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ABSTRACT. An accurate characterization of temperature-dependent material parameters of piezoceramics is
crucial for the design and simulation of reliable sensors and actuators. This characterization is typically formu-
lated as an ill-posed inverse problem, which is challenging to solve not only because of its ill-posedness, but
also because of parameter sensitivities, which vary by several orders of magnitude and exhibit a strong cou-
pling between parameters. For this reason we propose a block coordinate descent (BCD) framework combined
with a globalized regularized structure exploiting (GRSE) Quasi-Newton method. A systematic sensitivity-
driven strategy for the optimal partitioning of material parameters into blocks is established. By analyzing
first- and second-order sensitivity information, our method identifies blocks that minimize inter-block coupling
and group parameters with similar sensitivity profiles. Subsequent to a finite element discretization, the deriva-
tives required for both the sensitivity analysis and the optimization are computed accurately using algorithmic
differentiation. The proposed BCD-GRSE method is validated through a numerical experiment with noisy syn-
thetic data. Finally, we present the reconstruction results for the piezoelectric material parameters of an annular
sample based on physical measurement data.
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1. INTRODUCTION

Piezoelectric components are essential in a vast array of electronic devices, ranging from everyday items
such as lighters and headphones to advanced medical and industrial applications like ultrasound imaging
and ultrasonic bonding. Thoroughly understanding the behavior of these materials is crucial for designing
high-performance devices, particularly given the temperature-dependent electromechanical characteristics
of these components. Piezoelectric ceramics undergo changes in behavior due to heating during operation,
especially in high-power ultrasound applications, resulting in a shift in the resonance at which the device
operates. While the effects of temperature are the primary influence considered in this work, it should be
noted that mechanical stresses and electrical biasing conditions present during operation can also affect the
resonance behavior. Therefore, our aim is to develop a method for accurately predicting these changes to
ensure device reliability and performance. Consequently, an optimization technique is required to deter-
mine the complete set of temperature-dependent material parameters (elastic, piezoelectric, and dielectric)
from experimental measurements. This problem is formulated as an inverse problem, which is challeng-
ing for several reasons. It is ill-posed in the sense of Hadamard, i.e., the solution may not be unique or
does not depend continuously on the data, necessitating regularization to ensure a stable and physically
meaningful solution. Furthermore, the problem is characterized by strong coupling and very different or-
ders of magnitude between different material parameters. Additionally, the sensitivities of the forward
operator with respect to different parameters can vary by several orders of magnitude as well. To address
these challenges, we propose an optimization framework based on a Block Coordinate Descent (BCD)
strategy, where the parameters are partitioned based on a sensitivity and cross-sensitivity analysis. Within
each block update, we employ the regularized structure-exploiting Powell-Symmetric-Broyden (RSE-PSB)
method, see [23], that efficiently handles the remaining non-linearity and intra-block parameter coupling
by incorporating second-order derivative information.
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Related Work. Inverse material parameter identification for piezoelectric materials is a well-established
field. Common approaches involve minimizing the discrepancy between measured and simulated electri-
cal impedance using Landweber or Gauss-Newton methods [18, 25]. Furthermore, identifying only those
parameters to which the impedance is most sensitive in specific frequency ranges while keeping others
fixed is discussed in [6]. While effective to some extent, this approach neglects parameter interactions
that occur across different frequency bands. In other studies, Sobol’s method was used as an alternative
approach for calculating sensitivities [2]. A significant challenge arises due to the low sensitivity of the
impedance to certain parameters. To enhance sensitivity, optimization of the geometry of the electrodes is
investigated in [19]. The application of BCD methods to piezoelectric parameter identification was success-
fully explored by [7, 8, 18]. The first two focus on the inverse characterization of piezoelectric materials
considering only a single disc specimen. Both works address the known sensitivity issues of disc-shaped
samples with electrodes fully covering both faces and propose a customized triple-ring electrode topology
to increase the sensitivity. Then, in [8], certain parameters are optimized in frequency ranges where sen-
sitivities are high only for that parameter, while in [7], parameter updates are performed sequentially. In
the specific case of piezoceramic rings, it has been observed that the optimization of electrode topology
is no longer necessary, as the sensitivity with respect to particular parameters is already increased by the
given geometry compared to a piezoceramic disc [10]. The material parameters influenced by tempera-
ture [12], electrical [11], and mechanical loads [13, 14, 30] were identified through the application of the
above-mentioned methods. The temperature-dependent material parameters were additionally identified by
implementing a neural network for initial estimates, followed by the application of an inverse procedure as
a final optimization step [5]. Although satisfactory results have been achieved, cross-sensitivities are only
implicitly addressed, and an algorithmic mechanism for dealing with the highly divergent sensitivities in
the optimization routine and parameter coupling that fundamentally characterize this inverse problem has
been barely discussed. Hence, a thorough grouping of parameters into blocks has not been developed so
far. Consequently, we will propose an algorithmic approach to group the parameters in Section 3.

Contribution. In this paper, we develop a rigorous and practically applicable approach for identifying
temperature-dependent piezoelectric material parameters using only a single ring-shaped sample. First, we
analyze the inverse problem of identifying temperature-dependent piezoelectric parameters in the frequency
domain. The analysis covers the parameter-to-state map, Fréchet differentiability of the forward operator
and the well-posedness of the continuous adjoint problem for all excitation frequencies. This provides
the mathematical foundation for the discretize-then-optimize approach. Then, we propose a sensitivity-
informed BCD framework for solving ill-posed inverse problems. Therein, we analyze first-order sensi-
tivities, total sensitivities, cross-sensitivities, and a curvature-based intra-block roughness measure derived
from second-order information. Based on these measures we present a systematic methodology to parti-
tion material parameters for the BCD algorithm into blocks, which uses first- and second-order sensitivity
analysis to minimize the inter-block coupling (cross-sensitivity), while maintaining intra-block numerical
stability (roughness). Subsequently, we combine the sensitivity-driven BCD framework with the RSE-PSB
method and its globalized version (GRSE), which are analyzed from a theoretical perspective in [23]. The
proposed BCD-GRSE algorithm, which was validated using synthetic noisy data, demonstrates its ability
to accurately reconstruct all piezoelectric material parameters, even those with very low sensitivity. Fi-
nally, we present the reconstruction results for the material parameters of an annular PIC181 sample (PI
Ceramic, Germany) with inner radius of 2.6mm, outer radius of 6.35mm and thickness of 1mm, based
on experimental measurement data across a temperature range of 25 ◦C – 85 ◦C. Using the reconstructed
parameters, a substantial decrease in the data misfit is achieved, obtaining full temperature-dependent ma-
terial descriptions from a single specimen.

Structure of the paper. Section 2 details the mathematical modeling, starting with the forward problem
formulation. The operators of the inverse problem are defined and the derivation and analysis of the con-
tinuous adjoint system follows. Section 3 presents our proposed numerical solution strategy. We introduce
the RSE-PSB quasi-Newton method and embed it within the BCD framework. Next, the sensitivity-driven
methodology for optimal block partitioning is discussed and the simulation-based inverse problem with
synthetic data is solved in Section 4. Section 5 describes the experimental setup for measuring temperature-
dependent impedance data and presents the results of applying our method to real-world measurements.
Conclusions and an outlook are given in Section 6.
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2. MODELING AND ANALYSIS OF THE INVERSE PROBLEM

2.1. Modeling of the forward problem. For practical applications, thin, annular piezoelectric compo-
nents with inner radius r1, outer radius r2, radial length l = r2 − r1 and height/thickness h < l, as
illustrated in Figure 1, are the objects of high interest. We denote the geometry of the considered piezo-
ceramic with a three-dimensional bounded domain Ω3d ⊂ R3, i.e., Ω3d is a non-empty connected open
subset of R3. This axisymmetric assumption reduces the computational complexity of the model from a
three-dimensional (3D) to a two-dimensional (2D) problem, while accurately capturing the relevant phys-
ical properties. Consequently, it is advantageous to utilize the symmetry of the geometry and to use the
cylindrical instead of the Cartesian coordinate system. Hence, we obtain a rectangular Lipschitz domain
Ω ⊂ R2, where its boundary ∂Ω can be represented as the disjoint union ∂Ω := Γa∪̇Γ0∪̇Γn. Here, Γa

describes the boundary segment which is excited electrically with an excitation signal independent of the
spatial domain (equally distributed) and Γ0 refers to the boundary segment which is grounded. This can be
modeled in the system of partial differential equations (PDEs) as Dirichlet boundary conditions. The seg-
ment Γn constitutes the remaining boundary of ∂Ω and is included in the PDE model by Neumann bound-
ary conditions. Furthermore, we denote the non-empty mixed Dirichlet boundary with Γd := Γa∪̇Γ0, i.e.,
∂Ω := Γd∪̇Γn. Assuming an initial stationary system, a macroscopic approach is adopted. In the context
of piezoelectric systems, the mechanical and electrical quantities are interconnected by the principle of
thermodynamic equilibrium. The first law of thermodynamics must be considered. Hence, a contribution
of free energy is required, which is obtained by a Legendre transformation of the internal energy. It is
noteworthy that a variety of energy forms, such as Gibbs free energy, Helmholtz free energy, and different
enthalpy forms, can be utilized to derive the constitutive equations. However, these constitutive equations
are found to be equivalent. The material parameters cE(θ), e(θ) and ϵS(θ) contained therein are represented
as temperature-dependent matrix-valued functions that describe the material behavior of the piezoceramic
under consideration. This approach offers valuable insights into the behavior of piezoelectric materials
at varying temperatures, which are crucial in thermal coupling models. Given that temperatures are typ-
ically non-linear and continuous functions, non-linearity emerges at this point. Applying a Taylor series
expansion to the Gibbs free energy yields the following linear constitutive laws.

