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Abstract

When pursuing an approximate second-order stationary point in nonconvex constrained stochastic
optimization, is it possible to design a stochastic second-order method that achieves the same sample
complexity order as in the unconstrained setting? To address this question in this paper, we first
introduce Carme, a curvature-oriented variance reduction method designed for unconstrained nonconvex
stochastic optimization. Under the smoothness assumption of the stochastic objective function, the
sample complexity of Carme, regarding evaluations of first- and second-order oracles, improves the best-
known results in the literature. We then propose Carme-ALM, an augmented Lagrangian-based variant
of Carme tailored to nonconvex stochastic optimization with deterministic constraints. Under suitable
conditions, we prove that Carme-ALM achieves a sample complexity for finding an approximate second-
order stationary point that is comparable to that of the unconstrained case. This provides a positive,
yet conditional, answer to the question posed above.

Keywords: Nonconvex constrained optimization, cubic regularization, second-order stationarity,
sample complexity

MSC Classification: 90C30, 90C26, 65K05

1 Introduction

In this paper, we consider the following nonconvex stochastic optimization problem:

min
x∈Rn

f(x) := Eξ[F (x, ξ)] s.t. x ∈ X. (1)

Here, Eξ represents the expectation taken with respect to the random variable ξ, that is independent of
x and defined on a probability space Ξ. For any ξ ∈ Ξ, the mapping F (·, ξ) : Rn → R is continuously
differentiable and possibly nonconvex. Nonconvex stochastic optimization is prevalent in modern machine
learning, data science, and operations research, with applications in deep neural network training [22],
robust control [45], and constrained matrix factorization [15]. These problems feature complex objective
landscapes with multiple local minima and saddle points, further complicated by nonlinear constraints.
Large-scale datasets have necessitated the use of stochastic methods, which rely on noisy gradient and
Hessian estimates to achieve computational efficiency. However, the interplay of nonconvexity, stochasticity
and (potentially nonconvex) constraints poses significant theoretical and practical challenges, including
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escaping saddle points and ensuring constraint satisfaction. In this paper, we are interested in two types of
nonconvex stochastic optimization problems. The first type is the unconstrained stochastic optimization,
where the feasible set X is the whole n-dimensional space, i.e.,

X = Rn.

The second one is the general equality-constrained stochastic optimization, where the feasible set is deter-
mined by possibly nonlinear constraints, i.e.,

X = {x ∈ Rn : ci(x) = 0, i ∈ E}. (2)

Here, E , with |E| = m, denotes the index set of equality constraints, and ci : Rn → R, i ∈ E , are twice
continuously differentiable and possibly nonconvex.

Traditional first-order methods for unconstrained optimization, such as gradient descent methods, are
known to converge to first-order stationary points with small gradient norms. However, in nonconvex set-
tings, such points may correspond to saddle points or even local maxima, leading to suboptimal solutions.
To address these issues, second-order methods that exploit curvature information have been widely studied
and shown to converge to second-order stationary points. Among second-order optimization techniques,
cubic regularization, first introduced by Nesterov and Polyak [35], has emerged as a powerful framework for
nonconvex optimization. By augmenting the quadratic Newton step with a cubic regularization term, this
approach ensures convergence to second-order stationary points and enables efficient escape from saddle
points. It also achieves superior iteration complexity compared with first-order methods. Stochastic vari-
ants of cubic regularization, which employ stochastic approximations of gradients and Hessians, have been
developed to handle large-scale problems [40, 48]. These advances have reduced the per-iteration computa-
tional cost while preserving strong convergence guarantees, making stochastic cubic methods particularly
appealing for large scale unconstrained optimization problems. Despite these successes, the application of
stochastic cubic regularization to nonconvex constrained optimization remains underexplored. Constrained
problems add further complexity, as they require maintaining feasibility while optimizing a nonconvex ob-
jective. Classical approaches, such as interior-point methods and penalty methods, have been adapted to
handle constraints, but their integration with stochastic cubic regularization remains limited. Early efforts,
such as [2, 9, 26], demonstrate robustness of cubic methods for nonconvex constrained problems, yet they
rely on deterministic gradients, making them computationally prohibitive for large-scale applications. In a
recent work [42], Wang considers to incorporate second-order information to solve constrained stochastic
optimization problems. However, the treatment of stochasticity in [42] is suboptimal, resulting in relatively
high computational complexity and reduced ability to efficiently escape saddle points.

These observations raise a key question:

Is it possible to design a stochastic second-order method for nonconvex constrained stochastic opti-
mization to obtain an approximate second-order stationary point, while achieving the same sample
complexity order as in unconstrained setting?

To address this question, we will first propose a curvature-oriented variance reduction method for un-
constrained stochastic optimization that owns improved sample complexity than existing methods. Second,
we will develop an augmented Lagrangian–based curvature-oriented algorithm for nonconvex constrained
optimization, which, under certain conditions, attains the same complexity order as in the unconstrained
setting.
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1.1 Related work

Second-order optimization

Second-order optimization methods are pivotal for identifying second-order stationary points, effectively
avoiding saddle points and local maxima in nonconvex optimization landscapes. Newton’s method, a
cornerstone of second-order approaches, has been extensively studied in its classical form [21], extensions
to nonconvex settings [36], and stochastic variants [37, 43]. The cubic-regularized Newton method has
garnered significant attention due to its enhanced global and local convergence properties [27, 35]. However,
the computational complexity of exactly solving cubic subproblems has prompted research into inexact
cubic regularization techniques and efficient solvers [7, 10, 11].

Despite these progress, traditional cubic regularization methods rely on deterministic oracles, requiring
exact gradient and Hessian information, which becomes prohibitively expensive in large-scale data regimes.
To address this, cubic regularization variants leveraging stochastic oracles have been proposed to approxi-
mate gradient and Hessian information [12, 23, 25, 30, 40]. Nevertheless, these methods often necessitate
large batch sizes to ensure convergence, resulting in high sample complexity [13]. Chayti et al. [14] in-
troduced a momentum-based stochastic cubic algorithm that samples gradients and Hessians only once
per iteration, reducing computational overhead. However, this approach overlooks the potential mismatch
in optimal complexities for gradient and Hessian computations, leading to inefficient Hessian sampling.
An alternative strategy employs slightly larger batch sizes for stochastic gradients and Hessians, with dis-
tinct batch sizes combined with variance reduction techniques to achieve lower sample complexity [48, 50].
However, these methods typically require periodic checkpoints to maintain convergence guarantees. While
most studies focus on finding (ϵ,

√
ϵ)-stationary points, recent efforts have explored the more general notion

of (ϵ, γ)-stationary points by incorporating negative curvature search into cubic regularization frameworks
[1]. In this work, we consider the same (ϵ, γ)-stationarity criterion as our optimality notion.

Constrained stochastic optimization

Constrained optimization methods face additional challenges to ensure the solution’s feasibility. For linear
constraints, projective set constraints, and even convex functional constraints, the theoretical framework
is relatively well-established [4, 36]. However, when constraint functions exhibit nonconvexity and the
objective functions are stochastic, ensuring feasibility becomes significantly more challenging. Algorithms
for solving such nonconvex constrained stochastic optimization problems primarily include proximal point
methods [5, 6, 28], sequential quadratic programming methods [3, 18, 19, 33, 34], directional decomposition
methods [38], penalty methods [16, 17, 29, 31, 32, 39]. The main concept behind the first three classes
of methods is to transform complex nonconvex constrained optimization problems into a sequence of
simpler constrained subproblems. In contrast, penalty methods, including augmented Lagrangian methods,
reformulate the problem as an unconstrained optimization task for solution. Among those methods, the
state-of-the-art sample complexity for finding an ϵ-KKT point of (1)-(2) is O(ϵ−3) [28, 32, 39], under mild
conditions. However, these methods purely focus on identifying first-order stationary points and cannot
guarantee second-order stationarity, even when some methods incorporate Hessian information [33, 34].

To obtain an approximate second-order stationary point, Cartis et al. [9] study high-order optimal-
ity conditions for smooth nonlinear constrained optimization and propose a two-phase framework capable
of achieving approximate first-, second-, and third-order criticality. Their analysis establishes worst-case
evaluation complexity bounds and reveals intrinsic difficulties of attaining high-order constrained critical
points using standard penalty-based approaches. Xie and Wright [46] analyze the worst-case complexity
of a proximal augmented Lagrangian (AL) framework for nonconvex optimization with nonlinear equal-
ity constraints. They show that approximate first- and second-order KKT points can be obtained under
suitable choices of the penalty and proximal parameters, with iteration complexity depending explicitly on
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the penalty growth. Goyens et al. [26] revisit Fletcher’s augmented Lagrangian for equality-constrained
optimization and propose a Gradient–Eigenstep method grounded in a Riemannian optimality framework.
Under standard regularity assumptions, their method achieves (ϵ, γ)-SSPs in O(ϵ−2 + γ−3) iterations for
deterministic problems. Building on these deterministic advances, Wang [42] extends cubic regularization
techniques to stochastic equality-constrained optimization by embedding an inexact cubic solver into a lin-
earized augmented Lagrangian framework. However, achieving second-order stationarity under stochastic
oracles incurs relatively high complexity. Overall, these results highlight the intrinsic difficulty of attain-
ing second-order stationarity for stochastic nonconvex constrained optimization with sample complexity
comparable to that of unconstrained problems.

1.2 Contributions

This paper studies stochastic optimization from unconstrained to equality-constrained settings, with a
focus on sample complexity of algorithms for finding approximate second-order stationary points. We first
propose Carme, a curvature-oriented variance reduction method, to find an (ϵ, γ)-SSP of unconstrained
stochastic optimization. Compared with existing works (See Table 1), it matches the best-known iteration
complexity and gradient-related sample complexity, and improved Hessian-related sample complexity under
smoothness of stochastic functions. We then extend Carme to an augmented Lagrangian-based method to
solve stochastic optimizaiton with nonconvex equality constraints. The corresponding sample complexity
to find an (ϵ, γ)-SSP can match the unconstrained counterpart, under certain conditions with suitable
choices of γ (see Table 2).

Algorithm Setting
Stationary

Point
Complexity
(Iteration)

Complexity (Gradient) Complexity (Hessian)

CR [35]
ARC [10, 11]

Deterministic (ϵ,
√
ϵ)-SSP O(ϵ−3/2) O(ϵ−3/2)

SCR [30, 47] Finite-sum (ϵ,
√
ϵ)-SSP O(ϵ−3/2) Õ(nϵ−3/2 + ϵ−7/2) Õ(nϵ−3/2 + ϵ−5/2)

Lite-SVRC
[44, 49, 50]

Finite-sum
Assumption 3

(ϵ,
√
ϵ)-SSP O(ϵ−3/2) Õ(nϵ−3/2) Õ(n2/3ϵ−3/2)

SRVRC [48]
Finite-sum

Assumption 3
(ϵ,

√
ϵ)-SSP O(ϵ−3/2) Õ(nϵ−3/2∧n1/2ϵ−2∧ϵ−3)⋆ Õ(n1/2ϵ−3/2 ∧ ϵ−2)

SCRTR [1] Expect. Obj. (ϵ, γ)-SSP O(ϵ−3/2+γ−3) Õ(ϵ−3 + γ−2ϵ−2 + γ−3) Õ(ϵ−3+γ−2ϵ−2+γ−5)

Carme (ours)
Expect. Obj.
Assumption 3

(ϵ, γ)-SSP O(ϵ−3/2+γ−3) Õ(ϵ−3 + γ−2ϵ−2 + γ−3) Õ(ϵ−2 + γ−4)

⋆ a ∧ b means min{a, b}.

Table 1: Complexity of second-order algorithms for nonconvex unconstrained optimization.

1.3 Notation and preliminaries

We denote the σ-algebra generated by a set of random variables {v1, . . . , vm} as F(v1, . . . , vm). For sim-
plicity, denote

∑0
t=1 ρt := 0. Unless otherwise specified, ∥ · ∥ denotes the standard Euclidean norm on Rn

and its induced matrix norm. The notation 1(A) refers to the indicator function and it equals 1 if A holds,
and 0 otherwise. The notation Pr represents the probability a random event occurs. Big-O notations O
(resp. Õ) and Ω (resp. Ω̃) hide constants (resp. logarithmic factors) regarding the upper and lower bound,
respectively. In the remainder of this paper, we impose the following assumptions.

Assumption 1 Let X be an open convex set that contains {xk} generated by the associated algorithm,
and f is lower bounded and ci, i = 1, . . . ,m are bounded over X , namely there exists C > 0 such that
f(x) ≥ −C and ∥c(x)∥ ≤ C for any x ∈ X .
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Algorithm Setting
Stationary

Point
Complexity
(Iteration)

Complexity (Gradient)
Complexity
(Hessian)

OUTER [9] Deterministic ϵ-SCP† O(ϵ−5) O(ϵ−5)

Proximal AL
[46]

Deterministic (ϵ, γ)-SSP O(ϵ−11/2 + γ−7) O(ϵ−11/2 + γ−7)

Gradient-
Eigenstep [26]

Deterministic (ϵ, γ)-SSP O(ϵ−2 + γ−3) O(ϵ−2 + γ−3)

SCPD [42] Expect. Obj. (ϵ, γ)-SSP O(ϵ−3γ−3) Õ(ϵ−5γ−7) Õ(ϵ−3γ−5)

Carme-ALM
(ours)

Expect. Obj.
Assumption 3

(ϵ, γ)-SSP O(ϵ−3/2 + γ−3) Õ(ϵ−3 + γ−2ϵ−2 + γ−4) Õ(ϵ−2 + γ−4)

† ϵ-SCP denotes an ϵ-approximate second-order critical point of the constrained problem or of the feasibility problem min ∥c(x)∥2.

Table 2: Complexity of second-order algorithms for nonconvex constrained optimization.

Assumption 2 Function f is twice continuously differentiable with bounded gradient, Lf
g -Lipschitz con-

tinuous gradient, and Lf
H-Lipschitz continuous Hessian. Functions ci, i ∈ E are twice continuously differ-

entiable with bounded gradient, Lc
g-Lipschitz continuous gradient, and Lc

H-Lipschitz continuous Hessian.
That is, for any x, y ∈ X ,

∥∇f(x)∥ ≤ Lf , ∥∇f(x)−∇f(y)∥ ≤ Lf
g∥x− y∥, ∥∇2f(x)−∇2f(y)∥ ≤ Lf

H∥x− y∥,
∥∇ci(x)∥ ≤ Lc, ∥∇ci(x)−∇ci(y)∥ ≤ Lc

g∥x− y∥, ∥∇2ci(x)−∇2ci(y)∥ ≤ Lc
H∥x− y∥, i ∈ E .

Assumption 3 For almost any ξ, F (·, ξ) is twice continuously differentiable with Lf
g -Lipschitz continuous

gradients and Lf
H-Lipschitz continuous Hessians.

Assumption 4 For any x, Eξ[∇F (x, ξ)] = ∇f(x) and Eξ[∇2F (x, ξ)] = ∇2f(x), and for any ξ, ∥∇F (x, ξ)−
∇f(x)∥ ≤ σg and ∥∇2F (x, ξ)−∇2f(x)∥ ≤ σh.

