3; (ii) yield significant
improvements in TRT across a majority of instances, especially for these in challenging phase.

1. The SCPF achieves a finer balance between enhanced screening ability and computational over-
head in presolving. In particular, in challenging phase, SCPF achieves accelerations of approximately
1.7× to 3.0× on TRT.

2. The multi-support variant, SCPF-m, consistently strengthens SA by generating a strictly
larger set of cuts, including those inaccessible to the single-support SCPF (even with ♯max = ∞).
While this enhancement requests additional presolving costs, its impact on the BnB process is
instance-dependent. Empirically, SCPF-m maintains comparable runtime to SCPF on most datasets
and achieves substantial speedups on specific real-world instances (e.g., Toxicity instance in Figure 3).

3. The SCS method is essential to SCPF’s success. By selecting cuts that are both undominated
and effective, SCS ensures that newly added constraints would improve the solving process. Numerical
results show that omitting either criterion significantly degrades the computational performance.

5 Conclusion & Future Directions

In conclusion, this paper proposes a novel Screening-based Cut Presolving Framework (SCPF)
designed to enhance existing screening approaches used in the presolving step of solving SCQP.

19

The framework contains two parts. First, the proposed Screening-based Cut Generation (SCG) rule
leverages convex relaxations to identify and eliminate non-optimal support patterns. By doing so, our
SCG rule achieves a finer balance between computational overhead and enhanced screening ability
in presolving. Second, the Screening-based Cut Selection (SCS) method establishes necessary and
sufficient conditions for certifying minimal SCG-tuples that yield undominated cuts. Furthermore,
the SCS incorporates a “(potential) screening ability” criterion to prioritize the generation of effective
& undominated cuts. Together, the two components presented in SCS method form the foundation
for our SCPF. Numerical experiments in Section 4 further validate our theoretical results and
demonstrate the computational effectiveness of the proposed method.

We close with some potential extensions and research questions for future investigation. First,
there is significant potential to sharpen existing screening techniques through stronger optimality-
based criteria, particularly in non-smooth, highly degenerate, or non-convex settings. Second,
characterizing the closure of minimal screening cuts derived from a specific relaxation remains an
open problem; understanding the theoretical limits of outer approximations established by these
relaxations is of critical research interest. Finally, motivated by recent advancements Liu et al. (2023,
2025), it is worth investigating whether the proposed framework can be extended beyond presolving
to develop tailored BnB algorithms.

Acknowledgments

Haozhe Tan and Guanyi Wang were supported by the Ministry of Education, Singapore, under the
Academic Research Fund (AcRF) Tier-1 grant (A-8000607-00-00) 22-5539-A0001, and Tier-2 grant
T2EP20125-0030.

References

T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, and D. Weninger. Presolve reductions in mixed
integer programming. INFORMS Journal on Computing, 32(2):473–506, 2020.

A. Askari, A. d’Aspremont, and L. E. Ghaoui. Approximation bounds for sparse programs. SIAM
Journal on Mathematics of Data Science, 4(2):514–530, 2022.

A. Atamturk and A. Gomez. Safe screening rules for l0-regression from perspective relaxations. In
H. D. III and A. Singh, editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 421–430. PMLR, 13–18
Jul 2020. URL https://proceedings.mlr.press/v119/atamturk20a.html.

A. Atamturk and A. Gomez. Rank-one convexification for sparse regression. Journal of Machine
Learning Research, 26(35):1–50, 2025.

D. Bertsimas and R. Cory-Wright. A scalable algorithm for sparse portfolio selection. INFORMS
Journal on Computing, 34(3):1489–1511, May 2022. ISSN 1526-5528. doi: 10.1287/ijoc.2021.1127.
URL http://dx.doi.org/10.1287/ijoc.2021.1127.

D. Bertsimas and W. Gurnee. Learning sparse nonlinear dynamics via mixed-integer optimiza-
tion. Nonlinear Dynamics, 111(7):6585–6604, Jan. 2023. ISSN 1573-269X. doi: 10.1007/
s11071-022-08178-9. URL http://dx.doi.org/10.1007/s11071-022-08178-9.

20

https://proceedings.mlr.press/v119/atamturk20a.html
http://dx.doi.org/10.1287/ijoc.2021.1127
http://dx.doi.org/10.1007/s11071-022-08178-9

D. Bertsimas and B. Van Parys. Sparse high-dimensional regression. The Annals of Statistics, 48(1):
300–323, 2020.

D. Bertsimas, J. Pauphilet, and B. Van Parys. Sparse regression: Scalable algorithms and empirical
performance. Statistical Science, 35(4), Nov. 2020. ISSN 0883-4237. doi: 10.1214/19-sts701. URL
http://dx.doi.org/10.1214/19-STS701.

D. Bertsimas, J. Pauphilet, and B. Van Parys. Sparse classification: a scalable discrete optimization
perspective. Machine Learning, 110(11):3177–3209, 2021.

K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. Van Doornmalen, L. Eifler,
O. Gaul, G. Gamrath, A. Gleixner, et al. The scip optimization suite 8.0. arXiv preprint
arXiv:2112.08872, 2021.