Definition 2.1 (Constitutive laws). The so-called e-form of the piezoelectric coupled constitutive equations
reads as

σ = cE(θ) · S − e(θ) · E, D = e(θ) · S + ϵS(θ) · E,

where · denotes the inner product in finite dimensional linear spaces, σ the mechanical stress, cE the
elastic stiffness parameter, S the mechanical strain, e the piezoelectric coupling parameter, D the dielectric
displacement, ϵS the permittivity parameter, and E the electric field.
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FIGURE 1. Geometric model of an annular piezoelectric specimen (3D geometry Ω3d)
with its cross-section, i.e., the 2D domain Ω derived from the axisymmetric domain Ω3d.
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The superscripts E and S in the material parameters cE and ϵS signal that these quantities are understood un-
der conditions of constant electric field and constant mechanical strain, respectively. In the first constitutive
equation, the first term can be identified as Hooke’s law and the second term as the inverse piezoelectric
effect. The second constitutive equation is structured similarly, with the first term representing the di-
rect piezoelectric effect and the second term describing the dielectric behavior of the material. Then, the
constitutive laws are coupled to the equilibrium equations, namely Newton’s second law of motion for me-
chanical behavior and Gauss’s law, as well as to the field equations, i.e., Faraday’s law and the displacement
gradient, where we consider the differential operators

∇ :=

(
∂
∂r
∂
∂z

)
and B =


∂
∂r 0
1
r 0
0 ∂

∂z
∂
∂z

∂
∂r


in Voigt notation transformed to cylindrical coordinates. We denote the normal vector corresponding to ∇
with n and the normal element corresponding to B with N .

Remark 2.2. Note, that the coordinate transformation from Cartesian to cylindrical coordinates is a smooth
diffeomorphism and hence isometrically isomorphic. Consequently, the operators above are transforma-
tions of the corresponding operators in [22].

In order to model the physical behavior more reliably, it is necessary to include a damping model. In this
context, we assume only the occurrence of mechanical friction for which a simplified model, namely the
Rayleigh damping model is employed in the mechanical equation. The Rayleigh damping model intro-
duces two parameters, α and β, which represent mass-proportional and stiffness-proportional damping,
respectively. This is a common simplification to describe energy dissipation within the material during
elastic processes [9]. Hence, we obtain the transient piezoelectric system for each fixed temperature θ

ρü+ αρu̇− BT
(
cE(θ)Bu+ βcE(θ)Bu̇+ e(θ)T∇ϕ

)
= 0 in Ω× (0, T )

−∇ ·
(
e(θ)Bu− ϵS(θ)∇ϕ

)
= 0 in Ω× (0, T )

ϕ = 0 on Γ0 × (0, T )

ϕ = ϕe on Γa × (0, T )

n ·
(
e(θ)Bu− ϵS(θ)∇ϕ

)
= 0 on Γn × (0, T )

NT
(
cE(θ)Bu+ βcE(θ)Bu̇+ e(θ)T∇ϕ

)
= 0 on ∂Ω× (0, T )

u(t = 0) = u0 in Ω× {0}
u̇(t = 0) = u1 in Ω× {0} ,

where T is the end time of the observed time period, α, β ∈ R+
0 are the Rayleigh damping parameters,

ρ ∈ R+ is the mass density and ϕe ∈ H1 (0, T ) is a known excitation function. The sought-after parameters
cE(θ), e(θ), and ϵS(θ) are bounded linear operators defined as follows.

Definition 2.3 (Material parameter functions). Let Θ ∈ R+ be a bounded temperature domain and η ∈ R+.
Then we define the elasticity parameter as a matrix-valued function

cE(θ) :=


c11(θ) c12(θ) c13(θ) 0
c12(θ) c11(θ) c13(θ) 0
c13(θ) c13(θ) c33(θ) 0

0 0 0 c44(θ)

 ,

where c12 and c13 are positive functions,

c11(θ) > η + c12(θ), c44(θ) > η, c33(θ) > c13(θ) + η, c11(θ) + c12(θ) ≥ 2c13(θ)

and c11, c12, c13, c33, c44 ∈ L2(Θ,R), the piezoelectric coupling parameter as a matrix-valued function

e(θ) :=

(
0 0 0 e15(θ)

e31(θ) e31(θ) e33(θ) 0

)
,
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where e15, e31, e33 ∈ L2(Θ,R), and the permittivity parameter as a matrix-valued function

ϵS(θ) :=

(
ϵ11(θ) 0

0 ϵ33(θ)

)
,

where ϵ11(θ) > η, ϵ33(θ) > η and ϵ11, ϵ33 ∈ L2(Θ,R).

These conditions can be seen as sufficient conditions to obtain thermodynamic stability, as they ensure that
the strain energy density is positive definite, guaranteeing that the material is physically stable. This can be
seen by the following lemma.

Lemma 2.4. The material parameters cE(θ) and ϵS(θ) defined in Definition 2.3 are uniformly invertible
with bounded inverse.

Proof. The conditions for ϵ(θ) are obvious. For cE(θ) we compute the eigenvalues

λ1(θ) = c11(θ)− c12(θ)

λ2(θ) =
1

2

(
c11(θ) + c12(θ) + c33(θ)−

√
(8(c13(θ))2 + (c11(θ) + c12(θ)− c33(θ))2)

)
λ3(θ) =

1

2

(
c11(θ) + c12(θ) + c33(θ) +

√
(8(c13(θ))2 + (c11(θ) + c12(θ)− c33(θ))2)

)
λ4(θ) = c44(θ), λ5(θ) = c44(θ), λ6(θ) =

1

2
(c11(θ)− c12(θ)) .

Hence λ1(θ), λ4(θ), λ5(θ) > η and λ6(θ) > η
2 . Furthermore, it holds that

λ3(θ) =
1

2

(
c11(θ) + c12(θ) + c33(θ) +

√
(8(c13(θ))2 + (c11(θ) + c12(θ)− c33(θ))2)

)
>
η + η

2
= η.

As c11(θ) + c12(θ) ≥ 2c13(θ)), it holds that 1 ≥ 2c13(θ))
c11(θ)+c12(θ)

, which yields

c33(θ) > c13(θ)) + η >
2(c13(θ))

2

c11(θ) + c12(θ)
+ η.

Hence, we obtain

λ2(θ) =
1

2

(
c11(θ) + c12(θ) + c33(θ)−

√
(8(c13(θ))2 + (c11(θ) + c12(θ)− c33(θ))2)

)
>

1

2

(
c11(θ) + c12(θ) +

2(c13(θ))
2

c11(θ) + c12(θ)
+ η

−

√
(8(c13(θ))2 + (c11(θ) + c12(θ)−

2(c13(θ))
2

c11(θ) + c12(θ)
− η)2)

)

>
1

2

(
c11(θ) + c12(θ) +

2(c13(θ))
2

c11(θ) + c12(θ)
+ η

−

√
(8(c13(θ))2 + (c11(θ) + c12(θ)−

2(c13(θ))
2

c11(θ) + c12(θ)
)2)

)

>
1

2

(
c11(θ) + c12(θ) +

2(c13(θ))
2

c11(θ) + c12(θ)
+ η

−

√
((c11(θ))

2 + 2c11(θ)c12(θ) + (c11(θ))
2 + 2(c13(θ))

2)2

(c11(θ) + c12(θ))2

)
>
η

2
.

It follows that if the conditions above are satisfied then c(θ) has eigenvalues bounded away from 0. □

Hence, we define for some η > 0

X̃ :=

{
p = (cE(θ), e(θ), ϵS) ∈ L2(Θ,R4×4)× L2(Θ,R2×4)× L2(Θ,R2×2)

}
,
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which is isometrically isomorphic to the parameter space

X :=

{
p ∈ L2(Θ,R)10 : p1 = c11(θ), p2 = c12(θ), p3 = c13(θ), p4 = c33(θ), p5 = c44(θ),

p6 = ϵ11(θ), p7 = ϵ33(θ), p8 = e15(θ), p9 = e31(θ), p10 = e33(θ)

}
.(2.1)

Similarly to [22], we homogenize the mixed Dirichlet boundary conditions using the Dirichlet lift Ansatz.
This is a standard technique to transform a problem with non-homogeneous Dirichlet boundary condi-
tions into an equivalent formulation with homogeneous boundary conditions. The resulting homogeneous
problem is more convenient for theoretical analysis, particularly to prove well-posedness of the forward
problem. As Γa ∩ Γ0 = ∅, Ω is a Lipschitz domain and ϕe ∈ H1 (0, T ), we use Remark 2.2 to apply
Remark 3.5 in [22], yielding that there exists a χ ∈ H1

(
0, T ;H2(Ω,R)

)
) with the property that

(2.2) Tr(χ(t)) =

{
ϕe(t) on Γa

0 on Γ0

a.e. in time.

Hence, with

ϕ0(t) ∈ H2
0,Γ(Ω,R) =

{
g ∈ H2(Ω,R) | g

∣∣
(Γa∪Γ0)

= 0
}
,

we reformulate ϕ as ϕ(t) = ϕ0(t) + χ(t) a.e. in time and obtain the piezoelectric dynamical system

ρü+ αρu̇− BT
(
cEBu+ βcEBu̇+ eT∇ϕ0

)
= BT eT∇χ in Ω× (0, T )(2.3)

−∇ · (eBu− ϵ∇ϕ0) = −∇ · ϵ∇χ in Ω× (0, T )(2.4)

n · (eBu− ϵ∇ϕ0) = n · ϵ∇χ on Γn × (0, T )(2.5)

N T
(
cEBu+ βcEBu̇+ eT∇ϕ0

)
= −N T eT∇χ on ∂Ω× (0, T )(2.6)

u(t = 0) = u0 in Ω(2.7)

u̇(t = 0) = u1 on Ω.(2.8)

We will use results of [22] to obtain unique solutions. For this purpose, we define the space

H2
B(Ω,R2) =

{
g ∈ L2(Ω,R2) | ∥g∥H2

B(Ω,R2) := ∥g∥L2(Ω,R2) + ∥Bg∥L2(Ω,R2) +
∥∥BTBg∥∥

L2(Ω,R2)

}
.

