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Abstract

We present an exact formulation of the symmetric Traveling Salesman Problem (TSP) that

replaces the classical edge-selection

view with a surface-building approach. Instead of selecting

edges to form a cycle, the model selects a set of connected triangles where the boundary of
the resulting surface forms the tour. This method yields a mixed-integer linear programming
(MILP) formulation where a tree constraint enforces global connectivity, while local connectivity
at each vertex is guaranteed via Euler characteristic constraints, replacing the need for subtour
elimination. The formulation is exact when applied to the complete set of all triangles, despite

being computationally intractable for all but the smallest instances.

In practice, it provides

a compact and effective heuristic when restricted to a sparse candidate set such as Delaunay

triangulation.

Keywords: traveling salesman problem, mixed-integer linear programming, tree connectivity
constraints, computational topology, Euler characteristic
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1. Introduction

TSP is conventionally modeled on a graph G = (V, E): choose a minimum-weight Hamilto-
nian cycle by selecting edges £’ C E (Fig. 1). Compact edge-based models enforce local degree
conditions but must also encode global connectivity, often via strong but exponential subtour
elimination constraints [1], or via weaker compact alternatives such as MTZ [2] or flow-based con-
straints [3]. We propose a shift in perspective from graph-theoretic cycle selection to a topological
construction. Instead of building the tour as a 1-dimensional sequence of edges, we construct a
2-dimensional surface whose boundary is the Hamiltonian cycle. Specifically, given a candidate
triangle set T C (g), we select a connected subset of triangles to minimize the total length of its
induced boundary edges. When 7T is the universal set IC 4y := (g) (Fig. 2a), the formulation is
exact but computationally feasible only for very small N. Restricting T to a sparse triangulation
(e.g., Delaunay - Fig. 2¢) yields a highly efficient candidate-set heuristic, though it may render
the model infeasible if 7 contains no Hamiltonian tour [4].

(b) Dense Solution (non-planar; overlap is a
(a) Dense Input (Kau) projection artifact)

(c) Delaunay Input (Tpeiqunay) (d) Delaunay Solution (Planar)

Figure 2: Nested hexagons (N = 13): with all triangles the optimum is an abstract non-planar surface; Delaunay
input forces a planar one.

1.1. Scope

Our goal is to provide a compact, exact alternative formulation that is structurally different
from cycle-based models. We do not aim to compete with state-of-the-art branch-and-cut solvers
for pure TSP, but rather to demonstrate that enforcing surface admissibility can yield strong
relaxations and useful candidate-set models.

1.2. Related Work

Classical exact methods rely on branch-and-cut with subtour elimination [1, 5]. Tree-structured
connectivity constraints are well-studied in flow-based routing formulations [6] and in Steiner vari-
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Figure 3: Bipartite incidence graph: triangles x¢ (circles) and edges ye (squares); dashed lines are adjacencies.
A feasible solution selects all but one candidate triangle (filled orange), inducing the highlighted boundary (red)
around the center; translucent green edges indicate incidence edges chosen in the resulting tree.

ants [7]. Geometric approximation schemes for Euclidean TSP exploit recursive planar subdivi-
sions [8, 9]. Our formulation aligns with boundary-minimization viewpoints from computational
topology [10] and geometry [11, 12], planar duality principles [13], and topological optimization of
cycles within fixed surfaces [14], but differs in that we optimize the surface itself via a simplicial
incidence structure. This yields an incidence-graph formulation whose objective has a boundary-
cancellation structure related in spirit to prize-collecting terms, except that the “prizes” arise
from simplicial incidences, and is related in spirit to geometric covering variants such as TSP
with Neighborhoods [15].