Remark 1 In the study of stochastic cubic regularization methods for unconstrained stochastic optimiza-
tion [41] and equality-constrained stochastic optimization [42], an assumption analogous to Assumption 4
is adopted. This assumption facilitates the use of vector and matrix concentration inequalities, which are
essential to compute the sample complexity of stochastic cubic regularization methods [30, 44, 50].

In this paper, we study algorithms for finding approximate second-order stationary points (SSPs) of
problem (1) which are defined as below.

Definition 1 ((ϵ, γ)-SSP) Given ϵ, γ > 0, we call x an (ϵ, γ)-SSP of (1) with X = Rn, if

∥∇f(x)∥ ≤ ϵ and d⊤∇2f(x)d ≥ −γ∥d∥2 for any d ∈ Rn. (3)

We call x an (ϵ, γ)-SSP of (1)-(2), if there exists λ ∈ Rm such that

∥∇f(x) +∇c(x)λ∥ ≤ ϵ, ∥c(x)∥ ≤ ϵ (4)

and

d⊤(∇2f(x) +

m∑
i=1

λi∇2ci(x))d ≥ −γ∥d∥2 for any d ∈ Null(∇c(x)⊤). (5)

Treating γ as an independent parameter allows for a more flexible notion of approximate second-order
stationarity and has become standard in recent studies of stochastic second-order methods [1, 26].
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2 Hybrid stochastic estimator

To address the challenges posed by stochasticity in nonconvex optimization, particularly in the context
of cubic regularization for problem (1), we propose a hybrid stochastic estimator for variance reduction.
This technique extends the STORM (Stochastic Recursive Momentum) method [20], originally developed
for gradient variance reduction, to reduce the variance of both stochastic gradient and Hessian estimates
simultaneously. Unlike prior stochastic cubic regularization methods [48], which rely on periodic check-
points such as large-batch or full gradient and Hessian evaluations, our approach eliminates the use of such
checkpoints by maintaining recursively updated stochastic gradient and Hessian estimates. This makes it
well-suited for large-scale nonconvex optimization problems.

2.1 Motivations

Stochastic cubic regularization methods rely on approximate gradient and Hessian estimates to solve the
subproblem:

min
s

mk(s) = ⟨gk, s⟩+
1

2
⟨s,Hks⟩+

M

6
∥s∥3,

where gk ≈ ∇f(xk) and Hk ≈ ∇2f(xk) are stochastic approximations. The variance in these estimates,
as bounded by Assumption 4 (∥∇F (x, ξ) − ∇f(x)∥ ≤ σg, ∥∇2F (x, ξ) − ∇2f(x)∥ ≤ σh), can destabilize
convergence and necessitate large batch sizes or checkpoints to ensure accuracy. Checkpoints, as used in
[48], involve computing large (even full) batch gradients and Hessians periodically, incurring significant
computational overhead, especially in high-dimensional settings.

The STORM method [20] addresses gradient variance by maintaining a recursive momentum-based
estimator, achieving near-optimal convergence rates without checkpoints. Inspired by this, we generalize
STORM to construct a hybrid estimator that reduces variance in both gradient and Hessian estimates,
leveraging the Lipschitz continuity properties of ∇f and ∇2f (Assumptions 2, 3) and the stochasticity
bounds (Assumption 4). While the idea of extending STORM to stochastic cubic regularization may
appear straightforward, a direct application is nontrivial due to the interaction between variance reduction
and cubic regularization, which requires careful control of higher-order error terms.

2.2 Hybrid stochastic estimator

Our hybrid stochastic estimator operates iteratively, updating gradient and Hessian estimates using a
momentum-based recursion that exploits the continuity of the stochastic functions. At kth iteration with
k ≥ 1, batches of samples Bgk and Bhk , we compute

gk =
1

Bg
k

∑
i∈Bg

k

[∇F (xk, ξi) + (1− αg)(gk−1 −∇F (xk−1, ξi))] , (6)

Hk =
1

Bh
k

∑
i∈Bh

k

[
∇2F (xk, ξi) + (1− αh)

(
Hk−1 −∇2F (xk−1, ξi)

)]
, (7)

and at initial point x0 we compute

g0 =
1

Bg
0

∑
i∈Bg

0

∇F (x0, ξi), H0 =
1

Bh
0

∑
i∈Bh

0

∇2F (x0, ξi), (8)

where αg, αh ∈ [0, 1] are the gradient and Hessian momentum parameters, Bgk and Bhk are index sets with
|Bgk| = Bg

k and |Bhk | = Bh
k . We allow Bgk and Bhk to be sampled independently, although sharing samples
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is also possible without affecting the analysis. For notation simplicity, in the following we introduce the
deviations of approximate gradients and Hessians by defining

ϵgk = gk −∇f(xk), ϵhk = Hk −∇2f(xk), k ≥ 0. (9)

A key feature of the estimator is the recursive correction term, which reuses the same batch Bgk (resp.
Bhk ) to evaluate gradients (resp. Hessians) at both xk and xk−1. This recursive update eliminates the need
for periodic checkpoints, which typically require substantially larger batch sizes to control the estimator
variance. In the classical STORM analysis, variance reduction is achieved by bounding the squared es-
timation errors of gradients (and Hessians) in terms of ∥xk+1 − xk∥2. However, in cubic regularization
algorithms, the step size typically scales as ∥xk+1−xk∥3, and this mismatch in polynomial order gives rise
to a fundamental technical difficulty in controlling the accumulation of estimation errors. Directly adapt-
ing the standard STORM arguments may therefore lead to suboptimal complexity bounds. To overcome
this issue, we develop an analytical framework that carefully bounds the estimation errors and employs an
adaptive batch size strategy to decouple the algorithmic iterations from the error dynamics.

The following two lemmas provide uniform high-probability bounds on the gradient and Hessian esti-
mation errors, which will be used in the subsequent complexity analysis.

Lemma 1 Given K ≥ 1 and δ ≤ 1
2K , suppose that {Bg

k} satisfies

Bg
0 =

6480σ2
g log

2(1/δ)

ϵ̄2g,1
(10)

and

Bg
k = max

(
25920(Lf

g )2∥xk − xk−1∥2 log2(1/δ)
αg ϵ̄2g,1

,
6480σ2

g log
2(1/δ)

ϵ̄g,2

)
, k ≥ 1, (11)

where ϵ̄g > 0. Then with probability at least 1− 2Kδ we have that

∥ϵgk∥
2 ≤

3ϵ̄2g,1 + 2αg ϵ̄g,2

80
, k = 0, . . . ,K − 1.

Proof. See Appendix A. □

Remark 2 Lemma 1 introduces three tunable parameters αg, ϵ̄g,1, and ϵ̄g,2, which jointly control the ac-
curacy of the gradient estimator and the resulting batch size Bg

k. The guiding principle for selecting these
parameters is to minimize the batch size Bg

k while ensuring a prescribed estimation accuracy.
To illustrate this principle, suppose that we aim to guarantee ∥ϵgk∥ ≤ ε/4. Ignoring absolute constants,

the error bound in Lemma 1 suggests that the two terms on the right-hand side should be of order ε2. This
motivates us to set ϵ̄g,1 = ε and αg ϵ̄g,2 = ε2. Then the dominant terms in the batch size Bg

k scales as

∥xk − xk−1∥2

αgε2
+

1

ϵ̄g,2
,

leading to the auxiliary optimization problem

min
αg ,ϵ̄g,2

K∑
k=1

(
∥xk − xk−1∥2

αgε2
+

1

ϵ̄g,2

)
s.t. αg ϵ̄g,2 = ε2.

This reveals that the optimal choice of αg and ϵ̄g,2 depends explicitly on the step size ∥xk − xk−1∥. In
the subsequent analysis, this dependence is handled by controlling ∥xk − xk−1∥ through the trust-region
mechanism. Accordingly, we directly specify parameter choices that satisfy the above principle and yield
near-minimal batch sizes under the imposed step-size bounds.
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Similarly, the following lemma characterizes the error bound of the stochastic Hessian estimator under
appropriate batch-size choices.

Lemma 2 Given K ≥ 1 and δ ≤ 1
2K , suppose that {Bh

k} satisfies

Bh
0 =

3240σ2
h log

2(n/δ)

ϵ̄2h,1
(12)

and

Bh
k = max

(
12960(Lf

H)2∥xk − xk−1∥2 log2(n/δ)
αhϵ̄

2
h,1

,
3240σ2

h log
2(n/δ)

ϵ̄h,2

)
, (13)

where ϵ̄h > 0. Then with probability at least 1− 2Kδ it holds that

∥ϵhk∥2 ≤
3ϵ̄2h,1 + 2αhϵ̄h,2

40
, k = 0, . . . ,K − 1.

Proof. See Appendix B. □
Lemmas 1 and 2 provide high-probability uniform bounds on the gradient and Hessian estimation errors

generated by the hybrid stochastic estimator. The batch sizes are chosen adaptively to balance two sources
of error: the stochastic noise inherent in the oracle and the recursive bias introduced by the momentum
correction, which depends on the displacement ∥xk − xk−1∥. Such bounds are essential for ensuring that
the cubic model constructed at each iteration remains sufficiently accurate to yield descent and negative
curvature detection guarantees.

3 Carme for unconstrained optimization

In this section, we introduce the Curvature-oriented variance reduction method (Carme) for unconstrained
stochastic optimization (1) with X = Rn, i.e.,

min
x∈Rn

f(x) = Eξ[F (x, ξ)], (14)

with the goal of finding an (ϵ, γ)-SSP satisfying (3). Carme combines the hybrid stochastic gradient and
Hessian estimator developed in Section 2 within a cubic-regularized framework. In addition, an explicit
negative-curvature step is incorporated to enhance the ability to escape saddle points under stochastic
oracles. In Subsection 3.1 we will present the algorithm framework of Carme with detailed complexity
analysis provided in Subsection 3.2.

3.1 Algorithm framework

Carme proceeds iteratively and, at each iteration, primarily performs a cubic-regularized Newton step,
while occasionally exploiting negative curvature through a randomized mechanism. At iteration k, to
perform a cubic-regularized Newton step, a cubic-regularized subproblem with a trust-region constraint is
solved:

min
∥s∥≤η

mk(s) = ⟨gk, s⟩+
1

2
⟨s,Hks⟩+

M

6
∥s∥3. (15)

Here, gk and Hk are variance-reduced estimates of the gradient ∇f(xk) and Hessian ∇2f(xk), defined in
(6) and (7) respectively, M > 0 is a cubic regularization parameter, and η > 0 is the trust-region radius.
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The integration of the trust-region scheme with cubic regularization is well-established as a globalization
mechanism [1]. In this work, the trust-region radius η is also used to control the adaptive batch sizes in
(6)–(7), since ∥xk − xk−1∥ = ∥sk−1∥ ≤ η enters their definitions. This design allows us to control the
variance of the stochastic estimators without inflating the per-iteration sampling cost, which is crucial for
the stability and complexity guarantees of the proposed algorithm.

Solving the cubic-regularized subproblem (15) to global optimality can be computationally expensive,
especially when the Hessian approximation Hk is indefinite. Rather than requiring an exact solution,
we allow for inexact solutions that satisfy mild descent and approximate stationarity conditions. Such
inexactness is standard in the analysis of cubic regularization methods and is sufficient to ensure the
desired theoretical guarantees.

Specifically, we impose the following conditions on the inexact solution of (15):

Condition A An inexact solution sk of subproblem (15) satisfies the following conditions:

mk(sk) ≤ 0, (16a)

∥∇mk(sk)∥ ≤Mω2/3, when ∥sk∥ < η, (16b)

where the parameter ω > 0 controls the solution accuracy.

Such an inexact solution can be efficiently obtained, for instance, by a truncated gradient descent scheme
applied to (15); see Appendix C for details. Importantly, the procedure for solving the cubic subproblem
only accesses the stochastic estimates gk and Hk that are already computed, and therefore does not incur
any additional stochastic calls.

To further enhance Carme’s ability to achieve (ϵ, γ)-SSPs with arbitrary γ, as defined in Definition 1, we
also incorporate the negative curvature search technique, as it enables efficient escape from saddle points
by exploiting negative curvature directions. While cubic regularization implicitly incorporates curvature
information, explicitly incorporating a negative-curvature step is essential in the stochastic and inexact
setting to reliably certify (ϵ, γ)-second-order stationarity without incurring excessive computational cost.
The complete algorithmic framework of Carme is presented in Algorithm 1.

3.2 Complexity analysis

In this subsection, we analyze the iteration and sample complexity of the proposed method for computing
an (ϵ, γ)-SSP. We begin by establishing the descent properties of the cubic-regularized Newton step.

Lemma 3 Let sk be an inexact solution of (15) satisfying Condition A. Suppose Assumptions 1 and 2

hold, then for any M ≥ 4Lf
H and η > 0, the point xk + sk satisfies

f(xk)− f(xk + sk) ≥
M

12
∥sk∥3 −

8√
M
∥ϵgk∥

3/2 − 4η3/2√
M
∥ϵhk∥3/2. (17)

Proof. Since ∇2f is Lf
H -Lipschitz continuous, Taylor’s theorem gives

f(xk + sk)− f(xk) ≤ ⟨∇f(xk), sk⟩+
1

2
⟨sk,∇2f(xk)sk⟩+

Lf
H

6
∥sk∥3

= mk(sk) +
Lf
H −M

6
∥sk∥3 + ⟨∇f(xk)− gk, sk⟩+

1

2
⟨sk, (∇2f(xk)−Hk)sk⟩.

Using mk(sk) ≤ 0 and M ≥ 4Lf
H (so (Lf

H −M)/6 ≤ −M/8), we obtain

f(xk + sk)− f(xk) ≤ −
M

8
∥sk∥3 + ∥∇f(xk)− gk∥∥sk∥+

1

2
∥(∇2f(xk)−Hk)sk∥∥sk∥. (18)
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Algorithm 1: Carme

Input: Initial point x0 ∈ Rn, parameters ϵ, γ, ω, αg, αh, ϵ̄g,1, ϵ̄g,2, ϵ̄h,1, ϵ̄h,1,η,M, p > 0 and K > 0.
for k = 0, . . . ,K do

Compute gk and Hk through (6) and (7).
Sample Qk ∼ Bernoulli(p) with bias p.
if Qk = 1; // cubic-regularized Newton step

then
Solve subproblem

min
∥s∥≤η

f(xk) + ⟨gk, s⟩+
1

2
⟨s,Hks⟩+

M

6
∥s∥3

obtaining an inexact solution sk satisfying Condition A.
Set xk+1 = xk + sk.

else
if λmin(Hk) ≤ −4γ; // negative-curvature step

then
Find a unit vector uk such that u⊤k Hkuk ≤ −2γ.
Set xk+1 = xk +

γ

Lf
H

· rk · uk, where rk ∼ Uniform({−1, 1}).

else
Set xk+1 = xk;

Additionally, applying the scaled Young’s inequality ab ≤ 8√
M
a3/2 + M

64 b
3 yields

∥∇f(xk)− gk∥∥sk∥ ≤
8√
M
∥∇f(xk)− gk∥3/2 +

M

64
∥sk∥3,

∥(∇2f(xk)−Hk)sk∥∥sk∥ ≤
8√
M
∥(∇2f(xk)−Hk)sk∥3/2 +

M

64
∥sk∥3.

