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Voronoi Conditional Gradient Method for
Constrained Nonconvex Optimization

Abbas Khademi

Abstract The Conditional Gradient method offers a computationally effi-
cient, projection-free framework for constrained problems; however, in noncon-
vex settings it may converge to stationary points of low quality. We propose
the Voronoi Conditional Gradient (VCG) method, a geometric heuristic that
systematically explores the feasible region by constructing adaptive Voronoi
partitions from previously discovered stationary points. VCG incrementally
refines a Voronoi decomposition of the feasible region and initiates new condi-
tional gradient runs from interior points of underexplored cells, thereby pro-
moting systematic coverage of the search space. We evaluate VCG on two
classes of NP-hard problems and demonstrate that it consistently finds high-
quality candidate solutions.
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1 Introduction

Constrained nonconvex optimization problems arise across a wide range of
disciplines, including machine learning, signal processing, engineering design,
and operations research [14,29]. A canonical formulation is:

min
x∈X

f(x), (P)

where f : Rn → R is a continuously differentiable (possibly nonconvex) func-
tion and X ⊂ Rn is a compact convex set.

A. Khademi
School of Mathematics and Computer Science, Iran University of Science and Technology,
Tehran, Iran.
E-mail: abbaskhademi92@gmail.com
https://orcid.org/0000-0002-8276-6821

mailto:abbaskhademi92@gmail.com


2 A. Khademi

The Conditional Gradient (CG) method—also known as the Frank–Wolfe
algorithm—is a projection-free optimization framework [8,15,25] that is of-
ten the method of choice for such problems, especially when projections onto
X are computationally prohibitive. Its primary appeal lies in requiring only
two ingredients per iteration: access to the gradient ∇f(x) and a linear mini-
mization oracle over X , i.e., the ability to solve mins∈X ⟨∇f(x), s⟩. For many
structured constraint sets (e.g., simplices, nuclear-norm balls, or polytopes),
this linear subproblem admits highly efficient solutions [7,11,17].

When f is convex, numerous Conditional Gradient (CG) variants efficiently
solve problem (P) in terms of the functional value gap [9]. However, for non-
convex f , the method’s theoretical guarantees are limited to convergence to
first-order stationary points [21,24], offering no assurance regarding solution
quality. This is a critical limitation: such stationary points may be of poor
quality and far from meaningful local minimizers. Although recent CG variants
address structured nonconvexity [28], extend to nonsmooth objectives [12], or
handle quasar-convex settings [22,27], they all rely on specific structural as-
sumptions about the objective or constraints. In contrast, we propose a funda-
mentally different paradigm—based on geometric partitioning—that requires
no such assumptions.

While restart-based or perturbation strategies have been explored to es-
cape poor stationary points [19,32], they often lack principled guidance for
selecting restart locations. In contrast, space-partitioning methods from global
optimization [18,26] offer systematic exploration but typically require function
evaluations or operations—such as projections or domain-specific sampling—
that fall outside the projection-free oracle model of CG.

In certain special cases (e.g., when f is concave), the authors of [3] propose
a tailored initialization strategy that yields high-quality solutions with CG.
However, this approach relies on strong structural assumptions and does not
extend to general nonconvex problems.

We bridge this gap by integrating adaptive Voronoi partitioning directly
into the projection-free CG paradigm, enabling systematic exploration without
requiring problem-specific structure. In this paper, we introduce a geometry-
driven heuristic that dynamically partitions the search space to escape poor
local minima. The method operates iteratively: each time a stationary point
is found via a standard Conditional Gradient run, it is added to a growing set
of known solutions. This set then serves as the set of generating points for a
Voronoi decomposition of the feasible region X .

Within the intersection of each Voronoi cell with X , we select a new initial-
ization point by solving a simple auxiliary optimization problem that maxi-
mizes its distance to the cell’s boundaries. These interior points form a diverse
and well-distributed set of starting locations for subsequent CG runs, effec-
tively steering the search toward underexplored regions of the feasible set.

