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Abstract

A new algorithm for smooth constrained optimization is proposed that never computes
the value of the problem’s objective function and that handles both equality and inequality
constraints. The algorithm uses an adaptive switching strategy between a normal step aiming
at reducing constraint’s infeasibility and a tangential step improving dual optimality, the
latter being inspired by the AdaGrad-norm method. Its worst-case iteration complexity is
analyzed, showing that the norm of the gradients generated converges to zero likeO(1/

√
k + 1)

for problems with full-rank Jacobians. Numerical experiments show that the algorithm’s
performance is remarkably insensitive to noise in the objective function’s gradient.

Keywords: Objective-function-free optimization (OFFO), general constraints, nonconvex
problems, reliability in the presence of noise, complexity.

1 Introduction

The design and analysis of deterministic algorithms for solving constrained continuous optimiza-
tion problems have a long history and have produced well-assessed techniques such as penalty
methods, SQP methods, interior-point methods or filter methods (see [17, 6, 10, 24] for example).
These techniques all require the computation of both the function and derivative evaluation of the
objective and the constraints. By contrast, this paper addresses the solution of the problem

min
x∈F

f(x) where F = {x ∈ IRn, c(x) = 0 x ≥ 0}, (1)

using a first-oder objective function-free (OFFO) method. Here f is a smooth (possibly nonconvex)
function from an open set containing the feasible region F ⊆ IRn into IR, c(x) : IRn → IRm with
m ≤ n and equalities and inequalities are meant componentwise. Problem (1) includes general
constrained optimization since all problems in this class can be cast into this form by using slack
variables. We assume that, given x, we can compute both the gradient g(x) = ∇xf(x) of f and
the value of the constraints c(x) as well as their Jacobian J(x) = ∇xc(x) ∈ IRm×n, which we will
assume (for the purpose of our analysis) is full rank for any x ≥ 0.

*Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Firenze, Italia. Member of the
INdAM Research Group GNCS. Email: stefania.bellavia@unifi.it. Work partially supported by Progetti di Ricerca
INDAM-GNCS.
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First-order OFFO procedures do not employ the value of the objective function but rely on
gradients. They are known to be suitable for the solution of problems in which the function is
approximated or subject to noise, and have exhibited remarkable robustness in the presence of
noisy gradients [2, 7, 13, 15, 23].

Our approach is inspired by the ”trust-funnel” approach [12, 20], which, as [25], has roots in
the much older Himmelblau’s ”flexible tolerance ” method [16]. As in these references, the new
method uses an adaptive switching strategy to select a normal or a tangential steps, the first aiming
at reducing the violation of the constraints and the second at improving the objective-function
value. The stepsize in the latter is reminiscent of the stepsize formula used in Adagrad-norm
method [8, 22] for unconstrained optimization. Our method can therefore be seen as a AdaGrad-
like method for solving equality and inequality constrained problems. Other OFFO methods for
constrained optimization using AdaGrad stepsizes have been proposed by the authors in the papers
[1, 15]. In [1] bound constrained optimization problems are considered; stochastic estimators of
the gradient are allowed and second-order information are used when available. The paper [15]
considers nonlinear equality constrained problems with full-rank Jacobians and proposes a first-
order algorithm that adaptively selects steps in the plane tangent to the constraints or steps
that reduce infeasibility. The evaluation complexity is analyzed, in both cases yielding a global
convergence rate in O(1/

√
k + 1), identical in order to that of steepest-descent and Newton’s

methods for unconstrained problems [5].
Our present proposal builds on these contributions and extends [15] to handle inequality con-

straints and thus to cover general smooth constrained optimization. To accommodate such con-
straints, we revisited the procedure from [15] by introducing suitable primal and dual criticality
measures and redefining both tangential and normal steps, while avoiding a technical assumption
on the first iteration. Three different techniques are provided for the computation of the tangen-
tial step. We analyze the worst-case iteration complexity of our procedures and show that the
norm of the gradients generated converges to zero like O(1/

√
k + 1). Numerical experiments show

that, in line with what happens on simpler problems, the algorithm’s performance is remarkably
insensitive to noise in the objective function’s gradient.

The authors are aware of four other papers on OFFO procedures [2, 7, 9, 21] for constrained
problems. The paper [2] presents objective function-free Sequential Quadratic Programming
(SQP) algorithms to solve smooth optimization problems with stochastic objective and deter-
ministic nonlinear equality constraints. It employs a stepsize selection scheme based on Lipschitz
constants (or adaptively estimated Lipschitz constants) in place of the linesearch. This approach
has been extended in [7] to handle deterministic inequality constraints. A convergence analysis
in expectation is carried out, but the worst-case complexity has not been analyzed. The method
introduced in [9] is designed to solve nonlinear optimization problems with stochastic objectives
and deterministic equality constraints. It again employs normal and tangential steps, the latter
being computed using a standard trust-region technique; an explicit penalty parameter is used
and dynamically updated throughout the process, without requiring the objective function’s com-
putation. Global almost-sure convergence is proved. [21] proposes a variant of the SQP approach
of [2] for equality-constrained problems with full-rank Jacobian using first-order methods with
momentum and analyzes its rate of convergence.

Our paper is organized as follows. The ADIC (ADagrad with Inequality Constraints) class of
algorithms is introduced in Section 2 with its algorithmic options. Section 3 analyzes its worst-
case complexity. Results obtained from the numerical validation of the algorithms are described
in Section4. Section 5 finally summarizes our contributions and discusses perspectives for further
research.

Notations: In what follows, ∥ · ∥ denotes the Euclidean norm unless otherwise specified, and
σmin[A] denotes the smallest singular value of the matrix A.
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2 The ADIC class of algorithms

In the new class of iterative methods that we are going to describe, a new iterate is formed using
either a tangential step (i.e. a step in the plane tangent to the manifold of equality constraints) or
a normal step (mostly orthogonal to that manifold), the choice between the two being based on
a comparison of the primal and dual criticality measures. One of the interesting features of this
algorithmic framework is that it allows the use of fairly general non-negative bounded dual and
primal criticality measures, denoted ωT (x) and ωN (x) respectively.

In the algorithm’s description on the following page, the successive iterates are denoted by
xk and we let gk = g(xk), ck = c(xk), Jk = J(xk), ωT (xk) = ωT,k, ωN (x) = ωN,k. These
criticality measures are computed in Step 1, together with a tangential stepsize whose form is, as
we will detail later, directly inspired by the AdaGrad [8, 22] algorithm. Whether the step taken
is tangential or normal is decided by comparing their sizes, each of these steps being designed to
provide a first-order improvement (of a carefully chosen Lyapunov function) comparable to the
relevant criticality measure while being of a size ensuring that first-order effects dominate (as we
will prove below).

In our subsequent analysis, we need to distinguish between iterates using tangential or normal
steps. We denote by {kτ} ⊆ {k} the index subsequence of iterations such that a tangential step
sT,k was computed (implying that (3) holds), while {kν} is the index subsequence of iterations
where a normal step sN,k was computed. Note that {kτ} and {kν} need not be disjoint, but that
{k} = {kτ}∪{kν}. By convention, we will define sT,k = 0 for k ̸∈ {kτ} and sN,k = 0 for k ̸∈ {kν}.