Corollary 2.5. There exists a unique solution

(2.9) (u, ϕ0) ∈ L2(0, T ;H2
B(Ω,R2))× L2(0, T ;H2

0,Γ(Ω,R))

with

(2.10) u̇ ∈ L2(0, T ;H2
B(Ω,R2)) and ü ∈ L2(0, T ;H2

B(Ω,R2)∗)

to the system (2.3)-(2.8).

Proof. Remark 2.2 allows to apply Corollary 3.7 in [22] with a ≡ f ≡ g ≡ 0. Since for each θ ∈
Θ, the material parameters are constant, they satisfy the regularity conditions of Corollary 3.7 in [22].
Furthermore, Assumption 2.2 in [22] is fulfilled due to Lemma (2.4). Using m = 2 in Corollary 3.7 of [22]
concludes the proof, due to the assumed regularity of ϕe and χ. □

Note that the higher regularities in space of the solutions are needed to provide well-definedness of the
observation operator, see subsection 2.2. To simplify the PDE and to deal better with measurements the
whole system will be considered in a time-harmonic setting and thus in frequency domain. For this purpose,
we assume that the body is initially at rest, i.e., at t = 0 the piezoelectric specimen is not vibrating,
stretching or compressing (u0 = u1 = 0), and apply a Fourier transformation to the system (2.3)-(2.8).
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Hence, we obtain the time-harmonic PDE

∀ω ∈ W : −ρω2s1û− BT
(
s2c

E(θ)Bû+ e(θ)T∇ϕ̂0
)
= BTe(θ)T∇χ̂ in Ω(2.11)

−∇ ·
(
e(θ)Bû− ϵS(θ)∇ϕ̂0

)
= −∇ · ϵS(θ)∇χ̂ in Ω(2.12)

n ·
(
e(θ)Bû− ϵS(θ)∇ϕ̂0

)
= n · ϵS(θ)∇χ̂ on Γn(2.13)

NT
(
s2c

E(θ)Bû+ e(θ)T∇ϕ̂0
)
= −NTe(θ)T∇χ̂ on ∂Ω,(2.14)

where s1 := 1− iαω , s2 := 1 + iωβ and (û, ϕ̂0) ∈ H2
B(Ω,C2)×H2

0,Γ(Ω,C) is the solution of the system
above. We denoted the space of angular frequencies withW ⊂ R+, |W| < ∞. Transforming the system
to the frequency domain via Fourier transformation converts time-derivatives into algebraic multiplications
by iω, where i is the imaginary unit, ω = 2πf is the angular frequency and f ∈ F ⊂ R+ is the frequency.
This approach recasts the time-dependent PDEs into a set of stationary, complex-valued PDEs, one for
each angular frequency ω of interest. This formulation is computationally advantageous as it allows us to
solve a series of smaller, independent problems rather than a single large time-dependent one.

Theorem 2.6. There exists a unique solution

(2.15) (u, ϕ0) ∈ H2
B(Ω,C2)×H2

0,Γ(Ω,C)
to the system (2.11) - (2.14).

Proof. By Corollary 2.5, the transient system (2.3)-(2.8) with u0 = u1 = 0 admits a unique solution

(u, ϕ0) ∈ L2(0, T ;H2
B(Ω,R2))× L2(0, T ;H2

0,Γ(Ω,R)).
Fourier transforming this solution in time yields

û(ω) :=

∫ T

0

u(t)e−iωt dt , ϕ̂0(ω) :=

∫ T

0

ϕ0(t)e
−iωt dt .

Due to Plancherel’s Theorem, see [4, Chapter 7] or [21, Theorem 2.20], the Fourier transformation is
continuously invertible on L2(0, T ), or L2(0, T ;H) for any separable Hilbert space H , respectively. Con-
sequently, the Fourier transformed solution (û, ϕ̂0) of system (2.3)-(2.8) is well-defined in

H2
B(Ω,C2)×H2

0,Γ(Ω,C).

Similarly, Fourier transforming the Dirichlet Lift function χ yields χ̂ ∈ H2(Ω,C) with the property that

Tr(χ̂) =

{
ϕ̂e on Γa

0 on Γ0,

where ϕ̂e is the Fourier transformed excitation signal ϕe and ϕ̂ = ϕ̂0 + χ̂. Hence, the time-dependent
system (2.3)-(2.8) Fourier transforms to (2.11) - (2.14). Consequently, the Fourier transformed unique
time-domain solution û and ϕ̂0 provides a solution to the frequency-domain PDE (2.11) - (2.14) for each
ω ∈ W . These solutions are unique as supposing otherwise, i.e., (ũ(ω), ϕ̃0(ω)) is another solution of the
frequency-domain system for the same ω ∈ W , yields that the inverse Fourier transform of (ũ(ω), ϕ̃0(ω))
would define another solution of system (2.3)-(2.8), contradicting Corollary 2.5. This proves both existence
and uniqueness of the solution in the frequency domain. □

Considering the weak form of the system (2.11) - (2.14) via the operators

B((p, z), (v, w)) = 2π

∫
Ω

(
−s1ρω2ûTv +

(
s2c

E(θ)Bû+ e(θ)T∇ϕ̂0
)T
Bv +(

e(θ)Bû− ϵS(θ)∇ϕ̂0
)T
∇w
)
r dΩ ,

(2.16)

L(v, w) = 2π

∫
Ω

(
−(e(θ)T∇χ̂)TBv + (ϵS(θ)∇χ̂)T∇w

)
r dΩ .(2.17)
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yields the bilinear operator equation

∀(v, w) ∈ H2
B(Ω,C2)×H2

0,Γ(Ω,C) : B((p, z), (v, w)) = L(v, w).

Note that the operators in identity (2.16) and (2.17) are the coordinate and Fourier transformed operators
corresponding to B and L in [22].

2.2. Operators of the inverse problem. To formulate the inverse problem, we discretize the continuous
temperature dependency. This allows us to solve the inverse problem for the material parameters at each
discrete temperature point. Hence, we denote the discretized temperature interval of finite cardinality as
Θ ⊂ R+. Before stating the inverse problem for each temperature point θ ∈ Θ, we have to introduce
the corresponding operators. For this purpose, we need the parameter space defined in (2.1) and the state
space, which coincides with the solution space of the forward problem, i.e., the space of solutions to the
system (2.11) - (2.14). Consequently, we obtain the state space

W :=
(
H2

B(Ω,C2)×H2
0,Γ(Ω,C)

)|W|
.

This reflects that for a given parameter p, the forward problem consists of solving the harmonic PDE for
each angular frequency ω ∈ W independently. Therefore, a single state z ∈ W is a collection of solutions
z = {zω}ω∈W with zω = (ûω, ϕ̂0,ω). Then the model operator will be defined as follows.

Definition 2.7 (Model operator). The piezoelectric model operator Aθ : X × W → W ∗ for a fixed
temperature θ ∈ Θ via the bilinear form (2.16) and the linear form (2.17) component wise for each ω ∈ W
is given by

⟨Aθ
ω(p, z), (v, w)⟩W∗,W := 2π

∫
Ω

(
− s1ρω2ûTv +

(
s2c

E(θ)Bû+ eT(θ)∇ϕ̂0
)T
Bv

+
(
e(θ)Bû− ϵS(θ)∇ϕ̂0

)T
∇w + (eT(θ)∇χ̂)TBv − (ϵS(θ)∇χ̂)T∇w

)
r d(r, z) ,(2.18)

where we abbreviated z = (û, ϕ̂0).

To recover information on the parameter p, we need observations of the state z and the parameter. Hence,
we define the measured charge pulse, where we assume that the electrodes are conductive and thus the
charge is distributed equally on the loaded electrode.

Definition 2.8 (Observation operator). The measured charge pulse for a fixed temperature θ ∈ Θ is defined
component wise for each ω ∈ W by

Qθ
ω(p, z) = 2π

∫
Γa

r
(
e(θ)Bû− ϵS(θ)∇

(
ϕ̂0 + χ̂

))
· n d(r, z) .(2.19)

Motivated by physical observations, we assume that
∥∥Qθ

ω(p, z)
∥∥
C > 0 for all (p, z) ∈ X ×W and define

the observation operator Cθ : X × W → R for a fixed temperature θ ∈ Θ component wise for each
ω ∈ W as

Cθ
ω(p, z) = log

(∥∥Qθ
ω(p, z)

∥∥
C

)
.(2.20)

The logarithm is applied to the measured quantity to handle the large dynamic range of the electrical
charge pulse, which can vary by several orders of magnitude, especially near resonance and anti-resonance
frequencies. To model the inverse problem, we employ the reduced approach, meaning that we have to
eliminate the model by introducing a so-called parameter-to-state map, which maps the parameter to the
weak solution of the underlying PDE model (2.11) - (2.14). This approach implicitly solves the state
equation for z given a parameter p, effectively turning the PDE-constrained optimization problem into
an unconstrained optimization problem. Hence, it eliminates the state by mapping an arbitrarily fixed
parameter p to the corresponding state via the parameter-to-state map S.
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Definition 2.9 (Parameter-to-state map). The parameter-to-state map for a fixed temperature θ ∈ Θ

Sθ : X →W, p 7→ z,

is defined by satisfying the model stated in Definition 2.7, i.e.,

∀z, ζ ∈W : [(p, z) ∈ X ×W ∧ ⟨Aθ(p, z), ζ⟩ = 0] =⇒ z = Sθ(p),

where ζ denotes the test function.