Then plugging these bounds into (18), we obtain

f(xk + sk)− f(xk) ≤ −
M

12
∥sk∥3 +

8√
M
∥∇f(xk)− gk∥3/2 +

4√
M
∥(∇2f(xk)−Hk)sk∥3/2

≤ −M

12
∥sk∥3 +

8√
M
∥∇f(xk)− gk∥3/2 +

4√
M
∥∇2f(xk)−Hk∥3/2 · η3/2.

Rearranging the terms yields the conclusion. □
Lemma 3 shows that the objective decrease along the direction sk is cubic in its length, up to additive

terms induced by the gradient and Hessian estimation errors. Next, the following lemma links the post-
step gradient norm ∥∇f(xk + sk)∥ to the step length ∥sk∥ and the estimator errors, which will be used to
translate step-based descent into first-order stationarity measure.

Lemma 4 Under the same conditions as Lemma 3, it holds that

1

{
∥∇f(xk + sk)∥ ≥

Mη2

2

}
≤ 2

η2
∥sk∥2 +

2

Mη2

(
∥ϵgk∥+ η∥ϵhk∥+Mω2/3

)
. (19)

Proof. First, one of the following two cases must occur: either ∥sk∥ = η, or ∥sk∥ < η.

Case 1: ∥sk∥ = η. In this case, we have 2
η2
∥sk∥2 = 2. Since the indicator function on the left-hand side

of (19) is at most one, the inequality holds trivially.
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Case 2: ∥sk∥ < η. Using the Lf
H -Lipschitz continuity of ∇2f , we obtain

∥∇f(xk + sk)∥ ≤ ∥∇f(xk + sk)−∇f(xk)−∇2f(xk)sk∥+ ∥∇f(xk) +∇2f(xk)sk∥

≤
Lf
H

2
∥sk∥2 + ∥∇f(xk)− gk∥+ ∥(∇2f(xk)−Hk)sk∥+ ∥gk +Hksk∥.

Since ∥sk∥ < η and sk satisfies Condition A, we further have

∥(∇2f(xk)−Hk)sk∥ ≤ η∥∇2f(xk)−Hk∥, ∥gk +Hksk∥ ≤
M

2
∥sk∥2 +Mω2/3.

Combining the above inequalities yields

∥∇f(xk + sk)∥ ≤
Lf
H +M

2
∥sk∥2 + ∥∇f(xk)− gk∥+ η∥∇2f(xk)−Hk∥+Mω2/3. (20)

Suppose that ∥∇f(xk + sk)∥ ≥ Mη2

2 . Since M ≥ Lf
H , inequality (20) implies

Mη2

2
≤M∥sk∥2 + ∥∇f(xk)− gk∥+ η∥∇2f(xk)−Hk∥+Mω2/3.

Dividing both sides by Mη2

2 gives

1

{
∥∇f(xk + sk)∥ ≥

Mη2

2

}
≤ 2

η2
∥sk∥2 +

2

Mη2

(
∥∇f(xk)− gk∥+ η∥∇2f(xk)−Hk∥+Mω2/3

)
.

Finally, recalling that ∥∇f(xk)− gk∥ = ∥ϵgk∥ and ∥∇
2f(xk)−Hk∥ = ∥ϵhk∥ by (9), we obtain (19). □

Combining Lemmas 3 and 4, we can relate the expected decrease of the objective function to the
first-order stationarity, which forms the basis of the iteration and sample complexity analysis.

Lemma 5 Under the same conditions as Lemma 3, then for k with Qk = 1, it holds that

E [f(xk)− f(xk+1)] ≥
Mη3

72
Pr

{
∥∇f(xk+1)∥ ≥

Mη2

2

}
− 9√

M
E
[
∥ϵgk∥

3/2
]
− 5η2√

M
E
[
∥ϵhk∥3/2

]
− M

12
ω,

where Pr(·) and E[·] are taken w.r.t. the randomness over gk and Hk.

Proof. From Lemma 3, taking expectations on both sides of (17) yields

E[f(xk)− f(xk+1)] ≥
M

12
E
[
∥sk∥3

]
− 8√

M
E
[
∥ϵgk∥

3/2
]
− 4√

M
E
[
(η∥ϵhk∥)3/2

]
, (21)

where the second inequality follows from Jensen’s inequality. Next, from Lemma 4, since the indicator
function takes values in {0, 1}, raising both sides of (19) to the power 3/2 preserves the inequality. Using
Jensen’s inequality (

∑n
i=1 ai)

q ≤ n q−1
∑n

i=1 a
q
i for q = 3/2, we obtain

1

{
∥∇f(xk+1)∥ ≥

Mη2

2

}
≤
(

2

η2
∥sk∥2 +

2

Mη2

(
∥ϵgk∥+ η∥ϵhk∥+Mω2/3

))3/2

≤ 6

η3
∥sk∥3 +

6

M3/2η3

(
∥ϵgk∥

3/2 + (η∥ϵhk∥)3/2 +M3/2ω
)
.

Taking expectations and rearranging terms yield

E
[
∥sk∥3

]
≥ η3

6
Pr

{
∥∇f(xk+1)∥ ≥

Mη2

2

}
−M−3/2E

[
∥ϵgk∥

3/2 + (η∥ϵhk∥)3/2
]
− ω. (22)
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Substituting (22) into (21) yields the desired result, where numerical constants are obtained by collecting
and simplifying the bounds. □

Lemma 5 establishes a fundamental link between the expected objective decrease of a cubic-regularized
Newton step and the probability of violating first-order stationarity. Specifically, it shows that whenever

the gradient norm at the next iterate remains above a threshold of order Mη2

2 , the algorithm guarantees
an expected decrease in the objective value, up to additive terms induced by the gradient and Hessian
estimation errors and the inexactness parameter ω.

Next, we characterize the expected function decrease produced by the negative-curvature step. In
particular, we show that whenever the estimated Hessian detects sufficient negative curvature, this step
yields a decrease of order γ3, up to a bias term related to the Hessian estimation error.

Lemma 6 Suppose Assumptions 1 and 2 hold, then for k with Qk = 0, it holds that

E [f(xk)− f(xk+1)] ≥
5γ3

6(Lf
H)2

Pr {λmin(Hk) ≤ −4γ} −
γ2

2(Lf
H)2

E
[
∥ϵhk∥

]
, (23)

where Pr(·) and E[·] are taken w.r.t. the randomness in Hk and rk.

Proof. If λmin(Hk) > −4γ, then xk+1 = xk and hence f(xk+1) = f(xk). If λmin(Hk) ≤ −4γ, we choose

a unit vector uk satisfying u⊤k Hkuk ≤ −2γ, and set s̃k := γ

Lf
H

rkuk. Using the Lf
H -Lipschitz continuity of

∇2f , we have

f(xk+1) ≤ f(xk) + ⟨∇f(xk), s̃k⟩+
1

2
s̃⊤k∇2f(xk)s̃k +

Lf
H

6
∥s̃k∥3.

Conditioning on Hk (and hence on uk), E[rk] = 0 and E[r2k] = 1 imply

Erk

[
⟨∇f(xk), s̃k⟩+ 1

2 s̃
⊤
k∇2f(xk)s̃k | Hk

]
=

γ2

2(Lf
H)2

u⊤k∇2f(xk)uk

=
γ2

2(Lf
H)2

(
u⊤k Hkuk + u⊤k (∇2f(xk)−Hk)uk

)
≤ − γ3

(Lf
H)2

+
γ2

2(Lf
H)2
∥∇2f(xk)−Hk∥.

Since ∥s̃k∥ = γ

Lf
H

, we obtain

Erk [f(xk+1) | Hk] ≤ f(xk)−
5γ3

6(Lf
H)2

+
γ2

2(Lf
H)2
∥∇2f(xk)−Hk∥

on the event {λmin(Hk) ≤ −4γ}. Therefore, conditioning on Hk we have

Erk [f(xk+1) | Hk] ≤ f(xk)−
5γ3

6(Lf
H)2

1{λmin(Hk) ≤ −4γ}+
γ2

2(Lf
H)2
∥∇2f(xk)−Hk∥.

Taking expectation over Hk and rearranging yield (23). □
Lemma 6 shows that, whenever the negative-curvature branch is selected, the randomized step yields

an expected decrease of order O(γ3) if λmin ≤ −4γ, with the only degradation relative to the deterministic
setting arises from the Hessian estimation error E[∥ϵhk∥].

We are now ready to state the main complexity result of Carme for unconstrained stochastic optimiza-
tion. The following theorem shows that, under appropriate parameter choices, Carme finds an (ϵ, γ)-SSP
with reasonably high probability, while achieving improved sample complexity compared with existing
stochastic cubic regularization methods. First, given the target accuracies ϵ > 0 and γ > 0, and define the
auxiliary tolerance ε := ϵ

450 , we specify the parameter settings as follows.
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Algorithmic parameters.

∆ = f(x0) + C, M = 4Lf
H , η = 30M−1/2ε1/2,

ω = min
{
M−1,

3ε3/2

4M3/2

}
, p =

4
√
M γ3

4
√
M γ3 + 135M2ε3/2

, K =

⌈
90∆M2

γ3
+

16∆
√
M

5ε3/2

⌉
.

Estimator parameters.

δ =
1

200K
, ϵ̄g,1 = ε, ϵ̄g,2 =

(
ε−3/2 + γ−3

ε−1/2 + γ−1

)1/2

ϵ̄2g,1, αg =
ϵ̄2g,1
ϵ̄g,2

,

ϵ̄h,1 =
1

10
min

{M1/2ε1/2

4
,
γ

10

}
, ϵ̄h,2 =

(
ε−3/2 + γ−3

ε−1/2 + γ−1

)1/2

ϵ̄2h,1, αh =
ϵ̄2h,1
ϵ̄h,2

.

(24)

And Bg
k and Bh

k can be chosen as in Lemmas 1 and 2. Note that the above constants are chosen conserva-
tively to streamline the subsequent probability bookkeeping and to keep the final stationarity conditions
in a clean form. This choice does not affect the oracle complexity, but only the absolute numerical factors.
Under the above parameters setting, we have the results below.

Theorem 1 Under Assumptions 1-4, given ϵ ∈ (0, 1) and γ ∈
(
0, (15∆M2)1/3

)
, the following statements

hold true with probability at least 0.96:

(i) Carme returns a point xR such that

∥∇f(xR)∥ ≤ ϵ, and λmin(∇2f(xR)) ≥ −5γ, (25)

within K = O(∆(Lf
H)2γ−3 +∆(Lf

H)1/2ϵ−3/2) iterations.

(ii) To reach an (ϵ, γ)-SSP of (14), Carme requires at most Õ(ϵ−3 + ϵ−2γ−2 + γ−3) stochastic gradient
queries in expectation and Õ(ϵ−2 + γ−4) stochastic hessian queries.

Proof. We divide the proof into two parts. We first establish the high-probability second-order station-
arity guarantee, and then bound the total sample complexity.

Part I: Second-order stationarity. We begin by controlling the stochastic estimation errors. By

Lemma 1 with αg = ϵ̄
1/2
g = ε1/2, it holds with probability at least 1− 2Kδ = 0.99 that

∥∇f(xk)− gk∥ ≤
ε

4
, k = 0, . . . ,K − 1. (26)

Similarly, by Lemma 2 with αh = ϵ̄
1/2
h = 1

10 min{M1/2ε1/2

4 , γ
10}, with probability at least 1− 2Kδ = 0.99,

∥∇2f(xk)−Hk∥2 ≤
1

800
min

{
Mε

16
,
γ2

100

}
, k = 0, . . . ,K − 1. (27)

By a union bound, the above two bounds hold simultaneously for all k = 0, . . . ,K − 1with probability at
least 1 − 4Kδ = 0.98. In the sequel, we work on this event. At each iteration, Carme either performs a
cubic-regularized step (Qk = 1) or a negative-curvature step (Qk = 0). We analyze the two cases separately.

Case 1: Qk = 1. Applying Lemma 5 together with (26), (27) and the choice η = 30M−1/2ε1/2 yields

E [f(xk)− f(xk+1) | Qk = 1] ≥ 375ε3/2√
M

Pr {∥∇f(xk+1)∥ ≥ 450ε} − 9ε3/2

8
√
M
− 11ε3/2

16
√
M
− ε3/2

16
√
M

=
375ε3/2√

M

(
Pr {∥∇f(xk+1)∥ ≥ 450ε} − 1

200

)
.

(28)
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Case 2: Qk = 0. By Lemma 6 and (27), we have ∥ϵhk∥2 ≤ γ2/(80000), and hence

E [f(xk)− f(xk+1) | Qk = 0] ≥ 5γ3

6(Lf
H)2

Pr {λmin(Hk) ≤ −4γ} −
γ3

400
√
2(Lf

H)2

≥ 5γ3

6(Lf
H)2

(
Pr {λmin(Hk) ≤ −4γ} −

1

400

)
.

(29)

Combining (28) and (29), taking expectation over Qk, we obtain

E [f(xk)− f(xk+1)] =
∑

q∈{0,1}

Pr(Qt = q)E [f(xk)− f(xk+1) | Qt = q]

≥ (1− p) · 5γ3

6(Lf
H)2

(
Pr {λmin(Hk) ≤ −4γ} −

1

400

)
+ p · 375ε

3/2

√
M

(
Pr {∥∇f(xk+1)∥ ≥ 450ε} − 1

200

)
.

Let xR be generated randomly from {xk}K−1
k=0 . Telescoping the inequality above for k from 0 to K− 1, and

using the bound E [f(x0)− f(xk)] ≤ ∆, we obtain

∆ ≥ E [f(x0)− f(xK)]

≥ 5(1− p)γ3

6(Lf
H)2

K−1∑
k=0

(
Pr{λmin(Hk) ≤ −4γ} −

1

400

)
+

375pε3/2√
M

K∑
k=1

(
Pr {∥∇f(xk)∥ ≥ 450ε} − 1

200

)

≥ 1200∆

(
1

K

K−1∑
k=0

Pr{λmin(Hk) ≤ −4γ}+
1

K

K∑
k=1

Pr {∥∇f(xk)∥ ≥ 450ε} − 3

400

)

≥ 1200∆

(
5

6(K − 1)

K−1∑
k=1

(Pr{λmin(Hk) ≤ −4γ}+ Pr {∥∇f(xk)∥ ≥ 450ε})− 3

400

)

≥ 1200∆

(
5

6
(Pr{λmin(HR) ≤ −4γ}+ Pr {∥∇f(xR)∥ ≥ 450ε})− 3

400

)
,

where the third inequality follows from Lemma 17, the fourth inequality given by ignoring some (non-
negative) terms on the right-hand side and using the fact that K ≥ 6. Since ε = ϵ

450 , then rearranging the
terms yields Pr{λmin(HR) ≤ −4γ} + Pr {∥∇f(xR)∥ ≥ ϵ} ≤ 0.01, which further implies that the returned
point xR satisfies

Pr {(λmin(HR) > −4γ) ∧ (∥∇f(xR)∥ < ϵ)} ≥ 0.99. (30)

Besides, we know that ∥∇2f(xR)−H0
R∥ ≤

γ

200
√
2
from (27). Hence, from λmin(HR) ≥ −4γ, one can derive

λmin(∇2f(xR)) ≥ −5γ.

Combining with the event of (26) and (27) holding (probability ≥ 0.98) yields overall success probability
at least 0.99× 0.98 ≥ 0.97.