H. T. Bui, R. Loxton, and Q. Lin. On cutting plane algorithms for nonlinear binary optimization.
SIAM Journal on Optimization, 35(2):1364–1392, 2025.

R. Chen and J. Luedtke. On generating lagrangian cuts for two-stage stochastic integer programs.
INFORMS Journal on Computing, 34(4):2332–2349, July 2022. ISSN 1526-5528. doi: 10.1287/
ijoc.2022.1185. URL http://dx.doi.org/10.1287/ijoc.2022.1185.

Y. Dai and C. Chen. Serial and parallel two-column probing for mixed-integer programming, 2025.
URL https://arxiv.org/abs/2408.16927.

C. D’Ambrosio, M. Fampa, J. Lee, and F. Sinnecker. On a geometric graph-covering problem related
to optimal safety-landing-site location. Discrete Applied Mathematics, 379:613–634, 2026. doi:
10.1016/j.dam.2025.09.036.

B. de Silva, K. Champion, M. Quade, J.-C. Loiseau, J. Kutz, and S. Brunton. Pysindy: A python
package for the sparse identification of nonlinear dynamical systems from data. Journal of Open
Source Software, 5(49):2104, 2020. doi: 10.21105/joss.02104. URL https://doi.org/10.21105/
joss.02104.

H. Deng and W. Xie. On the relu lagrangian cuts for stochastic mixed integer programming, 2024.
URL https://arxiv.org/abs/2411.01229.

A. Deza and A. Atamturk. Safe screening for logistic regression with ℓ0-ℓ2 regularization, 2022. URL
https://arxiv.org/abs/2202.00467.

D. Dua and C. Graff. Uci machine learning repository, 2017. URL http://archive.ics.uci.edu/ml.

A. Frangioni, C. Gentile, and J. Hungerford. Decompositions of semidefinite matrices and the
perspective reformulation of nonseparable quadratic programs. Mathematics of Operations Research,
45(1):15–33, 2020.

J. Gao and D. Li. Optimal cardinality constrained portfolio selection. Operations research, 61(3):
745–761, 2013.

A. Gómez and W. Xie. A note on quadratic constraints with indicator variables: Convex hull
description and perspective relaxation. Operations Research Letters, 52:107059, 2024.

21

http://dx.doi.org/10.1214/19-STS701
http://dx.doi.org/10.1287/ijoc.2022.1185
https://arxiv.org/abs/2408.16927
https://doi.org/10.21105/joss.02104
https://doi.org/10.21105/joss.02104
https://arxiv.org/abs/2411.01229
https://arxiv.org/abs/2202.00467
http://archive.ics.uci.edu/ml

S. Han, A. Gómez, and A. Atamtürk. The equivalence of optimal perspective formulation and shor’s
sdp for quadratic programs with indicator variables. Operations Research Letters, 50(2):195–198,
2022.

H. Hazimeh and R. Mazumder. Fast best subset selection: Coordinate descent and local combinatorial
optimization algorithms. Operations Research, 68(5):1517–1537, 2020.

N. Jiang and W. Xie. The terminator: An integration of inner and outer approximations for solving
wasserstein distributionally robust chance constrained programs via variable fixing. INFORMS
Journal on Computing, 37(2):381–412, Mar. 2025. ISSN 1526-5528. doi: 10.1287/ijoc.2023.0299.
URL http://dx.doi.org/10.1287/ijoc.2023.0299.

A. A. Kaptanoglu, B. M. de Silva, U. Fasel, K. Kaheman, A. J. Goldschmidt, J. Callaham, C. B.
Delahunt, Z. G. Nicolaou, K. Champion, J.-C. Loiseau, J. N. Kutz, and S. L. Brunton. Pysindy:
A comprehensive python package for robust sparse system identification. Journal of Open Source
Software, 7(69):3994, 2022. doi: 10.21105/joss.03994. URL https://doi.org/10.21105/joss.
03994.

Y. Li, M. Fampa, J. Lee, F. Qiu, W. Xie, and R. Yao. D-optimal data fusion: Exact and approximation
algorithms. INFORMS Journal on Computing, 36(1):97–120, 2024.

J. Liu, S. Rosen, C. Zhong, and C. Rudin. Okridge: Scalable optimal k-sparse ridge regression.
Advances in neural information processing systems, 36:41076–41258, 2023.

J. Liu, S. Shafiee, and A. Lodi. Scalable first-order method for certifying optimal k-sparse GLMs. In
Proceedings of the 42nd International Conference on Machine Learning, volume 267 of Proceedings
of Machine Learning Research, pages 39455–39481. PMLR, 13–19 Jul 2025. URL https://
proceedings.mlr.press/v267/liu25bk.html.

M. Pilanci, M. J. Wainwright, and L. El Ghaoui. Sparse learning via boolean relaxations. Mathematical
Programming, 151(1):63–87, 2015.

L. Schürmann and P. Mutzel. A Reduced Cost-based Model Strengthening Method, page 75–86.
Society for Industrial and Applied Mathematics, Jan. 2023. ISBN 9781611977714. doi: 10.1137/1.
9781611977714.7. URL http://dx.doi.org/10.1137/1.9781611977714.7.