1.8. Contribution
Our contribution is threefold:
(i) We present an equivalence between min-weight Hamiltonian cycles in the complete complex
Kau (Fig. 2a) and max-weight dual trees in the bipartite incidence graph (Fig. 3);
(ii) We give a MILP that replaces subtour elimination by a tree constraint plus an Euler
characteristic filter (Sec. 3);
(iii) We demonstrate that the formulation is fully input-decoupled: it treats the candidate tri-
angle set 7 as a black-box constraint on the search space, working unchanged on the

universal set K4y 1= (‘3/) as well as on sparse geometric triangulations (e.g., Delaunay or
Greedy) [4, 16, 17].

Note: For geometric intuition, readers may first consider the planar case described in Ap-
pendix D (Fig. D.7) before diving into the general case.

2. Topological Dual via the Incidence Graph

This section introduces the combinatorial structure underlying the surface-based formulation.

2.1. Incidence Graph

Given a TSP instance on G = (V| E), we construct the bipartite triangle—edge incidence graph
B = (UUW,A) (Fig. 3), defined as follows:

e Triangle nodes (U): a candidate triangle set U := T C (‘g)
e Edge nodes (WW): the set of primal edges W := E.
e Incidences (A): an arc (t,e) € A exists if triangle ¢t € U contains edge e € W.

A feasible solution of our formulation corresponds to selecting a connected subset of triangles
together with the induced active edge set, represented as an active subgraph B’ C B.



2.2. Net Weight and Boundary Cancellation

To model boundary minimization, we associate a cost with each primal edge node e € W and
a profit with each incidence (¢, e) € A. For an active subgraph B’, define the net weight

WE) = 3 wlte) - Y o) &)

(t,e)e A(B’) ecV (B )NW

With the choice ¢(e) = 2L, and p(t,e) = L., internal edges (shared by two selected triangles)
cancel out, while boundary edges contribute exactly their length. As a result, optimizing W (B’)
is equivalent to minimizing the total length of the induced boundary tour. [23].

3. Mathematical Formulation

We formulate the problem as finding a subgraph in the bipartite incidence graph B =
(U U W, A) that corresponds to a valid surface. Let z,ye,2te € {0,1} be decision variables
representing the selection of triangles, edges, and their incidences, respectively. The objective is
to minimize the length of the boundary 9K of the resulting surface complex K:

Min Z = Z 2Lcye — Z Lezie (2)

eeW (t,e)e A

Eq. (2) is exactly Z = —W(B’) for the induced active subgraph B’ (Eq. 1), so minimizing Z
corresponds to maximizing the net weight. The objective exhibits boundary cancellation and
equals the exact length of the induced boundary tour. [23].

We enforce topological validity via four structural constraints (see Appendix C for the explicit
MILP constraints):

1. Global Tree Connectivity: B’ must form a single connected tree (cf. gray dashed lines
connecting green nodes in Fig. 1). This ensures K is simply connected (topologically a
disk).

2. Cardinality: To guarantee K is a triangulation of a topological disk with IV vertices, we
enforce > x; = N — 2 (triangles) and > y. = 2N — 3 (edges).

3. Manifold Regularity (Node Degrees): Every primal edge must be incident to at most
two triangles (see Fig. 4A). In the dual, this restricts the degree of edge nodes y. within
the incidence graph.

4. Local Connectivity (Euler Filter): To prevent vertex singularities (e.g., “bowties,”
Fig. 4B), the neighborhood of each city v must be connected (cf. the center vertex in
Fig. 3, where a boundary path arises only by omitting an incident triangle). We enforce
this using the local Euler characteristic of the incidence subgraph H, C B’ [10]:

X(H,) = [V(H,)| - [B(H,)| =1 Yve V. (3)

Here H, denotes the active subgraph of B’ induced by the triangles and edges incident to
v (see Appendix C for the explicit definition). Under the global tree constraint, enforcing
X(H,) = 1 leads to a simple path, ruling out disconnected vertex links and local “bowtie”
singularities (Fig. 4B) [23].