Theorem 2.10. For each θ ∈ Θ it holds that

• the operator Aθ introduced in Definition 2.7 is well-defined, bounded, bijective and continuously
Fréchet differentiable on X ×W ,

• the operator Cθ introduced in Definition 2.8 is well-defined, bounded and continuously Fréchet
differentiable on X ×W , and

• the operator Sθ introduced in Definition 2.9 is well-defined, non-linear and continuously Fréchet
differentiable on X .

Proof. Bijectivity of Aθ for each temperature θ ∈ Θ is a direct consequence of Theorem 2.6. Similarly to
the proof of Theorem 2.6 we will carry over well-posedness and differentiability results from [22] to the
current setting. Hence, we employ the same arguments as in the proof of Theorem 2.6 and subsequently
apply Corollary 3.3 to obtain well-definedness. Analogously, invoking the proof of Lemma 4.5 in [22]
yields continuous Fréchet differentiability of Aθ with respect to both the parameters and the state, for each
temperature θ ∈ Θ. Following the same strategy in combination with Lemma 4.5 in [22] yields that Sθ is
well-defined and continuously Fréchet differentiable on X for each temperature θ ∈ Θ. The non-linearity
of Sθ can be obtained from the structure of the model operator. Lastly, using the same arguments as in the
proof of Theorem 2.6 again together with Remark 4.6 and m = 2 for each θ ∈ Θ implies that the operator
Qθ defined in (2.19) is well-defined, bounded and continuously Fréchet differentiable on X ×W for each
temperature θ ∈ Θ. As

∥∥Qθ
ω(p, z)

∥∥
C > 0 for each ω ∈ W and the logarithm is smooth on R+, we deduce

that Cθ defined in (2.20) is well-defined, bounded, non-linear and continuously Fréchet differentiable on
X ×W for each temperature. □

Note that the spatial H2-regularity of solutions to piezoelectric system are needed in time-domain as well
as in frequency-domain formulations, since the observation operator contains a boundary integral of spatial
derivatives of the solution the to piezoelectric system.

2.3. The resulting inverse problem and adjoint system. To state the inverse problem, which aims at
reconstructing the unknown parameter from observed data, we introduce the adjoint system. Since obser-
vations are usually contaminated with noise up to a noise level δ, we have given the positive noisy data
ỹδθ ∈ R|W|, which we transform component wise logarithmically,

yδθ := log
(
ỹδθ
)
.

For the forward operator for each fixed temperature θ ∈ Θ

F θ : X → R|W|, F θ(p) = Cθ(p, Sθ(p)),

we want to identify p ∈ X such that

(2.21) F θ(p) = yδθ .

Hence, the reduced approach casts the problem into an operator equation in R|W| for the sought-after
quantity p. This problem is ill-posed in the sense of Hadamard, see [25], meaning the solution may not
be unique or may not depend continuously on the data. Small perturbations in the measurement data yδθ
can lead to large deviations in the reconstructed parameter function p. Regularization is therefore essential
to stabilize the solution process. Consequently, we introduce a weakly lower semi-continuous regularizer
Rτ : X → R with a regularization parameter τ > 0. Then, we model the inverse problem similarly to [25]
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as an optimization problem. Hence, we aim at finding a minimizer of the regularized target functional
J : X → R for each fixed θ ∈ Θ, which we assume to exist, where

(2.22) J (p) := Jθ(p) +R(p),
and

(2.23) Jθ(p) :=
1

2

∥∥F θ(p)− yδθ
∥∥2
R|W| .

Using derivative-based methods necessitates gradient computation, which is often done via adjoints. Hence,
unique existence of the adjoint state is desirable, as it can be seen as revealing the influence of a cause on a
target functional. To obtain the adjoint PDE system of the piezoelectric system (2.11) - (2.14), we have to
differentiate the model operator, see Definition 2.7, with respect to the state in the direction (d, ψ)

dB((û, ϕ̂0), (v, w))

d
(
û, ϕ̂0

) (d, ψ) =
∂B((û, ϕ̂0), (v, w))

∂û
d+

∂B((û, ϕ̂0), (v, w))

∂ϕ̂0
ψ

= 2π

∫
Ω

−s1ρω2dTv +
(
s2c

E(θ)Bd+ e(θ)T∇ψ
)T Bv + (e(θ)Bd− ϵS(θ)∇ψ)T∇w dΩ .

Denoting the adjoint state as (q1, q2) ∈ H2
B(Ω,C2)×H2

0,Γ(Ω,C) yields

dB((û, ϕ̂0), (q1, q2))

d
(
û, ϕ̂0

) (d, ψ)

= 2π

∫
Ω

−s1ρω2dTq1 +
(
s2c

E(θ)Bd+ e(θ)T∇ψ
)T Bq1 + (e(θ)Bd− ϵS(θ)∇ψ)T∇q2 dΩ

= 2π

∫
Ω

(
−s1ρω2q1 − BT

(
s2c

E(θ)Bq1 + e(θ)T∇q2
))T −∇ · (e(θ)Bq1 − ϵS(θ)∇q2)T ψ dΩ

+ 2π

∫
Γ

N ·
(
s2c

E(θ)Bq1 + e(θ)T∇q2
)T
ddΓ︸ ︷︷ ︸

!
=0

+2π

∫
Γ

n ·
(
e(θ)Bq1 − ϵS(θ)∇q2

)T
ψ dΓ︸ ︷︷ ︸

!
=0

.

Consequently, the adjoint system for (q1, q2) ∈ H2
B(Ω,C2)×H2

0,Γ(Ω,C) is given by

∀ω ∈ W : −ρω2s1q1 − BT
(
s2c

E(θ)Bq1 + e(θ)T∇q2
)
=
∂Jθ
∂û

in Ω(2.24)

−∇ ·
(
e(θ)Bq1 − ϵS(θ)∇q2

)
=
∂Jθ

∂ϕ̂0
in Ω(2.25)

n ·
(
e(θ)Bq1 − ϵS(θ)∇q2

)
= 0 on Γn(2.26)

NT
(
s2c

E(θ)Bq1 + e(θ)T∇q2
)
= 0 on ∂Ω,(2.27)

which is uniquely solvable for every state (û, ϕ̂0) ∈ W due to Theorem 2.6. Hence, we obtain a unique
adjoint state for each PDE solution and not only the existence of a Lagrangian multiplier (i.e., adjoint state)
associated to a minimizer. The right-hand side of the adjoint system is the Fréchet derivative of the objective
functional J for a fixed temperature with respect to the state variables. This term acts as the source for the
adjoint system, propagating information about the data mismatch backwards through the model. We want
to employ the discretize-then-optimize (DO) strategy for the actual calculation of the adjoint and hence, the
gradient. However, the analysis of the continuous problem (2.24) - (2.27) is an indispensable prerequisite
for the DO approach. Consequently, the well-posedness of the continuous adjoint problem, including the
existence and uniqueness of the adjoint state, serves as the essential mathematical foundation.

3. THE BCD RSE-QN APPROACH

In practical solution approaches to inverse problems in piezoelectricity, sensitivities of the forward operator
with respect to different parameters vary considerably, see [19], which is not desirable for solving inverse
problems. For a better handling of sensitivities we propose a block coordinate descent (BCD) method, that
was successfully used by [18] in the context of parameter identification problems in piezoelectricity. The
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basic idea of BCD methods is to obtain the solution of an optimization problem by solving a sequence
of "smaller" optimization problems. Specifically, these algorithms are usually iterative methods in which
the minimization of the objective functional with respect to a previously selected block consisting of com-
ponents of the optimization variables is achieved in each iteration step, while the remaining components
of the optimization variables are fixed to their values of the current iteration, see [31]. This block is then
updated and fixed for the next block. On the one hand, the advantage is that each of these sub-problems is
lower-dimensional than the original minimization problem and, on the other hand, regarding second-order
methods, the degrees of freedom in the corresponding Hessian operators (or approximations thereof) are
reduced, see [31]. To illustrate the approach, assume thatX ⊂ Rn and choose for the optimization problem

(3.1) min
p∈X
J (p)

a block Bk
i containing coordinates with indices bki ⊆ {1, 2, . . . , n}, where k refers to the k-th iteration

step and i to the block number in the k-th iteration step. Then, we update the corresponding sub-vector
pb

k
i ∈ R|bki | of the optimization variables, i.e.,

p
bki
k+1 = p

bki
k + sk,

where sk ∈ R|bki | is typically a descent direction of the lower dimensional sub-problem. With Ibki denoting

the |bki | × |bki | dimensional identity matrix embedded in Rn×|bki |, we can reformulate the BCD update as

pk+1 = pk + Ibki sk,

see [28]. The next block Bk
i+1 is chosen according to bki+1 ⊆ {1, 2, . . . , n} \ ∪il=1b

k
l . There are different

ways to realize the BCD method, and therefore to define the block Bk
i as well as the direction sk. Firstly,

we need a strategy to select an appropriate bki . Possibilities for this choice would be to fix certain disjoint
partitions of {1, 2, . . . , n}with a prescribed cardinality a-priori. This means that we cycle through the same
partitions every time, which is known as cyclic selection and refers to the Gauss-Seidel method for linear
systems. Next, one could choose the block size and the coordinates therein in each iteration, which is called
variable block selection. Therefore, blocks can be chosen from all possible subsets of {1, 2, . . . , n} ran-
domly or with greedy approaches where an underlying optimization problem must be solved to obtain the
optimal block. If the iteration costs are high, then greedy BCD versions are too costly. Furthermore, [28]
suggests using fixed blocks over variable blocks, Newton-type methods for each block and larger and
fewer blocks if the iteration cost does not increase heavily. Since, e.g., [18], also recommends to apply
Newton-type methods in the context of parameter identification problems in piezoelectricity, we will use
the RSE-PSB, see [23]. This can be seen as a "corrected" Levenberg-Marquardt method or a regularized
structure-exploiting Quasi-Newton (QN) method especially designed for solving inverse problems, where
second order derivative information is desirable because of non-linearity or cross-sensitivity information.
By computing the Hessian of J defined in (2.22), i.e.,

