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Abstract

We study the Rectified Linear Unit (ReLU) dual, an existing dual formulation for stochas-
tic programs that reformulates non-anticipativity constraints using ReLU functions to generate
tight, non-convex, and mixed-integer representable cuts. While this dual reformulation guaran-
tees convergence with mixed-integer state variables, it admits multiple optimal solutions that
can yield weak cuts. To address this issue, we propose normalizing the dual in the extended
space to identify solutions that yield stronger cuts. We prove that the resulting normalized cuts
are tight and Pareto-optimal in the original state space. We further compare normalization with
existing regularization-based approaches for handling dual degeneracy and explain why normal-
ization offers key advantages. In particular, we show that normalization can recover any cut
obtained via regularization, whereas the converse does not hold. Computational experiments
demonstrate that the proposed approach outperforms existing methods by consistently yielding
stronger cuts and reducing solution times on harder instances.

1 Introduction

We consider a multistage stochastic integer program (MSIP) defined on a scenario tree T over stages
t=1,...,T. Each node n € T corresponds to a realization of uncertainty at a particular stage, and
the set of nodes at stage ¢ is denoted by N;. For any node n, let a(n) denote its unique ancestor, C'(n)
its set of children, and gy, the transition probability from node n to a child node m € C(n). At each
node n, a d,-dimensional state variable vector z, € X,, C R% connects successive stages, and a local
variable vector y, € Y, is specific to the subproblem at that node. The sets X,, and Y,, may include
integrality restrictions. Given the state 2,(,) inherited from its ancestor a(n), the feasible decisions

at node n are given by the polyhedron H,,(z4(,)) = {(mn, Yn) | T o(n) +Wnan +W oty = by }, where

T,, W,,,W,, are technology and recourse matrices, and b,, is a right-hand side vector of appropriate
dimension. The MSIP can then be formulated as:

min {fl(x1,y1)+ Y G Qula) (zl,yl)eHl(xo)ﬂ(Xlel)}, (1)

Z1,Y1
meC(1)



where for any node n, the associated value function is defined recursively as

Qn(xa(n)) - mInl;l fn xnayn Z dnm Qm xn) (23)
roen meC(n)
(Tn,yn) € Hn(xa(n)) (Xn x V). (2b)

The objective function f,, () is linear, and the initial state x¢ is given apriori. For final-stage nodes
n € Nr, the set of children nodes C(n) is empty, and the expected future cost Zmec(n) Grnm Qm (1)

is defined to be 0. The function Q,, : R — R U {+oco} takes value oo whenever the feasible
set Hy(Tq(n)) is empty; we denote by dom(Q,) the set of incumbent states x,,) for which the
subproblem (@),, is feasible.

Although MSIPs admit a deterministic equivalent mixed-integer programming (MIP) formulation,
the number of variables and constraints grows exponentially with the size of the scenario tree. This
quickly overwhelms off-the-shelf solvers and motivates the use of decomposition methods for large-
scale instances (see for comprehensive reviews).
A standard approach to decomposing the Value function @, (+), is to reformulate the subproblem (2)
as

Qn ('Ta(n)) = min Jn(Tn,Yn) Z Gnm Om, (3a)
Tn yYns2n,
(Om)mec(n) meC(n)
(Tn,yn) € Hy(zn) N ( Xy X Ya), (3b)
(Zn,0m) € epi(Qm), vm € C(n), (3¢)
Zn = Ta(n), (Sd)
Zn € Za(n) 2 Xa(n)7 (36)

where the set epi(Q,,) is defined as follows:

epi(Qm) = {(ma(m%am) € Rda(m) XR: Oy > Qm(ma(m))vxa(m) € dom(Qm)} (4)

When needed, we write epig(p) to denote the epigraph of function p restricted to the set S. For
instance, epigom(q,,)(@m) (or equivalently epi(Qm) on dom(Qy,)) denotes the epigraph in (4).