We will also consider the Lyapounov function (whose value is hopefully decreased as the iter-
ations progress) given by

ψ(x, λ)
def
= L(x, λ) + ρ∥c(x)∥, (11)

where ρ is a fixed constant (to be determined below) and L(x, λ) is the standard Lagrangian

L(x, λ) = f(x) + λT c(x), (12)

for some multiplier λ ∈ IRm. The function ψ(x, λ) is sometimes called the ”sharp augmented
Lagrangian” (see [3, 4, 19] for instance). Of particular interest in our argument is the least-squares

Lagrange multiplier λ̂(x) defined by(
J(x)J(x)T

)
λ̂(x) = − J(x) g(x) (13)

when the Jacobian J(x) has full rank.
It is important to note to this point that, because all norms are equivalent in IRn, our theo-

retically convenient choice of expressing (10) and (5) in Euclidean norm is by no means crucial.
Should other norms be used, as we will see below, the relevant equivalence constants may be
absorbed in θT and θN . It is also useful to notice (2) implies that

αT,k ≤ η
√
ς

and αT,kωT,k < η. (14)

Clearly, much else remains to be specified in our algorithmic outline: details of which criticality
measures are considered together with which norm and methods to compute the tangential step
sT,k itself as well as the normal step sN,k must be clarified. In order to simplify exposition, we focus
in our theory on a single technique for computing the normal step sN,k, and propose to define it
by one (or more) step(s) of a trust-region algorithm applied on the constrained violation 1

2∥c(x)∥2
using a linear model. Lemma 3.2 below will show that such a step satisfies our requirements of
Step 2 with

ωN,k = χN,k = |cTk JkdN,k|. (15)
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Algorithm 2.1: ADIC(x0)

Step 0: Initialization: The constants β, η > 0, θT , θN ≥ 1, 0 < ηmin ≤ ηmax and κt, κn, ς ∈
(0, 1

2 ] are given.
Project x0 onto the positive orthant.
Set k = 0 and Γ0 = 0.

Step 1: Evaluations: Evaluate ck = c(xk), Jk = J(xk), gk = ∇f(xk). Then compute the dual
measure ωT,k, the primal measure ωN,k and the stepsize

αT,k =
η√

Γk + ω2
T,k + ς

. (2)

Step 2: Normal step: Except possibly if

ωN,k ≤ β αT,kωT,k, (3)

compute sN,k such that

xk + sN,k ≥ 0, (4)

∥sN,k∥ ≤ θN ωN,k, (5)

and there exists a contant κn ∈ (0, 1
2 ) independent of k such that

1
2∥c(xk + sN,k)∥2 ≤ 1

2∥ck∥2 − κn ω
2
N,k. (6)

Then set x+k = xk + sN,k . If (3) holds and sN,k was not computed, set x+k = xk.

Step 3: Tangential step: If (3) holds, compute a step sT,k such that

xk + sT,k ≥ 0 (7)

JksT,k = 0, (8)

gTk sT,k ≤ −κt αT,k ω
2
T,k, (9)

∥sT,k∥ ≤ θT αT,k ωT,k, (10)

and set xk+1 = x+k + sT,k and Γk+1 = Γk + ω2
T,k.

Otherwise (i.e. if (3) fails), set xk+1 = x+k and Γk+1 = Γk.

Step 4: Loop: Increment k by one and go to Step 1.
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where dN,k solves the problem
mind cTk Jkd

xk + d ≥ 0
∥d∥∞ ≤ 1.

(16)

By contrast, we will exploit the freedom in our model to introduce a few variants for the compu-
tation of the tangential step.

2.1 ADIC-LP: two variants based on linear optimization

We start by describing a variant based on the dual criticality measure given by

ωT,k = χT,k = |gTk dT,k|, (17)

where dT,k is the solution of the linear optimization1 problem

mind gTk d
Jkd = 0
xk + d ≥ 0
∥d∥∞ ≤ 1.

(18)

Also observe that
χT,k ≤ ∥gk∥ ∥dT,k∥ ≤

√
n∥gk∥. (19)

The tangential step sT,k can then be computed in two ways. The first is to define sT,k as the
solution of the linear programming problem

mins gTk s
Jks = 0
xk + s ≥ 0

∥s∥∞ ≤ αT,kωT,k.

(20)

(Note that (20) only differs from (18) in the definition of its bounds, and that we have used the
liberty in the choice of norms to express the bound on the step in ∥ · ∥∞). A second, simpler,
possibility is to choose a multiple of dT,k and simply set

sT,k =
αT,kωT,k

∥dT,k∥∞
dT,k. (21)

Defined in either of these ways, sT,k clearly satisfies (7), (8) and (10) (with θT ≥
√
n), and it is

not difficult to verify that it also satisfies (9) with κt = 1/max[η, 1].

Lemma 2.1 Suppose that, at tangential iteration kτ , sT,kτ
is defined by either (20) or (21).

Then we have that
|gTkτ

sT,kτ | ≥ αT,kτχ
2
T,kτ

=
αT,kτ

max[η, 1]
ω2
T,kτ

. (22)

Proof. Suppose first that ∥sT,kτ ∥∞ ≥ ∥dT,kτ ∥∞. Then dT,kτ is feasible for problem (20)
and thus

|gTkτ
sT,kτ

| ≥ |gTkτ
dT,kτ

| = ωT,kτ
≥ αT,kτ

η
ω2
T,kτ

,

where we used (14) to deduce the last inequality. Suppose now that ∥sT,kτ ∥∞ < ∥dT,kτ ∥∞.
Then we must have that ∥sT,kτ ∥∞ = αT,kτωT,kτ . The vector y = (∥sT,kτ ∥∞/∥dT,kτ ∥∞)dT,kτ

is therefore feasible for problem (18) and thus

|gTkτ
y| = ∥sT,kτ

∥∞
∥dT,kτ ∥∞

|gTkτ
dT,kτ

| = αT,kτ
ωT,kτ

∥dT,kτ ∥∞
ωT,kτ

≥ αT,kτ
ω2
T,kτ

(23)

1Formerly known as ”linear programming”.
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If sT,k is defined by (21), then sT,k = y and (22) follows. Otherwise, we obtain from (20) that
|gTkτ

sT,kτ | ≥ |gTkτ
y| and (22) also follows from (23). 2

When the measure (17) is used, it is also useful to note that, for x such that c(x) = 0,

χTk = χT (xk) = min
∥d∥∞≤1

{∇xL(xk, λ̂(xk))
T d | J(xk)d = 0 and xk + d ≥ 0} (24)

where the Lagrangian L(x, λ) is defined in (12) and λ̂(x) is given by (13).

2.2 ADIC-P1: a projection-based variant

We next consider a variant based on the dual criticality measure given by

ωT,k = πT (xk) with πT (x) = ∥ΠF (x)
(
x− g(x)

)
− x∥ def

= ∥p1(x)∥. (25)

where ΠF (x) is the orthogonal projection onto F(x)
def
= {x+ y ∈ IRn | J(x)y = 0 and x+ y ≥ 0}

(see [6, Section 12.1.4], for instance). In this setting, one still defines αT,k by (2) and one simply
chooses

sT,k = min[αT,k, 1] p1(xk). (26)

Again, we note that
πT (xk) ≤ ∥gk∥. (27)

The minimum in (26) ensures that, by construction, xk+sT,k ∈ F(xk) and thus that (7) holds.
The definition (26) also implies that (8) holds, while (10) with θT = 1 directly results from (25).
The nature of the orthogonal projection also ensures the following result.