H(pk) := F ′(pk)
∗F ′(pk) + F ′′(pk)

∗ (F (pk)− yδ)+ τkI,

one obtains the regularized Newton method,

H(pk)(pk+1 − pk) = F ′(pk)
∗ (yδ − F (pk)) ,

where we omit the superscript corresponding to the temperature for the sake of readability. Computing H
directly is numerically very costly. Hence, the idea is to use QN methods, but those methods often do not
take the structure of J and H into account. Therefore, if we assume that F ′ is known or easily accessible,
analogously to the Levenberg-Marquardt (LM) method, only

Z(pk) := F ′′(pk)
∗ (F (pk)− yδ)

is difficult and expensive to compute. Consequently, the goal is to find Ak such that Ak ≈ Z(pk). One
possibility is to set Ak = 0 for all k ∈ N, which corresponds to the LM method, but the approximation
error is only small if F is linear or the residual is sufficiently small, i.e., we have a good approximation and
an initial guess close to the optimum. In real-world applications obtaining such an initial guess can be very
challenging. Therefore, the idea of the RSE-PSB method is to employ QN updates for Ak. Note that even
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the specific QN method has to be chosen carefully, as Z may not be positive definite, while still symmetric.
Consequently, we focus on the PSB update and define the residual rk and the step sk as,

rk := F (pk)− yδ, sk := pk+1 − pk.
A Taylor approximation leads to the following modified secant condition,

(F ′′(pk)
∗rk)sk = (F ′(pk+1)− F ′(pk))

∗rk+1, yielding yk := (F ′(pk+1)− F ′(pk))
∗rk+1.

Then, we obtain the PSB update to approximate F ′′(pk)
∗rk via

Ak+1 = Ak +
(yk −Aksk)⊗ sk + sk ⊗ (yk −Aksk)

⟨sk, sk⟩
− ⟨yk −Aksk, sk⟩sk ⊗ sk

⟨sk, sk⟩2
,

where ⊗ denotes the outer product. Hence, using the PSB update for computing Ak and

Bk := F ′(pk)
∗F ′(pk) +Ak + τkI

as approximation operator to H(pk) yields the RSE-PSB method

Bk(pk+1 − pk) = F ′(pk)
∗ (yδ − F (pk)) .

Thus, the RSE-PSB method leverages the problem structure not only by decomposing in data discrepancy
and regularization terms but also by exploiting the structure of the analytical second Fréchet derivative of
the respective regularized target functional. To ensure the regularization property as well as robustness in
practical applications, particularly when the initial guess significantly deviates from the true solution, and
to have a concrete choice of the regularization parameter, [23] adapted an approach from [20]. The latter
approach controls the regularization parameter such that it leads to globalization in a finite dimensional
setting. Therefore, the control approach also serves as an a-priori rule to choose the regularization param-
eter. This strategy yields a globalization technique, ensuring convergence towards a local minimizer even
when the initial guess p0 is far from the true solution. We combine this QN approach with a cyclic BCD

Algorithm 1 BCD-GRSE algorithm

Require: k = 0; c, a, µ ∈ (0, 1);σ > 1; p0 ∈ Rn; yδ ∈ R|W|; bi ⊆ {1, 2, . . . , n} \ ∪i−1
l=1bl;

Ai
0 ∈ R|bi|×|bi|; τ i0 > 0; gi0 > ηi, i = 1, · · · ,m.

while gik > ηi for all i = 1, · · · ,m do
for i = 1, · · · ,m do

Evaluate F (pk), compute F ′
bi
(pk), rk = F (pk)− yδ , J ′

bi
(pk) = F ′

bi
(pk)

∗rk.
if k > 0: then

Set p̌k ← (p1k, · · · , p
i−1
k , pik−1, p

i+1
k , · · · pmk ), compute F ′

bi
(p̌k) and Ai

k with RSE-PSB.
end if
If eq. (3.2) is solvable: Compute sk as solution of

(3.2)
(
F ′
bi(pk)

∗F ′
bi(pk) +Ai

k + τ ikI
)
sk = −J ′

bi(pk).

Compute predk =
τ i
k

2 ∥sk∥
2 − 1

2J
′
bi
(pk)

T sk, aredk = Jbi(pk)− Jbi(pk + sk), ρk = aredk
predk

.
while ρk ≤ c or predk ≤ agk∥sk∥ : do

if eq. (3.2) is not solvable then
Set τ ik ← στ ik

else
Solve eq. (3.2) for sk and compute predk =

τ i
k

2 ∥sk∥
2 − 1

2J
′
bi
(pk)

T sk,

aredk = Jbi(pk)− Jbi(pk + sk), ρk = aredk
predk

.
end if

end while
Update p̂ik ← pik + sk and pk ← (p̂1k, · · · , p̂

i−1
k , p̂ik, p

i+1
k , · · · pmk )

Set τ ik+1 ← µτ ik and compute gik+1 =
∥∥J ′

bi
(pk)

∥∥
end for
Update pk+1 ← (p̂1k, · · · , p̂mk ) and k = k + 1

end while
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method. Therefore, the blocks do not change during the optimization process, i.e., bik = bi. We denote
m < n as the number of blocks and ∪̇mi=1bi = {1, 2, . . . , n}. The resulting BCD-GRSE algorithm that
employs the dynamic control of the regularization parameter as presented in [23] is shown in Algorithm 1.
For this purpose, we denote pk := (p1k, · · · , pmk ) corresponding to the blocks b1, · · · , bm. Conditioning the
decrease of the regularization parameters on the first occurrence of convergence in the preceding blocks
can enhance stability in practical applications. An open question is which parameters should be grouped
together in one block. Thus, we want to tackle the problem of coordinate choice and having different sen-
sitivity values by a sensitivity driven partitioning approach. For this purpose, we analyze the sensitivities
and cross-sensitivities. The sensitivity of a quantity can be understood as a measure of the change in this
quantity when certain influences change. The cross-sensitivity measures the potential for mutual influence
between two specific parameters in relation to changes in a specific quantity. Hence, sensitivities of an
operator are understood as derivatives. We define normalized parameters

xi :=
pi
∥pi∥

⇒ pi = xi∥pi∥

and reformulate the function F (p) to

F (p) = F (x1∥p1∥, . . . , x10∥p10∥) = F̃ (x).

The partial derivative of F̃ with respect to xi is obtained using the chain rule

∂F̃

∂xi
=
∂F

∂pi
· ∂pi
∂xi

= ∥pi∥
∂F

∂pi
,

which measures the sensitivity relative to the respective scale. This approach corresponds to the logarithmic
differential and thus to the sensitivity in terms of elasticity theory, i.e., the percentage change in F for a
percentage change in pi. The normalization is crucial because parameters may have different physical units
and magnitudes. Without normalization, a direct comparison of their derivatives would be less reasonable.

Definition 3.1. We define the partial sensitivity of the forward operator with respect to a certain parameter
xj , j ∈ {1, . . . , n}, as

(3.3)

{
∂F̃ω(x)

∂xj

}
ω∈W

=
{
C ′

ωx
(x, S(x))S′(x)

}
ω∈W ,

the sensitivity κj of the forward operator with respect to a certain parameter xj , j ∈ {1, . . . , n}, as

(3.4) {κj,ω(x)}ω∈W :=

{∣∣∣∣∣∂F̃ω(x)

∂xj

∣∣∣∣∣
}

ω∈W

with

(3.5) κ :=

κ1,1 · · · κ1,ω|W|
...

. . .
...

κn,1 · · · κn,ω|W|

 ∈ Rn×|W|

the sensitivity matrix, and the total sensitivity Vj of the forward operator with respect to a certain parameter
xj , j ∈ {1, . . . , n}, as

(3.6) Vj(x) :=
∑
ω∈W

κj,ω(x).

Furthermore, we define the cross-sensitivity ξj,l of the forward operator with respect to the parameter xj
and xl, j, l ∈ {1, . . . , n} , j ̸= l, as

(3.7) ξj,l(x) :=
∑
ω∈W

∣∣∣∣∣ ∂∂xl
(
∂F̃ω(x)

∂xj

)∣∣∣∣∣.
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A high value of the cross-sensitivity ξj,l indicates that a change in parameter xl significantly alters the
sensitivity of the model to parameter xj . In the context of optimization, this means that the gradient with
respect to xj is highly dependent on the value of xl. Sensitivities may also be defined differently, for in-
stance via second-order difference quotients or statistically through conditional expectations and variances,
see [26]. The pairwise parameter coupling via cross-sensitivities is encoded in the strictly upper triangular
matrix

(3.8) ξ(x) =


0 ξ1,2 ξ1,3 · · · ξ1,n

0 0 ξ2,3 · · · ξ2,n

...
...

. . . . . .
...