4. Theoretical Analysis

All formal correctness proofs (boundary cancellation, disk admissibility, Hamiltonicity, and
the resulting exactness of the MILP on the full complex) are given in the companion note [23].
Here we keep only the high-level takeaway: the objective measures the induced boundary length,
and the tree+manifold+Euler constraints ensure the selected 2-complex is a disk whose boundary
is a single Hamiltonian cycle.



A. Non-manifold edge

B. “Bowtie” singularity

Figure 4: Forbidden anomalies: (A) Edge incident to > 2 triangles; (B) A "bowtie" vertex violating the Euler
Filter.

5. Computational Validation and Results

We validated the correctness of the formulation on simple topological cases before measuring
performance.

5.1. Visual Verification (Topology)

To provide a visual verification, we apply the model to an instance consisting of two nested
hexagons with a central node (N = 13). Fig. 2 compares the solver’s behavior under two different
candidate triangle sets: the universal set K4y and the Delaunay triangulation Tpeiaunay- In both
cases, the formulation successfully extracts the optimal surface within the chosen input complex.

5.2. Validation on Non-Metric Spaces

To test the topological generality of our formulation, we generated random symmetric non-
metric instances of small size (including N = 10) where edge weights do not satisfy the triangle
inequality. The input was IC4;;. The solver successfully extracted valid dual trees and primal

tours; Fig. 5 shows a representative N = 10 example. We verified optimality against a standard
TSP formulation (MTZ).

Figure 5: Random non-metric instance (N = 10, visualized by MDS). The formulation relies only on topological
connectivity, allowing it to solve instances where the triangle inequality is violated.



5.3. Comparison

We compare our surface formulation against the standard Lifted-MTZ baseline on identical
sparse inputs (see Appendix A for detailed setup and full results). The surface-based model
typically reduces branch-and-bound (B&B) effort and can solve larger instances more reliably
within the class of compact, static MILPs considered. Among surface-based variants, enforcing
the global tree via single-commodity flow yields the tightest relaxation and dominates the MTZ-
style tree enforcement as N increases. On TSPLIB Euclidean instances where both baselines are
available (berl1in52, st70, ch130) under Delaunay sparsification, the Surface-Based-Flow model
solves at the root (1 B&B node), while the Lifted-MTZ baseline requires 2,936-16,058 nodes
(Appendix A).

5.4. When does the formulation work well?

The formulation is exact when the candidate triangle set 7 is the complete complex (‘;) In
practice, performance heavily relies on restricting 7 to a sparse candidate complex.

Empirically, the approach works best when 7 is a planar triangulation that contains at
least one Hamiltonian tour. Delaunay triangulations often provide a strong default in Euclidean
instances, while other geometric candidates (e.g., Greedy triangulations) can improve solution
quality depending on the problem type.

5.5. Degenerate Inputs

We further tested “hard-to-solve” instances [18] and degenerate inputs [19] (Appendix B). Fig-
ure B.6 visualizes representative solutions for these instances. On Tnm199, our formulation effec-
tively exploits the richer Greedy triangulation to achieve a 1.85% gap (vs. 6.17% for Delaunay),
surpassing the 5.69% gap of the Christofides heuristic [20]. This confirms that the topological
approach can identify superior tours when provided with higher-quality geometric candidates.
On p100 parallel-line degeneracies, triangulation-based methods degrade badly (14%-119% gap
vs. 2.52%), exposing a limitation of sparse candidate sets on near-degenerate geometry.

6. Conclusion

We have presented a surface-based formulation for TSP that shifts the decision space from
edges to triangles. This changes the optimization object from a primal cycle to a dual surface:
instead of directly enforcing Hamiltonicity on G, we enforce disk-admissibility of a 2-complex
whose boundary is the tour. Our experiments indicate that this topological shift can yield
improved B&B behavior relative to compact, static edge-based baselines on sparse geometric
inputs, particularly when enforcing the global tree constraint via flow. While exact convergence
becomes computationally challenging for larger instances in our current setup, the results suggest
that the surface-based model provides a useful foundation for integrating additional geometric
or topological constraints that are cumbersome in primal edge formulations, without changing
the core model.
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A. Detailed Computational Results (Standard Instances)