Lemma 2.2 Suppose that, at a tangential iteration kτ , sT,kτ
is defined by (26). Then

|gTkτ
sT,kτ

| ≥
√
ς

max[η, 1]
αT,kτ

πT (xkτ
)2 =

√
ς

max[η, 1]
αT,kτ

ω2
T,kτ

. (28)

Proof. The optimal nature of the projection implies that(
[xkτ − gkτ ]− [xkτ + p1(xkτ )]

)T(
[xkτ + p1(xkτ )]− xkτ

)
≥ 0

and thus
gTkτ

p1(xkτ
) ≤ −∥p1(xkτ

)∥2 = −πT (xkτ
)2.

Suppose first that sT,k = αT,kp1(xk). Then,

|gTkτ
sT,k| ≥ αT,kπT (xkτ )

2. (29)

Alternatively, if sT,k = p1(xk), this implies that αT,k ≥ 1. Now, (2) gives that
√
ςαT,k ≤

max[η, 1] and hence

|gTkτ
sT,k| ≥ πT (xkτ )

2 ≥
√
ς

max[η, 1]
αT,kπT (xkτ )

2. (30)

Combining (29) and (30) yields (28). 2

Thus the step (26) also satisfies (9) with κt =
√
ς/max[η, 1].
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2.3 Comments

Some observations are in order at this stage.

1. Three types of iterations may occur in the course of the execution of the algorithm.

� The first is when the constraint violation is large, in which case condition (3) typically
fails. A normal step sN,k is then computed but a tangential step is not, which is
probably reasonable because the meaning of a move in the tangent plane far away from
the constraint is debatable, as it could result in very large steps which take forever to
recover from.

� The second is when the constraint violation is moderate and (3) holds. Both normal
and tangential step may then be computed.

� The third is when the constraint violation is small. Condition (3) holds so that a
tangential step is computed, but a normal step is not.

What actually happens in a run depends on the choice of the constant β in (3) and the user’s
decision to avoid or force a normal step when possible.

2. The tangential stepsize formula (2) is of course reminiscent of the stepsize formula used
in AdaGrad for unconstrained problems. Note that the running sum of squares of dual
measures (Γk) is only updated at tangential iterations.

3. We have chosen to use the ∥.∥∞ norm in (16), (18) and (20) so that these problems are
standard linear programs, but, as we noted above, this is not necessary. In particular,
variants using the (isotropic) Euclidean norm or preconditioned version of these norms may
also be considered. One reason to consider Euclidean or other ellipsoidal norms is that n
inequality constraints created by the box constraints in the linear programs are replaced by
a single constraint.

4. In our statement of the ADIC framework, we have assumed that subproblems ((18), (20) or
the projection problem in (25)) are solved exactly. This is not necessary and it is sufficient
that approximate solution are accurate enough to produce a decrease in the Lagrangian at
least a fraction of the optimal one (as suggested by the introduction of the constant κt).

3 Worst-case complexity analysis

This section is devoted to the theoretical study of the ADIC method(s). Its main result is that,
under suitable conditions, the average value of (ωT,k + ∥ck∥) tends to zero like 1/

√
k + 1. We need

the following assumptions to derive it.

AS.0: f and c are continuously differentiable on on open set containing the positive orthant of
IRn.

AS.1: For all x ≥ 0, f(x) ≥ flow.

AS.2: For all x ≥ 0, ∥g(x)∥ ≤ κg where κg ≥ ηβ.

AS.3: For all x ≥ 0, ∥c(x)∥ ≤ κc, where κc > 1.

AS.4: For all x ≥ 0, ∥J(x)∥ ≤ κJ

AS.5: For all x ≥ 0, σmin[J(x)] ≥ σ0 ∈ (0, 1],

AS.6: The gradient g(x) is globally Lipschitz continuous on the positive orthant (with constant
Lg).
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AS.7: The Jacobian J(x) is globally Lipschitz continuous on the positive orthant (with constant
LJ).

AS.8: There exists a constant ξ ∈ (0, 1] such that, for all k ≥ 0, ωN,k ≥ ξ∥ck∥.

Assumptions AS.1–AS.4 hold if the iterates remain, as is often the case, in a closed bounded
set. Using the fact that the product of bounded and Lipschitz functions is Lipschitz, we deduce
the following properties, whose detailed proofs can be found in appendix.

Lemma 3.1 Suppose that AS.0 and AS.2–AS.7 hold. Then we have that

1. c(x) is Lipschitz continuous on the positive orthant (with constant Lc),

2. ∇x( 1
2∥c(x)∥2) = J(x)T c(x) is Lipschitz continuous on the positive orthant (with con-

stant LJTc ≥ 1),

3. λ̂(x) is well-defined on the positive orthant,

4. λ̂(x) is bounded (by the constant κλ) and Lipschitz continuous (with constant Lλ) on
the positive orthant,

5. ∇xL(x, λ) is Lipschitz continuous on the positive orthant (with constant LL).

We also observe that (16), (15), AS.3 and AS.4 ensure that

χN,k ≤
√
n ∥JT

k ck∥ ≤
√
nκJ κc, (31)

Finally, AS.8 assumes that there exists a “sufficient-descent” direction for the problem (16). Specif-
ically, the normal step is designed to reduce χN,k but it does not guarantee that {∥ckν

∥} also
converges to zero. In fact, without further assumption, the minimization of 1

2∥c(x)∥2 may end
up at a local minimizer xloc of this function which is infeasible for the original problem because
c(xloc) ̸= 0. The existence of such local minimizers may be caused by a singular Jacobian J(xloc)
(in which case J(xloc)

T c(xloc) = 0 does not imply c(xloc) = 0), or by the presence of bounds since
−J(xloc)T c(xloc) may then belong to the normal cone of the bound constraints at xloc. Unfortu-
nately, convergence to such an xloc cannot be avoided without either applying a global optimization
method to minimize 1

2∥c(x)∥2, or restricting the class of problems under consideration. Here we
follow the second approach and first note that AS.5 already ensures that J(xloc)

T c(xloc) = 0 im-
plies c(xloc) = 0. Making AS.8 is motivated by the observation that descent along any direction for
problem (16) not hitting the non-negativity constraints must be limited by the bound ∥d∥∞ ≤ 1.
Thus at least one component of dN,k, say components i ∈ I ⊆ {1, . . . , n}, must be equal to one
in absolute value, which implies that χN,k = |cTk JkdN,k| ≥ ∥[JT

k ck]I∥1. AS.8 then guarantees that
∥[JT

k ck]I∥1 is not negligible with respect to ∥JT
k ck∥ ≥ σ0∥ck∥.

To maintain generality, we finally assume that the considered criticality measures are bounded.

AS.9: There exists a constant κω > 0 such that, for all x ∈ IRn, ωT (x) ≤ κω and ωN (x) ≤ κω.

For the special cases discussed in Sections 2.1 and 2.2, AS.9 automatically results from AS.2–AS.4,
as can be seen from (19), (27) and (31).

The next result shows our requirements on the normal step in Step 3 of the ADIC are not
excessive. This is achieved by exhibiting one particular computational scheme (a trust-region
method) which satisfies the conditions (4)–(6).
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Lemma 3.2 The normal step sN,k (in Step 2) can be computed using a trust-region algo-
rithm applied to minimizing 1

2∥c(x)∥2 subject to (4) and (5) with ∥.∥ = ∥·∥∞ and ωN,k = χN,k

defined by (15), starting with the radius θNχN,k.