The main contributions of this work are threefold. First, we propose a novel
algorithm that integrates the classical CG method with adaptive Voronoi par-
titioning to enable systematic exploration in nonconvex optimization. Second,
the method remains entirely projection-free, preserving the computational ef-
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ficiency of CG. Third, we provide numerical evidence on indefinite quadratic
programming and sigmoid regression problems, demonstrating that the pro-
posed approach consistently yields higher-quality solutions.

The remainder of this paper is organized as follows. Section 2 briefly reviews
the CG algorithm and Voronoi partitioning preliminaries. Section 3 details
the proposed VCG framework. Section 4 presents numerical experiments and
results. Finally, Section 5 summarizes our findings and concludes the paper.

2 Preliminaries

This section outlines the problem setting and introduces the core concepts our
method builds upon: the Conditional Gradient method and Voronoi partition-
ing.

2.1 Optimization Problem

We address the nonconvex optimization problem:

min
x∈X

f(x) (P)

where f : Rn → R is a continuously differentiable and potentially nonconvex
function, and X ⊂ Rn is a compact convex set. We assume the objective
function f is L-smooth, meaning its gradient ∇f is Lipschitz continuous:

∥∇f(x)−∇f(y)∥∗ ≤ L∥x− y∥ ∀x, y ∈ X , (1)

where ∥ · ∥∗ is the dual norm of ∥ · ∥.

2.2 Conditional Gradient Method

The Conditional Gradient (CG) method is an iterative, projection-free method
for constrained optimization [15,17]. At iteration k, given the current point
xk ∈ X , it solves the Linear Minimization Oracle (LMO)

sk ∈ argmin
s∈X

⟨∇f(xk), s⟩, (2)

and updates xk+1 = (1− tk)x
k + tks

k, where the step size tk ∈ [0, 1]. For the
nonconvex problem (P), CG converges to a stationary point [8,22,23,31]. The
CG method with a given step-size rule is summarized in Algorithm 1.

The choice of the step size tk ∈ [0, 1] critically affects CG convergence and
practical performance. Adaptive step-size approaches, such as those introduced
in [22,31], dynamically tune tk according to the problem’s local geometry,
significantly improving convergence speed in practice; moreover, they do not
require knowledge of the exact gradient Lipschitz constant L.
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Algorithm 1 Conditional Gradient Method

1: Input: Initial point x0 ∈ X , tolerance ε1 > 0, max iterations Kmax

2: for k = 0 to Kmax − 1 do
3: sk ← argmins∈X ⟨∇f(xk), s⟩
4: gk ← ⟨∇f(xk), xk − sk⟩
5: if gk < ε1 then
6: return xk

7: end if
8: Select step size tk ∈ [0, 1]
9: xk+1 ← (1− tk)x

k + tks
k

10: end for
11: return xKmax

2.3 Voronoi Partitioning

To prevent our algorithm from repeatedly converging to the same station-
ary point, we introduce a systematic adaptive exploration strategy based on
Voronoi partitioning. The concept of partitioning a space based on proximity
to a set of points, known as a Voronoi diagram or tessellation, is a fundamental
structure in computational geometry [2,4,30].

To explore diverse regions of X , we partition the feasible set into Voronoi
cells based on previously found stationary points A = {p1, · · · , pK} ⊂ X . The
Voronoi cell Vi for point p

i is

Vi =
{
x ∈ X : ∥x− pi∥2 ≤ ∥x− pj∥2 ∀j ̸= i

}
, (3)

which is convex as it is the intersection of X with half-spaces defined by

(pj − pi)⊤x ≤ 1

2
(pj − pi)⊤(pj + pi).

A visual example of a Voronoi diagram with points is shown in Figure 1.
This figure illustrates a Voronoi partition of a two-dimensional box X induced
by a finite set of points (marked as dots). Each Voronoi cell Vi corresponds
to the region of space that is closer to its associated generator pi than to any
other.