Iteration complexity. By construction, the total number of iterations is

K =

⌈
1440∆(Lf

H)2

γ3
+

16∆
√
M

5 ε3/2

⌉
= O

(
∆(Lf

H)2γ−3 +∆(Lf
H)1/2ϵ−3/2

)
, (31)

where we recall that ε = ϵ/450 and M = 4Lf
H .
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Part II: Sample complexity. We now bound the total number of stochastic oracle queries required to
reach a point satisfying (25). We first estimate the sample complexity per iteration and then aggregate
over all iterations. At each iteration k ≥ 1, Carme either performs a cubic-regularized step (Qk−1 = 1) or
a negative-curvature step (Qk−1 = 0). We analyze these two cases separately.

Case 1: Qk−1 = 1. In this case, the trust-region radius is η = O(M−1/2ε1/2), which implies ∥xk −

xk−1∥2 ≤ η2 = O

(
ε

Lf
H

)
. By Lemma 1 with αg ϵ̄g,2 = ϵ̄2g,1 and δ = 1/(200K), the batch size of stochastic

gradients satisfies

Bg
k = max

(
25920(Lf

g )2∥xk − xk−1∥22 log2(1/δ)
αg ϵ̄2g,1

,
6480σ2

g log
2(1/δ)

ϵ̄g,2

)
= Õ

(
ϵ̄g,2ε

ϵ̄4g,1
+

1

ϵ̄g,2

)
.

Similarly, by Lemma 2 with αhϵ̄h,2 = ϵ̄2h,1 and δ = 1/(200K), the batch size of stochastic Hessians satisfies

Bh
k = max

(
12960(Lf

H)2∥xk − xk−1∥22 log2(n/δ)
αhϵ̄

2
h,1

,
3240σ2

h log
2(n/δ)

ϵ̄h,2

)
= Õ

(
ϵ̄h,2ε

ϵ̄4h,1
+

1

ϵ̄h,2

)
.

Case 2: Qk−1 = 0. From the update rule of negative-curvature step in Algorithm 1, we have ∥xk −

xk−1∥2 = O

(
γ2

(Lf
H)2

)
. Consequently, the gradient and Hessian batch sizes satisfy

Bg
k = Õ

(
ϵ̄g,2γ

2

ϵ̄4g,1
+

1

ϵ̄g,2

)
, Bh

k = Õ

(
ϵ̄h,2γ

2

ϵ̄4h,1
+

1

ϵ̄h,2

)
.

Total sample complexity. Let K1 = {k : Qk−1 = 1} and K0 = {k : Qk−1 = 0}. By Lemma 17, we have
E[|K1|] = O(Kp) = O(ε−3/2) and E[|K0|] = O(K(1 − p)) = O(γ−3). Therefore, the in-expectation total
number of stochastic gradient evaluations is

E

[
K∑
k=0

Bg
k

]
= Bg

0 + E

∑
k∈K1

Bg
k

+ E

∑
k∈K0

Bg
k


= Õ

(
ε−2 +

(
ε−3/2 + γ−3

)1/2 (
ε−1/2 + γ−1

)1/2
ε−2 + γ−3

)
= Õ

(
ϵ−3 + ϵ−2γ−2 + γ−3

)
,

where γ−3 comes from the fact that Bg
k ≥ 1 and the last inequality uses Young’s inequality ab ≤ ap

p + bq

q ,

where 1
p + 1

q = 1. For the stochastic Hessian oracles, the in-expectation total number is

E

[
K∑
k=0

Bh
k

]
= Bh

0 + E

∑
k∈K1

Bh
k

+ E

∑
k∈K0

Bh
k


= Õ

((
1 +

(
ε−3/2 + γ−3

)1/2 (
ε−1/2 + γ−1

)1/2)(
ε−1 + γ−2

)
+ γ−3

)
= Õ

(
ϵ−2 + γ−4

)
,

where ε−1 + γ−2 comes from the fact that ϵ̄−2
h,1 = ( 1

10 min{M1/2ε1/2

4 , γ
10})

−2 = O(ε−1 + γ−2). Then, let

Tg ≜
∑K

k=0B
g
k , Th ≜

∑K
k=0B

h
k . By Markov’s inequality, for any δ′ ∈ (0, 1), we have Pr

(
Tg ≥ 1

δ′E[Tg]
)
≤

δ′, Pr
(
Th ≥ 1

δ′E[Th]
)
≤ δ′. Hence, if we set δ′ = 0.01, then it holds with probability at least 0.99 that

Tg ≤ 100 · E[Tg] = Õ
(
ϵ−3 + ϵ−2γ−2 + γ−3

)
, Th ≤ 100 · E[Th] = Õ

(
ϵ−2 + γ−4

)
.

This completes the proof with the union probability bound 0.99× 0.97 ≥ 0.96. □
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Remark 3 We note that the two terms in (31) correspond respectively to the lower bounds on iteration

complexity for deterministic second-order optimization algorithms: ∆(Lf
H)1/2ϵ−3/2 for finding first-order

stationary points (see [8, Theorem 2]) and ∆(Lf
H)2γ−3 for second-order stationary points (see [1, Theorem

6]). For the stochastic case, the sample complexity’s lower bound for second-order methods to find second-
order stationary points, without Assumption 3, is Ω(ϵ−3 + γ−5) in terms of stochastic second-order oracle
queries (see [1, (14)]). However, under Assumption 3, no such lower bound has been established yet. We
compared the complexity results of several cubic-regularized algorithms in Table 1. As can be seen, the
development of cubic regularized algorithms has shifted from deterministic problems to stochastic problems
in the finite-sum form and further to those in the expectation form. This work complements the existing
literature by providing an oracle-complexity analysis for expectation-form stochastic cubic algorithms under
the sample-wise smooth condition (Assumption 3). In addition, we study stationary points with separated
first- and second-order accuracies to help identify clearer impact of the accuracies on complexity orders.

To summarize, in this section we propose a stochastic second-order method, referred to as the Curvature-
oriented variance reduction method (Carme), which computes an approximate second-order stationary
point for unconstrained optimization. The key idea is to integrate variance reduction directly into the
curvature exploitation mechanism, so that the stochastic cubic subproblems admit sufficiently accurate
descent directions without requiring giant stochastic gradient or Hessian samples. As a result, under
smoothness assumptions of stochastic functions, Carme achieves a strictly improved sample complexity
over the state-of-the-art stochastic second-order algorithms.

4 Carme-ALM for equality-constrained optimization

In this section, we extend the curvature-oriented variance reduction method (Carme) to equality-constrained
stochastic optimization (1)-(2), i.e.

min
x∈Rn

f(x) = Eξ[F (x, ξ)] subject to c(x) = 0, (32)

where c(x) = (c1(x), . . . , cm(x))⊤. Our goal is to compute an (ϵ, γ)-SSP of (32), in the sense of Definition 1,
which simultaneously achieves approximate first-order stationarity, second-order curvature conditions along
feasible directions, and approximate feasibility.

To solve (32), a direct way is to apply Carme to the penalized problem via quadratic penalty function:

min
x∈Rn

ϕ(x; ρ) := f(x) +
ρ

2
∥c(x)∥2, (33)

where ρ > 0 is a penalty parameter. However, such a direct quadratic-penalty-based extension inevitably
suffers from a deterioration in complexity relative to the unconstrained case. The main reason lies in the
necessity of using a large penalty parameter ρ = Θ(ϵ−1) to guarantee approximate feasibility, which in turn

leads to a significant increase in the Hessian Lipschitz constant Lϕ
H of the penalized objective. This coupling

between feasibility enforcement and curvature growth substantially deteriorates the iteration complexity.
Indeed, the iteration complexity of Carme scales polynomially with Lϕ

H , namely as

O
(
∆(Lϕ

H)1/2ϵ−3/2 +∆(Lϕ
H)2γ−3

)
= O(ϵ−2γ−3).

This phenomenon reveals an intrinsic limitation of quadratic-penalty-based extensions in stochastic cubic
regularization. Even though the underlying algorithmic structure of Carme remains unchanged, the ge-
ometry of the optimization landscape is fundamentally altered by the penalty term once high-accuracy
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feasibility is required. As a result, quadratic penalty methods are unable to preserve the favorable second-
order behavior of Carme without incurring a substantial additional complexity cost. We cannot help to
ask whether there exists an alternative penalty function that ensures feasibility using a bounded penalty
parameter, thereby achieving complexity comparable to that of Carme in the unconstrained setting.

Fortunately, the answer is affirmative. And the penalty function is the classic Fletcher’s augmented La-
grangian function [24, 26]. Fletcher’s augmented Lagrangian is a modified augmented Lagrangian designed
for equality-constrained optimization, which takes the form of

Lρ(x) = f(x) + ⟨λ(x), c(x)⟩+ ρ

2
∥c(x)∥2,

where the multiplier estimate λ(x) = −∇c(x)†∇f(x) is defined as the least-squares multiplier that approx-
imately satisfies the KKT stationarity condition ∇f(x) +∇c(x)λ = 0. In contrast to classical augmented
Lagrangian methods, the multiplier is not treated as an independent dual variable, but is computed directly
from first-order information of f and c. The pseudo-inverse ∇c(x)† ensures that this definition remains
valid even when the Jacobian is rank-deficient.

Next, to apply Carme to minx∈Rn Lρ(x), we first characterize the gradient and Hessian of Lρ(x). By
direct differentiation, the gradient of Lρ(x) is given by

∇Lρ(x) = ∇f(x) +∇c(x)λ(x) +∇λ(x)c(x) + ρ∇c(x)c(x),

where λ(x) = −∇c(x)†∇f(x), and the Hessian of Lρ(x) can be expressed as

∇2Lρ(x) =∇2f(x) +

m∑
i=1

λi(x)∇2ci(x) + ρ∇c(x)∇c(x)⊤ + ρ

m∑
i=1

ci(x)∇2ci(x)

+∇c(x)∇λ(x)⊤ +∇λ(x)∇c(x)⊤ + ρ

m∑
i=1

ci(x)∇2λi(x).

One can see that if c(x) = 0, ∇Lρ(x) = 0 recovers the first-order stationarity, which further together with
the condition of d⊤∇2Lρ(x)d ≥ 0 for ∀d ∈ Null(∇c(x)⊤) yields the second-order stationarity.

However, the above expressions reveal two major challenges for constrained stochastic optimization.
First, the multiplier λ(x) depends on both ∇f(x) and ∇c(x), and consequently ∇2Lρ(x) involves third-
order derivatives of f and c through ∇2λ(x). Computing these quantities is highly undesirable in practice.
Second, in the stochastic setting, both ∇f(x) and ∇2f(x) are subject to sampling noise, which also
propagates through λ(x) to the gradient and Hessian of the augmented Lagrangian. These observations
motivate the construction of stochastic estimators that (i) avoid explicit third-order derivatives, and (ii)
control the variance introduced by multiplier estimation. To this end, we adopt the hybrid stochastic
estimators gk and Hk developed in Section 2. Specifically, we define the following approximations of the
gradient and Hessian of Lρ(x):

∇̃Lρ(xk) = gk +∇c(xk)λ̃k + ∇̃λk c(xk) + ρ∇c(xk)c(xk), (34)

∇̃2Lρ(xk) = Hk +

m∑
i=1

(λ̃k,i + ρci(xk))∇2ci(xk) +∇c(xk)(∇̃λk + ρ∇c(xk))⊤ + ∇̃λk∇c(xk)⊤, (35)

where λ̃k = ∇c(xk)†gk and ∇̃λk = ∇c(xk)†Hk + ∇(∇c(xk)†gk). We emphasize that ∇̃2Lρ(xk) is not an
unbiased estimator of the exact Hessian ∇2Lρ(xk). In particular, higher-order terms involving ∇2λi(x)
are deliberately omitted to avoid third-order derivative information. The resulting approximation error
is structured and proportional to the constraint violation c(xk). To explicitly control this error, the
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cubic subproblem incorporates an additional quadratic correction term of the form
ρLλ

H∥ck∥1
2 ∥s∥2, which

accounts for the worst-case curvature contribution of the omitted higher-order terms through an explicit,
feasibility-dependent regularization. This results in an adaptive regularization mechanism whose strength
scales with the current constraint violation ∥ck∥, allowing the model to safely compensate for the omitted
higher-order information. In the negative-curvature step, the algorithm further restricts curvature tests to
approximately feasible points, so that the neglected higher-order terms become negligible. Together, these
mechanisms guarantee that ∇̃2Lρ(xk) provides reliable curvature information for both cubic-regularized
and negative-curvature updates without requiring third-order derivatives. This design allows Carme to
be applied to Fletcher’s augmented Lagrangian without increasing the curvature constants or requiring
higher-order derivatives, which will be key to achieving improved complexity bounds in the sequel. We
now present the resulting algorithmic framework in Algorithm 2. The algorithm preserves the overall
structure of Carme, while incorporating Fletcher’s augmented Lagrangian, hybrid stochastic estimators,
and feasibility-adaptive curvature regularization.

Algorithm 2: Carme-ALM

Input: Initial point x0 ∈ Rn, parameters ϵ, γ, ω, αg, αh, ϵ̄g,1, ϵ̄g,2, ϵ̄h,1, ϵ̄h,1, ρ,η,M, p > 0 and K > 0.
for k = 0, . . . ,K do

Compute gk and Hk through (34) and (35).
Sample Qk ∼ Bernoulli(p) with bias p.
if Qk = 1; // cubic-regularized Newton step

then
Solve subproblem

min
∥s∥≤η

mk(s) = ⟨∇̃Lρ(xk), s⟩+
1

2
⟨s, ∇̃2Lρ(xk)s⟩+

ρLλ
H∥ck∥1
2

∥s∥2 + M

6
∥s∥3 (36)

obtaining an inexact solution sk satisfying Condition A.
Set xk+1 = xk + sk.

else

if ∥c(xk)∥ ≤ γ√
mρLλ

H

and u⊤∇̃2Lρ(xk)u ≤ −4γ for any u ∈ Null(∇c(xk)⊤) with ∥u∥ = 1;

// negative-curvature step

then

Find a unit vector uk such that u⊤k ∇̃2Lρ(xk)uk ≤ −2γ, ∀uk ∈ Null(∇c(xk)⊤).
Set xk+1 = xk +

γ

Lf
H

· rk · uk, where rk ∼ Uniform({−1, 1}).

else
Set xk+1 = xk;

4.1 Complexity analysis

In this subsection, we analyze the iteration and sample complexity of Carme-ALM. Compared with the
unconstrained setting, the presence of equality constraints introduces additional technical challenges in the
complexity analysis. In particular, the multiplier λ(x) = ∇c(x)†∇f(x) and its derivatives play a central
role in both the gradient and Hessian approximations, and their stability is crucial for controlling the
curvature of the augmented Lagrangian. To ensure that the multiplier mapping λ(x) is well-defined and
Lipschitz continuous along the iterates, we impose a uniform constraint qualification on the Jacobian of
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the constraints. Specifically, we adopt a global version of the Linear Independence Constraint Qualification
(LICQ), which guarantees that the Jacobian remains nondegenerate throughout the algorithm and allows
us to uniformly bound the sensitivity of the pseudo-inverse ∇c(x)†.

Assumption 5 (Strong LICQ) The constraint Jacobian ∇c(x) ∈ Rn×m has full column rank at all
iterates. Moreover, its smallest singular value is uniformly bounded away from zero; that is,

σmin(∇c(xk)) ≥
√
ν for some ν > 0, ∀k ≥ 0.