Proof. For any ∆ ≤ min[1, θNχN,k], let sTR(∆) be the solution of the problem of minimizing
cTk Jks over the constraints x+sTR(∆) ≥ 0 and ∥sTR(∆)∥∞ ≤ ∆. Using the Lipschitz continuity
of J(x)T c(x) (with constant LJTc), we obtain that

1
2

(
∥c(xk + sTR(∆))∥2 −∥ck∥2

)
≤ cTk JksTR(∆)+

LJTc

2
∆2 ≤ cTk JksTR(∆)+

max[κω, LJTc]

2
∆2,

(32)
where κω is defined in AS.9. Now, since ∆ ≤ min[1, θNχN,k], given the vector dN,k solution to
(16), the vector ∆dN,k is feasible for (4)-(5), and thus, from (15),

cTk JksTR(∆) ≤ cTk Jk(∆dN,k) = −χN,k∆.

Hence

cTk JksTR(∆) +
max[κω, LJTc]

2
∆2 ≤ −χN,k∆+

max[κω, LJTc]

2
∆2. (33)

It is then easy to verify that, if ∆ ≤ χN,k/max[κω, LJTc] then (33) gives that

cTk JksTR(∆) +
max[κω, LJTc]

2
∆2 ≤ −1

2
χN,k∆. (34)

Remembering (31), we may then define

sN,k = sTR(∆∗) with ∆∗ = min

[
1,

χN,k

max[κω, LJTc]

]
=

χN,k

max[κω, LJTc]
≤ θNχN,k

where the last inequality, which shows that (5) holds, is derived using the bounds LTc ≥ 1 and
θN > 1. Substituting this value in (34) and using (32) then yields that

1
2

(
∥c(xk + sN,k)∥2 − ∥ck∥2

)
≤ −

χ2
N,k

2max[κω, LJTc]

which proves the desired conclusion (with κn = 1/(2max[κω, LJTc]) ∈ (0, 1
2 )), because the

radius ∆ can then be reduced (if necessary) starting from θNχN,k until (6) holds. 2

The previous result implies that the normal step can be computed using a trust-region al-
gorithm for minimizing 1

2∥c(x)∥2 subject to (4) and (5), ∥.∥ = ∥ · ∥∞ and imposing that the
trust-region solution sTR(∆) satisfies

1
2∥c(xk + sTR(∆))∥2 ≤ 1

2∥ck∥2 − 1
2χN,k(∆).

Our analysis now proceeds by studying the behaviour of the Lyapunov function (11) for iter-
ations using normal and tangential steps (indexed by kν and kτ , respectively), before combining
the results and deriving global rates of convergence of (ωT,k + ∥ck∥) to zero along the sequences
{kτ}, {kν} and, finally, {k}. For brevity, we define the abbreviated notations

ψ(x)
def
= ψ

(
x, λ̂(x)

)
and λ̂k = λ̂(xk). (35)

We also observe that (12) and (13) ensure that, for λ† = λ̂(x),

∇xL(x, λ
†) = g(x) + J(x)T λ̂(x) = gT (x), (36)

where gT (x) is the orthogonal projection of g(x) onto the nullspace of J(x), and consequently,
using AS.2,

∥∇xL(x, λ
†)∥ ≤ ∥g(x)∥ ≤ κg. (37)
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3.1 Descent at normal steps

We first consider the effect of normal steps on the value of the Lyapunov function ψ. We start by
a very simple observation.

Lemma 3.3 Suppose that AS.5 and AS.8 hold and that a normal step is used at iteration
kν . Then c

+
kν

= c(xkν
+ sN,kν

) satisfies

∥c+kν
∥ − ∥ckν∥ ≤ −κnξ ωN,kν . (38)

Proof. We have from (6) that ∥c+kν
∥ < ∥ckν∥. Then,

2∥ckν
∥(∥ckν

∥ − ∥c+kν
∥) ≥ (∥ckν

∥+ ∥c+kν
∥)(∥ckν

∥ − ∥c+kν
∥) = ∥ckν

∥2 − ∥c+kν
∥2,

and therefore, using (6) and AS.8, that

∥c+kν
∥ − ∥ckν∥ ≤ −

κnω
2
N,kν

∥ckν∥
≤ −κnξ ωN,kν

2

We then use this observation to deduce the following result.

Lemma 3.4 Suppose that AS.3–AS.9 hold and that a normal step is used at iteration kν .
Define

ρ =
1

κnξ
,

[
(κg + κc Lλ)θN +

(
LL

2
+ LλLc

)
θ2Nκω + η

]
(39)

Then x+kν
= xkν + sN,kν satisfies

ψ(x+kν
)− ψ(xkν

) ≤ −η ωN,kν
. (40)

Proof. We have that

ψ(x+kν
)− ψ(xkν

) = ψ(x+kν
, λ̂kν

)− ψ(xkν
, λ̂kν

)︸ ︷︷ ︸
∆x

+ψ(x+kν
, λ̂+kν

)− ψ(x+kν
, λ̂kν

)︸ ︷︷ ︸
∆λ

. (41)

Now consider ∆x and ∆λ separately. Using the Lipschitz continuity of ∇xψ(x, λ̂) (ρ is fixed
in (39)) and (38), we obtain that

∆x = ψ(x+kν
, λ̂kν

)− ψ(xkν
, λ̂kν

)

= L(x+kν
, λ̂kν

)− L(xkν
, λ̂kν

) + ρ
(
∥c+kν

∥ − ∥ckν
∥
)

≤ (∇xL(xkν
, λ̂kν

)T sN,kν
+ r3 − ρκnξ ωN,kν

(42)

with

|r3| ≤
LL

2
∥sN,kν

∥2.
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We now invoke the Cauchy-Schwartz inequality, (37) and (5) to deduce that

∆x ≤ ∥∇xL(xkν
, λ̂kν

)∥ ∥sN,kν
∥ − ρ

κnξ

2
ωN,kν

+
LL

2
∥sN,kν

∥2

≤ κg∥sN,kν
∥ − ρκnξ ωN,kν

+
LL

2
∥sN,kν

∥2

≤ κgθNωN,kν − ρκnξ ωN,kν +
LL

2
θ2Nω

2
N,kν

.

(43)

Using now the definition of ∆λ in (41), AS.6, the Lipschitz continuity of λ̂ and c and AS.3
then yields that

∆λ = ψ(x+kν
, λ̂(x+kν

))− ψ(x+kν
, λ̂(xkν ))

≤ (∥ckν∥+ ∥c+kν
− ckν∥) ∥λ̂+kν

− λ̂kν∥
≤ Lλ ∥sN,kν

∥ ∥ckν
∥+ LλLc∥sN,kν

∥2

≤ Lλ θNκcωN,kν
+ LλLcθ

2
Nω

2
N,kν

(44)

and thus, summing (43) and (44), that

ψ(x+kν
)− ψ(xkν

)

≤ −ρκnξ ωN,kν
+ κgθNωN,kν

+ Lλ κc θNωN,kν
+

(
θ2NLL

2
+ θ2NLλLc

)
ω2
N,kν

≤ −ρκnξωN,kν
+ (κgθN + Lλ κc θN )ωN,kν

+

(
θ2NLL

2
+ θ2NLλLc

)
κω ωN,kν

,

where we have used AS.9 to deduce the second inequality. The bound (40) then follows from
(39).
2

Note that, should sN,k belong to the range space of Jk, the first term in the last right-hand side
of (42) vanishes and κg disappears from (43) and, consequently, from (39).

3.2 Descent at tangential steps

We now turn to considering the effect of tangential steps.