Fig. 1 Voronoi partitioning of a box set X with generator points pi. Each cell Vi contains
points closer to pi than to any other pj .
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For each cell Vi, defined by the affine constraints

gj(x) := (pj − pi)⊤x− 1

2
(pj − pi)⊤(pj + pi) ≤ 0, j ̸= i, (4)

We compute an interior point by solving the following auxiliary problem

min
x∈X ,τ∈R

τ

s.t. gj(x) ≤ τ, ∀j ̸= i.
(5)

Proposition 1 Assume X ⊂ Rn is a full-dimensional compact convex set.
Let (x∗, τ∗) be an optimal solution to problem (5). If τ∗ < 0, then x∗ lies in
the interior of Vi relative to its affine hull.

Proof Since X is compact and convex and the constraints in (5) are affine,
the feasible set is compact and convex, guaranteeing existence of an optimal
solution. If τ∗ < 0, then gj(x

∗) ≤ τ∗ < 0 for all j ̸= i, meaning x∗ strictly
satisfies all inequalities defining Vi. By full-dimensional assumption, X has
non-empty interior, and strict inequality constraints are preserved under small
perturbations. Therefore, there exists δ > 0 such that the ball B(x∗, δ)∩X ⊂
Vi, implying x∗ is in the relative interior of Vi. ⊓⊔

3 Voronoi Conditional Gradient Method

The Voronoi Conditional Gradient (VCG) method iteratively combines local
search with global exploration. Starting from an initial point, it applies the
CG method to find a stationary point. The feasible set X is then partitioned
into Voronoi cells based on all discovered stationary points. For each cell, an
interior point is computed to initialize a new CG run over X , ensuring diverse
exploration. The process repeats until no new distinct stationary points are
found. Algorithm 2 formalizes the procedure.

We include x0 in the initial center set to discourage re-initialization near the
starting point, which may lie in a poorly explored region. However, in practice,
this has minimal impact once multiple stationary points are discovered.

VCG leverages CG’s convergence to stationary points [22,24,31]. Voronoi-
based initialization ensures new runs start in regions distant from known solu-
tions, empirically covering more basins than random multi-starts, as shown in
Section 4. While global optimality is not guaranteed, the geometric diversity
enhances solution quality.

We now establish some properties of the VCG algorithm.

Proposition 2 Let A(ℓ) denote the set of centers at the beginning of level ℓ.
For any x ∈ X , define the coverage radius as:

r(ℓ)(x) := min
p∈A(ℓ)

∥x− p∥2. (6)

Then either A(ℓ+1) = A(ℓ) (termination), or there exists a point x ∈ X such
that r(ℓ+1)(x) < r(ℓ)(x).
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Algorithm 2 Voronoi Conditional Gradient (VCG) Method
1: Input: Objective f , feasible set X , max levels T , tolerance ε
2: Initialize: A← ∅, S ← ∅, pick initial p0 ∈ X ▷ Initial feasible point
3: Run CG from p0 to obtain stationary point p1

4: S ← S ∪ {(p1, f(p1))}, A← A ∪ {p0, p1}
5: for ℓ = 1 to T do
6: Construct Voronoi cells {Vi}

|A|
i=1 using centers A via (3)

7: Anew ← ∅ ▷ Collect new stationary points
8: for each Voronoi cell Vi, i = 1, . . . , |A| do
9: Solve slack problem (5) to get (x∗, τ∗)
10: if τ∗ < 0 then ▷ Cell has non-empty interior
11: Run CG from x∗ to obtain xstat

12: S ← S ∪
{
(xstat, f(xstat))

}
13: Anew ← Anew ∪ {xstat}
14: end if
15: end for
16: if Anew = ∅ then
17: break ▷ No new distinct points found
18: end if
19: A← A ∪

{
x ∈ Anew : minp∈A ∥x− p∥2 > ε

}
▷ Add ε-distinct points

20: end for
21: Output: x∗ = argmin{v : (x, v) ∈ S} ▷ Best solution found

Proof IfA(ℓ+1) = A(ℓ), the algorithm terminates at line 16. Otherwise,A(ℓ+1) =
A(ℓ)∪Anew with Anew ̸= ∅. Let pnew ∈ Anew. By the distinctness criterion (line
15), minp∈A(ℓ) ∥pnew − p∥2 > ε. Therefore, r(ℓ+1)(pnew) = 0 < ε < r(ℓ)(pnew).