0 0 · · · 0 ξn−1,n

0 0 · · · 0 0

 ,

where each entry ξj,l, j < l, quantifies the cross-sensitivity between parameters xj and xl. It can be under-
stood as a structural measure of pairwise interactions between model parameters. Specifically, off-diagonal
entries ξj,l, j < l, quantify the cross-sensitivity between parameters xj and xl and hence the parameter
coupling and interaction. Due to the assumed smoothness, ξ(x) could also be chosen as symmetric matrix.
However, the strictly upper triangular representation of ξ(x) is motivated to avoid redundancy in encod-
ing pairwise parameter interactions. Hence, we avoid to duplicate information that could lead to double
counting in subsequent aggregation steps. To capture directional sensitivity interactions that go beyond
pairwise effects, we introduce a scalar, curvature-based measure derived from second-order derivatives of
the objective function. For each block bk, we define the intra-block roughness measure of the gradient as

(3.9) ξ̂bk(x) :=
1

Vbk(x)

∑
i,j∈bk

ξi,j for k ∈ {1, · · · ,m},

where

(3.10) Vbk(x) :=
∑
i∈bk

Vi(x) for k ∈ {1, · · · ,m}

denotes the total first-order sensitivity of block bk. We reasonably assume that this first-order block sen-
sitivity is strictly positive, otherwise the parameters in the corresponding block would have no influence
on the forward operator at all. Therefore, ξ̂bk measures the rate at which the gradient of the objective
function changes along the directions in bk, normalized by first-order sensitivity in that direction, which
specifies the inter-block roughness of the gradient. High values of ξ̂bk(x) identify directions exhibiting
strong non-linearity or potential numerical instability. Consequently, one may see this quantity as local
condition number. The intra-block roughness measure ξ̂bk(x) can be intuitively understood as an average
non-linearity measure of the problem within the parameter subspace defined by block bk. A block with low
roughness is desirable because the optimization sub-problem associated with it will be better conditioned.
Additionally, each quantity ξ̂bk(x) can be identified as sensitivity of the gradient to small perturbations in
parameters of block bk, which can be seen as the normalized cross-sensitivity. In the context of BCD, we
aim to form parameter groupings that have a stable gradient in terms of roughness and are externally as
decoupled as possible, where the latter is certainly more important. We consider a partition into non-trivial,
disjoint blocks. Let the set of all admissible m-partitions be defined as

(3.11) Pm :=
{
P ⊂ P({1, . . . , n}) : ∪̇mi=1bιi = {1, . . . , n}

}
,

where P denotes the power set. To guarantee external decoupling, we define the inter-block coupling as
the total cross-sensitivity across two blocks in a specific P ∈ Pm as

(3.12) ξbk,bl(x) :=
∑
i∈bk

∑
j∈bl

ξi,j(x).

To determine optimal parameter blocks, we minimize a composite objective function that combines inter-
block cross-sensitivity with the intra-block roughness measure,

(3.13) min
P∈Pm

w1

∑
bk∈P

ξ̂bk(x) + w2

∑
bk∈P

∑
bl∈P

ξbk,bl(x),
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where w1, w2 ∈ R≥0 are pre-defined weights representing the trade-off between interaction across the
blocks and the roughness within each block. The choice of weights w1 and w2 governs the nature of
the partitioning. It is reasonable to emphasize the inter cross-sensitivity between blocks, i.e., we choose
weights w1, w2 ∈ [0, 1] with w1 ≪ w2 and w1 = 1 − w2. This framework supports the identification
of parameter blocks with low internal curvature variability and minimal coupling across the blocks. Mini-
mizing the first term ensures that blocks are composed of parameters with small roughness in the gradient,
i.e., with approximately linear or mildly non-linear sensitivity structures. The second term penalizes the
interaction across the blocks. Once blocks are formed, the total first-order sensitivity of the blocks may
guide the prioritization of block updates during the BCD update, for instance by selecting the block with
highest total first-order sensitivity first. Since |Pm| denotes the number of ways to partition n parameters
into m blocks, it grows rapidly with n and m. It is related to the Stirling numbers of the second kind as
it can be seen as general graph partitioning problem of a complete weighted graph. Hence, it is useful
to deal with small dimensions, where exhaustive enumeration can be used. Then, the proposed curvature-
based framework provides an approach to structural decomposition of parameter spaces and offers a refined
view of coupling, non-linearity, and stability. For larger dimensions greedy heuristics, spectral methods or
relaxation approaches would be necessary.

4. SOLUTION OF THE INVERSE PROBLEM WITH SYNTHETIC DATA AND CONSTANT TEMPERATURE

4.1. General numerical setting. To perform a valuable analysis of the sensitivities and to solve the in-
verse problem, it is necessary to implement a suitable numerical model. For this purpose, we use the DO
approach, where the problem setting is discretized first. Then, the analysis of the sensitivities and the op-
timization are performed within this finite-dimensional setting. Specifically, the spatial discretization is
realized using a classical finite element method (FEM) implemented in the FEM tool FEniCS [1] (dolfin
version 2019.2.0.dev0). The gradient-based optimization methods including the sensitivity computations
described in the previous sections require easy access to first order Fréchet derivatives as accurate and con-
sistent as possible in a computationally measurable sense. To obtain these accurate derivatives efficiently,
we employ algorithmic differentiation (AD) [16] via the dolfin-adjoint [27] library (version 2019.1.0),
which integrates seamlessly with FEniCS. The central concept is that the computation of a discretized op-
erator can be decomposed into a finite sequence of elementary operations such as addition, multiplication
and elementary function calls. By calculating the derivatives with respect to the arguments of these op-
erations, one has the necessary tool to systematically apply the chain rule to arrive at the derivatives of
the entire sequence of operations with respect to the input variables. Hence, we obtain consistent first-
order derivatives of high precision [15]. AD operates in two primary modes, namely the forward mode,
which propagates derivatives forward together with the function evaluation and the reverse mode, which
propagates derivatives backward. The reverse mode of AD is related to solving the discrete adjoint of the
discretized forward problem, see e.g., [3], where AD automatically generates and solves the discrete adjoint
problem, providing accurate gradients required for the optimization algorithms. As domain Ω we consider
a rectangle with vertices (2.6, 0), (6.35, 0), (6.35, 1), and (2.6, 1), where coordinates are given in mm,
which corresponds to a ring-shaped geometry, see Figure 1, with outer radius of 6.35mm, inner radius of
2.6mm and thickness of 1mm. Furthermore, we use ϕ̂e = 0.03V as excitation and perform any numerical
realization in kHz. This has the advantage of a better condition of the PDE system, as the elastic stiffness
parameter is down-scaled with 10−6, the piezoelectric coupling parameter is up-scaled with 103 and the
permittivity parameter is up-scaled with 1012, yielding that the magnitudes of the material parameters dif-
fer significantly less. The material parameters and damping parameters selected for the FEM simulations
are presented in Table 1. The damping parameters α and β as given in Table 1 are used throughout the
remainder of this paper. The element size h and the polynomial order g are the key factors in determining
the frequency at which this configuration is suitable, and the numerical deviations that are to be expected
above that frequency. According to [17], it is possible to specify a frequency

f <

(
g +

1

2

)
1

πh

√
cD

ρ
(4.1)

for which the model delivers satisfactory results. A comparison of the numerical deviation of the results
and the computational time indicates that an element size of h = 150 µm and a polynomial order of
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TABLE 1. Material parameters from [10] used for numerical computation.

Parameter Value

c11 151.4GPa
c12 132.7GPa
c13 83.6GPa
c33 128.8GPa
c44 25.9GPa
ϵ11 2.7 nFm−1

Parameter Value

ϵ33 5.5 nFm−1

e15 9.4Cm−1

e31 −5.2Cm−1

e33 13.9Cm−1

α 37.8ms−1

β 42 fs

g = 3 yield sufficiently reasonable simulation outcomes. Using inequality (4.1), cD = 170GPa and ρ =
7850 kgm−3 for a PIC181 piezoceramic [29], this results in a frequency of f < 34.56MHz, which suits the
assumed frequency range. Consequently, this configuration is employed for the subsequent computations.
Furthermore, specifying the Dirichlet lift function χ̂ in the system (2.11) - (2.14) is not necessary and can
be avoided in practice, as it is possible to directly implement mixed Dirichlet conditions in FEniCS.

4.2. Sensitivity analysis. This section details the sensitivity analysis performed to understand how the
forward model’s output is influenced by variations in each material parameter. The results of this analysis
directly motivate the sensitivity-driven block partitioning strategy for the BCD algorithm that follows.
From [10] conclusions can be drawn about the reasonable frequency domains for the inverse problem.
Therein it is emphasized that the range between the first radial resonance and the capacitive range between
the first and second thickness resonance is particularly suitable for parameter identification. Hence, we will
use the range from 1 kHz to 6000 kHz with step-size of 10 kHz, i.e.,

Fg := {f ∈ N : f ≡ 0 mod 5, f ≤ 6000}, Wg := {ω = 2πf ∈ R+ : f ∈ Fg}.(4.2)

To effectively visualize and compare the sensitivities, we introduce two normalization schemes that scale
the sensitivity matrix. We will scale the partial sensitivities on the one hand, with normalization of one
sensitivity for all angular frequency points after the respective (row-wise) maximum and, on the other
hand, of all sensitivities for one angular frequency point after the respective (column-wise) maximum.
Then, we obtain the matrices

(4.3) κrm :=


κ1,1

maxω∈Wg κ1,ω
· · ·

κ1,ω|W|
maxω∈Wg κ1,ω

...
. . .

...
κ10,1

maxω∈Wg κ10,ω
· · ·

κ10,ω|W|
maxω∈Wg κ10,ω

 , κcm :=


κ1,1

maxj κj,1
· · ·

κ1,ω|W|
maxj κj,ω|W|

...
. . .

...
κ10,1

maxj κj,1
· · ·

κ10,ω|W|
maxj κj,ω|W|

 .