M. Tawarmalani and N. V. Sahinidis. Global optimization of mixed-integer nonlinear programs: A
theoretical and computational study. Mathematical programming, 99(3):563–591, 2004.

L. Wei and S. Küçükyavuz. An outer approximation method for solving mixed-integer convex
quadratic programs with indicators. Preprint, 2024.

W. Xie and X. Deng. Scalable algorithms for the sparse ridge regression. SIAM Journal on
Optimization, 30(4):3359–3386, 2020. doi: 10.1137/19M1245414. URL https://doi.org/10.
1137/19M1245414.

P. M. F. Yamagishi, M. Fampa, and J. Lee. The dual-path fixing strategy and its application to the
set-covering problem, 2026. URL https://arxiv.org/abs/2601.20977.

22

http://dx.doi.org/10.1287/ijoc.2023.0299
https://doi.org/10.21105/joss.03994
https://doi.org/10.21105/joss.03994
https://proceedings.mlr.press/v267/liu25bk.html
https://proceedings.mlr.press/v267/liu25bk.html
http://dx.doi.org/10.1137/1.9781611977714.7
https://doi.org/10.1137/19M1245414
https://doi.org/10.1137/19M1245414
https://arxiv.org/abs/2601.20977

Y. Yang. Deluxing: Deep lagrangian underestimate fixing for column-generation-based exact methods.
Operations Research, 73(3):1184–1207, May 2025. ISSN 1526-5463. doi: 10.1287/opre.2023.0398.
URL http://dx.doi.org/10.1287/opre.2023.0398.

J. Zou, S. Ahmed, and X. A. Sun. Stochastic dual dynamic integer programming. Mathematical
Programming, 175(1–2):461–502, Mar. 2018. ISSN 1436-4646. doi: 10.1007/s10107-018-1249-5.
URL http://dx.doi.org/10.1007/s10107-018-1249-5.

23

http://dx.doi.org/10.1287/opre.2023.0398
http://dx.doi.org/10.1007/s10107-018-1249-5

A Proofs in section 2 and section 3

A.1 Proof of Corollary 1

Proof. Let R := [[d]] \ (S ∪ N) denote the set of remaining indices. Assume the non-trivial case
C ̸= ∅.

(⇒) By definition of a valid SCG-tuple, we have vlbrelax(z, S,N,C) > vub, and C = {i ∈ R | ŵi ≥
(ŵR)[c]} with c = min{k − |S|, |R|}. Since C ̸= ∅, we have |C| = c. It suffices to show condition
(2) holds. Prove by contradiction. Suppose there exists j /∈ (S ∪N ∪ C) such that ŵj ≥ ŵC . Then
j ∈ R and ŵj ≥ (ŵR)[c], implying j ∈ C by definition. Contradiction.

(⇐) Conversely, assume tuple (z, S,N,C) satisfies the three conditions. Define D := {i ∈
R | ŵi ≥ (ŵR)[|C|]}. Since |C| ≤ |R|, this set is well-defined and |D| = |C|. It suffices to show
that C = D. Take any i′ ∈ C and suppose, for contradiction, that i′ /∈ D. Then ŵi′ < (ŵR)[|C|].
Since |D| = |C|, there exists some j′ ∈ D \ C with ŵj′ ≥ (ŵR)[|C|] > ŵi′ ≥ ŵC . Then we have
j′ /∈ S ∪N ∪ C but ŵj′ ≥ ŵC , contradicting condition (2). Hence every i′ ∈ C belongs to D, and
therefore C = D.

A.2 Proof of Proposition 2

Proof. We prove both parts separately.
Part 1: Validity of the SCG-tuple. It suffices to show that inequality (4) holds for the SCG-

tuple (z, S′, N ′, C ′). From the proof of Theorem 1, we know vlbrelax(z, S
′, N ′, C ′) = minβ f1(β; p̂(z))−

maxz∈Zk
relax(S

′,N ′) f2(z; p̂(z)). Since S′ ⊇ S and N ′ ⊇ N , it follows that vlbrelax(z, S
′, N ′, C ′) ≥

vlbrelax(z, S,N,C). Clearly, if (z, S,N,C) is valid, then (z, S′, N ′, C ′) is also valid.
Part 2: Cut dominance. We show that the cut

∑
i∈S′ zi +

∑
i∈N ′(1− zi) ≤ |S′|+ |N ′| − 1 is

dominated by
∑

i∈S zi+
∑

i∈N (1−zi) ≤ |S|+|N |−1. Take any z ∈ Zk satisfying
∑

i∈S zi+
∑

i∈N (1−
zi) ≤ |S|+ |N | − 1, we have

∑
i∈S′ zi =

∑
i∈S zi +

∑
i∈(S′\S) zi ≤ |S|+

∑
i∈N zi − 1 + |S′| − |S| ≤

|S′|+
∑

i∈N ′ zi − 1, which shows that the cut
∑

i∈S′ zi +
∑

i∈N ′(1− zi) ≤ |S′|+ |N ′| − 1 is satisfied
by z.

A.3 Proof of Proposition 3

Proof. We separately give proofs on the two scenarios presented in the proposition.
The first scenario. Assume |supp(x)| < k. Thus we have |S ∪ C| < k and N = [[d]] \ supp(x)

based on validity. Since |N | > d − k, based on the first case in Theorem 2, the SCG-tuple
(z, S, [[d]] \ supp(x), C) is minimal if and only if S = ∅ and C = supp(x).