⊓⊔

Corollary 1 The cardinality of the center set is monotonically non-decreasing:
|A(ℓ+1)| ≥ |A(ℓ)| with strict inequality unless termination occurs.

Under the L-smoothness assumption, if CG uses appropriate step sizes
(e.g., backtracking line search or adaptive rules), then either the algorithm
terminates at a stationary point or limk→∞ gk = 0. Any accumulation point
x∗ satisfies g(x∗) = 0, i.e., it is a first-order stationary point [22,23]. Thus, the
output of VCG is a stationary point.

4 Numerical Experiments

This section evaluates the empirical performance of the proposed VCG method
on two nonconvex optimization problems, comparing its performance with the
standard CG method and a multi-start CG baseline. All algorithms were im-
plemented in the Julia programming language [5] and executed on Google
Colaboratory [6]. For both the CG and VCG methods, we employed an adap-
tive step-size strategy with the parameters ε1 = 10−6, ε = 10−3, Kmax = 1000,
and T = 8. The auxiliary problem (5) within the VCG algorithm was solved
using the HiGHS solver [16] via the JuMP modeling language [13].
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4.1 Standard Quadratic Programming

We consider the nonconvex standard quadratic program:

min
x∈∆n

x⊤Qx, (StQP)

where ∆n = {x ∈ Rn :
∑n

i=1 xi = 1, x ≥ 0} is the standard n-dimensional
simplex, and Q ∈ Rn×n is an indefinite symmetric matrix. Problem (StQP)
is known to be NP-hard [1]. The feasible set is compact and convex, and the
linear minimization oracle required by CG is highly efficient, simply finding
the index of the minimum component of the gradient vector.

For our numerical evaluation, we use five instances of dimension n = 900
from the dataset in [20]. We compare the performance of VCG against two
baseline approaches: the standard CG method, initialized at a single random
feasible point, and a multi-start CG variant that performs repeated CG runs
from independently sampled initial points. To ensure a fair comparison, the
total runtime of multi-start CG is capped at the full execution time of VCG
across all restarts.

The results, summarized in Table 1, report objective values, computa-
tional runtimes, and the number of points evaluated, alongside the best-known
bounds from [21], which were obtained using advanced local and global opti-
mization techniques that contain off-the-shelf solvers and state-of-the-art ap-
proaches. The best objective value for each instance is highlighted in bold.
In this table, for each method, we report the final objective value. Values in
parentheses denote (total runtime in seconds, number of local optimizations).
For Standard CG, this is a single run. For Multi-start CG, this is the number
of independent random starts. For VCG, this is the total count of CG pro-
cedures launched, including the initial run and subsequent runs within each
explored Voronoi cell.

VCG achieves the best objective value across all instances, consistently
outperforming both Standard CG and the multi-start CG baseline in terms
of final objective value. Moreover, VCG matches or improves the best upper
bounds reported in [21] on these instances, providing strong empirical evi-
dence that the proposed Voronoi-based exploration effectively escapes poor
stationary points and identifies higher-quality solutions.

Table 1 Performance Comparison on Standard Quadratic Programming Instances.