Under Assumption 5, the pseudo-inverse ∇c(x)† is well-defined and uniformly bounded along the iter-
ates. Consequently, the multiplier admits the explicit representation

λ(x) = −(∇c(x)⊤∇c(x))−1∇c(x)⊤∇f(x),

and depends smoothly on both ∇f(x) and ∇c(x). Since λ(x) enters both the gradient and Hessian of the
Fletcher’s augmented Lagrangian, controlling its sensitivity is essential for the curvature-based analysis of
Carme-ALM. To simplify notation and avoid explicitly tracking third-order derivatives of f and c arising
from ∇2λ(x), we impose the following regularity condition on the multiplier mapping.

Assumption 6 There exist positive constants Lλ
g and Lλ

H such that

∥∇λ(xk)∥ ≤ Lλ
g , ∥∇2λi(xk)∥ ≤ Lλ

H , ∀k ≥ 0. (37)

Besides, for any ρ > 0 there exist a constant Lρ
H > 0 such that

∥∇2Lρ(xk+1)−∇2Lρ(xk)∥ ≤ Lρ
H∥xk+1 − xk∥, ∀k ≥ 0. (38)

The above assumption is mild and holds under sufficient smoothness and regularity conditions. In partic-
ular, under Assumption 5, if the objective f and the constraint functions ci admit bounded first-, second-,
and third-order derivatives along the iterates, then the bounds in (37) follow directly. These regularity
conditions ensure that the gradient and Hessian of the Fletcher’s augmented Lagrangian Lρ remain uni-
formly bounded along the iterates. Specifically, for any fixed ρ < +∞, there exist constants Lρ > 0 and
Lρ
g > 0 such that

∥∇Lρ(xk)∥ ≤ Lρ, ∥∇2Lρ(xk)∥ ≤ Lρ
g, ∀k ≥ 0. (39)

Moreover, a sufficient condition for (38) to hold is that the fourth-order derivatives of f and ci are bounded.
In what follows, we establish a key lemma connecting constraint c(x) and gradient ∇Lρ(x). The lemma

further shows that first-order stationarity of Lρ(x) implies the KKT conditions of the constrained problem,
confirming the exactness of the Fletcher’s augmented Lagrangian. For brevity, denote Lρk := Lρ(xk),
fk := f(xk), ck := c(xk) and λk := λ(xk).

Lemma 7 Suppose Assumptions 1, 2, 5 and 6 hold, and let ρ > ν−1LcL
λ
g . Then ∇Lρ(xk) = 0 implies

∇fk +∇ckλk = 0 and ck = 0. Moreover, if ∥∇Lρ(xk)∥ ≤ ε and ρ ≥ ν−1Lc(L
λ
g + 1), we have ∥ck∥ ≤ ε and

∥∇fk +∇ckλk∥ ≤ (1 + Lλ
g + ρLc)ε.

Proof. Left-multiplying ∇Lρk by (∇c⊤k∇ck)−1∇c⊤k and using the definition λk = −(∇c⊤k∇ck)−1∇c⊤k∇fk,
we obtain

(∇c⊤k∇ck)−1∇c⊤k∇L
ρ
k =

(
ρIm + (∇c⊤k∇ck)−1∇c⊤k∇λk

)
ck.

Since ρ > ∥(∇c⊤k∇ck)−1∇c⊤k∇λk∥, it follows that ρIm + (∇c⊤k∇ck)−1∇c⊤k∇λk ≻ 0, with minimum eigen-
value at least ρ − ν−1LcL

λ
g > 0. It together with ∇Lρk = 0 yields ck = 0, and then ∇fk + ∇ckλk =

∇Lρk −∇λkck − ρ∇ckck = 0.
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Besides, if ∥∇Lρ(xk)∥ ≤ ε, we have

∥ck∥ ≤
∥∥∥∥(ρIm + (∇c⊤k∇ck)−1∇c⊤k∇λk

)−1
(∇c⊤k∇ck)−1∇c⊤k∇L

ρ
k

∥∥∥∥
≤
∥(∇c⊤k∇ck)−1∇c⊤k ∥∥∇L

ρ
k∥

ρ− ∥(∇c⊤k∇ck)−1∇c⊤k∇λk∥
≤ ε,

where the second inequality uses the property of Neumann series ∥ (ρIm +Ak)
−1 ∥ ≤ 1

ρ−∥Ak∥ with Ak :=

(∇c⊤k∇ck)−1∇c⊤k∇λk, and the last inequality is due to ρ ≥ ν−1Lc(L
λ
g + 1). Then for the stationarity

condition, it holds that

∥∇fk +∇ckλk∥ = ∥∇Lρk −∇λkck − ρ∇ckck∥ ≤ ∥∇Lρk∥+ (∥∇λk∥+ ∥ρ∇ck∥)∥ck∥ ≤ (1 + Lλ
g + ρLc)ε.

The proof is completed. □
The following lemma bounds the gap between the stochastic approximations and their true counterparts.

Lemma 8 Suppose that Assumptions 1, 2 and 5 hold. Then for each iteration k, the stochastic gradient
and Hessian estimators ∇̃Lρ(xk) and ∇̃2Lρ(xk) satisfy

∥∇̃Lρ(xk)−∇Lρ(xk)∥ ≤ κ1∥gk −∇fk∥+ κ2∥ck∥∥Hk −∇2fk∥

and

∥∇̃2Lρ(xk)−∇2Lρ(xk)− ρ
m∑
i=1

ci(x)∇2λi(x)∥ ≤ κ3∥gk −∇fk∥+ κ4∥Hk −∇2fk∥,

where κ1 = 1+ ν−1L2
c +
√
mLc

gC(ν−1+2ν−2L2
c), κ2 = ν−1Lc, κ3 = ν−1Lc

gLc

(
m+ 2

√
m(1 + 2ν−1L2

c)
)
and

κ4 = 1 + 2ν−1L2
c .

Proof. From the definitions of ∇̃Lρ(xk) and ∇Lρ(xk), we have

∥∇̃Lρ(xk)−∇Lρ(xk)∥ = ∥gk +∇c(xk)λ̃k + ∇̃λkc(xk)−∇fk −∇c(xk)λk −∇λkc(xk)∥
≤ ∥gk −∇fk∥+ ∥∇ck(∇c⊤k∇ck)−1∇c⊤k (gk −∇fk)∥+ ∥(∇̃λk −∇λk)c(xk)∥.

For the last term ∥(∇̃λk −∇λk)c(xk)∥, we have

∥∇̃λk −∇λk∥ = ∥(∇c⊤k∇ck)−1∇c⊤k (Hk −∇2fk) +∇((∇c⊤k∇ck)−1∇c⊤k (gk −∇fk))∥
≤ ν−1Lc∥Hk −∇2fk∥+

√
mLc

g(ν
−1 + 2ν−2L2

c)∥gk −∇fk∥,
(40)

where the inequality uses Lemma 18. Hence, it holds that

∥∇̃Lρ(xk)−∇Lρ(xk)∥ ≤
(
1 + ν−1L2

c +
√
mLc

gC(ν−1 + 2ν−2L2
c)
)
∥gk −∇fk∥+ ν−1Lc∥ck∥∥Hk −∇2fk∥.

For the gap of Hessian, we have

∥∇̃2Lρ(xk)−∇2Lρ(xk)− ρ
m∑
i=1

ci(x)∇2λi(x)∥

≤ ∥Hk −∇2fk∥+mLc
g∥(∇c⊤k∇ck)−1∇c⊤k (gk −∇fk)∥+ 2Lc∥∇̃λk −∇λk∥

≤ (1 + 2ν−1L2
c)∥Hk −∇2fk∥+ ν−1Lc

gLc

(
m+ 2

√
m(1 + 2ν−1L2

c)
)
∥gk −∇fk∥,

where the last inequality comes from (40). The proof is completed. □
Next, we analyze the relationship between the constraint residual ck and the regularized Newton step

sk. This is crucial because, for computational efficiency, we omit the Hessian term ρ
∑m

i=1 ci(x)∇2λi(x) in
our algorithm, which depends explicitly on c(x). By quantifying how ck evolves along sk, we can control
the error introduced by ignoring this term and ensure that the resulting Hessian approximation remains
accurate enough for our complexity analysis. The following lemma describes this relationship.
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Lemma 9 Suppose that Assumptions 1, 2, 5 and 6 hold, and let ∥gk −∇fk∥ ≤ ϵg, ∥Hk −∇2fk∥ ≤ ϵh and
ν−1Lc(L

λ
g +ν−1Lcϵh+

√
mLc

g(ν
−1+2ν−2L2

c)ϵg+1) ≤ ρ < +∞ for all k ≥ 0. Then for the cubic-regularized
Newton step, ∥sk∥ < η implies

∥ck∥ ≤Mω2/3 + κ5∥sk∥,
where κ5 is a constant satisfying κ5 ≥ Lρ

g + 2
√
mρLλ

HC + Mη
2 + κ3ϵg + κ4ϵh and Lρ

g is introduced in (39).

Proof. From (16b) in Condition A, if ∥sk∥ < η, we have∥∥∥∥∇̃Lρk + ∇̃2Lρksk + ρLλ
H∥ck∥sk +

M

2
∥sk∥sk

∥∥∥∥ ≤Mω2/3,

then there exists a vector zk ∈ Rn with ∥zk∥ ≤Mω2/3 such that

∇̃Lρk + ∇̃
2Lρksk + ρLλ

H∥ck∥1sk +
M

2
∥sk∥sk = zk.

Hence, left-multiplying both sides by (∇c⊤k∇ck)−1∇c⊤k and using the definition of ∇̃Lρk, it holds that(
ρIm + (∇c⊤k∇ck)−1∇c⊤k ∇̃λk

)
ck = (∇c⊤k∇ck)−1∇c⊤k

(
zk − ∇̃2Lρksk − ρLλ

H∥ck∥1sk −
M

2
∥sk∥sk

)
,

where we use (∇c⊤k∇ck)−1∇c⊤k (∇fk+∇ckλ̃k) = 0. It then together with Cauchy–Schwarz inequality yields

∥ck∥ ≤
∥∥∥∥(ρIm + (∇c⊤k∇ck)−1∇c⊤k ∇̃λk

)−1
∥∥∥∥∥∥∥(∇c⊤k∇ck)−1∇c⊤k

∥∥∥∥∥∥∥zk − ∇̃2Lρksk − ρLλ
H∥ck∥1sk −

M

2
∥sk∥sk

∥∥∥∥
≤ ν−1Lc

ρ−
∥∥∥(∇c⊤k∇ck)−1∇c⊤k ∇̃λk

∥∥∥
(
Mω2/3 + (Lρ

g + 2
√
mρLλ

HC +
Mη

2
+ κ3ϵg + κ4ϵh)∥sk∥

)
≤Mω2/3 + κ5∥sk∥,

where the second uses the property of Neumann series and ∥∇̃2Lρk∥ ≤ Lρ
g +
√
mρLλ

HC + κ3ϵg + κ4ϵh
according to Lemma 8 and (39), and the last line is due to

ρ−
∥∥∥(∇c⊤k∇ck)−1∇c⊤k ∇̃λk

∥∥∥ ≥ ν−1Lc(L
λ
g + ν−1Lcϵh +

√
mLc

g(ν
−1 + 2ν−2L2

c)ϵg + 1)− ν−1Lc∥∇̃λk∥ ≥ ν−1Lc

thanks to (40). □

Remark 4 In Lemma 9, κ5 is a constant relying on ϵg, ϵh and η. We will prove the boundedness of ϵg
and ϵh later and give the specific parameter settings for η, providing the setting of κ5 in (48).

We now establish a series of lemmas to relate the decrease of the Fletcher’s augmented Lagrangian
along the regularized Newton step to the gradient norm. We first bound the function decrease in terms of
the step sk generated by the regularized Newton update. We then derive a lower bound on ∥∇Lρ(xk+1)∥
in terms of ∥sk∥, where the key ingredient is Lemma 9 describing the relationship between ck and sk.
Combining these two results yields the desired decrease estimate directly in terms of the gradient of the
Fletcher’s augmented Lagrangian.

Lemma 10 Under the same conditions as in Lemma 9, let sk be an inexact solution of (36) satisfying
Condition A. Then, for any M ≥ 4Lρ

H and η ∈ (0,+∞), the point xk + sk satisfies

Lρ(xk)−Lρ(xk + sk) ≥
M

15
∥sk∥3−

8κ
3/2
6√
M
∥∇fk − gk∥3/2−

8(κ
3/2
7 η3/2 + κ

3/2
2 M3/2ω)√

M
∥∇2fk −Hk∥3/2. (41)

where κ6 ≥ κ1 + κ3η and κ7 = κ2κ5 + κ4 are constants.
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Proof. Using the Lipschitz continuity of ∇2Lρ and the quadratic correction term that compensates for
the omitted term ρ

∑
i ci∇2λi, we obtain

Lρ(xk + sk)− Lρk ≤ ⟨∇L
ρ
k, sk⟩+

1

2
⟨sk, (∇2Lρk − ρ

m∑
i=1

ci(xk)∇2λi(xk))sk⟩+
ρLλ

H∥ck∥1
2

∥sk∥2 +
Lρ
H

6
∥sk∥3

= mk(sk) +
Lρ
H −M

6
∥sk∥3 + ⟨∇Lρk − ∇̃L

ρ
k, sk⟩+

1

2
⟨sk, (∇2Lρk − ∇̃

2Lρk − ρ
m∑
i=1

ci(xk)∇2λi(xk))sk⟩

≤ −M

8
∥sk∥3 + ∥∇Lρk − ∇̃L

ρ
k∥∥sk∥+

1

2
∥∇2Lρk − ∇̃

2Lρk − ρ
m∑
i=1

ci(xk)∇2λi(xk)∥∥sk∥2

≤ −M

8
∥sk∥3 + (κ1 + κ3η)∥∇fk − gk∥∥sk∥+ (κ2κ5 + κ4)∥∇2fk −Hk∥∥sk∥2 + κ2Mω2/3∥∇2fk −Hk∥∥sk∥,

where the second inequality uses M ≥ 4Lρ
H and the last inequality uses Lemma 8. Then using the scaled

Young’s inequality ab ≤ 8√
M
a3/2 + M

64 b
3 yields

(κ1 + κ3η)∥∇fk − gk∥∥sk∥ ≤
8(κ1 + κ3η)

3/2

√
M

∥∇fk − gk∥3/2 +
M

64
∥sk∥3,

(κ2κ5 + κ4)∥∇2fk −Hk∥∥sk∥2 ≤
8(κ2κ5 + κ4)

3/2

√
M

∥∇2fk −Hk∥3/2η3/2 +
M

64
∥sk∥3,

κ2Mω2/3∥∇2fk −Hk∥∥sk∥ ≤
8κ

3/2
2 M3/2ω√

M
∥∇2fk −Hk∥3/2 +

M

64
∥sk∥3.

Then plugging these bounds into (18), we obtain

Lρ(xk + sk)− Lρk ≤ −
M

15
∥sk∥3 +

8κ
3/2
6√
M
∥∇fk − gk∥3/2 +

8(κ
3/2
7 η3/2 + κ

3/2
2 M3/2ω)√

M
∥∇2fk −Hk∥3/2,

where κ6 ≥ κ1 + κ3η and κ7 = κ2κ5 + κ4. Rearranging the terms yields the conclusion. □
The following lemma establishes the relationship between the regularized Newton step sk and the

gradient ∇Lρ(xk + sk).