Ideally, all partial sensitivities would be similar and close to one, but this is by no means realistic in practical
applications, as the sensitivities depend, among other things, on the overall geometry of the ceramic itself,
which will not be changed. One can try to increase sensitivities either via a sensitivity optimization or via
optimal experiment design of electrode configurations, see [19]. The BCD approach is an alternative that
does not change, but provides better handling of sensitivities. For the subsequent sensitivity results, we used
the parameters in Table 1, chose the angular frequency gridWg defined in (4.2) and used AD for first- and
second-order sensitivity computations. In Figure 2 we see the illustration of the matrices in (4.3), where the
black points indicate those sensitivities κj,ω overWg which are higher than 90 % of maxω∈Wg

κj,ω for each
j ∈ {1, . . . , 10}. The row-wise normalization (κrm, left in Figure 2) highlights the frequency-dependent
profile of each parameter’s sensitivity relative to its own maximum. For example, c11 and c33 exhibit
sharp peaks near the material’s resonance frequencies. Conversely, the column-wise normalization (κcm,
right in Figure 2) illustrates which parameter dominates at a specific frequency. The existing approaches
to group parameters enforce to categorize them in similar frequency domain regions. This means that
parameters are grouped together, which have high sensitivity at a specific frequency range and optimize
them on that range, while keeping them fixed at other ranges, see [6]. Nevertheless, the interaction between
those parameters in a specific range can be high. We do not follow that approach of domain splitting, as
we emphasize reducing the inter cross-sensitivities and use a BCD approach instead of a pure coordinate
descent approach as in [10]. As mentioned before, the sensitivities of the forward operator in piezoelectric
inverse parameter identification problems can vary strongly, which is illustrated also in Figure 3. Since the
cross-sensitivity analysis is especially useful for the block choice in the subsequent inverse problem, we
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FIGURE 2. Row-wise and column-wise normalized sensitivities κrm and κcm with re-
spect to the parameters in Table 1 onWg.

FIGURE 3. Total average sensitivities of the forward operator with respect to the param-
eters in Table 1 onWg.

assume the same numerical configurations. Specifically, we use the same spatial mesh, initial parameters
and angular frequency domain grid for the solution to the inverse problem (2.23) and for the solution to
the combinatorial block choice problem (3.12). We specify as initial guess p0 the parameters in Table 1
with 5% overestimation. To dampen any amplification of the discrepancy in sensitivities by the forward
operator we select a suitable angular frequency range, see [24]. From Figure 2, conclusions can be drawn
about reasonable frequency domains for the inverse problem. Due to the small sensitivities of the forward
operator with respect to c12 and ϵ11, we use a fine angular frequency grid in areas where the forward
operator is more sensitive to those parameters and in resonance areas. In the other parts of the angular
frequency domain we use a coarse grid. Hence, with the frequency domains

F1 := {f ∈ N : f ≡ 0 mod 3, 38 ≤ f < 2600}, F2 := {f ∈ N : f ≡ 0 mod 20, 2600 ≤ f < 4500},
F3 := {f ∈ N : f ≡ 0 mod 3, 4500 ≤ f ≤ 6000},
we consider

(4.4) Wa := {ω = 2πf ∈ R+ : f ∈ F1 ∪ F2 ∪ F3}
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FIGURE 4. Total cross-sensitivities of the forward operator with parameters in Table 1
and 5% overestimation onWa.

as angular frequency domain. This adaptive selection concentrates computational effort in angular fre-
quency regions rich with information, while sparsely sampling regions where the model is less sensitive.
This can be viewed as a form of a-posteriori experimental design, optimizing the data used for the inversion
rather than the physical experiment itself. Furthermore, this results in the advantage of less computations
in the sensitivity analysis as the cardinality of the angular frequency domain became smaller. With this
approach we obtain the cross-sensitivities, c.f. identity (3.8), for all parameters as shown in Figure 4, il-
lustrating clearly the disparity in cross-sensitivities. The bars corresponding to pairs like (c11, c13) and
(c11, c33) represent strong interactions where a change in one parameter drastically alters the gradient with
respect to the other. Unadapted optimization algorithms could struggle with such a landscape, as the search
direction would be compromised by these conflicting influences.

Since we want to reconstruct n = 10 material parameters, we have I = {1, 2, . . . , 10} as the index set
of parameters for a fixed θ ∈ Θ in our concrete application. As detailed above, we will use a cyclic
BCD-GRSE method and consider a bipartition, i.e., m = 2, into two non-trivial, mutually disjoint blocks,

(4.5) b1 ⊂ I, b2 = I \ b1, with 2 ≤ |b1|, |b2| ≤ 8.

Consequently, the problem of determining optimal parameter blocks can be simplified to

(4.6) min
b1⊂I

2≤|b1|≤8

w1

(
ξ̂b1(x) + ξ̂b2(x)

)
+ w2 · ξb1,b2(x).

Since n = 10 andm = 2, we use exhaustive enumeration to solve problem (4.6), where we chosew1 = 0.1
and w2 = 0.9, resulting in the partition b1 = {c11, c13, c33, c44, ϵ33, e15, e31, e33}, b2 = {c12, ϵ11}.
Computing the total first-order sensitivity of each block suggests that we prioritize b1. This partitioning is
also supported by the intuitive approach of combining the two parameters with the lowest overall sensitivity
(c12 and ϵ11) into a separate block. However, this intuitive strategy would not necessarily be effective, as
inter-block correlations may still be high. The advantage of our approach is that we are able to reasonably
conclude that the parameter blocks exhibit small interaction and the dominant parameters are isolated.

4.3. Solution to the simulation-based inverse problem. To validate the performance of the proposed
BCD-GRSE algorithm and the effectiveness of the sensitivity-based block partitioning strategy, we first
conduct a numerical experiment using synthetic data. To generate the noisy data yδ we contaminate the
exact simulated data y, generated according to the parameters in Table 1, additively with uniformly dis-
tributed random noise with a noise level of 2%. As initial guess p0 we used the parameters in Table 1 with
5% overestimation. Additionally, we performed numerical tests using a 5% underestimated initial guess,
which yielded similar convergence results.
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FIGURE 5. BCD-GRSE parameter identification from simulated noisy data.

We employ the hyperparameters µ = 0.5, τ10 = τ20 = 10−3, σ = 4, c = a = 10−2 and η1 = 5η2,
η2 = 1.45 · 10−5. For improved stability, the regularization parameter of the second block was reduced
when the norm of the first-block update dropped below 1 for the first time. Here, µ is the decay factor and σ
is the growth factor of the regularization parameters for each block, see [23], and c, a refer to c, p in [23].
As initial Quasi-Newton matrices for each block we useF ′′(p0)

∗ (F (p0)− yδ), whereF ′′(p0) is computed
via AD. Figure 5 shows the parameter identification performance of the BCD-GRSE method. For the sake
of better visualization, the reconstructed parameter values have been normalized with the respective true
parameter, so that convergence to the value 1 is desired. The reconstruction results in Figure 5 show
successful convergence to the true parameters in Table 1, even for the least sensitive parameters c12 and
ϵ11. The successful reconstruction from noisy synthetic data provides numerical evidence for the proposed
method and validates the sensitivity-driven block decomposition strategy. Note that throughout the iterative
optimization process, every iteration step remained in the feasible set.

5. APPLICATION TO EXPERIMENTAL MEASUREMENT DATA

5.1. Experimental Setup. After the validation of the proposed method using synthetic data, the sub-
sequent step is its application to real measurement data. The behaviour of a piezoceramic sample under
varying temperature conditions is investigated through the measurement of its electrical impedance at these
conditions. The experimental configuration is fundamentally reliant upon a temperature-controlled cham-
ber, in which the sample under test is securely positioned. This chamber is designed to ensure a con-
stant thermal environment for the samples during the impedance measurement. Temperature regulation is
achieved via a precise thermostat system (Magio MS-310F, Julabo, Germany). At each temperature point
within a specified range of 25 ◦C to 85 ◦C in increments of 5 ◦C, electrical impedance measurements are
conducted using an impedance analyser (E4990A, Keysight Technologies, USA). Ventilation is implemented
to ensure uniform temperature distribution within the chamber, thereby minimising temperature gradients
across the sample. Both the thermostat and the impedance analyser are computer-controlled, enabling
automated measurements to be conducted across the entire temperature range. A sufficient time period
of half an hour is implemented to allow the sample to reach thermal equilibrium with the chamber. The
examined specimen is a PIC181 (PI Ceramic, Germany) annular piezoelectric ceramic with dimensions
that correspond to those previously described in Section 4 and shown in Figure 1. For the identification
of the temperature-dependent material parameters based on the measurements, we assume an equidistant
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discretization of Θ with 5 ◦C - step-size between 25 ◦C and 85 ◦C, analogous to the measurements, yield-
ing Θ := {25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85}. As the data measured at each temperature is a
vector consisting of absolute values of the impedance, i.e.,

|Zω(p, z)| :=

∣∣∣∣∣−ϕ̂eQi
ω(p, z)

ω|Qω(p, z)|2
+ i
−ϕ̂eQr

ω(p, z)

ω|Qω(p, z)|2

∣∣∣∣∣ = ϕ̂e

ω|Qω(p, z)|2
∣∣Qi

ω(p, z) +Qr
ω(p, z)

∣∣ = ϕ̂e

ω|Qω(p, z)|

we equivalently convert it according to the forward operator via

|Qω(p, z)| =
ϕ̂e

ω|Zω|(p, z)
resulting in

yδω := log

(
ϕ̂e

ω|Zω|meas

)
.