Lemma 3.5 Suppose that AS.4–AS.8 hold. Then

ψ(xkτ+1)− ψ(x+kτ
) ≤ −κtαT,kτω

2
T,kτ

+ κtan α
2
T,kτ

ω2
T,kτ

. (45)

where

κtan =

[
θ2T
2

(
LL + ρLc

)
+ βθNθT

(
LL + κJLλ + ρLJ

)]
+
βθTLλ

ξ
+ θ2TLcLλ. (46)

Proof. As in (41), we now have that

ψ(xkτ+1)− ψ(x+kτ
) = ψ(xkτ+1, λ̂

+
kτ
)− ψ(x+kτ

, λ̂+kτ
)︸ ︷︷ ︸

∆x

+ψ(xkτ+1, λ̂kτ+1)− ψ(xkτ+1, λ̂
+
kτ
)︸ ︷︷ ︸

∆λ

. (47)

The Lipschitz continuity of ∇xψ(x, λ̂), (11) and (35) give that

∆x = ∇xL(x
+
kτ
, λ̂+kτ

)T sT,kτ + r0 + ρ(∥ckτ+1∥ − ∥c+kτ
∥) with |r0| ≤

LL

2
∥sT,kτ ∥2. (48)
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Equation (8) gives

∥c(xkτ+1)∥ = ∥c(x+kτ
)− Jkτ sT,kτ + (J+

kτ
− Jkτ )sT,kτ + r1∥

≤ ∥c+kτ
∥+ ∥r1∥+ ∥J+

kτ
− Jkτ

∥ ∥sT,kτ
∥

≤ ∥c+kτ
∥+ ∥r1∥+ LJ∥sN,kτ ∥ ∥sT,kτ ∥

with ∥r1∥ ≤ Lc

2 ∥sT,kτ
∥2. Now ∥sN,kτ

∥ is either zero (if kτ ̸∈ {kν}) or, using (3) for kτ ,

ωN,kτ
≤ βαT,kτ

ωT,kτ

and thus
∥sN,kτ

∥ ≤ θNωN,kτ
≤ βθNαT,kτ

ωT,kτ
, (49)

so that, whether kτ ∈ {kν} or not, using (10),

∥c(xkτ+1)∥ − ∥c(x+kτ
)∥ ≤

(
θ2TLc

2
+ βθNθTLJ

)
α2
T,kτ

ω2
T,kτ

. (50)

Now differentiating L with respect to its first argument and using the Lipschitz continuity of
∇xL with respect to this first argument, AS.4, (8) and the Lipschitz continuity of λ̂ gives that

∇xL(x
+
kτ
, λ̂+kτ

)T sT,kτ =
(
∇xL(x

+
kτ
, λ̂+kτ

)T sT,kτ −∇xL(xkτ , λ̂
+
kτ
)T sT,kτ

)
+
(
∇xL(xkτ , λ̂

+
kτ
)T sT,kτ −∇xL(xkτ , λ̂kτ )

T sT,kτ

)
+ gTkτ

sT,kτ + λ̂Tkτ
Jkτ

sT,kτ

=
(
∇xL(x

+
kτ
, λ̂+kτ

)T sT,kτ −∇xL(xkτ , λ̂
+
kτ
)T sT,kτ

)
+
(
(λ̂+kτ

)TJkτ
− λ̂Tkτ

Jkτ

)T

sT,kτ
+ gTkτ

sT,kτ
+ λ̂Tkτ

Jkτ
sT,kτ

≤
(
LL + κJLλ

)
∥sN,kτ

∥ ∥sT,kτ
∥+ gTkτ

sT,kτ
+ λ̂Tkτ

Jkτ
sT,kτ

≤ gTkτ
sT,kτ

+ β
(
LL + κJLλ

)
θNθTα

2
T,kτ

ω2
T,kτ

where the last inequality results from (8) and (49). Hence we obtain from (48), (9), (10) and
(50) that

∆x ≤ gTkτ
sT,kτ

+ r0 + ρ

(
θ2TLc

2
+ βθNθTLJ

)
α2
T,kτ

ω2
T,kτ

+ βθNθT

(
LL + κJLλ

)
α2
T,kτ

ω2
T,kτ

≤ gTkτ
sT,kτ

+

(
θ2T
2

(LL + ρLc) + βθNθT

(
LL + κJLλ + ρLJ

))
α2
T,kτ

ω2
T,kτ

≤ −κtαT,kτ
ω2
T,kτ

+

(
θ2T
2

(LL + ρLc) + βθNθT

(
LL + κJLλ + ρLJ

))
α2
T,kτ

ω2
T,kτ

.

(51)

Now, we may use the Lipschitz continuity of λ̂ and c, inequality (6), the Cauchy-Schwartz
inequality, and AS.8 to deduce that

∆λ = cTkτ+1

(
λ̂kτ+1 − λ̂+kτ

)
= (ckτ+1 − c+kτ

)T
(
λ̂kτ+1 − λ̂+kτ

)
+ (c+kτ

)T
(
λ̂kτ+1 − λ̂+kτ

)
≤ ∥c+kτ

∥ ∥λ̂kτ+1 − λ̂+kτ
∥+ ∥ckτ+1 − c+kτ

∥ ∥λ̂kτ+1 − λ̂+kτ
∥

≤ ∥ckτ ∥ ∥λ̂kτ+1 − λ̂+kτ
∥+ ∥ckτ+1 − c+kτ

∥ ∥λ̂kτ+1 − λ̂+kτ
∥

≤ Lλ

ξ
ωN,kτ ∥sT,kτ ∥+ LcLλ∥sT,kτ ∥2.

(52)
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Again using (3) for k ∈ {kτ}, (10) and (49), we obtain that

∆λ ≤ βθTLλ

ξ
α2
T,kτ

ω2
T,kτ

+ θ2TLcLλα
2
T,kτ

ω2
T,kτ

.

Thus, summing ∆x and ∆λ, we deduce that

ψ(xkτ+1)− ψ(x+kτ
) ≤ −κtαT,kτ

ω2
T,kτ

+

(
θ2T
2

(
LL + ρLc

)
+ βθNθT

(
LL + κJLλ + ρLJ

))
α2
T,kτ

ω2
T,kτ

+

(
βθTLλ

ξ
+ θ2TLcLλ

)
α2
T,kτ

ω2
T,kτ

and (45) follows. 2

Observe that the second term in the bracket of (46) only appears when kτ ∈ {kν}. The bound
(45) quantifies the effect of tangential steps on the Lyapunov function, and its right-hand side
involves a first-order (descent) term and a second-order perturbation term. We now derive crucial
bounds on these terms, using the fact that Γk is not updated at normal iterations.

Lemma 3.6 Suppose that AS.2 and AS.5 hold. If we denote

Γkτ0
= 0, Γkτ+1

= Γkτ
+ ω2

T,kτ
, αT,kτ

=
η√

ς + Γkτ+1

,

then, for all τ0 ≤ τ1,

τ1∑
τ=τ0

αT,kτ ω
2
T,kτ

> η
√
ς

√
1 +

Γkτ1+1

ς
− η

√
ς (53)

τ1∑
τ=τ0

α2
T,kτ

ω2
T,kτ

≤ η2 log

(
1 +

Γkτ1+1

ς

)
. (54)

Proof. Let wkτ+1 =
√

Γkτ+1
+ ς. The definition of αT,kτ

in (2) implies that

τ1∑
τ=τ0

αT,kτ
ω2
T,kτ

= η

τ1∑
τ=τ0

ω2
T,kτ√

ς + Γkτ+1

> η

τ1∑
τ=τ0

ω2
T,kτ

wkτ+1
+ wkτ

= η

τ1∑
τ=τ0

w2
kτ+1

− w2
kτ

wkτ+1
+ wkτ

= η

τ1∑
τ=τ0

(wkτ+1 − wkτ )

= η
(
wkτ1+1 − wkτ0

)
.