Because the value function @, (+) is not available in closed form, we approximate its epigraph epi(Q.,)
with a polyhedral set W,, which is iteratively refined by adding cuts of the form h?, (z,,0,) > 0.
At a given iteration 4, the inequality hf, (-,-) > 0 serves either as an optimality cut, yielding a
valid lower bound on Qm( ), or as a feasibility cut that approximates the domain dom(Q,,). In the
nested Benders’ method ( ), these cuts are computed by traversing the entire scenario tree,
whereas sampling-based variants construct them using subsets of scenario paths at each iteration

( : ; )-

To facilitate cut generation, it is common to introduce local variables z, together with copy con-
straints 2, = T,(n), and relax the domain with z, € Z,) 2 X,). For instance, Benders cuts
( ) can be derived from the optimal value of the linear programming (LP) relaxation of
subproblem (3) and the corresponding LP dual solution associated with the copy constraints (3d).
When the value function is convex polyhedral, it admits an exact representation using finitely many
Benders cuts (see for a review on classical Benders decomposition). In con-
trast, when decision variables are integer or binary, the value function @, (-) is typically nonlinear
and nonconvex ( ). For problems with purely integer or binary variables, sev-
eral specialized decomposition techniques have been proposed, including disjunctive programming
( , , ), Fenchel cuts ( ), and



parametric Gomory cuts ( , ). Additional structure has
also been exploited in other settings, such as when the value function is monotone (
) or Lipschitz continuous ( , ).

More recently, there has been growing interest in decomposition methods with convergence guaran-
tees for general MSIPs with mized-integer state variables. For example,

study scaled cuts and show that the associated scaled-cut closures converge uniformly to
the convex envelope of the expected recourse function. However, these cuts cannot be computed us-
ing scenario decomposition methods, and the computational performance of the multistage extension
( ) has not been tested.

In contrast, propose an alternative approach based on Lagrangian cuts derived
by solving the Lagrangian dual obtained from relaxing the copy constraints (3d). Unlike Benders
cuts, which only recover the LP relaxation of the value function, Lagrangian cuts can recover the
closed convex envelope ©@0(Q,) of @, (see and for
more details). Moreover, show that when the state variables are binary, Lagrangian
cuts are sufficient to ensure tightness for @),,, a property that, in turn, yields finite convergence of
the decomposition method. To ensure convergence with non-binary state variables,

propose encoding them with auxiliary binary variables. For continuous state variables, however, this
discretization can dramatically expand the state space, increasing the cost of solving the Lagrangian
dual and potentially making the problem computationally prohibitive (see ,

, for implementation details and discussion).

strike a middle-ground approach by ensuring convergence for general MSIPs
with mixed-integer state variables without inflating the state dimension. They propose the following
reformulation of subproblem (3)

Qn (xa(n)) = min fn(il?'rn yn) + Z dnm ema

Ondiecin mec(n)
s.t. (3b), (3¢), (3e), (5a)
(znk = Tak) ™ =0, (Znk — Za(myr)~ =0, Vk € [da(n)]- (5b)
The notation [dy(n)] denotes the set {1,...dq(,)}. The copy constraints in (3d) are written using
ReLU functions in (5b), where ()" := max{z,0} and (z)~ := max{—x,0}. These expressions

are linearized using auxiliary variables that remain local to each subproblem, thereby preserving
the state dimension. Relaxing the resulting copy constraints (5b) yields the ReLU dual, where the
number of dual variables is bounded by twice the state dimension. Notably, the authors establish
strong duality for this formulation, and the resulting ReLU-dual solutions can therefore be used to
generate tight cuts even with mixed-integer state variables, which ensures asymptotic convergence
for general MSIPs.

A related approach by also establishes asymptotic convergence for general
MSIPs. Instead of using ReLU-based copy constraints in (5b), they use the original copy constraints
Zn = Tq(p) in a lifted space. The ReL.U-based copy constraints in (5b) can be interpreted as inducing
a partition of the state space: along each dimension, the space is divided into regions to the left and
right of the incumbent point, and the overall partition is obtained via the Cartesian product across
all dimensions. The lifting procedure of generalizes this partition created by
iteratively introducing binary state variables and expanding the state dimension.

All dual-based cut-generation schemes—whether based on the LP dual (as in classical Benders
decomposition), the Lagrangian dual ( ), the ReLU dual of , or the
lifted Lagrangian dual of —share a common challenge. They admit multiple



optimal solutions, some of which can generate weak cuts. For instance,
show that coefficients of integer L-shaped cuts—known for their weak global approximation and
resulting slow convergence—are one of the optimal solutions to the Lagrangian dual.