The angular frequency grid for the reconstruction is chosen as in Section 4. Then, for each fixed tempera-
ture we have to reconstruct a different set of material parameters. We start by reconstructing the material
parameters at 25 ◦C, where we use the parameters given in Table 1 as initial parameters. Since the material
properties at a given temperature are assumed to be independent of the properties at other temperatures, the
inverse problem can be solved independently for all remaining temperatures. This allows the application of
a trivial parallelization of the characterization process. Consequently, after obtaining the results for 25 ◦C,
given in the first column of Table 2, we use those parameters as initial parameters for all remaining θ ∈ Θ.
We expect on the one hand that this approach yields a better initial guess and on the other hand significantly
faster convergence. Furthermore, we employed the same hyperparameters as in subsection 4.3 and used
F ′′(p0)

∗ (F (p0)− yδ), where F ′′(p0) is computed via AD, as initial Quasi-Newton matrices.

5.2. Results based on measurement data. Applying the BCD-GRSE algorithm to the experimental data
for each temperature θ ∈ Θ yields the values of the parameters as depicted in Table 2, with elasticity
parameter components in GPa, piezoelectric coupling parameter components in Cm−1 and permittivity
parameter components in nFm−1, rounded to three decimal places. Comparing the data misfit for each
temperature achieved by the BCD-GRSE algorithm to the results presented in [12] confirms that our method
consistently achieves less than half of the data misfit values of [12], which can be seen in Table 3. A visual
comparison of the measured data, the data generated with the reconstructed parameters using the BCD-
GRSE algorithm and the data from [12] showed almost indistinguishable results across the temperature
domain. Therefore, we chose results for the representative temperature of 50 ◦C, illustrated in Figure 6.
For better visualization, the first row shows zoomed-in versions of the grey-marked characteristic regions

TABLE 2. Results of the parameter identification for each θ ∈ Θ based on real measure-
ment data applying the BCD-GRSE algorithm.

θ
pj c11 c12 c13 c33 c44 ϵ11 ϵ33 e15 e31 e33

25 140.866 72.667 78.466 129.929 28.213 8.595 5.580 11.673 -5.468 14.102
30 140.997 73.131 78.539 130.023 28.252 8.912 5.651 11.825 -5.473 14.238
35 141.197 73.451 78.668 130.034 28.227 8.741 5.723 11.788 -5.473 14.356
40 141.456 73.958 78.816 130.027 28.203 8.582 5.811 11.761 -5.495 14.467
45 141.579 74.177 78.883 130.044 28.207 8.543 5.890 11.789 -5.519 14.548
50 141.527 74.104 78.865 130.142 28.206 8.557 5.990 11.811 -5.576 14.625
55 141.244 73.550 78.688 130.193 28.233 8.585 6.087 11.819 -5.626 14.729
60 141.076 73.294 78.556 130.234 28.319 8.923 6.184 11.971 -5.656 14.871
65 141.252 73.786 78.530 130.232 28.642 10.502 6.293 12.711 -5.581 15.097
70 141.513 74.344 78.582 130.179 28.608 10.246 6.376 12.598 -5.567 15.213
75 141.761 74.853 78.680 130.128 28.498 9.575 6.480 12.334 -5.622 15.305
80 141.260 73.665 78.430 130.300 28.608 10.033 6.578 12.503 -5.680 15.402
85 141.269 73.872 78.384 130.432 28.728 10.649 6.698 12.762 -5.711 15.554
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TABLE 3. Data misfit values using reconstructed mat. parameters in Table 2 compared
to data misfit values using mat. parameters of [12] and the relative improvement to [12].

Temperature Jθ using material Jθ using material Relative improvement
θ / ◦C parameter in [12] parameter in Table 2 to [12] in %
25 19.976 8.203 58.94%
30 19.463 7.877 59.53%
35 18.770 7.379 60.69%
40 17.904 6.812 61.95%
45 17.035 6.373 62.59%
50 16.821 6.379 62.08%
55 17.122 6.614 61.37%
60 16.863 6.459 61.70%
65 16.299 5.845 64.14%
70 15.900 5.435 65.82%
75 16.130 5.895 63.45%
80 15.653 5.872 62.49%
85 15.771 5.737 63.62%

in Figure 6. The reconstructed data corresponding to row 6 in Table 2 align closely with the measurements,
validating the accuracy of the identified parameter set presented in Table 2. Notably, the regions contain-
ing the most information, i.e., the resonance and anti-resonance areas, show strong a agreement between
the BCD-GRSE reconstructed data and the measurements. Furthermore, the BCD-GRSE reconstruction
provides a substantially better fit to the measurements than the results from [12], as indicated by Table 3,
which is particularly visible in these regions. The slight mismatch in the peak amplitudes may be attributed
to the Rayleigh damping model, which does not fully capture all material loss mechanisms, suggesting the
need for further model refinement.

FIGURE 6. Simulation using reconstructed material parameters compared to simulation
using data in [12] and measured data at 50 ◦C, zooming in on the characteristic resonance
and anti-resonance regions.
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FIGURE 7. Reconstructed temperature-dependent material behavior of cE with first or-
der polynomial fit (dashed lines) and exponential fit (solid lines).

FIGURE 8. Reconstructed temperature-dependent material behavior of ϵS with first order
polynomial fit (dashed lines) and exponential fit (solid lines).

To obtain continuous functions representing the temperature dependency of each parameter, we perform
an exponential curve approximation on the values in Table 2 and additionally fit a first order polynomial
regression model to these values. The advantage of an exponential fit is that we obtain a monotone func-
tion, which is a reasonable behavior, while still giving opportunities for possible nonlinearities. Figures 7,
8 and 9 show the identified temperature dependency of the elastic, piezoelectric, and dielectric parameters,
respectively. The points represent the discrete values from Table 2, the solid lines represent the exponential
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FIGURE 9. Reconstructed temperature-dependent material behavior of e with first order
polynomial fit (dashed lines) and exponential fit (solid lines).

curve fit and the dashed lines the fitted polynomial functions of first order. The identified parameters in Fig-
ures 7, 8 and 9 show clear trends with increasing temperature. The elastic stiffness parameters (Figure 7)
exhibit a nearly constant behavior with a negligible slope as temperature rises. Conversely, the permittiv-
ity and piezoelectric coupling components demonstrate significant temperature dependence. In Figure 8,
a pronounced linear increase is observed for the permittivity parameter ϵ33(θ). Similarly, as shown in
Figure 9, the piezoelectric coupling parameter functions e15(θ), e31(θ) and e33(θ) follow a linear trend.
However, ϵ11(θ) exhibits a slight non-linear behavior. One factor that could contribute to the non-linearity
observed in ϵ11(θ) is that the forward operator is least sensitive to this specific parameter. This observation
has been made also in previous contributions [10], and consequently, it appears to be more challenging to
identify the parameter function ϵ11(θ). To quantify the sensitivity of each parameter function to tempera-
ture changes and the non-linearity with respect to temperature, the C-norm (maximum absolute value) of

FIGURE 10. C-norm of normalized first and second derivatives of the exponential pa-
rameter functions.
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the normalized first and second derivatives of the exponential curves to each parameter function are illus-
trated in Figure 10. The C-norm of the normalized first derivatives (left in Figure 10) essentially serves as
a thermal sensitivity measure, quantifying the rate of change for each material property. It confirms that
especially the permittivity and the piezoelectric coupling parameters are sensitive to temperature changes,
while the elasticity parameter remains more stable. However, c44(θ) seems to be the most temperature
dependent elasticity parameter. The right plot in Figure 10 encourages the distinction between seemingly
linear and non-linear parameter functions. The seemingly non-linear function ϵ11(θ) exhibits high C-norm
sensitivity and curvature values, which supports the hypothesis that the observed non-linearity arises from
a combination of the low sensitivity of the identification process for these parameters and potential phys-
ical effects. In contrast, the seemingly linear parameters possess low C-norm curvature values relative
to ϵ11(θ). Finally, the identified parameter sets for all temperatures satisfy the thermodynamic stability
conditions outlined in Definition 2.3, additionally ensuring physically plausibility.

6. CONCLUSION AND OUTLOOK

In this paper, we presented a framework for identifying temperature-dependent piezoelectric material pa-
rameters from charge measurements in the frequency domain. We formulated the forward problem in an ax-
isymmetric environment and analyzed the corresponding inverse problem. To address the strong parameter
coupling and sensitivities across very different orders of magnitude, we introduced a sensitivity-informed
block construction strategy within a block coordinate descent algorithm. The block structure was derived
from first- and second-order sensitivity measures, including total sensitivities, cross-sensitivities, and a
curvature-based roughness indicator. This systematic analysis allowed us to algorithmically partition the
parameter space into two blocks that reduce the coupling between parameters while maintaining numerical
stability. To address the ill-posedness we used the GRSE method to update each block. Numerical exper-
iments with noisy synthetic data have shown that all ten piezoelectric material parameters can be reliably
reconstructed, including those with very low sensitivity. Finally, we applied the sensitivity-informed BCD-
GRSE framework to real charge measurements of a single ring-shaped PIC181 sample over a temperature
range of 25 ◦C to 85 ◦C. The match between the simulation with the reconstructed material parameters
and the measurement data has been improved and is satisfactorily accurate. In addition, the reconstructed
material parameters exhibit physically plausible temperature dependencies and remained feasible. In sum-
mary, the determined material parameters represent plausible solutions to the inverse problem and can thus
be considered representative of the real ceramic in the sense of the applied FEM model. As a result, the
proposed approach provides a robust and theoretically sound method for determining piezoelectric param-
eters under realistic measurement conditions. Future work will focus on the investigation of piezoelectric
systems under electrical load and mechanical stress as external influences besides temperature. Our ap-
proach can be applied in this setting, as the method is independent of temperature. This can lead to the
identification of the relevant correlations, thus facilitating a more in-depth understanding and modeling of
the non-linear behavior that occurs during the operation of piezoelectric components.
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