The second scenario. Assume |supp(x)| = k. Thus we have |S ∪ C| = |supp(x)| = k, and
|N | ≤ d− k based on validity.

1. First, we construct minimal SCG-tuple with C = ∅. It is easy to verify that (z, supp(x), N, ∅)
is a valid SCG-tuple for any N ⊆ ([[d]] \ supp(x)). In order to ensure minimality, by the second
case in Theorem 2, (z, supp(x), N, ∅) is minimal if and only if N = ∅ and maxi∈supp(x) ŵi < ŵ[1],
which is equivalent to B1(x) ̸= ∅ since ŵ is in decreasing order. This corresponds to the
boundary case of l = 0.

2. Second, we construct minimal SCG-tuple with C ̸= ∅. Denote i′ as ŵi′ = ŵC . We have two
subcases to consider on i′.

24

Case 1. If i′ ∈ Am(x), then N ⊇ comp(supp(x)) to ensure validity. Based on the third case in
Theorem 2, the SCG-tuple (z, ∅, comp(supp(x)), supp(x)) is minimal, which corresponds to the
boundary case of l = m.

Case 2. If i′ ∈ Aℓ(x) for some ℓ = 1, . . . ,m− 1, similarly, based on the third case in Theorem 2,
the SCG-tuple (z,∪mj=ℓ+1Aj(x),∪lj=1Bj(x),∪lj=1Aj(x)) is minimal.

A.4 Proof of bounds in Definition 5

Proof. For any screening cut, it removes all the feasible points that satisfy zi = 1, for all i ∈ S and
zj = 0, for all j ∈ N . If |N | > d−k, based on validity, we have (S∪N∪C) = [[d]]. The remaining index
set is C and we can choose up to |C| one’s within C. We have at most

∑|C|
i=0

(|C|
i

)
=

∑|C|
i=0

(
d−|S∪N |

i

)
eliminated points. Similarly, if |N | ≤ d − k, we have |S| + |C| = k and (S ∪ N ∪ C) ⊆ [[d]]. The
remaining index set is [[d]]\(S ∪ N) and we can choose up to |C| one’s. Thus we have at most∑|C|

i=0

(
d−|S∪N |

i

)
eliminated points.

A.5 Proof of Claim 1

Proof. We show two results in the Claim 1 separately.

• One direction is obvious and we suppose Ti(z) ̸= ∅. Pick any x ∈ Ti(z). Let x′ ∈ {0, 1}d
and supp(x′) = [[i− (k − 1), i]]. Given that ŵ(z) is in decreasing order, we have ⟨ŵ(z),x′⟩ ≤
⟨ŵ(z),x⟩ < q(z). Thus x′ ∈ K(z).

• Given Ti(z) ̸= ∅, it is sufficient to show that Ti+1(z) ̸= ∅. Based on the first result, we have x′
i ∈

K(z) and supp(x′
i) = [[i− (k−1), i]]. Let x′

i+1 ∈ {0, 1}d and supp(x′
i+1) = [[i+1− (k−1), i+1]].

It is obvious that ⟨x′
i+1, ŵ(z)⟩ ≤ ⟨x′

i, ŵ(z)⟩ < q(z). Thus x′
i+1 ∈ K(z) and we are done.

A.6 Proof of Claim 2

Proof. We show two results in the Claim 2 separately.

• One direction is obvious and we suppose T ′
i (z) ̸= ∅. Pick any x ∈ T ′

i (z). Let x′ ∈ {0, 1}d
and supp(x′) = [[i]] ∪ [[d − (k − i − 1), d]]. Given that ŵ(z) is in decreasing order, we have
⟨ŵ(z),x′⟩ ≤ ⟨ŵ(z),x⟩ < q(z). Thus we have x′ ∈ K(z).

• Given T ′
i (z) ̸= ∅, it is sufficient to show that T ′

i−1(z) ̸= ∅. Based on the first result, we
have x′

i ∈ K(z) and supp(x′
i) = [[i]] ∪ [[d − (k − i − 1), d]]. We construct x′

i−1 ∈ {0, 1}d and
supp(x′

i−1) = [[i − 1]] ∪ [[d − (k − i), d]]. It is obvious that ⟨x′
i−1, ŵ(z)⟩ ≤ ⟨x′

i, ŵ(z)⟩ < q(z).
Thus x′

i−1 ∈ K(z) and we are done.

25

A.7 Proof of Claim 3

Proof. We only prove the results on inclusive cuts, as the argument for exclusive cuts follows similarly.
Inclusive cuts. For any minimal inclusive cut, the associated minimal SCG tuple corresponds

to a unique x ∈ K(z), as discussed under (6) in section 2. Given the cut length satisfies ♯len ≤ d− k,
we first claim x ∈ T (z). Suppose not. We have | supp(x)| < k, and the corresponding minimal
inclusive cut has length |[[d]] \ supp(x)| > d− k ≥ ♯len from Proposition 3. Contradiction.