Lemma 11 Under the same conditions as Lemma 10, it holds that for any M ≥ Lρ
H ,

1

{
∥∇Lρ(xk + sk)∥ ≥

(M +
√
mρLλ

Hκ5)η
2

2

}
≤ 2

η2
∥sk∥2 +

2
(
κ6∥ϵgk∥+ (κ2Mω2/3 + κ7η)∥ϵhk∥+ (1 + 2

√
mρLλ

Hη)Mω2/3
)

(M +
√
mρLλ

Hκ5)η2
,

(42)

where κ6 ≥ κ1 + κ3η and κ7 = κ2κ5 + κ4, defined in Lemma 10.

Proof. In the regularized Newton step, one of two cases must occur: either ∥sk∥ = η, or ∥sk∥ < η. In
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the second case, together with ϵgk = ∇fk − gk and ϵhk = ∇2f(x)−Hk we have

∥∇Lρ(xk + sk)∥ ≤
∥∥∇Lρ(xk + sk)−∇Lρk −∇

2Lρksk
∥∥+ ∥∥∇Lρk +∇2Lρksk

∥∥
≤

Lρ
H

2
∥sk∥2 +

∥∥∥∇Lρk − ∇̃Lρk∥∥∥+
∥∥∥∥∥(∇2Lρk − ∇̃

2Lρk − ρ
m∑
i=1

ci(x)∇2λi(x))sk

∥∥∥∥∥
+

∥∥∥∥∇̃Lρk + ∇̃2Lρksk + ρLλ
H∥ck∥1sk +

M

2
∥sk∥sk

∥∥∥∥+ M

2
∥sk∥2 + 2ρLλ

H∥ck∥1∥sk∥

≤
Lρ
H +M

2
∥sk∥2 + (κ1 + κ3η)∥ϵgk∥+ (κ2∥ck∥+ κ4η)∥ϵhk∥+Mω2/3 + 2ρLλ

H∥ck∥1∥sk∥

≤
Lρ
H +M + 2

√
mρLλ

Hκ5
2

∥sk∥2 + κ6∥ϵgk∥+ (κ2Mω2/3 + κ7η)∥ϵhk∥+ (1 + 2
√
mρLλ

Hη)Mω2/3,

(43)

where the first and second inequalities use triangle inequality, the second inequality also follows from
the Lρ

H -Lipschitz continuity of ∇2Lρ, the third inequality is due to (16b) in Condition A, Lemma 8 and
∥sk∥ < η, and the last one comes from Lemma 9. Rearranging the terms in (43) yields

∥sk∥2 ≥
2
(
∥∇Lρ(xk + sk)∥ − κ6∥ϵgk∥ − (κ2Mω2/3 + κ7η)∥ϵhk∥ − (1 + 2

√
mρLλ

Hη)Mω2/3
)

Lρ
H +M + 2

√
mρLλ

Hκ5
.

Since one of the two cases (∥sk∥ < η or ∥sk∥ = η) must hold, we have

∥sk∥2 +
2
(
κ6∥ϵgk∥+ (κ2Mω2/3 + κ7η)∥ϵhk∥+ (1 + 2

√
mρLλ

Hη)Mω2/3
)

Lρ
H +M + 2

√
mρLλ

Hκ5

≥ min

{
η2,

2

Lρ
H +M + 2

√
mρLλ

Hκ5
∥∇Lρ(xk + sk)∥

}
.

Rearranging the terms and applying the bound M ≥ Lρ
H yields

(M +
√
mρLλ

Hκ5)∥sk∥2 + κ6∥ϵgk∥+ (κ2Mω2/3 + κ7η)∥ϵhk∥+ (1 + 2
√
mρLλ

Hη)Mω2/3

≥ min

{
(M +

√
mρLλ

Hκ5)η
2

2
, ∥∇Lρ(xk + sk)∥

}
≥

(M +
√
mρLλ

Hκ5)η
2

2
· 1
{
∥∇Lρ(xk + sk)∥ ≥

(M +
√
mρLλ

Hκ5)η
2

2

}
,

where the last inequality uses the fact that for any a, b ≥ 0, min{a, b} ≥ a ·1{b ≥ a}. Hence, the conclusion
is derived. □

The following lemma relates the expected decrease of the Fletcher’s augmented Lagrangian to the
probability of observing a large gradient at the next iterate.

Lemma 12 Under the same conditions as in Lemma 10, for any iteration k with Qk = 1, it holds that

E [Lρ(xk)− Lρ(xk+1)] ≥
Mη3

90
Pr

{
∥∇Lρ(xk + sk)∥ ≥

(M +
√
mρLλ

Hκ5)η
2

2

}
− 9κ

3/2
6√
M

E
[
∥ϵgk∥

3/2
]
− 9(κ

3/2
7 η3/2 + κ

3/2
2 M3/2ω)√

M
E
[
∥ϵhk∥3/2

]
−

(1 + 2
√
mρLλ

Hη)3/2M

15
ω,

where Pr(·) and E[·] are taken w.r.t. the randomness over gk and Hk.
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Proof. Using Lemma 10 and taking expectations in (41), we obtain

E[Lρ(xk)− Lρ(xk+1)] ≥
M

15
E
[
∥sk∥3

]
− 8κ

3/2
6√
M

E
[
∥ϵgk∥

3/2
]
− 8(κ

3/2
7 η3/2 + κ

3/2
2 M3/2ω)√

M
E
[
∥ϵhk∥3/2

]
. (44)

Next, to relate the update sk to the gradient norm, we invoke Lemma 11. To match the cubic term ∥sk∥3,
we raise (42) to power 3/2 and apply the inequality (

∑n
i=1 ai)

q ≤ n q−1
∑n

i=1 a
q
i for q = 3/2, which gives

1

{
∥∇Lρ(xk + sk)∥ ≥

(M +
√
mρLλ

Hκ5)η
2

2

}

≤

(
2

η2
∥sk∥2 +

2
(
κ6∥ϵgk∥+ (κ2Mω2/3 + κ7η)∥ϵhk∥+ (1 + 2

√
mρLλ

Hη)Mω2/3
)

(M +
√
mρLλ

Hκ5)η2

)3/2

≤ 6

η3
∥sk∥3 +

6
(
κ
3/2
6 ∥ϵ

g
k∥

3/2 + (κ2Mω2/3 + κ7η)
3/2∥ϵhk∥3/2 + (1 + 2

√
mρLλ

Hη)3/2M3/2ω
)

(M +
√
mρLλ

Hκ5)3/2η3
.

Taking expectations and applying Jensen’s inequality again yields

E
[
∥sk∥3

]
≥ η3

6
Pr

{
∥∇Lρ(xk + sk)∥ ≥

(M +
√
mρLλ

Hκ5)η
2

2

}
−

κ
3/2
6 E

[
∥ϵgk∥

3/2
]
+ (κ2Mω2/3 + κ7η)

3/2E
[
∥ϵhk∥3/2

]
+ (1 + 2

√
mρLλ

Hη)3/2M3/2ω

(M +
√
mρLλ

Hκ5)3/2
. (45)

Combining (44) and (45), and using M +
√
mρLλ

Hκ5 ≥M , the desired inequality follows. □
Lemma 12 serves the same purpose as the corresponding descent lemma (Lemma 5) in the unconstrained

Carme analysis. The difference stems from the deliberate omission of third-order derivative terms involving
the constraints in the Hessian approximation. This omission introduces additional error terms, which are
explicitly controlled via feasibility-aware regularization, while the underlying descent mechanism remains
unchanged. The next lemma is the counterpart of the negative-curvature descent result in unconstrained
Carme. The proof follows the same argument, with the difference also introduced by the omitted term.

Lemma 13 Under the same conditions as in Lemma 10, for any iteration k with Qk = 0, it holds that

E [Lρ(xk)− Lρ(xk+1)] ≥
γ3

3(Lρ
H)2
· Pr (Ek)−

γ2

2(Lρ
H)2

(
κ3∥ϵgk∥+ κ4∥ϵhk∥

)
, (46)

where Pr(·) and E[·] are taken w.r.t. the randomness in Hk and rk, the event Ek is defined by

Ek =

{
∥c(xk)∥ ≤

γ
√
mρLλ

H

and u⊤∇̃2Lρ(xk)u ≤ −4γ, ∀u ∈ Null(∇c(xk)⊤) with ∥u∥ = 1

}
. (47)

Proof. If the event Ek does not occur, then the algorithm sets xk+1 = xk, and hence Lρ(xk+1) = Lρ(xk).
Otherwise, when Ek occurs, we choose a unit vector uk ∈ Null(∇c(xk)⊤) satisfying u⊤k ∇̃2Lρ(xk)uk ≤ −2γ,
and define

s̃k :=
γ

Lρ
H

rk uk,

where rk is a Rademacher random variable. Using the Lρ
H -Lipschitz continuity of ∇2Lρ, we have

Lρ(xk+1) ≤ Lρ(xk) + ⟨∇Lρ(xk), s̃k⟩+
1

2
s̃⊤k∇2Lρ(xk)s̃k +

Lρ
H

6
∥s̃k∥3.

24



Conditioning on Hk (and hence on uk), and using E[rk] = 0 and E[r2k] = 1, we obtain

Erk

[
⟨∇Lρ(xk), s̃k⟩+ 1

2 s̃
⊤
k∇2Lρ(xk)s̃k | Hk

]
=

γ2

2(Lρ
H)2

[
u⊤k ∇̃2Lρ(xk)uk + u⊤k

(
∇2Lρ(xk)− ∇̃2Lρ(xk)

)
uk

]
≤ − γ3

(Lρ
H)2

+
γ2

2(Lρ
H)2

(
κ3∥∇f(xk)− gk∥+ κ4∥∇2f(xk)−Hk∥+

√
mρLλ

H∥c(xk)∥
)
,

where we used the definition of uk and Lemma 8. Since the event Ek ensures ∥c(xk)∥ ≤ γ√
mρLλ

H

, the last

term can be absorbed, yielding

Erk

[
⟨∇Lρ(xk), s̃k⟩+ 1

2 s̃
⊤
k∇2Lρ(xk)s̃k | Hk

]
≤ − γ3

2(Lρ
H)2

+
γ2

2(Lρ
H)2

(
κ3∥ϵgk∥+ κ4∥ϵhk∥

)
.

Since ∥s̃k∥ = γ
Lρ
H
, we further obtain

Erk [Lρ(xk+1) | Hk] ≤ Lρ(xk)−
γ3

3(Lρ
H)2

+
γ2

2(Lρ
H)2

(
κ3∥ϵgk∥+ κ4∥ϵhk∥

)
on the event Ek. Combining the two cases, conditioning on Hk, we have

Erk [Lρ(xk+1) | Hk] ≤ Lρ(xk)−
γ3

3(Lρ
H)2

1{Ek}+
γ2

2(Lρ
H)2

(
κ3∥ϵgk∥+ κ4∥ϵhk∥

)
.

Taking expectation over Hk and rearranging yields (46). □
Lemma 13 characterizes the expected decrease of the Fletcher’s augmented Lagrangian along a negative-

curvature step. Compared with the analysis on Carme in unconstrained setting, the main difference lies
in the presence of feasibility-induced error terms arising from the omission of constraint-dependent higher-
order derivatives. The restriction imposed by the event Ek guarantees that the additional error terms
introduced by omitting constraint-dependent higher-order derivatives remain negligible. This allows the
analysis on negative-curvature descent to follow the same logical structure as Carme, up to controllable
estimation errors.

Combining Lemma 12 and Lemma 13, together with the bounds on the stochastic gradient and Hessian
errors, we obtain a uniform lower bound on the per-iteration expected decrease of the Fletcher’s augmented
Lagrangian, namely on E[Lρ(xk)−Lρ(xk+1)] under the randomized step selection in Carme-ALM. Summing
this bound over iterations yields the following complexity result. For notational convenience, we define

κ8 :=
√
mρLλ

Hκ5, κ9 := 30M1/2κ7 + (M + κ8)
1/2κ2,

where
ρ = ν−1Lc(L

λ
g + ν−1Lc +

√
mLc

g(ν
−1 + 2ν−2L2

c) + 1), M = 4Lρ
H

κ5 = Lρ
g + 2

√
mρLλ

HC +M1/2 + κ3 + κ4.
(48)

Next, given ϵ ∈ (0, 1) and γ ≥ 0, define the auxiliary tolerance

ε = min

{
ϵ

450max{1, Lλ
g + ρLc}

,
γ

450
√
mρLλ

H

,
4κ6(M + κ8)

M

}
, (49)

where κ6 = κ1 +
2κ3

M1/2 . Then we specify the remaining parameters used in our analysis as follows:
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Algorithmic parameters.

∆ = Lρ(x0) + (ν−1LcLf + 1)C, η =
30ε1/2

(M + κ8)
1/2
≤ 2

M1/2
, p =

(M + κ8)
3/2γ3

(M + κ8)3/2γ3 + 900M(Lρ
H)2ε3/2

,

ω = min

{
M−1,M−9/4ε3/4,

ε3/2

(M + κ8)3/2(1 + 2
√
mρLλ

Hη)

}
, K =

⌈
3600∆(Lρ

H)2

γ3
+

4∆(M + κ8)
3/2

Mε3/2

⌉
.

Estimator parameters.

δ =
1

200K
, ϵ̄g,1 = min

{
Mε

κ6(M + κ8)
,

γ

250κ3

}
, ϵ̄g,2 =

(
ε−3/2 + γ−3

ε−1/2 + γ−1

)1/2

ϵ̄2g,1, αg =
ϵ̄2g,1
ϵ̄g,2

,

ϵ̄h,1 =
1

10
min

{(
M3ε

(M + κ8)κ29

)1/2

,
γ

100κ4

}
, ϵ̄h,2 =

(
ε−3/2 + γ−3

ε−1/2 + γ−1

)1/2

ϵ̄2h,1, αh =
ϵ̄2h,1
ϵ̄h,2

.

(50)

And Bg
k and Bh

k can be chosen as in Lemmas 1 and 2. These choices follow the same design as in the
unconstrained Carme analysis, with additional constants accounting for feasibility control. Under the
above parameters setting, we have the convergence result below.

Theorem 2 Under Assumptions 1–6, let ϵ ∈ (0, 1) and γ ∈ (0, (600∆(Lρ
H)2)1/3). Consider Carme-ALM

with the parameter choices specified in (48)–(50) (in particular, ρ, M , ε, η, p, ω, K, and δ = 1/(200K)),
and with the gradient/Hessian estimators chosen as in Lemmas 1 and 2. Then the following statements
hold with probability at least 0.96:

(i) Carme-ALM returns an iterate xR for which there exists a multiplier λR such that

∥∇f(xR) +∇c(xR)λR∥ ≤ 2ϵ, ∥c(xR)∥ ≤ ϵ,

and
u⊤∇2Lρ(xR)u ≥ −6γ, ∀u ∈ Null(∇c(xR)⊤), ∥u∥ = 1,

within K = O
(
γ−3 + ϵ−3/2

)
iterations.

(ii) To reach an (ϵ, γ)-SSP of (14), Carme-ALM requires at most Õ(ϵ−3 + ϵ−2γ−2 + γ−4) stochastic
gradient queries in expectation and Õ(ϵ−2 + γ−4) stochastic Hessian queries.