A.1. Detailed Setup and Performance Analysis

To evaluate both the topological properties and the solver-specific performance, we bench-
marked three formulations:

1. Conventional: Standard Lifted-MTZ formulation [21] restricted to edges in the Delaunay
triangulation.

2. Surface-Based (MTZ): Topological formulation using MTZ-based tree constraints [2].

3. Surface-Based (Flow): Topological formulation using Single-Commodity Flow tree con-
straints [6].

Model Selection: For experiments using sparse planar inputs (Delaunay and Greedy), we
utilized the Planar Simplification model described in Appendix D. This reduces the problem
size by eliminating explicit edge node variables (y. ), as the incidence graph collapses into the stan-
dard dual graph. We utilized HIGHS v1.12 [22] on an Apple M4 Max. Unless noted, runtime
results are arithmetic means of 10 runs with distinct random seeds. Problem sizes (Vars/Cons)
are reported after solver presolve. Table A.1 summarizes the performance across all instances.
The results reveal a clear transition in which the Surface-Based-Flow formulation dominates
Surface-Based-MTZ as N grows. For small instances (N < 130), both surface-based models
typically solve at the root. For larger instances, the single-commodity flow constraint yields a
substantially tighter relaxation, reflected in dramatically smaller Branch-and-Bound trees (e.g.,
142 nodes vs. 23,205 for pcb442). This supports the interpretation that our formulation benefits
from flow-based connectivity enforcement more strongly than from MTZ-style ordering con-
straints, even though both encode the same topological admissibility conditions. We compare
against compact static models, excluding dynamic cut-generation methods (e.g., Concorde [5])
which remain state-of-the-art for pure TSP.

Table A.1: Combined Computational Results. Post-presolve MILP size and performance; values are 10-run
means (unless noted), with a timeout limit of 1-hour.

MILP Size HiGHS
Instance Model Vars Cons | Time (s) [Solved] Nodes
Berlin52  Lifted-MTZ 341 523 0.08s [10/10 1
(N =52)  Surface-Based-MTZ 553 1,107 0.02s [10/10] 1
Surface-Based-Flow 684 1,054 0.03s [10/10 1
St70 Lifted-MTZ 463 723 14.23s [10/10 2,936
(N =70)  Surface-Based-MTZ 759 1,521 4.35s [10/10] 257
Surface-Based-Flow 926 1,440 0.20s [10/10 1
Ch130 Lifted-MT7Z 879 1,362 108.6s [10/10 16,058
(N =130) Surface-Based-MTZ 1,458 2,922 0.29s [10/10] 1
Surface-Based-Flow 1,793 2,775 1.62s [10/10 1
Tnm199  Surface-Based-Flow (Del) | 2,764 4,283 0.51s [10/10 1
(N =199) Surface-Based-Flow (Grd) | 2,090 3,202 4.76s [10/10] 1.6
A280 Lifted-MTZ 1,907 2,992 DNF [0/5]  >53k
(N =280) Surface-Based-MTZ 3,188 6,379 29.0s [10/10] 490
Surface-Based-Flow 3,923 6,056 5.68s [10/10] 1
Pcb442 Surface-Based-MTZ 5,195 10,393 1656s* [7/10] 23,205
(N =442) Surface-Based-Flow 6,412 9,879 81.1s [10/10] 142
des57 Surface-Based-Flow 9,634 14,837 TLE (0.60%) >30k
(N =657)

* For pcb442 Surface-Based-MTZ, 3/10 runs exceeded the 1-hour time limit; time and nodes are averaged over
the 7 solved runs.