Next, x ∈ T (z) implies that x ∈ Ti′(z) for some i′ ∈ [[k + 1, d]]. It suffices to show that Ti′(z) is
reached before termination of Algorithm 1. First, we have the cut length |comp(supp(x))| = i′ − k ≤
♯len, which is equivalent to i′ ≤ k + ♯len. Thus i′ ∈ SRinc, and the searching index s initialized in
STEP 1 satisfies s ≤ i′. Since ♯max = +∞, Algorithm 1 continues until s = min{k + ♯len, d}, and
therefore reaches s = i′ before termination.

B Algorithm Design

B.1 Multi-support SCG rule & SCPF-m Algorithm

This section details the design of the Multi-support Screening Cut Presolving Framework (SCPF-m).
Recall that the validity of an SCG-tuple for a desired pair of subsets (S,N) depends on

the chosen relaxed support z ∈ Zk
relax. To satisfy the multi-support optimality-based criterion

maxTt=1 v
lb
relax(z

(t), S,N,C(t)) > vub, preliminary experiments indicate that the support sequence
{z(t)}Tt=1 should exhibit diversity ; that is, supports chosen in {z(t)}Tt=1 should reflect different support
selection preferences. Without such a diversity property, the sequence induces nearly identical k-Knap
sets K(z(t)), impeding the generation of effective screening cuts. Finally, our SCPF-m aggregates
cuts from multiple supports and implements a final removing step to ensure undominatedness.

Algorithm 2: SCPF-m({z(t)}Tt=1, ♯max, ♯len)

Input :multi-support {z(t)}Tt=1, max number of cuts ♯max, max length of cuts ♯len

Output :Generated screening cuts S
(T)
cuts

Initialize S
(0)
cuts = ∅;

foreach z(t) do
S
(t)
cuts ← S

(t−1)
cuts ∪ SCPF

(
K(z(t)), ♯max, ♯len

)
;

Remove dominated cuts in S
(T)
cuts;

We present the SCPF-m in Algorithm 2. Its core strategy involves executing Algorithm 1 across
the support sequence {z(t)}Tt=1 to collect a comprehensive set of undominated and effective cuts.

In our numerical experiments, we employ the following iterative heuristic to construct the
sequence of relaxed supports {z(t)}Tt=1.

Initialization: Set z(1) = ẑ, where ẑ is an optimal solution to the original relaxation (2).
Iterative Diversity Exploration: Subsequent relaxed supports are generated by perturbing the

non-support indices of ẑ, i.e., [[d]] \ Topk(ẑ):

1. Perturbation of Non-Support Top Components: Let ITop be the index set corresponding to the

26

largest components within the non-support indices of ẑ. Generate relaxed supports by solving
z ∈ argmin vrelax(I

Top, ∅), or z ∈ argmin vrelax(∅, ITop).

2. Perturbation of Non-Support Bottom Components: Let IBottom be the index set corresponding
to the smallest components within the non-support indices of ẑ. Generate relaxed supports by
solving z ∈ argmin vrelax(I

Bottom, ∅), or z ∈ argmin vrelax(∅, IBottom).

This heuristic enhances diversity by forcing specific non-support indices of ẑ to extreme values (0
or 1). Empirically, for both strategies, we prioritize the formulation z ∈ argmin vrelax(S, ∅) (fixing
indices to 1). But their underlying motivations are different. In the first strategy, the empirical
challenges of generating effective inclusive cuts motivate us to focus on exclusive cuts by forcing
components in ITop to 1. In the second strategy, fixing components in IBottom to 1 (rather than 0)
maximizes the divergence between ẑ and the newly generated support. Therefore, by activating
non-support indices, we explore the boundary of the support space and stress-test weak signal
components.

In our SCPF-m implementation, we set T = 3 and z(1) = ẑ by default. We then select
z(2) ∈ argmin vrelax({i}, ∅) with ẑi = ẑ[k+1], and z(3) ∈ argmin vrelax({j, j′}, ∅) with ẑj = ẑ[d−1] and
ẑj′ = ẑ[d].

B.2 Recursive Enumeration

This part presents the pseudo-code for recursive enumeration used in STEP 2 of Algorithm 1.

Algorithm 3: Recursive Enumeration in Step 2 of Algorithm 1
Input : sorted ŵ = ŵ(z), weight limit WL, search range SR, selection number SN
Output : enumeration set Total

Function RE(ŵ, WL, SR, SN, Total, Tsupp):
for i = 1 to |SR| − SN+ 1 do

j ← SR[i];

MinWeight← ŵj + I(SN > 1)
[∑|SR|

t=|SR|−SN+2 (ŵSR)[t]

]
;

if MinWeight < WL then
Tsupp ← Tsupp ∪ {j};
if SN = 1 then

Total← Total ∪ {Tsupp};
else

RE(ŵ, WL− ŵj , SR[i+ 1 :], SN− 1, Total, Tsupp);

Tsupp ← Tsupp \ {j};

return Total ;

Call RE(ŵ, WL, SR, SN, ∅, ∅);

Given a search index s from Algorithm 1, we configure the parameters for the recursive enu-
meration algorithm: Weight Limit (WL), Search Range (SR), and Selection Number (SN) as follows.
For inclusive cut generation, we define the weight limit WL := q(z) − (ŵ(z))[s], the search range

27

SR := [[s− 1]], and the selection number SN := k− 1. On the other hand, for exclusive cut generation,
the parameters are set to WL := q(z) −

∑s
i=1 (ŵ(z))[i], the search range SR := [[s + 2, d]], and the

selection number SN := k − s.