Proof. We divide the proof into two parts. We first establish the high-probability (ϵ, γ)-SSP guarantee,
and then bound the total sample complexity.

Part I: Approximate second-order stationarity and iteration complexity. We begin by control-
ling the stochastic estimation errors uniformly over k = 0, . . . ,K − 1. By Lemma 1, with probability at
least 1− 2Kδ = 0.99, we have

∥∇f(xk)− gk∥ ≤ min
{ Mε

4κ6(M + κ8)
,

γ

1000κ3

}
≤ 1, k = 0, . . . ,K − 1. (51)

Similarly, by Lemma 2, with probability at least 1− 2Kδ = 0.99,

∥∇2f(xk)−Hk∥2 ≤
1

800
min

{ M3ε

(M + κ8)κ29
,

γ2

10000κ24

}
≤ 1, k = 0, . . . ,K − 1. (52)

By a union bound, (51)–(52) hold simultaneously for all k = 0, . . . ,K−1 with probability at least 1−4Kδ =
0.98. In the sequel, we work on this event. Thus, the settings of ρ and κ5 in (48) satisfy the requirements
in Lemma 9.

At each iteration k, Carme-ALM selects either a cubic-regularized step (Qk = 1) or a negative-curvature
step (Qk = 0). We analyze the two cases separately.
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Case 1: Qk = 1. Invoking Lemma 12 together with (51)–(52) (and the definitions of κ8, κ9, η, ω) yields

E [Lρ(xk)− Lρ(xk+1) | Qk = 1]

≥ 300Mε3/2

(M + κ8)
3/2

Pr {∥∇Lρ(xk+1)∥ ≥ 450ε} − 9Mε3/2

8(M + κ8)3/2
− 3Mε3/2

50(M + κ8)3/2
− Mε3/2

15(M + κ8)3/2

≥ 300Mε3/2

(M + κ8)
3/2

(
Pr {∥∇Lρ(xk+1)∥ ≥ 450ε} − 1

200

)
,

(53)

where we used a+ b ≤ (a2/3 + b2/3)3/2 to combine the residual terms.

Case 2: Qk = 0. By Lemma 13 and (52), we have

E [Lρ(xk)− Lρ(xk+1) | Qk = 0] ≥ γ3

3(Lρ
H)2

Pr {Ek} −
3γ3

4000(Lρ
H)2
≥ γ3

3(Lρ
H)2

(
Pr {Ek} −

1

400

)
. (54)

Taking expectation over Qk and combining (53)–(54), we obtain

E[Lρ(xk)− Lρ(xk+1)] ≥
γ3(1− p)

3(Lρ
H)2

(
Pr{Ek} −

1

400

)
+

300Mε3/2p

(M + κ8)3/2

(
Pr{∥∇Lρ(xk+1)∥ ≥ 450ε} − 1

200

)
.

(55)
Let xR be sampled uniformly from {xk}K−1

k=0 . Telescoping (55) from k = 0 to K − 1 and using E[Lρ(x0)−
Lρ(xK)] ≤ ∆, we obtain (by the same averaging argument as in the unconstrained proof and Lemma 17)

∆ ≥ E [Lρ(x0)− Lρ(xK)]

≥ γ3(1− p)

3(Lρ
H)2

K−1∑
k=0

(
Pr {Ek} −

1

400

)
+

300Mε3/2p

(M + κ8)
3/2

K∑
k=1

(
Pr {∥∇Lρ(xk)∥ ≥ 450ε} − 1

200

)

≥ 1200∆

(
1

K

K−1∑
k=0

Pr{Ek}+
1

K

K∑
k=1

Pr {∥∇Lρ(xk)∥ ≥ 450ε} − 3

400

)

≥ 1200∆

(
5

6(K − 1)

K−1∑
k=1

(Pr{Ek}+ Pr {∥∇Lρ(xk)∥ ≥ 450ε})− 3

400

)

≥ 1200∆

(
5

6
(Pr{ER}+ Pr {∥∇Lρ(xR)∥ ≥ 450ε})− 3

400

)
,

where the third inequality follows from Lemma 17, the fourth inequality given by ignoring some (non-
negative) terms on the right-hand side and using the fact that K ≥ 6. Rearranging the terms yields
Pr{ER}+ Pr{∥∇Lρ(xR)∥ ≥ 450ε} ≤ 0.01, where Ek is defined in (47). Hence, it holds that

Pr(EcR ∧ {∥∇Lρ(xR)∥ < 450ε}) ≥ 0.99, (56)

where EcR is the complement of the event ER. We now translate (56) into an (ϵ, γ)-SSP guarantee. First,
since ρ ≥ ν−1Lc(L

λ
g + 1) and by the choice of ε, Lemma 7 implies that on {∥∇Lρ(xR)∥ < 450ε ≤ ϵ},

∥c(xR)∥ ≤ ϵ, ∥∇f(xR) +∇c(xR)λR∥ ≤ ∥∇Lρ(xR)∥+ (Lλ
g + ρLc)∥c(xR)∥ ≤ 2ϵ,

where the last inequality uses ∥c(xR)∥ ≤ 450ε ≤ ϵ
Lλ
g+ρLc

. Second, using the choice of ε again, we have

∥c(xR)∥ ≤ γ/(
√
mρLλ

H) and thus

∥∇2Lρ(xR)− ∇̃2Lρ(xR)∥ ≤ ρ
∥∥∥ m∑
i=1

ci(xR)∇2λi(xR)
∥∥∥+ κ3∥∇f(xR)− gR∥+ κ4∥∇2f(xR)−HR∥ ≤ 2γ.
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And the event EcR implies u⊤∇̃2Lρ(xR)u > −4γ for all unit u ∈ Null(∇c(xR)⊤), so u⊤∇2Lρ(xR)u ≥ −6γ
on the same null space. This completes the proof of (i) with the overall success probability at least
0.99× 0.98 ≥ 0.97 via a union bound.

Iteration complexity. By the parameter choice, the iteration complexity is in order

K =

⌈
3600∆(Lρ

H)2

γ3
+

4∆(M + κ8)
3/2

Mε3/2

⌉
= O(γ−3 + ϵ−3/2), (57)

where the last equality is due to the setting of ε in (49).

Part II: Sample complexity. We now bound the total number of stochastic oracle calls, and again
separate the two update regimes.

Case 1: Qk−1 = 1. Since ∥xk−xk−1∥ ≤ η = 30ε1/2

(M+κ8)1/2
, we have ∥xk−xk−1∥2 = O(ε). With δ = 1/(200K)

and the estimator choices in Lemmas 1–2, the batch sizes satisfy

Bg
k = Õ

(
ϵ̄g,2ε

ϵ̄4g,1
+

1

ϵ̄g,2

)
, Bh

k = Õ

(
ϵ̄h,2ε

ϵ̄4h,1
+

1

ϵ̄h,2

)
.

Case 2: Qk−1 = 0. From the negative-curvature update, ∥xk − xk−1∥2 = O(γ2). Consequently,

Bg
k = Õ

(
ϵ̄g,2γ

2

ϵ̄4g,1
+

1

ϵ̄g,2

)
, Bh

k = Õ

(
ϵ̄h,2γ

2

ϵ̄4h,1
+

1

ϵ̄h,2

)
.

Aggregating over k = 0, . . . ,K and using the expected counts of those steps, we obtain

E
[ K∑
k=0

Bg
k

]
= Õ

((
1 +

(
ε−3/2 + γ−3

)1/2 (
ε−1/2 + γ−1

)1/2)(
ε−2 + γ−2

)
+ γ−3

)
= Õ

(
ϵ−3 + ϵ−2γ−2 + γ−4

)
,

E
[ K∑
k=0

Bh
k

]
= Õ

((
1 +

(
ε−3/2 + γ−3

)1/2 (
ε−1/2 + γ−1

)1/2)(
ε−1 + γ−2

)
+ γ−3

)
= Õ

(
ϵ−2 + γ−4

)
,

where mixed terms are absorbed by Young’s inequality. This proves (ii) thanks to Markov’s inequality
(with the same proof as Theorem 1) and completes the proof. □

To address the well-known drawback of quadratic penalty methods—namely, the requirement of an
excessively large penalty parameter—we adopt Fletcher’s augmented Lagrangian and develop Carme-ALM.
This modification leads to a clear improvement: at the level of iteration complexity, Carme-ALM matches
that of Carme in the unconstrained setting, while requiring only a bounded penalty parameter to enforce
feasibility. However, a gap remains at the level of sample complexity. Importantly, this gap does not
merely stem from the omission of higher-order derivative terms. Rather, the fundamental reason lies in the
structure of the Fletcher’s augmented Lagrangian itself. Specifically, the multiplier λ(x) depends explicitly
on the (stochastic) gradient of the objective function. As a consequence, stochastic errors in the gradient
estimation propagate into the Hessian of the augmented Lagrangian, as quantified in Lemma 8. This
coupling effect, the Hessian estimation accuracy must be tightened when a smaller second-order tolerance
γ is required. This, in turn, increases the required sample size of stochastic gradients, leading to an extra
γ−4 term compared with the unconstrained Carme.

Notably, when the second-order tolerance satisfies γ = Ω(ϵ), this coupling effect becomes inactive, and
the sample complexity of Carme-ALM coincides with that of the unconstrained method. The discrep-
ancy arises only when higher second-order accuracy is demanded. These observations suggest that while
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Fletcher’s augmented Lagrangian successfully enforces feasibility with a bounded penalty parameter and
preserves the iteration complexity of Carme, achieving fully identical sample complexity remains chal-
lenging due to the intrinsic interaction between stochastic gradients and second-order information in the
augmented Lagrangian.

5 Conclusion

In this work, we proposed Carme as a unified framework for stochastic nonconvex optimization with second-
order stationarity guarantees. We first considered the unconstrained setting and developed a momentum-
based stochastic estimator that simultaneously controls gradient and Hessian noise without periodic check-
points, leading to improved sample complexity for finding (ϵ, γ)-second-order stationary points. We then
studied the extension of Carme to constrained problems. We developed Carme-ALM based on Fletcher’s
augmented Lagrangian. Our analysis establishes high-probability complexity of Carme-ALM to find an
(ϵ, γ)-SSP of the constrained problem. While the iteration complexity matches that of the unconstrained
method, the sample complexity exhibits a mild dependence on the second-order tolerance. This effect
stems from the interaction between stochastic gradient noise and curvature estimation introduced by the
augmented Lagrangian. Under certain conditions the sample complexity order matches the one in the
unconstrained settings.
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A Proof of Lemma 1

Proof. For each i ∈ Bgk, we denote for brevity that Fi(x) := F (x, ξi) and let ai = ∇Fi(xk)−∇Fi(xk−1)−
∇f(xk) +∇f(xk−1), then we have Eiai = 0, ai i.i.d., and

∥ai∥ ≤ ∥∇Fi(xk)−∇Fi(xk−1)∥+ ∥∇f(xk)−∇f(xk−1)∥ ≤ 2Lf
g∥xk − xk−1∥,

where the second inequality holds due to the Lf
g -smoothness of f and Fi. Thus, by vector Azuma-Hoeffding

inequality in Lemma 15, we have that with probability at least 1− δ,∥∥∇FBg
k
(xk)−∇FBg

k
(xk−1)−∇f(xk) +∇f(xk−1)

∥∥
=

1

Bg
k

∥∥∥∥∑
i∈Bg

k

[
∇Fi(xk)−∇Fi(xk−1)−∇f(xk) +∇f(xk−1)

]∥∥∥∥ ≤ 6Lf
g

√
log(1/δ)

Bg
k

∥xk − xk−1∥,

where FBg
k
(x) := 1

Bg
k

∑
i∈Bg

k
Fi(x). For each i ∈ Bgk, we have E[∇Fi(xk) − ∇f(xk)] = 0, and ∥∇Fi(xk) −

∇f(xk)∥ ≤ σg. Thus, using Lemma 15 again, we have that with probability at least 1− δ,

∥∇FBg
k
(xk)−∇f(xk)∥ =

1

Bg
k

∥∥∥∥∑
i∈Bg

k

[
∇Fi(xk)−∇f(xk)

]∥∥∥∥ ≤ 3σg

√
log(1/δ)

Bg
k

.

It is easy to note that g0t −∇f(xt) =
∑t

k=0(1− αg)
kut−k, where

uk =

∇FBg
k
(xk)−∇f(xk) + (1− αg)

(
∇f(xk−1)−∇FBg

k
(xk−1)

)
, k > 0,

∇FBg
k
(xk)−∇f(xk), k = 0.

Clearly, we have E[uk|Fk−1] = 0. For k = 0, with probability at least 1− δ it holds that

∥u0∥ ≤ 3σg

√
log(1/δ)

Bg
0

≤ ϵ̄g,1√
720 log(1/δ)

, (58)

where the second inequality holds due to the setting of Bg
k in (10). For k > 0, conditioned on Fk−1 the

following inequality holds with probability at least 1− δ:

∥uk∥ ≤ 3αgσg

√
log(1/δ)

Bg
k

+ 6(1− αg)L
f
g

√
log(1/δ)

Bg
k

∥xk − xk−1∥ ≤
(1− αg)α

1/2
g ϵ̄g,1 + αg ϵ̄

1/2
g,2√

720 log(1/δ)
, (59)
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where the second inequality holds due to the setting of Bg
k in (11). By the union bound, with probability

at least 1−Kδ, (59) and (58) hold for all 0 ≤ k ≤ K − 1. Then for given k, by Lemma 15, conditioned on
Fk and the event of (59) and (58) occur, with probability at least 1− δ we have

∥g0k −∇f(xk)∥2 =
∥∥∥∥ k∑

t=0

(1− αg)
tuk−t

∥∥∥∥2

≤ 9 log(1/δ)

(
ϵ̄2g,1 + 2α

1/2
g ϵ̄g,1ϵ̄

1/2
g,2 + αg ϵ̄g,2

720 log(1/δ)
+

ϵ̄2g,1
720 log(1/δ)

)
≤

3ϵ̄2g,1 + 2αg ϵ̄g,2

80
, (60)

where the first inequality uses
∑t

k=0(1 − αg)
2k ≤ 1/αg. Finally, by the union bound, we have that with

probability at least 1− 2Kδ, (60) holds for all 0 ≤ k ≤ K − 1. □

B Proof of Lemma 2.

Proof. For each i ∈ Bhk , let Ai = ∇2Fi(xk) − ∇2f(xk) + ∇2f(xk−1) − ∇2Fi(xk−1), then we have
EiAi = 0, A⊤

i = Ai, Ai i.i.d. and

∥Ai∥ ≤
∥∥∇2Fi(xk)−∇2Fi(xk−1)

∥∥+ ∥∥∇2f(xk)−∇2f(xk−1)
∥∥ ≤ 2Lf

H∥xk − xk−1∥,

where the second inequality holds due to Lf
H -Lipschitz continuity of ∇2fi and ∇2F . Then by the matrix

Azuma inequality in Lemma 16, we have that with probability at least 1− δ,∥∥∥∇2FBh
k
(xk)−∇2f(xk) +∇2f(xk−1)−∇2FBh

k
(xk−1)

∥∥∥
=

1

Bh
k

∥∥∥∥∥∥
∑
i∈Bh

k

[
∇2Fi(xk)−∇2f(xk) +∇2f(xk−1)−∇2Fi(xk−1)

]∥∥∥∥∥∥ ≤ 6Lf
H

√
log(n/δ)

Bh
k

∥xk − xk−1∥.