Instance VCG Multi-start CG Standard CG Best UB [21]

900(0.75)-1 -7.4088 (591.0145s, 346) -7.3955 (591.2040s, 655) -6.9918 (0.6160s, 1) -7.4088
900(0.75)-2 -7.3517 (700.2640s, 417) -7.3390 (700.5695s, 770) -7.0135 (0.6256s, 1) -7.3517
900(0.75)-3 -7.3603 (779.7218s, 432) -7.2238 (780.3137s, 871) -6.7512 (0.6535s, 1) -7.2946
900(0.75)-4 -7.3870 (637.3222s, 392) -7.3743 (638.0418s, 727) -7.3444 (0.5406s, 1) -7.3870
900(0.75)-5 -7.3925 (723.0110s, 425) -7.2688 (723.1018s, 791) -6.8711 (0.5273s, 1) -7.3325
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4.2 Least Squares Sigmoid Regression

Next, we address the nonconvex machine learning problem of least-squares
sigmoid regression, formulated as:

min
x∈Rn

1

m

m∑
i=1

(
yi −

1

1 + exp (−x⊤ai)

)2

s.t. ∥x∥1 ≤ s,

(7)

where {(ai, yi)}mi=1 is a given dataset. Despite the objective’s nonconvexity,
the feasible set is convex and compact. This structure is well-suited for CG
methods, as the required LMO admits an efficient, closed-form solution.

We evaluate performance on nine datasets from LIBSVM [10] (a1a–a9a).
All instances share a feature dimension of n = 123, but the sample size m
varies from 1,605 to 32,561. We set the regularization parameter s = 50 for all
experiments.

As shown in Table 2, VCG consistently achieves the lowest objective value
across all datasets. Notably, VCG reaches these superior solutions while per-
forming significantly fewer local optimizations than the multi-start baseline,
demonstrating superior exploration efficiency. These results underscore VCG’s
ability to effectively navigate complex, nonconvex landscapes, particularly in
high-data regimes where optimization stability is critical.

Table 2 Performance Comparison on Sigmoid Regression Datasets.

Instance VCG Multi-start CG Standard CG

a1a (n = 123, m = 1, 605) 0.9302 (86.0436s, 134) 0.9330 (86.5214s, 244) 0.9503 (0.2348s, 1)
a2a (n = 123, m = 2, 265) 0.9424 (95.8796s, 114) 0.9440 (95.8910s, 196) 0.9562 (0.3798s, 1)
a3a (n = 123, m = 3, 185) 0.9429 (139.5299s, 116) 0.9433 (139.6777s, 214) 0.9567 (0.4965s, 1)
a4a (n = 123, m = 4, 781) 0.9405 (226.3476s, 132) 0.9428 (226.8613s, 222) 0.9558 (0.7924s, 1)
a5a (n = 123, m = 6, 414) 0.9436 (196.0998s, 105) 0.9454 (196.2849s, 161) 0.9587 (1.0944s, 1)
a6a (n = 123, m = 11, 220) 0.9483 (432.1264s, 114) 0.9496 (433.6842s, 204) 0.9622 (1.5427s, 1)
a7a (n = 123, m = 16, 100) 0.9476 (546.1385s, 123) 0.9482 (549.9109s, 183) 0.9622 (2.2073s, 1)
a8a (n = 123, m = 22, 696) 0.9481 (904.5734s, 122) 0.9497 (905.1183s, 215) 0.9631 (3.1900s, 1)
a9a (n = 123, m = 32, 561) 0.7275 (1039.1539s, 122) 0.7283 (1043.7113s, 207) 0.7376 (4.5644s, 1)

5 Conclusion

We introduce the Voronoi Conditional Gradient (VCG) algorithm, a novel
enhancement of the Conditional Gradient method tailored for nonconvex op-
timization. By integrating Voronoi partitioning, VCG systematically explores
the feasible set, mitigating the risk of converging to suboptimal local minima
inherent in standard Conditional Gradient approaches. Numerical experiments
on standard quadratic programming and sigmoid regression demonstrate that
VCG consistently achieves superior solution quality. These results highlight
the efficacy of geometry-driven exploration in enhancing first-order methods
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for nonconvex optimization, offering a scalable and robust framework for ap-
plications in machine learning and operations research.

Data Availability

The source code for all experiments is available at this [link].
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