Remark 2. The Algorithm 3 generates all possible supports of SN elements from index set SR
that satisfy outer-if-condition presented in Algorithm 3. If outer-if-condition is satisfied for every
possible support, Algorithm 3 is equivalent to brute-force enumeration. Specifically, there are

(|SR|
SN

)
possible support sets, and each support requires at most O(SN2) elementary algebraic operations in
Algorithm 3. Therefore, the total computational complexity is O

(
SN2 ·

(|SR|
SN

))
. The main difference

between Algorithm 3 and brute-force enumeration lies in identifying whether index j presented in
Algorithm 3 can be added in any possible support.

B.3 Greedy Algorithm for Computing vub

In this subsection, we present the following greedy algorithm (Algorithm 4) for finding a tighter
upper bound to SLRR for all our numerical experiments conducted in section 4. This algorithm was
originally proposed by Xie and Deng (2020).

Algorithm 4: Greedy Algorithm for vub on SLRR (Xie and Deng, 2020)
Input: coefficient matrix X, response vector y, sparsity level k, regularization parameter γ
Output: Upper bound vub on SLRR
Initialize S ← ∅ and AS ← nγIn
for i = 1, . . . , k do

Select j∗ ∈ argminj∈[[d]]\S

{
−γ(y⊤A−1

S xj)
2

1+x⊤
j A−1

S xj

}
Update S ← S ∪ {j∗} and AS ← AS + xj∗x

⊤
j∗ , A−1

S ← A−1
S −

A−1
S xj∗x

⊤
j∗A

−1
S

1+x⊤
j∗A

−1
S xj∗

return vub ← γ y⊤A−1
S y

C Details on Experimental Dataset

Numerical experiments are conducted on three types of datasets, i.e., synthetic dataset, real dataset,
and simulation library for Sparse Identification of Non-linear Dynamics (SINDy).

I. Synthetic datasets. Instances from synthetic datasets are set as follows.
Data generation procedure. We follow the generation procedure described in Bertsimas et al.

(2020). Given an instance (X,Y), its design matrix X ∈ Rn×d is generated by drawing each row
Xi,: independently from a d-dimensional Gaussian distribution N (0,Σ), with covariance structure
Σij = ρ|i−j| for a correlation parameter ρ ∈ [0, 1]. The response vector Y is therefore generated
by Y = Xβ∗ + ϵ for some ground-truth β∗, where β∗ ∈ {−1, 0, 1}d is randomly sampled with
exactly k non-zero entries, and every component of noise vector ϵ is i.i.d. generated from a Gaussian
distribution N (0, 1

n
∥Xβ∗∥22
SNR2) with SNR denotes the signal-to-noise ratio.

Parameter settings. We fix the parameters at k = 10, ρ = 0.5, and SNR = 2. We evaluate four
high-dimensional configurations: (d, n) ∈ {(1000, 100), (3000, 150), (5000, 200), (6000, 225)}. For

28

each configuration (d, n, γ, k = 10, ρ = 0.5, SNR = 2), we generate 10 independent instances, denoted
by (X(1),Y(1)), . . . , (X(10),Y(10)).

II. Real datasets. We conducted numerical experiments on two real datasets: Toxicity (1203
features, 171 samples) and Period Changer (1177 features, 90 samples) from the UCI Machine
Learning Repository Dua and Graff (2017), both of which satisfy the high-dimensional setting. For
each dataset, all features are normalized to have unit ℓ2 norm, and the sparsity level is fixed at
k = 10.

III. Simulation library for SINDy. Following Bertsimas and Gurnee (2023); Liu et al. (2023),
we simulate two dynamic systems from the PySINDy library (de Silva et al., 2020; Kaptanoglu
et al., 2022): Lorenz System and Magneto-Hydro-Dynamic (MHD) model. For both systems, the
sparsity level is fixed at k = 8. This choice reflects a realistic system identification setting where the
true dynamics are usually unknown a priori. By assuming structural sparsity, we select k = 8 as a
conservative upper bound on the number of active terms; this ensures the model remains sufficiently
expressive to capture the underlying dynamics while maintaining practical identifiability.

Lorenz System. The Lorenz system is a 3-dimensional system governed by the following
nonlinear differential equations:

dX/dt = −σX + σY, dY/dt = ρX − Y −XZ, dZ/dt = XY − βZ

where we choose the parameters σ = 10, ρ = 2, β = 7/3 to ensure that the generated trajectory does
not exhibit excessive chaotic behavior.

Ten trajectories were initialized within the domain [−1, 1]3 and simulated for 5 seconds at a
sampling interval of 0.025 seconds, resulting in n = 200 samples per trajectory. Each was perturbed
with 0.01% Gaussian noise. The candidate library consists of fractional monomials xα1/3yα2/3zα3/3

with a maximum total degree of 20/3 (i.e.,
∑3

i=1 αi ≤ 20). This yields a feature dimension of
d = 1771.