Now observe that, using Γkτ0
= 0,

wkτ1+1
− wkτ0

=
√
ς + Γkτ1+1

−
√
ς + Γkτ0

=
√
ς + Γkτ1+1

−
√
ς,
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which then gives (53). Using the concavity and the increasing nature of the logarithm, we also
have from (2) that

α2
T,kτ

ω2
T,kτ

= η2
ω2
T,kτ

ς + Γkτ+1
= η2

Γkτ+1
− Γkτ

ς + Γkτ+1

≤ η2
[
log(ς + Γkτ+1

)− log(ς + Γkτ
)
]
.

Summing for τ ∈ {τ0, . . . , τ1} then yields that

τ1∑
τ=τ0

α2
T,kτ

ω2
T,kτ

≤ η2
[
log(ς + Γkτ1+1

)− log(ς + Γkτ0
)
]
,

and (54) follows, again using Γkτ0
= 0. 2

3.3 Telescoping sum

Having considered the impacts of tangential and normal steps separately, we now combine them
to derive a crucial inequality.

Lemma 3.7 Suppose that AS.0–AS.8 hold. Then, for any τ1 > 0 and any ν1 ≥ 0,√
1 +

Γkτ1+1

ς
+

ν1∑
ν=ν0

ωN,kν
≤ κgap +

κtan

κt
√
ς
log

(
1 +

Γkτ1+1

ς

)
, (55)

where

κgap =
1

ηκt
√
ς
(1 + ψ(x0) + κcκλ + ρκc − flow) .

Proof. Consider k ≥ 0. Then, defining min[kν0
, kτ0 ] = 0 and max[kν1

, kτ1 ] = k, we have
that Γkτ0

= 0 and we may apply Lemma 3.6. Combining (45), (53) and (54), we obtain that

τ1∑
τ=τ0

(
ψ(xkτ+1)− ψ(x+kτ

)
)
≤ ηκt

√
ς − ηκt

√
ς

√
1 +

Γkτ1+1

ς
+ η2κtan log

(
1 +

Γkτ1+1

ς

)
. (56)

Also considering (40) and observing that x+k = xk+1 when k ∈ {kν} \ {kτ} and x+k = xk when
k ∈ {kτ} \ {kν} therefore yields that

ψ(xk+1)− ψ(x0) =

τ1∑
τ=τ0

(
ψ(xkτ+1)− ψ(x+kτ

)
)
+

ν1∑
ν=ν0

(
ψ(x+kν

)− ψ(xkν
)
)

≤ ηκt
√
ς − ηκt

√
ς

√
1 +

Γkτ1+1

ς
− η

ν1∑
ν=ν0

ωN,kν
+ η2κtan log

(
1 +

Γkτ1+1

ς

)

≤ ηκt
√
ς − ηκt

√
ς

√
1 +

Γkτ1+1

ς
− ηκt

√
ς

ν1∑
ν=ν0

ωN,kν + ηκtan log

(
1 +

Γkτ1+1

ς

)
,

(57)
where we used the facts that κt

√
ς < 1 and η ≤ 1. Using now (11), (35), the Cauchy-Schwartz

inequality, the boundedness of λ̂(x), AS.1 and AS.3, we have that

ψ(xk+1)− ψ(x0)− ηκt
√
ς ≥ flow − κcκλ − ρκc − ψ(x0)− ηκt

√
ς

def
= −ηκt

√
ς κgap,

so that (57) implies (55). 2
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3.4 Tangential complexity

Lemma 3.7 implies upper bounds for both Γkτ and ωN,kν . We now exploit the first of these to
derive the rate of convergence for tangential steps proper, after establishing a useful technical
result.

Lemma 3.8 Suppose that at ≤ b+ c log(t) for t ≥ 1 and a, c > 0. Then,

t ≤ 2b

a
+

2c

a

[
log

(
2c

a

)
− 1

]
.

Proof. See [1, Lemma 3.2]. 2

Lemma 3.9 Suppose that AS.0–AS.9 hold. Then, for any τ1 > 0,√
ς + Γkτ1+1

≤ κT
def
= 2κgap

√
ς +

4κtan

κt

[
log

(
4κtan

κt
√
ς

)
− 1

]
(58)

and

ξ

τ1∑
τ=τ0

(
ωT,kτ

+ ∥ckτ
∥
)
≤

τ1∑
τ=τ0

(
ωT,kτ

+ ωN,kτ

)
≤ κT

√
τ1 + 1

(
1 +

βη
√
ς

)
. (59)

Proof. The bound (55) implies that√
1 +

Γkτ1+1

ς
≤ κgap +

κtan

κt
√
ς
log

(
1 +

Γkτ1+1

ς

)
= κgap +

2κtan

κt
√
ς
log

√
1 +

Γkτ1+1

ς

 .

Using Lemma 3.8 with

t =

√
1 +

Γkτ1+1

ς
, a = 1, b = κgap and c =

2κtan

κt
√
ς
,

we then obtain that

√
ς + Γkτ1+1

=
√
ς

√
1 +

Γkτ1+1

ς
≤

√
ς

{
2κgap +

4κtan

κt
√
ς

[
log

(
4κtan

κt
√
ς

)
− 1

]}
.

This is (58). We may now invoke the inequality

k∑
j=0

aj ≤
√
k + 1

√√√√ k∑
j=0

a2j

for nonnegative {aj}kj=0 to deduce from the definition of Γkτ
and (58) that

τ1∑
τ=τ0

ωT,kτ ≤
√
τ1 + 1

√√√√ τ1∑
τ=τ0

ω2
T,kτ

=
√
τ1 + 1

√
Γkτ1

+1 <
√
τ1 + 1

√
ς + Γkτ1

+1 ≤
√
τ1 + 1κT .

(60)
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Using the switching condition (3) and the first part of (14), we then deduce that, whether kτ
belongs to {kν} or not,

τ1∑
τ=τ0

ωN,kτ
≤

τ1∑
τ=τ0

βαT,kτ
ωT,kτ

≤ βη
√
ς

τ1∑
τ=τ0

ωT,kτ
<
βηκT

√
τ1 + 1

√
ς

.

Summing this bound with (60) then gives the second inequality of (59). The first results from
AS.8. 2

3.5 Normal complexity

We now exploit the bound on ωN,kν
stated in Lemma 3.7 to analyze the complexity of the subse-

quence of normal iterations. We first show that the sum of the norms of constraint violations is
bounded.

Lemma 3.10 Suppose that AS.0–AS.9 hold. Then, for any ν1 > 0,

ξ

ν1∑
ν=ν0

∥ckν∥ ≤
ν1∑

ν=ν0

ωN,kν < κN , (61)

where

κN = κgap + κtan log

(
1 +

κ2T
ς

)
. (62)

Proof. The bound (55) ensures that

ν1∑
ν=ν0

ωN,kν ≤ κgap + κtan log

(
1 +

Γkτ1+1

ς

)
, (63)

where kτ1 is the index of the last tangential iteration before kν1
. Substituting the bound (58)

in this inequality then gives the second inequality of (61), the first resulting again from AS.8.
2

This allows us to derive boundedness of a combined primal and dual criticality measure.