A.2. Impact of Input Sparsity on Lifted-MTZ

To justify the choice of Delaunay-restricted input sets for the baseline comparison, we evalu-
ated the performance of the standard Lifted-MTZ formulation on the complete graph K (Table
A.2). The results show a massive divergence in performance. On st70, HiGHS runtime in-
creases by roughly 13.5x (14.2s vs. 191.7s) when moving from the Delaunay-restricted graph to
the complete graph K. The topological formulation remains extremely fast on the sparse com-
plex (0.2s), indicating that the topological structure and the restricted geometry both contribute
materially to scalability (a further ~71x speedup).

Table A.2: Lifted-MTZ on Complete Graph vs. Delaunay. On st70 (N = 70), sparsity gives ~13.5x and
the surface-based approach gives a further ~71x.

Instance Edge Set HiGHS (s)
St70 Complete (Kn) 191.7s
Delaunay 14.2s
Topological 0.2s

B. Extended Experimental Results (Hard Instances)

To further evaluate the impact of the input complex on solution quality, we tested the for-
mulation on particularly difficult instances.

(a) Tom199 (Delaunay): Gap 6.17% (b) Tom199 (Greedy): Gap 1.85%

(c) p100 (Delaunay): Gap 14.5% (d) p100 (Greedy): Gap 119.6%

Figure B.6: Solution quality on Hard Instances. Top Row: On Tnm199, Greedy (b) finds a superior surface
to Delaunay (a). Bottom Row: On the degenerate p100, heuristics fail; Greedy (d) is especially catastrophic
compared to Delaunay (c).



B.1. Analysis of Hard Instances: Tnm199

We tested on Tnm199 (N = 199) from the "Hard-to-Solve" dataset [18]. This instance is
constructed to be practically intractable for standard exact solvers; Concorde requires 411,222
seconds (= 4.7 days) to find the global optimum. We compared our topological method using
two input triangulation strategies (Delaunay and Greedy) against the standard Christofides
algorithm. The results (Table B.3) illustrate the model’s dependence on input quality. While the
Delaunay-based solution (Fig B.6a) is structurally limited (similar to Christofides), the Surface-
Based-Flow model on the Greedy triangulation successfully extracts the superior geometry within
the complex (Fig. B.6b), narrowing the gap to 1.85%. This demonstrates that the topological
formulation scales in quality with the richness of the input complex, unlike fixed constructive
heuristics.

Table B.3: Results on Tnm199. Greedy input enables a tighter gap than Delaunay and Christofides.

Method Time (s) Objective Gap (%)
Global Opt. (Concorde) >400k 3,139,778 0.00
Christofides < 1.00 3,318,561 +5.69
Surface-Based-Flow (Delaunay) 0.51 3,333,452 +6.17
Surface-Based-Flow (Greedy) 4.76 3,197,767 +1.85

B.2. Sensitivity Analysis: Parallel Line Degeneracy

To test the limitations of sparsification under degenerate geometry, we evaluated the in-
stance p100.100000 (N = 100), which arranges points on three parallel lines [19]. We compared
the Surface-Based-Flow formulation (using Delaunay and Greedy inputs) against the standard
Christofides heuristic. The results in Table B.4 reveal a critical vulnerability in geometric spar-
sifiers. While Christofides remains robust (2.52% average gap), the triangulation-based methods
suffer substantially (Fig. B.6c-d).

Table B.4: Results on p100.100000. Parallel-line degeneracy breaks triangulation-based candidate sets.

Method Objective Gap (%)
Global Opt. (Exact) 4,160,200 0.00
Christofides 4,265,038 +2.52

Surface-Based-Flow (Delaunay) 4,762,994 +14.49
Surface-Based-Flow (Greedy) 9,136,966  +119.63

C. Explicit MILP Formulation

Here we provide the complete Mixed-Integer Linear Program corresponding to the high-level
formulation in Section 3.

C.1. Logical Linking and Closure
Active simplices must be connected via the triangle-edge incidence relation .A.
Zte S Tty  Zte < Ye V(tv 6) €A (Cl)
Define the induced degrees
degy, (t) = Z 2te VEEU, degyy, (e) := Z zte Ve e W.
e:(t,e)eA t:(t,e)eA
Degree/Closure Constraint: If a triangle is active, all three of its edges must be active:

degy (t) = 3z; VteU. (C.2)



C.2. Topological Regularity
These global counts follow from the Euler characteristic of the intended disk-like complex [10].

