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Abstract

We present a brief structural equivalence between the symmetric TSP and a constrained Group
Steiner Tree Problem (cGSTP) defined on a simplicial incidence graph. Given the complete
weighted graph on the city set V, we form the bipartite incidence graph between triangles and
edges. Selecting an admissible, disk-like set of triangles induces a unique boundary cycle. With
global connectivity and local regularity constraints, maximizing net weight in the cGSTP is
exactly equivalent to minimizing the TSP tour length.
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1. Introduction and Geometric View

Let V be a set of n ≥ 3 cities and G = (V,E) be the complete undirected graph with
symmetric edge lengths Le > 0. The symmetric Traveling Salesman Problem (TSP) asks for a
minimum-length Hamiltonian cycle on V [1].

In this note, we describe an exact structural equivalence of symmetric TSP to a constrained
Group Steiner Tree Problem (GSTP) [2]. The construction utilizes elementary combinatorial
topology [3] to view a tour not as a one-dimensional cycle, but as the boundary of a two-
dimensional simplicial surface. By selecting a set of triangles forming a topological disk, edges
shared by two selected triangles (internal edges) cancel out, leaving a unique boundary cycle.
Figure 1 shows the same surface–boundary viewpoint on a small symmetric instance: a connected
selection of triangles behaves as an abstract disk, and its induced boundary is a single cycle (the
tour).

2. The cGSTP Equivalence

We define the cGSTP on the bipartite incidence graph B = (U ∪W,A) (see Fig. 2). U =
(
V
3

)
is the set of triangle nodes (circles), W = E is the set of primal edge nodes (squares), and
(t, e) ∈ A denotes incidence. For each city v ∈ V , we define a group U(v) = {t ∈ U : v ∈ t}.

Triangle nodes act as group terminals (cost 0), while edge nodes and incidences carry weights
defined to enforce boundary cancellation:

1. Each edge node e ∈ W has cost c(e) = 2Le.
2. Each incidence arc (t, e) ∈ A has profit p(t, e) = Le.
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Figure 1: A small symmetric instance (n = 10) shown with an arbitrary planar embedding for visualization.
A connected set of selected triangles (shaded) forms an abstract disk; internal edges cancel, and the induced
boundary is a single simple cycle (the tour).

Let xt, ye, zt,e ∈ {0, 1} indicate the selection of triangles, edges, and incidences respectively.
We select an “admissible” subgraph B′ to maximize the net weight:

W (B′) :=
∑

(t,e)∈A

zt,eLe −
∑
e∈W

ye2Le.

Admissibility is defined by the following constraints:

(C1) Incidence linking (Terminal Node Degrees). Every active triangle must use all three of its
edges:

zt,e ≤ ye

zt,e ≤ xt∑
e⊂t

zt,e = 3xt

(C2) Manifold regularity (Steiner Node Degrees). Every primal edge is incident to at most two
selected triangles (Fig. 3A):

ye ≤
∑
t⊃e

zt,e ≤ 2ye

(C3) Global Euler counts (Node Cardinalities). These match the cardinality of an abstract tri-
angulated disk with n vertices: ∑

xt = n− 2∑
ye = 2n− 3

(C4) Global connectivity (Tree). The active subgraph B′ must be a tree.
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Figure 2: The incidence graph structure. Selecting a set of triangles that form a topological disk (shaded) results
in cost cancellation on internal edges, leaving a net cost corresponding to the induced boundary tour (red).

A. Non-manifold edge

B. “Bowtie” singularity

v

Figure 3: Forbidden anomalies: (A) Edge incident to > 2 triangles; (B) Disconnected vertex link.

(C5) Local connectivity (Steiner Groups). For each city v, the active local incidence subgraph
Hv must satisfy the Euler Characteristic:

χ(Hv) = |V (Hv)| − |E(Hv)| = 1

Here, Hv is the subgraph of B′ induced by selected triangles and edges incident to vertex v (cf.
the star of v in Fig. 2). Given the global tree constraint, this enforces the vertex link to be a
simple path (excluding bowties like Fig. 3B and cyclic vertex links, which would arise if the local
fan in Fig. 2 were closed). The presence of at least one terminal per group is thus also implicitly
enforced.

3. Theoretical Properties

Let K = {t ∈ U : xt = 1} be the selected triangles and define the boundary edge set

∂K = {e ∈ E :
∑
t⊃e

zt,e = 1}.

Lemma 1 (Combinatorial boundary identity). For any selection satisfying (C1)–(C5),

−W (B′) =
∑
e∈∂K

Le.

Proof. If e is incident to two selected triangles, it contributes 2Le profit and incurs 2Le cost,
yielding net 0. If e is incident to exactly one selected triangle, it contributes Le profit and incurs
2Le cost, yielding net −Le. Summing over all edges gives the claim.

Lemma 2 (Soundness). Any admissible solution defines an abstract triangulated disk whose
boundary is a single simple Hamiltonian cycle.
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Proof. By (C4), the selected triangles form a connected complex. Constraints (C2) and (C5)
exclude non-manifold edges and disconnected vertex links, so the complex is a simplicial surface
with boundary. By (C3), its Euler characteristic is χ = 1, hence it is a disk. A disk has exactly
one boundary component, so the boundary is a single simple cycle. Moreover, (C5) implies every
vertex lies on the boundary, so this cycle is Hamiltonian.

Theorem 3 (Equivalence). OPTTSP = −OPTcGSTP.

Proof. Soundness follows from Lemma 2 and Lemma 1.
Completeness. Let C = (v1, v2, . . . , vn) be any Hamiltonian cycle. Select the n−2 triangles

K :=
{
{v1, vi, vi+1} : i = 2, . . . , n− 1

}
.

Then ∂K = C. Setting xt = 1 for t ∈ K, ye = 1 for all edges used by K, and zt,e = 1 for all
incidences e ⊂ t yields a feasible solution satisfying (C1)–(C5). By Lemma 1, its objective value
equals −L(C). Taking the optimum over C gives OPTcGSTP ≥ −OPTTSP, and combining with
soundness yields equality.

4. Discussion

In this note, we established a structural equivalence between the symmetric TSP and a
constrained variant of the Group Steiner Tree Problem by reformulating tours as boundaries
of admissible triangle selections. The resulting model provides a unified constraint system in
which global connectivity and objective cancellation arise naturally from the underlying simplicial
incidence structure. A key feature is that the construction is input-decoupled: it is exact when
the full complex is available, and becomes a controlled heuristic when restricted to a prescribed
candidate triangle set. From a practical modeling perspective, the tour objective emerges through
local cancellation of internal edges, while feasibility is enforced by a compact combination of a
global tree constraint and local Euler regularity [3]. This makes it possible to use sparse geometric
complexes (e.g., Delaunay or related triangulations) as black-box restrictions of the search space
[4, 5, 6], while preserving exactness whenever an optimal tour is contained in the chosen complex.
Algorithmic development and a systematic computational study are left for future work.
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