Lemma 3.11 Suppose that AS.0–AS.9 hold. Then, for any ν1 ≥ 0,

ξ

ν1∑
ν=ν0,kν ̸∈{kτ}

(
ωT,kν + ∥ckν∥

)
≤

ν1∑
ν=ν0,kν ̸∈{kτ}

(
ωT,kν + ωN,kν

)
< κN

(
1 +

κT
βη

)
. (64)

Proof. Using the switching condition (3) for kν ̸∈ {kτ}, we obtain that, for such kν with
ν ∈ {ν0, . . . , ν1},

ωN,kν
> β αT,kν

ωT,kν
. (65)

As in the previous lemma, let kτ1 be the index of the last tangential iteration before kν1
. Thus

using (58),

αT,kν =
η√

ς + Γkν

≥ η

κT
.
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Substituting this bound in (65), we find that, for ν ∈ {ν0, . . . , ν1},

ωN,kν
≥ βη

κT
ωT,kν

. (66)

With (61), this implies that

ν1∑
ν=ν0

ωT,kν
≤ κT
βη

ν1∑
ν=ν0

ωN,kν
≤ κN κT

βη
.

Summing this bound with (61) and using AS.8 gives (64). 2

3.6 Combined complexity

We finally assemble the pieces of the puzzle to derive our main result on the global rate of con-
vergence of the ADIC algorithm.

Theorem 3.12 Suppose that AS.0-AS.9 hold. Then, for any k ≥ 0,

1

k + 1

k∑
j=0

(
ωT,j + ∥cj∥

)
≤
κADIC,1√
k + 1

+
κADIC,2

k + 1
= O

(
1√
k + 1

)
, (67)

where

κADIC, 1 =
κT
ξ

(
1 +

βη
√
ς

)
and κADIC, 2 =

κN
ξ

(
1 +

κT
βη

)
.

Proof. Consider iterations of both types (tangential and normal) from 0 to k by defining
min[kν0

, kτ0 ] = 0 and max[kν1
, kτ1 ] = k (as in Lemma 3.7). We then obtain, by combining (59)

and (64), that

k∑
j=0

(
ωT,j + ∥cj∥

)
=

τ1∑
τ=τ0

(
ωT,kτ + ∥ckτ ∥

)
+

ν1∑
ν=ν0,kν ̸∈{kτ}

(
ωT,kν + ∥ckν∥

)
≤ κT

ξ

√
k + 1

(
1 +

βη
√
ς

)
+
κN
ξ

(
1 +

κT
βη

)
,

where we used the inequalities τ1 ≤ kτ1 ≤ k and kν1
≤ k. The bound (67) is finally obtained

by dividing both sides by k + 1. 2

Remarkably, Theorem 3.12 implies that obtaining an ϵ-approximate first-order critical point, that
is an iterate xk such that ωT,j+∥cj∥ ≤ ϵ, requires at most O(ϵ−2) iterations of the ADIC algorithm,
a complexity which is, in order, the same as that of steepest-descent and Newton’s methods on
unconstrained problems [5, Theorems 2.2.2 and 3.1.1].

4 Numerical illustration

We now illustrate the behaviour of three variants of the ADIC algorithm on problems from the
CUTEst [11] collection as provided in Matlab by S2MPJ [14]. All nonlinear optimization problems
in the collection involving general constraints and at most 200 variables were considered, leading
to a test set of 312 problems. The algorithmic variants are defined as follows.
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� The first variant (ADIC-LP) follows Section 2.1 and computes the dual criticality measure
and tangential step using the linear optimization subproblems (18) and (20), respectively.

� The second variant (ADIC-BK) again follows Section 2.1 and computes the dual criticality
measure using (18), but then uses the simple formula (21) to define the tangential step.

� The third variant (ADIC-PR) uses the projection approach of Section 2.2, in which the dual
criticality is given by (25) and the tangential step is defined by (26).

All three variants have been (trivially) extended to handle general lower and upper bounds on
the variables (instead of mere non-negativity constraints), thereby making them applicable to
general constrained problems (after transformation of inequality constraints into equalities and
the introduction of slack variables, if needed).

Because the variants use different criticality measures, a uniform (external) termination cri-
terion was implemented in order to enforce consistency in the comparison. For all variants, a
problem was considered solved as soon as

χT,k ≤ 10−4 and χN,k ≤ 10−5,

where χT,k and χN,k are defined in (17) and (15), respectively. Note that this accomodates
the (unfortunate but unavoidable) case where an infeasible minimizer of the equality constraint’s
violation is found (the bound constraints are satisfied throughout the algorithms). This situation is
excluded from our theoretical analysis by AS.8 but does occur in practice. A maximum number of
50000 iterations and a 3600 seconds time limit were imposed. Finally, the algorithmic parameters
were chosen as

ς = 10−5, η = 2, θT = 1, θN = 5, κn = 10−2 and β = 103.

We first report on a set of experiments in which the gradients used by the three variants were
exact. To summarize the results, we computed three performance statistics: efficiency in terms of
iterations, efficiency in terms of CPU time needed and reliability. The latter, which we denote by
”Rel” in what follows, is simply computed as the percentage of successfully solved problems. For
the two first efficiency statistics, we follow the approach of [18] and compute, for each variant, the
area below the relevant curve in a performance profile comparing the three variants, truncated at
a “ratio to best performance” equal to 10. The iteration-based statistic is denoted by “Iters” and
the CPU-based one by “Time”. Values of these statistics should be as close to one as possible.
Results are presented in Table 1. The corresponding iteration and CPU performance profiles are
shown in Figure 1.

Variant Iters Time Rel
ADIC-LP 0.54 0.57 68.27
ADIC-BK 0.43 0.48 61.54
ADIC-PR 0.61 0.59 71.15

Table 1: Efficiency and reliability statistics for three variants of ADIC on 312 constrained CUTEst
problems (noiseless gradients)

Table 1 and Figure 1 indicate that the projection-based ADIC-PR clearly outperforms both
ADIC-LP and ADIC-BK, on all 3 statistics. The dominance of ADIC-PR over ADIC-LP in CPU
time is however marginal, despite the fact that two linear optimization subproblems must be
solved at each iteration of ADIC-LP, against a single projection subproblem for ADIC-PR. The
ADIC-BK variant, which only requires the solution of a single linear optimization problem per
iteration, remains slower mostly because it typically needs more iterations than other variants per
successfully solved problem.

We finally show that our claim that OFFO methods are reliable in the presence of noise is
vindicated in practice. To analyze this, we considered the subset of our problems by keeping those
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Figure 1: Iteration (left) and CPU time (right) performance profiles for three variants of ADIC on
312 constrained CUTEst problems (noiseless gradients)

Variant 0% 5% 15% 25% 50%
ADIC-LP 81.78 74.55 72.85 73.14 72.73
ADIC-BK 74.09 69.11 67.11 65.77 59.37
ADIC-PR 89.88 77.79 74.82 72.57 67.19

Table 2: Reliability statistics for three variants of ADIC on 247 constrained CUTEst problems for
relative random Gaussian noise levels of 0%, 5%, 15%, 25% and 50% on the objective function’s
gradient

that were solved in the absence of noise by at least one variant, giving a set of 247 test problems.
We then added relative random Gaussian2 noise of increasing magnitude (5%, 15%, 25% and
50%) to the gradients of the objective function and ran each problem 20 times independently,
with χT,k ≤ 10−3 and χN,k ≤ 10−3. We then computed the total reliability of our three variants
on the resulting 4940 runs for each of the 5 noise levels. The results are presented in Table 2. They
show an impressive stability for increasing noise levels, and indicate that, in our view remarkably,
ADIC is capable of handling very substantial perturbations of the gradient of the objective function
(50% relative noise results in barely one significant digit in the gradient) for a reasonable accuracy
requirement. It is also interesting to note that ADIC-LP becomes marginally more reliable than
ADIC-PR for large noise levels.