MHD model. The 6-dimensional Magneto-Hydro-Dynamic (MHD) model is defined based on
the following dynamics:

dV1/dt = 4V2V3 − 4B2B3, dV2/dt = −7V1V3 + 7B1B2, dV3/dt = 3V1V2 − 3B1B2,

dB1/dt = 2B3V2 − 2V3B2, dB2/dt = 5V3B1 − 5B3V1, dB3/dt = 9V1B2 − 9B1V2.

Trajectories are initialized within the domain [−0.5, 0.5]6 and simulated for a duration of 5 seconds
with a sampling interval of every 0.025 seconds, yielding n = 200 samples in total. We generate 10
trajectories, each perturbed by 0.01% Gaussian noise. The candidate feature library is constructed
using fractional monomials of the form x1/3 with a maximum total degree of 8/3. Specifically, we
include all terms: V

α1/3
1 V

α2/3
2 V

α3/3
3 B

α4/3
1 B

α5/3
2 B

α6/3
3 , subject to

∑6
i=1 αi ≤ 8, resulting in a feature

dimension of d = 3003.

D Additional Numerical Results

D.1 Assessing the Screening Cut Selection (SCS)

This section evaluates the impact of SCS method through controlled experiments on synthetic dataset.
We demonstrate that selecting screening cuts that are simultaneously effective and undominated
is prerequisite for SCPF performance. Using the optimal relaxed support ẑ ∈ argmin vrelax, we

29

implement the numerical experiments detailed below. The corresponding results are reported in
Figure 6.

2.0 2.2 2.4 2.6 2.8 3.0

gamma

0

10

20

30

40

50

tim
e(

s)

Synthetic config: d = 1000, n = 100, SNR = 2, k = 10
undominated cuts
dominated cuts

2.0 2.2 2.4 2.6 2.8 3.0
gamma

0

200

400

600

800

tim
e(

s)

Synthetic config: d = 3000, n = 150, SNR = 2, k = 10
undominated cuts
dominated cuts

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

gamma

0

20

40

60

80

100

120

tim
e(

s)

Synthetic config: d = 1000, n = 100, SNR = 2, k = 10
effective cuts
ineffective cuts

2.0 2.2 2.4 2.6 2.8 3.0

gamma

0

200

400

600

800

tim
e(

s)

Synthetic config: d = 3000, n = 150, SNR = 2, k = 10
effective cuts
ineffective cuts

Figure 6. Impact of SCS method on synthetic datasets (details in Appendix C). Left two panels:
BnB solving times comparing undominated versus dominated cuts. Right two panels: BnB solving
times comparing effective (length ≤ 2) versus ineffective (length = 3) cuts.

Testing undominatedness. To identify the performance impact of undominatedness, we compare
the standard SCPF (which generates cuts of length = 1, equivalent to SSR) against a variant
generating dominated cuts with length = 2. To be more specific, for every index i fixed to 0 (zi = 0)
by the standard SCPF, the variant instead adds five randomized exclusive cuts of the form zi+zj ≤ 1
(which are valid but dominated, per Proposition 2). An analogous procedure is applied to inclusive
cuts. We report the BnB time required to reach a 1% MIPGap within a 15-minute limit.

Testing effectiveness. To assess the performance impact of effectiveness, we compare the standard
SCPF (generating undominated cuts with length ≤ 2) against a variant restricted to generating
undominated cuts of length = 3. The latter are theoretically valid but possess significantly lower
potential screening ability. Performance is measured by the BnB solving time required to reach a 1%
MIPGap within a 15-minute limit.

D.2 Additional SCG cuts

In this section, we report the number of additional SCG cuts generated by Algorithm 2 that are
inaccessible to Algorithm 1 with ♯max =∞, and present the results in Figure 7 over all numerical
experiments conducted in section 4.

D.3 Additional experiments on (comp) formulation

This section reports the numerical experiments using (comp) on high-dimensional synthetic datasets
with (d, n) = (6000, 225). A comparison of results (see the last column in Figure 2 and Figure 8)
reveals that SA exhibits a similar pattern, as different SLRR formulations do not impact the
algorithms’ screening ability. However, for TRT, the (comp) formulation generally results in higher
running time than (SOC). Notably, at γ = 1.5, nearly every instance with (SOC) formulation achieves
optimality, whereas (comp) does not.