In the LP-dual/Benders setting, this issue has been studied extensively, and a range of alternative
cut-generation rules has been proposed to mitigate weak cuts and improve separation.
introduce a two-step procedure to obtain Pareto-optimal Benders cuts.

introduce a unified cut-generation framework, which yields both feasibility and optimality cuts
through a single separation problem, and admits methodological flexibility in identifying unbounded
rays for cut generation through the choice of normalization. Different normalization choices can yield
cuts that are deep ( ) and facet-defining or Pareto-optimal (

. extend the work of to the Lagrangian

dual of the mixed-integer subproblems to obtain Lagrangian cuts with desirable properties.

For more general duals—such as the ReLLU dual and the lifted Lagrangian dual—
, propose mitigation strategies that extend the ideas of
to their formulations. These strategies can be viewed as dual regularization: they seek
to characterize the set of all optimal dual solutions and then select those that yield stronger cuts by
optimizing a regularized objective over this set. The modified objective includes additional terms
involving the dual variables, weighted by appropriately chosen objective coefficients. In particular,
approximate the set of optimal dual solutions using a linear program. They
derive objective coeflicients so that the regularized dual remains bounded. The cut-generating LP is
computationally efficient but often results in weak cuts. In contrast, characterize
the set of optimal dual solutions exactly using a convex program. They propose objective coefficients
that lead to cuts that are both tight and Pareto-optimal in the lifted space.

In this work, we propose an alternative approach to mitigating weak cuts resulting from dual degen-
eracy in methods designed for mixed-integer state variables. Our approach is based on normalization
of the ReLU dual. This approach was introduced by for the Lagrangian dual
obtained by relaxing copy constraints z, = Z4(,) in MIP subproblems. In the normalized dual,
additional constraints are imposed on the dual variables, which are shown to address the weakness
of the original Lagrangian cuts arising from dual degeneracy. However, the original Lagrangian cuts,
based on relaxing original copy constraints z, = Z4(y), only guarantee convergence when the state
variables are binary ( ). We extend the concept of normalization to the ReLU-based
dual setting to ensure convergence with mixed-integer state variables and to obtain strong cuts.

We focus on the ReLU dual rather than the lifted dual of because the latter
introduces binary variables directly into the state space. This can lead to a significant expansion
of the state space, substantially increasing the computational effort required to solve the lifted La-
grangian dual and generate the corresponding cuts. In contrast, the ReLU dual introduces auxiliary
binary variables only as local variables to the subproblem, keeping the number of dual variables
bounded by twice the state dimension in each iteration. This makes solving the dual significantly
more efficient than the lifted approach. In our computational study, we observe that the time to
solve the dual and the average number of dual iterations both increase with the state dimension. We
also study the relationship between normalization and regularization and explain why normalization
offers important advantages. In particular, we show that normalization can yield tight, Pareto-
optimal cuts. To this end, we introduce a notion of Pareto-optimality defined in the original state
space for non-linear ReLU cuts and prove that normalization yields Pareto-optimal cuts under this
definition. Importantly, normalization provides additional flexibility: cuts need not be both tight
and Pareto-optimal simultaneously. By appropriately choosing the normalization coefficients, one
may enforce both properties, but this is not required. In contrast, the enhancement strategy pro-
posed by always produces cuts that are both tight and Pareto-optimal. This



lack of flexibility can lead to weaker overall approximations of the value function, a behavior that
we also illustrate in our computational experiments.

The main contributions of this paper are as follows:

1. We extend the normalization framework of to the ReLLU-based Lagrangian
dual of . This extension ensures asymptotic convergence for multistage
stochastic integer programs with mixed-integer state variables while producing strong cuts.

2. We show that normalization resolves the issue of weak cuts resulting from degeneracy in the
ReLU dual and identifies solutions that yield strong cuts. The strength of the cuts is established
from two perspectives:

(a) We introduce a notion of Pareto-optimality defined in the original state space for non-
linear ReLLU cuts, and prove that normalization produces Pareto-optimal cuts under this
definition.

(b) We prove that there exists a choice of normalization coefficients that yields tight cuts at
the current incumbent. Our existence result also provides insights into selecting these
coefficients to obtain tight cuts.

3. We analyze the relationship between normalization and regularization for obtaining strong
cuts. We show that any cut obtained by regularization can also be obtained by normalization,
though the converse is not true. While we establish this relationship in the context of the ReLU
dual, it has broader implications. For classical Benders cuts, previous work (

, ) shows that both normalization and the regulariza-
tion framework of can attain Pareto-optimal cuts. However, when
multiple such cuts exist, it is unclear whether normalization can attain the same cut as regu-
larization. Our result resolves this question and proves a stronger claim: with an appropriate
choice of normalization constraints, the coefficients of any Pareto-optimal cut obtained via a
regularization method are also optimal in the normalization dual.