Z x¢ = N —2 (Triangle Cardinality) (C.3)
teU
> ye=2N -3 (Edge Cardinality) (C.4)
eeW
Yo < degy (e) <2y, Vee W (Degree/Manifold). (C.5)

C.3. Local Euler Filter and Connectivity
For each city v € V| let

Uw):={teU]vet}, Ww):={ee W |veEe},
and define the restricted incidence set
Conn(v) :={(t,e) € A|t € U(v), e € W(v)}.

Define the local counts

I(v) := Z Ztes

(t,e)eConn(v)

and the local Euler characteristic
x(v) =T (v) + E(v) — I(v).

We enforce [10]
x(v)=1 YveV. (C.6)

C.4. Global Tree Constraint (Directed Single-Commodity Flow)

We designate a root node r dynamically. To break symmetries and improve performance,
we restrict the candidate root set R.qsnq C U to the set of triangles incident to the city with
the minimum degree in the mesh. We introduce binary variables r; € {0,1} for t € Reqnq and
enforce:

Z T = ]., Tt S Tt Vt € Rcand- (C?)

t€ERcand

For all other nodes ¢ ¢ Reqnq (including all edge nodes W), we define r; := 0. To enforce linearity
and tighter relaxations, we model a Rooted Directed Tree on the bipartite graph. Let

Agir = {(t,e), (e,t) | (t,e) € A}
be the set of directed arcs. The total number of active nodes is a known constant

K=(N-2)+ (2N —3)=3N—5.
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Active-node indicator. For each node i € U U W, define

. x, ifi=tel,
active; := o
Yy ifi=eecW.

1. Directed Arc Selection: For every incidence (t,e¢) € A, we introduce two directed
binary variables aic, aer € {0,1} and enforce:

Ate + Aot = Zte V(t, 6) S ./4 (CS)

2. Flow Capacity and Conservation: Let f,, > 0 be the continuous flow on arc (u,v) €
Agir- Let M be a sufficiently large constant (e.g., M = K).

fuv <M - ) V(“ﬂ“) € Adir (Ca'paCitY) (Cg)
Z Sui — Z fiw = active; — K -r;, Yie UUW (Conservation) (C.10)
w:(u,i) € Adir w:(i,w) € Adir

3. Rooted Tree Structure:
Every active non-root node has exactly one incoming arc:

Z au; = active; —r; Yee UUW. (C.11)
w:(u,i) € Aqir

D. Special Case: The Planar Simplification

In the general case (Section 3), the Bipartite Graph is necessary because a primal edge e
(edge node) may be incident to many triangles. However, if the candidate set 7 is a planar
triangulation (e.g., Delaunay), every primal edge is incident to at most 2 triangles. In this
specific case, the explicit edge nodes y. can be removed. The Bipartite Graph B collapses
into a simple dual graph, where edges connect neighboring triangles (Fig. D.7). Consequently,
the Euler filter simplifies from the bipartite form (x(v) = 1) to the standard dual-graph form
(IVauai| — |Eduar]| = 1). This reduces the variable count by O(|E|) and simplifies the constraints.
The manifold degree constraint becomes implicit.

Boundary Cancellation. In this planar case, the objective simplifies by eliminating explicit edge-
node variables, and can be derived from Eq. (2).

Min Z= > Pt)—2 Y L(e) (D.1)

t€Tselected e€€qual

where P(t) is the perimeter of triangle ¢ and L(e) is the length of the primal edge shared by the
two triangles connected by dual edge e.

Glue

—2 x Length(Internal)

Figure D.7: Combinatorial boundary identity: internal shared edges cancel by opposite orientations, leaving only
the boundary.
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