30

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
gamma

0

200

400

600

800

1000

nu
m

be
r o

f c
ut

s

Synthetic config: d = 1000, n = 100, SNR = 2, k = 10
add-inclusive
add-exclusive

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
gamma

0

500

1000

1500

2000

2500

3000

nu
m

be
r o

f c
ut

s

Synthetic config: d = 3000, n = 150, SNR = 2, k = 10
add-inclusive
add-exclusive

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
gamma

0

1000

2000

3000

4000

5000

nu
m

be
r o

f c
ut

s

Synthetic config: d = 5000, n = 200, SNR = 2, k = 10
add-inclusive
add-exclusive

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
gamma

0

500

1000

1500

2000

2500

3000

3500

nu
m

be
r o

f c
ut

s

Synthetic config: d = 6000, n = 225, SNR = 2, k = 10
add-inclusive
add-exclusive

0.0024 0.0030 0.0036 0.0042 0.0048 0.0054
gamma

0

200

400

600

800

1000

1200

nu
m

be
r o

f c
ut

s

Dataset TOXIC : k = 10
add-inclusive
add-exclusive

0.005 0.006 0.007 0.008 0.009 0.010
gamma

0

200

400

600

800

1000

1200

nu
m

be
r o

f c
ut

s

Dataset PERIOD_CHANGER : k = 10
add-inclusive
add-exclusive

0.0009 0.0012 0.0015 0.0018 0.0021 0.0024 0.0027 0.0030
gamma

0

500

1000

1500

2000

2500

3000

nu
m

be
r o

f c
ut

s

MHD system w.r.t. V1 : k = 8
add-inclusive
add-exclusive

0.0018 0.0024 0.0030 0.0036 0.0042 0.0048 0.0054 0.0060
gamma

0

500

1000

1500

2000

2500

3000

nu
m

be
r o

f c
ut

s

MHD system w.r.t. V2 : k = 8
add-inclusive
add-exclusive

0.0012 0.0018 0.0024 0.0030 0.0036 0.0042 0.0048
gamma

0

500

1000

1500

2000

2500

3000

3500

nu
m

be
r o

f c
ut

s

MHD system w.r.t. V3 : k = 8
add-inclusive
add-exclusive

0.04 0.05 0.06 0.07 0.08 0.09 0.10
gamma

0

500

1000

1500

2000

2500

3000

nu
m

be
r o

f c
ut

s

MHD system w.r.t. B1 : k = 8
add-inclusive
add-exclusive

0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040
gamma

0

500

1000

1500

2000

2500

3000

nu
m

be
r o

f c
ut

s

MHD system w.r.t. B2 : k = 8
add-inclusive
add-exclusive

0.0030 0.0033 0.0036 0.0039 0.0042 0.0045 0.0048 0.0051
gamma

0

500

1000

1500

2000

2500

3000

nu
m

be
r o

f c
ut

s

MHD system w.r.t. B3 : k = 8
add-inclusive
add-exclusive

0.0006 0.0007 0.0008 0.0009 0.0010
gamma

0

500

1000

1500

2000

2500
nu

m
be

r o
f c

ut
s

Lorenz system w.r.t. X : k = 8
add-inclusive
add-exclusive

0.006 0.009 0.012 0.015 0.018 0.021 0.024
gamma

0

200

400

600

800

nu
m

be
r o

f c
ut

s

Lorenz system w.r.t. Y : k = 8
add-inclusive
add-exclusive

0.0015 0.0018 0.0021 0.0024 0.0027 0.0030 0.0033 0.0036
gamma

0

250

500

750

1000

1250

1500

1750

nu
m

be
r o

f c
ut

s

Lorenz system w.r.t. Z : k = 8
add-inclusive
add-exclusive

Figure 7. Number of additional SCG cuts generated over all numerical experiments conducted in
section 4. Every panel corresponds to the dataset indicated by its label, and each dot represents the
average across all tested instances.

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
gamma

200

400

600

800

1000

1200

tim
e

(s
)

Synthetic config*: d = 6000, n = 225, SNR = 2, k = 10
SSR
SSR(BnB)
SCPF
SCPF(BnB)
SCPF-m
SCPF-m(BnB)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
gamma

0

2500

5000

7500

10000

12500

15000

17500

nu
m

be
r o

f c
ut

s

Synthetic config*: d = 6000, n = 225, SNR = 2, k = 10
SSR
SCPF
SCPF-m

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
gamma

0

500

1000

1500

2000

2500

nu
m

be
r o

f c
ut

s

Synthetic config*: d = 6000, n = 225, SNR = 2, k = 10
add-inclusive
add-exclusive

Figure 8. Results of (comp) on synthetic dataset (see Appendix C) with (d, n) = (6000, 225).
From left to right: TRT and BnB solving times, SA and the number of additional SCG cuts. The
shaded area denotes the inter-quartile range (25th–75th percentiles) of TRT and SA, respectively.

31

	Introduction & Preliminary
	Main Contributions & Paper Organization
	Notation

	SCG Rule
	SCS Method
	Selection by Undominatedness
	Selection by Effectiveness
	SCPF Design

	Numerical Experiment
	Experimental Setup and Implementation
	Discussions on Numerical Results
	Summary of Numerical Experiments

	Conclusion & Future Directions
	Proofs in sec:screening-cut-generation and sec:screening-cut-selection
	Proof of coro:valid-SCG-tuple
	Proof of prop:cut-domination
	Proof of prop:knapsack-minimal-SCG-tuple
	Proof of bounds in def:potential-screening-ability
	Proof of Claim 1
	Proof of clm:exclusive
	Proof of clm:generate-all-minimal-cuts

	Algorithm Design
	Multi-support SCG rule & SCPF-m Algorithm
	Recursive Enumeration
	Greedy Algorithm for Computing vub

	Details on Experimental Dataset
	Additional Numerical Results
	Assessing the Screening Cut Selection (SCS)
	Additional SCG cuts
	Additional experiments on eq:SLRR-comp formulation