5 Conclusions and perspectives

We have proposed a new OFFO algorithm for the solution of smooth optimization problems,
with excellent stability in the presence of noise on the objective function’s gradient. This ”trust-
funnel” algorithm uses adaptive switching between a normal step (reducing constraint violation),
and tangential steps (improving dual optimality), the latter being inspired by the AdaGrad-norm
algorithm [8, 22] for unconstrained problems. We have also provided a full analysis of the method’s
worst-case iteration complexity, showing that its global rate of convergence is, for problems with
full-rank Jacobians, identical in order to the (optimal) rate of steepest-descent and Newton’s
method on unconstrained problems. This also provides an evaluation complexity for evaluations
of the objective function’s gradient, because each iteration requires a single gradient computation.
Evaluation complexity for the constraint function and Jacobian is not direct and depends on the
algorithm used in the normal step. We have finally conducted illustrative numerical experiments

2With zero mean and unit variance.
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suggesting that the algorithm’s performance and reliability are satisfactory (although admittedly
not state-of-the-art) on noiseless problems, but that its reliability in the presence of significant
noise on the objective function’s gradient is very remarkable.

Many questions remain for further investigation, including the incorporation of second-order
information, should it be available, a component-wise version of the algorithm (closer to AdaGrad
as opposed to AdaGrad-norm) and a full stochastic complexity analysis. These topics are the
subject of ongoing research. Exploiting the independent structure of normal and tangential steps
to allow for specific preconditioning of the normal step and relaxing the full-rank assumption on
the Jacobians are also of interest.

Acknowledgement

Philippe Toint is grateful for the continued and friendly support of the APO team at Toulouse IRIT (F) and of
DIEF at the University of Florence (I).

References
[1] S. Bellavia, S. Gratton, B. Morini, and Ph. L. Toint. Fast stochastic second-order Adagrad for nonconvex

bound-constrained optimization. arXiv:2505.06374, 2025.

[2] A. S. Berahas, F. E. Curtis, D. Robinson, and B. Zhou. Sequential quadratic optimization for nonlinear
equality constrained stochastic optimization. SIAM Journal on Optimization, 31(2):1352–1379, 2021.

[3] R. S. Burachik, R. N. Gasimov, N. A. Ismayilova, and C. Y. Kaya. On a modified subgradient algorithm for
dual problems via sharp augmented Lagrangian. Journal of Global Optimization, 34:55–78, 2006.

[4] R. S. Burachik, A. N. Iusem, and J. G. Melo. A primal dual modified subgradient algorithm with sharp
Lagrangian. Journal of Global Optimization, 46:347–361, 2010.

[5] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Evaluation complexity of algorithms for nonconvex optimization.
Number 30 in MOS-SIAM Series on Optimization. SIAM, Philadelphia, USA, June 2022.

[6] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. Number 1 in MOS-SIAM Optimization
Series. SIAM, Philadelphia, USA, 2000.

[7] F. Curtis, D. Robinson, and B. Zhou. Sequential quadratic optimization for stochastic optimization with
deterministic nonlinear inequality and equality constraints. SIAM Journal on Optimization, 34:3592–3622,
2024.

[8] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimiza-
tion. Journal of Machine Learning Research, 12(7):2121–2159, 2011.

[9] Y. Fang, S. Na, M. Mahoney, and M. Kolar. Fully stochastic trust-region sequential quadratic programming
for equality constrained optimization problems. SIAM Journal on Optimization, 34:2007–2037, 2024.

[10] N. I. M. Gould, D. Orban, and Ph. L. Toint. Numerical methods for large-scale nonlinear optimization. Acta
Numerica, 14:299–361, 2005.

[11] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a constrained and unconstrained testing environment
with safe threads for mathematical optimization. Computational Optimization and Applications, 60:545–557,
2015.

[12] N. I. M. Gould and Ph. L. Toint. Nonlinear programming without a penalty function or a filter. Mathematical
Programming A, 122(1):155–196, 2010. See also [?].
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Proof of Lemma 3.1
We prove the five statements Lemma 3.1 for arbitrary x, y ≥ 0.

1. That c(x) is Lipschitz continuous with constant Lc = κJ directly follows from AS.4.

2. We have, from AS.3, AS.4 and AS.7 that

∥J(x)T c(x)− J(y)T c(y)∥ =

∥∥∥∥(J(x)− J(y)
)T

c(x) + J(y)T
(
c(x)− c(y)

)∥∥∥∥
≤ (κcLJ + κJLc)∥x− y∥

= (κcLJ + κ2
J )∥x− y∥,

yielding LJTc = max[1, κcLJ + κ2
J ].

3. Define A(x) = J(x)J(x)T . AS.5 then implies that A(x) is (symmetric) positive-definite with smallest eigen-

value bounded below by σ2
0 . As a consequence, λ̂(x) is well defined by (13).

4. Moreover, AS.2 and AS.4 then imply that

∥λ̂(x)∥ ≤
κgκJ

σ2
0

,

yielding κλ = κgκJ/σ
2
0 . We have also, using AS.4 and AS.7, that

∥A(x)−A(y)∥ ≤
∥∥∥∥(J(x)− J(y)

)
J(x)T + J(y)

(
J(x)− J(y)

)T ∥∥∥∥ ≤ 2κJLJ∥x− y∥.

from which we deduce that

∥A(x)−1 −A(y)−1∥ =
∥∥∥A(x)−1

(
A(x)−A(y)

)
A(y)−1

∥∥∥ ≤
2κJLJ

σ4
0

∥x− y∥.

We also have that

∥J(x)g(x)− J(y)g(y)∥ =
∥∥∥(J(x)− J(y)

)
g(x) + J(y)

(
g(x)− g(y)

)∥∥∥ ≤ (κgLJ + κJLg)∥x− y∥.

where we used AS.2, AS.4, AS.6 and AS.7. Therefore, using (13),

∥λ̂(x)− λ̂(y)∥ =
∥∥∥(A(x)−1 −A(y)−1

)
J(x)g(x) +A(y)−1

(
J(x)g(x)− J(y)g(y)

)∥∥∥
≤

1

σ2
0

(
2κgκ2

JLJ

σ2
0

+ κgLJ + κJLg

)
∥x− y∥,

yielding Lλ =
(
(2κgκ2

JLJ )/σ
2
0 + κgLJ + κJLg

)
/σ2

0 .

5. Finally, we obtain that, for any λ such that ∥λ∥ ≤ κλ,

∥∇xL(x, λ)−∇yL(y, λ)∥ =
∥∥∥g(x)− g(y) +

(
J(x)− J(y)

)T
λ
∥∥∥ ≤ (Lg + κλLJ ) ∥x− y∥,

yielding LL = Lg + κλLJ = Lg + κgκJLJ/σ
2
0 .
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