4. Finally, we provide a computational comparison of normalization and regularization approaches,
showing that normalization consistently yields stronger cuts, while computational times im-
prove for harder instances that cannot be effectively approximated by the weaker Benders
cuts. We also make our code publicly available. To the best of our knowledge, it is the first
open-source implementation of a cut-generation method with (asymptotic) convergence guar-
antees for general MSIPs. The code supports strong cut generation via both normalization
and regularization, among other enhancements such as the alternating cut strategy of

The remainder of this paper is organized as follows. In Section 2, we introduce normalization of the
ReLU dual and prove that the resulting cuts are tight and Pareto-optimal. Section 3 revisits recently
proposed regularization-based approaches and discusses their connection to normalization. Section
4 presents a computational comparison of normalization and regularization across two classes of
problems. Finally, Section 5 summarizes our contributions and discusses directions for future work.



2 Normalization of the Dual Formulation

2.1 ReLU Dual and ReLLU Cuts

We first review the ReLU dual and the associated ReLU cuts introduced by .
Given an incumbent solution Z,(,), cuts are obtained by relaxing the copy constraints (5b), which
leads to the following Lagrangian relaxation:

ER(TFJF T, a(n)) ; IEHZIH Qn(zn) + Z Wik(znk - ia(n),k)+ + Z Tr;k(znk - i‘a(n),k)iv
nEsem k€lda(m)] k€[da(n)]
(6)

where the approximate value function @ is obtained by replacing epi(Qm) in (3c¢) and (ba) with
an approximation W¥,, iteratively obtained from the cut- -generation process. The corresponding
Lagrangian dual problem is given by:
max ‘Cf(ﬂ-:a 777:; i‘a(n)) (7)
i €R%e(m)
We refer to this problem as the ReLU dual and use the superscript R to denote expressions associated
with this formulation.

For any choice of dual multipliers 7,7, 7, € R a ReLU cut that is valid for the epigraph

epi, . (Q,) is given by

On > L (7 70 3 Ba(n)) — Z T ok — Zagmya) T — Z Tk (Znk — Zay k) - (8)
k€lda(m)] k€[da(n)]

a(n)

show that strong duality holds for the ReLU dual (7) under standard assumptions.
Strong duality guarantees that a cut generated at the current incumbent is tight. A key advantage
of the ReLU-based copy constraints is that they enable the construction of tight cuts even when
the state variables are mixed-integer. As a result, the approach ensures asymptotic convergence for
general mixed-integer stochastic programs with mixed-integer state variables.

The authors further discuss a linear reformulation of the ReLU cut (8). This reformulation models
the ReLU functions (znx — Ta(n),k)T and (Znk — Tq(n),)” implicitly through auxiliary continuous
variables w:{ o> W, and binary variables ;. In particular, given known bounds on the state variables
Znk € [0, Bg], the ReLU cut can be expressed as the following MIP formulation:

0, > LE(nt w7 Ta(n)) Z mhwt, — Z oW (9a)
k€[da(m)] keldan)]

w:k — 7k = Znk — I a(n),ks Vk € [da(n)}, (gb)

0<wh e < (B — Ta(n) k) Tnk, Vk € [do(m))s (9¢)

0 < wpp < &g(nyk(l — rok)s Vk € [dam)], (9d)

€ {0, 1}dam, (9e)

This reformulation reveals an important connection between ReLLU cuts and the original Lagrangian
cuts in a lifted space, which we discuss in the next section.

For the rest of the paper, we make the following basic assumptions. First, we assume that sets
X, and Y,, are compact, and all problem data are rational. This ensures that feasible region



Hy(24(n)) N (X x Yy,) is compact for all 2,y € Rem) . Moreover, under this assumption, the set
X, can be shifted such that all state variables satisfy z,x € [0, Bg]. The data are assumed to be
rational to ensure finite MIP-representations and because the convex hull of any MIP-representable
set defined by rational data is a rational polyhedron ( ). Second, we assume that the
domain of the value function satisfies dom(Qn) = Z,n) = [[,[0, Bx]. Together with (3e), this
property guarantees relatively complete recourse, a standard assumption in stochastic programming.
This requirement can always be enforced by adding continuous variables to polyhedron H, and
penalizing them in the objective. The set Z,(,) is typically taken as a superset of X,(,) to reduce
the computational effort in solving the dual problem, but this choice affects the strength of the
resulting cuts. For example, in , binary restrictions on state variables are relaxed to
the interval [0, 1]. We refer the reader to for a detailed discussion of the various
options for choosing Z,(,) and their implications.