Note that for each i ∈ Bhk , E[∇2Fi(x)−∇2fi(x)] = 0 and ∥∇2Fi(xk)−∇2f(xk)∥ ≤ σh. Then using Lemma
16 again, we have that with probability at least 1− δ,

∥∇2FBh
k
(xk)−∇2f(xk)∥ =

1

Bh
k

∥∥∥∥ ∑
i∈Bh

k

[
∇2Fi(xk)−∇2f(xk)

]∥∥∥∥ ≤ 3σh

√
log(n/δ)

Bh
k

.

Then, we have Ht −∇2f(xt) =
∑t

k=0(1− αh)
kVt−k, where

Vk =

∇2FBh
k
(xk)−∇2f(xk) + (1− αh)

(
∇2f(xk−1)−∇2FBh

k
(xk−1)

)
, k > 0,

∇2FBh
k
(xk)−∇2f(xk), k = 0.

Meanwhile, we have E[Vk|F(Vk−1, ..., V0)] = 0. Conditioned on Fk−1, for k = 0 with probability at least
1− δ, we obtain from (12) that

∥Vk∥ ≤ 3σh

√
log(n/δ)

Bh
k

≤
ϵ̄h,1√

360 log(n/δ)
. (61)
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For k > 0, with probability at least 1− δ, the following inequality holds:

∥Vk∥ ≤ 6(1− αh)L
f
H

√
log(n/δ)

Bh
k

∥xk − xk−1∥+ 3αhσh

√
log(n/δ)

Bh
k

≤ (1− αh)
α
1/2
h ϵ̄h√

360 log(n/δ)
+

αhϵ̄
1/2
h√

360 log(n/δ)
,

(62)

where the second inequality holds due to (13). By union bound, with probability at least 1−Kδ, (61) and
(62) hold for all 0 ≤ k ≤ K − 1. Then for given k, by Lemma 16, conditioned on Fk and the event of (62)
and (61) that occur, with probability at least 1− δ it holds that

∥H0
k −∇2f(xk)∥2 =

∥∥∥∥ k∑
t=0

(1− αh)
tVk−t

∥∥∥∥2 ≤ 9 log(n/δ) ·
2ϵ̄2h,1 + 2α

1/2
h ϵ̄h,1ϵ̄

1/2
h,2 + αhϵ̄h

360 log(n/δ)
=

3ϵ̄h + 2αhϵ̄h
40

.

(63)
Finally by union bound, with probability at least 1− 2Kδ, (63) holds for all 0 ≤ k ≤ K − 1. □

C Truncated gradient descent for the cubic subproblem

In this section, we will show that Condition A is easy to achieve when applying a truncated gradient
descent algorithm to (15). To be specific, let sk,0 = 0 we iterate with sk,t+ 1

2
= sk,t − τ∇mk(sk,t), where

τ > 0. If ∥sk,t+ 1
2
∥ ≥ η, terminate with sk = sk,t+1 = sk,t − ϑ∇mk(sk,t) such that ∥sk∥ = η for a certain

ϑ ∈ (0, τ ]. Else if (16b) holds for sk,t+ 1
2
, terminate with sk = sk,t+1 = sk,t+ 1

2
. Otherwise, the iteration

continues with sk,t+1 = sk,t+ 1
2
. The full algorithm framework is stated in Algorithm 3 and we provide the

convergence result of the proposed truncated gradient descent algorithm in the following lemma.

Algorithm 3: Truncated Gradient Descent for the Cubic Subproblem

Input: Model mk(·), trust-region radius η > 0, stepsize τ > 0, tolerance ω > 0
Output: An inexact solution sk satisfying Condition A
Initialize sk,0 = 0, t = 0;
while true do

Compute the gradient ∇mk(sk,t);
Set sk,t+ 1

2
= sk,t − τ∇mk(sk,t);

if ∥sk,t+ 1
2
∥ ≥ η then

Find ϑ ∈ (0, τ ] such that ∥sk,t − ϑ∇mk(sk,t)∥ = η;
Set sk = sk,t − ϑ∇mk(sk,t);
break;

if ∥∇mk(sk,t+ 1
2
)∥ ≤Mω2/3 then

Set sk = sk,t+ 1
2
;

break;

Set sk,t+1 = sk,t+ 1
2
, t← t+ 1;

return sk
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Lemma 14 Suppose that τ = (Lf
H +min{ϵ1/2M1/2, γ}/20

√
2 +Mη)−1. Then with probability at least

1− 2Kδ, the truncated gradient descent algorithm stop and output sk satisfying (16a) and (16b) before

T =

⌈
(Lf

H +min{ϵ1/2M1/2, γ}/20
√
2 +Mη)(2(Lf + ϵ/4)η + (Lf

H +min
{
ϵ1/2M1/2, γ

}
/20
√
2)η2)

M2ω4/3

⌉
.

Proof. It is worthy to note that for any k ≥ 1, by Lemma 1 with αg = ϵ̄
1/2
g = ϵ1/2, it holds with

probability at least 1 − 2Kδ that ∥∇f(xk) − gk∥2 ≤ ϵ2

16 , k = 0, . . . ,K − 1. Further, by Lemma 2 with

αh = ϵ̄
1/2
h = 1

10 min{ϵ1/2M1/2, γ}, with probability at least 1 − 2Kδ it holds that ∥∇2f(xk) − Hk∥2 ≤
1

800 min
{
ϵM, γ2

}
, k = 0, . . . ,K−1. When s ≤ η, the gradient of mk is Lipschitz continuous with constant

Lf
H +Mη from the formulation:

∥∇2mk(s)∥ =
∥∥∥∥Hk +

M

2

(
ssT

∥s∥
+ ∥s∥I

)∥∥∥∥ ≤ Lf
H +

min
{
ϵ1/2M1/2, γ

}
20
√
2

+Mη,

where ssT

∥s∥ is defined as 0 when s = 0. Then it follows from the taylor expansion of mk that

mk(sk,t+1)−mk(sk,t) ≤ ⟨∇mk(sk), sk,t+1 − sk,t⟩+
1

2

(
Lf
H +

min
{
ϵ1/2M1/2, γ

}
20
√
2

+Mη

)
∥sk,t+1 − sk,t∥2.

(64)

From ϑ ∈ (0, τ ] and τ = 1

Lf
H+min{ϵ1/2M1/2,γ}/20√2+Mη

, it follows that the R.H.S. of (64) is non-positive,

which together with mk(sk,0) = 0 implies mk(sk) ≤ 0. Thus (16a) holds. From the termination condition
of the truncated gradient descent algorithm, it follows that (16b) holds. Then we use the contradiction to
show the truncated gradient descent algorithm stops in at most T steps. First we assume that the iteration
number of this algorithm is at least T + 1. From (64), it indicates that for 0 ≤ t ≤ T − 1,

∥∇mk(sk,t)∥2

2(Lf
H +min

{
ϵ1/2M1/2, γ

}
/20
√
2 +Mη)

≤ mk(sk,t)−mk(sk,t+1).

Summing up above inequality over t = 0, . . . , T − 1 leads to∑T−1
t=0 ∥∇mk(sk,t)∥2

2(Lf
H +min

{
ϵ1/2M1/2, γ

}
/20
√
2 +Mη)

≤ mk(0)−mk(sk,t) = −mk(sk,t)

≤ (Lf + ϵ/4)η +
1

2
(Lf

H +min
{
ϵ1/2M1/2, γ

}
/20
√
2)η2.

Dividing both sides of the above inequality by T and using the definition of T , we obtain

1

T

T−1∑
t=0

∥∇mk(sk,t)∥2 ≤M2ω4/3.

This implies that there must exist some t ∈ [0, T − 1] such that ∥∇mk(sk,t)∥2 ≤ M2ω4/3, which gives a
contradiction. Hence, the truncated gradient descent algorithm stops in at most T steps. □
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D Supported lemmas

Lemma 15 (Vector Azuma-Hoeffding inequality) Let {vk} be a vector-valued martingale difference,
where E[vk|F(v1, ..., vk−1)] = 0 and ∥vk∥ ≤ ak. Then with probability at least 1− δ it holds that∥∥∥∥∑

k

vk

∥∥∥∥ ≤ 3

√
log(1/δ)

∑
k

a2k.

Lemma 16 (Matrix Azuma inequality) Let {Xk} be a finite adapted sequence of self-adjoint matrices
with dimension n, and {Ak} be a fixed sequence of self-adjoint matrices that satisfy E[Xk|F(Xk−1, ..., X1)] =
0 and X2

k ⪯ A2
k almost surely. Then with probability at least 1− δ it holds that∥∥∥∥∑

k

Xk

∥∥∥∥ ≤ 3

√
log(n/δ)

∑
k

∥Ak∥2.

Lemma 17 Given ∆, Lf
H ,M, ε > 0, γ ∈ (0,∆1/3(Lf

H)2/3]. The following statements hold true.

(i) If

K =

⌈
1440∆(Lf

H)2

γ3
+

16∆
√
M

5ε3/2

⌉
and p =

√
Mγ3

√
Mγ3 + 450(Lf

H)2ε3/2
,

then

K(1− p) ≥
1440∆(Lf

H)2

γ3
and Kp ≥ 16∆

√
M

5ε3/2
.

(ii) If

K =

⌈
3600∆(Lρ

H)2

γ3
+

4∆(M + κ8)
3/2

Mε3/2

⌉
and p =

(M + κ8)
3/2γ3

(M + κ8)3/2γ3 + 900M(Lρ
H)2ε3/2

,

then

K(1− p) ≥
3600∆(Lρ

H)2

γ3
and Kp ≥ 4∆(M + κ8)

3/2

Mε3/2
.

Proof. (i) Using the fact that ⌈x⌉ ≥ x for any x ≥ 1 and by the value of K and p we obtain

K(1− p) =

⌈
1440∆(Lf

H)2

γ3
+

16∆
√
M

5ε3/2

⌉
·

(
1−

√
Mγ3

√
Mγ3 + 450(Lf

H)2ε3/2

)

≥

(
1440∆(Lf

H)2

γ3
+

16∆
√
M

5ε3/2

)
·

450(Lf
H)2ε3/2

√
Mγ3 + 450(Lf

H)2ε3/2
=

1440∆(Lf
H)2

γ3
.

The bound on K · p follows similarly. (ii) can also be proved in analogy to (i). □

Lemma 18 Let c : Rn → Rm be twice continuously differentiable and define J(x) := ∇c(x) ∈ Rn×m and
A(x) := J(x)⊤J(x) ∈ Rm×m. Assume that for all x,

(i) ∥J(x)∥ ≤ Lc;

(ii) each component Hessian satisfies ∥∇2cj(x)∥ ≤ Lc
g for j = 1, . . . ,m;

36



(iii) A(x) is nonsingular and ∥A(x)−1∥ ≤ ν−1.

Let v ∈ Rn be any fixed vector, and define h(x) := A(x)−1J(x)⊤v. Then h is Lipschitz differentiable and
its Jacobian satisfies ∥∇h(x)∥ ≤

√
mLc

g

(
2ν−2L2

c + ν−1
)
∥v∥ for any x.

Proof. We use directional derivatives. For any s ∈ Rn, the directional derivative of h at x along s is

Dh(x)[s] = D
(
A(x)−1J(x)⊤v

)
[s] = DP (x)[s] v,

where we have set P (x) := A(x)−1J(x)⊤ ∈ Rm×n.
By the product rule and the matrix inverse derivative identityD(A−1)(x)[s] = −A(x)−1

(
DA(x)[s]

)
A(x)−1,

we obtain

DP (x)[s] = D(A−1)(x)[s] J(x)⊤ +A(x)−1D(J(x)⊤)[s]

= −A(x)−1
(
DA(x)[s]

)
A(x)−1J(x)⊤ +A(x)−1D(J(x)⊤)[s].

Since A(x) = J(x)⊤J(x), another application of the product rule gives DA(x)[s] = D(J(x)⊤)[s] J(x) +
J(x)⊤DJ(x)[s]. Substituting into the expression for DP (x)[s] yields

DP (x)[s] = −A(x)−1
(
D(J(x)⊤)[s] J(x) + J(x)⊤DJ(x)[s]

)
A(x)−1J(x)⊤ +A(x)−1D(J(x)⊤)[s].

We now bound the operator norm of DP (x)[s]. By assumption, ∥A(x)−1∥ ≤ ν−1 and ∥J(x)∥ ≤
Lc. Furthermore, the componentwise Hessian bounds ∥∇2cj(x)∥ ≤ Lc

g imply that for any s ∈ Rn,
∥
(
DJ(x)[s]

)
(:,j)
∥ ≤ Lc

g∥s∥. Let w ∈ Rm be arbitrary. Then we have DJ(x)[s]w =
∑m

j=1wj

(
DJ(x)[s]

)
(:,j)

,

and hence

∥DJ(x)[s]w∥ ≤
m∑
j=1

|wj |
∥∥(DJ(x)[s]

)
(:,j)

∥∥ ≤ m∑
j=1

|wj |Lc
g ∥s∥ = Lc

g ∥s∥ ∥w∥1 ≤ Lc
g ∥s∥

√
m ∥w∥,

where we used ∥w∥1 ≤
√
m ∥w∥2 in the last inequality. Taking the supremum over all w with ∥w∥ = 1

yields
∥DJ(x)[s]∥ = sup

∥w∥=1
∥DJ(x)[s]w∥ ≤

√
mLc

g ∥s∥.

Moreover, since the spectral norm is invariant under transposition, we obtain

∥D(J(x)⊤)[s]∥ = ∥DJ(x)[s]⊤∥ = ∥DJ(x)[s]∥ ≤
√
mLc

g ∥s∥,

which indicates
∥D(J(x)⊤)[s] J(x)∥ ≤ ∥D(J(x)⊤)[s]∥ ∥J(x)∥ ≤

√
mLc

g∥s∥Lc,

and similarly
∥J(x)⊤DJ(x)[s]∥ ≤ ∥J(x)⊤∥ ∥DJ(x)[s]∥ ≤

√
mLc L

c
g∥s∥.

Therefore, we derive
∥D(J(x)⊤)[s] J(x) + J(x)⊤DJ(x)[s]∥ ≤ 2

√
mLcL

c
g∥s∥.

Using the submultiplicativity of the operator norm yields∥∥−A(x)−1
(
D(J(x)⊤)[s] J(x) + J(x)⊤DJ(x)[s]

)
A(x)−1J(x)⊤

∥∥
≤ ∥A(x)−1∥2 ∥D(J(x)⊤)[s] J(x) + J(x)⊤DJ(x)[s]∥ ∥J(x)⊤∥ ≤ 2

√
mν−2L2

cL
c
g∥s∥.

Combining the two estimates gives ∥DP (x)[s]∥ ≤
√
mLc

g

(
2ν−2L2

c + ν−1
)
∥s∥. Finally, since Dh(x)[s] =

DP (x)[s] v , we obtain ∥Dh(x)[s]∥ ≤ ∥DP (x)[s]∥ ∥v∥. Taking the supremum over all s with ∥s∥ = 1 yields

∥∇h(x)∥ = sup
∥s∥=1

∥Dh(x)[s]∥ ≤
√
mLc

g

(
2ν−2L2

c + ν−1
)
∥v∥.

The proof is completed. □
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