2.2 Connection with the Original Lagrangian Cuts

To establish the connection between ReLU cuts and the original Lagrangian cuts, we lift the domain
Zq(n) of the value function @, to a higher-dimensional space. Given an incumbent solution 4(p),
we define the lifted domain as:

Z = {(w},wy) : 3z € Zy(ny and Fr,, € {0,110 5.8, (9b) — (9d)}. (10)

Za(n)
This lifted space corresponds to the auxiliary variables (w;",w; ) used in the linear reformulation
(9) of the ReLU cut. On this lifted space, we redefine the recourse function as:
Q;(w;f,w;;f&a(n)) = Q, (Za(n) + wl —wy). (11)
Note that Q'n (0,0;Z40n) = Qn (Z4(n)), which allows us to reformulate the subproblem Q;(O, 0;Za(n))
with the standard copy constraints:

Q:z(o’ 0’ ja(n)) = min Q:z (w;:7 w;v ja(n))

Wa, , Wy
st (wy,w,) = (0,0), (12)
— lift
(’LU;:_, W, ) € Zcizj(n) '

By relaxing the copy constraints (12), we obtain the following Lagrangian relaxation:

! (T = 4 + - wy
Qn(wn y Wy, 7xa(n)) + (7Tn y T ) ! w= (13)

O(+ ——. - — i
‘Cn (7Tn y Ty 7xa(n)) ‘= min W
n

T
Wn, ;Wn,

st (whwy) e ZHt

Ta(n)'

The superscript O in £ denotes the original Lagrangian relaxation obtained by relaxing the copy
constraints (12). The corresponding Lagrangian dual problem is:

o 23 ue) ) () (14)
For any dual multipliers (7", 7, ), the resulting Lagrangian cut takes the form:

+
0 > LO(nF 7= Fagm) — (mFr77) - (w) (15)

Wy,

This transformation establishes the following key relationship:



Proposition 1 ( ). The ReLU Lagrangian cut (8), generated at Z 4y for epiz, . (Q") ,
corresponds to Lagrangian cut (15) generated at (0,0) for the lifted set epi iz (Q;(7 -;ia(n)))-

Za(n)

Moreover, with optimal dual multipliers obtained by solving the ReLU dual (7), the Lagrangian cut
(15) is tight at (0,0) with respect to the lifted value function Q;(, 5 Za(ny)-

Although this result is stated without proof in the original paper, we provide a proof in Appendix A
for completeness. The main takeaway of Proposition 1 is that any optimal solution of the ReLU dual
(7) is also optimal for the lifted Lagrangian dual (14) and vice-versa. This means that properties of
the original Lagrangian cuts can be applied to the transformed problem Q:l over the lifted domain
lift

i‘a(n) '

2.3 Normalized ReLU Dual and Normalized ReLU cuts

Proposition 1 enables us to apply the normalization procedure of to the trans-
formed subproblem Q:L in (11), domain ng( t), and incumbent (0, 0). More precisely, given incum-
bent solution (0,0) to subproblem Q’n and approximation 0,, of the subproblem cost, we consider
the following feasibility version of the subproblem Q;(O, 0;Zo(n)):

v,,((0,0),6,) :=min 0

Q;(w:a UJ;, i‘a(n)) < én (16&)
(wyy,wy, ) = (0,0) (16b)
(wh, wy;) ez

Next, a normalized dual is obtained by dualizing the constraints (16a) and (16b) with the correspond-
ing dual variables 7,0 € R and 7\, 7 € R respectively, and adding a constraint normalizing
the dual variables. In particular, consider the following dual problem:

Qq]XD((O’ 0), én) ‘=  max (ﬁn(w:{,wg,wno;:ﬁa(n)) —(mF, ™) (8) — Wn()én> , (17a)

4+
Tn sTn ,Tno

gn(ﬂ-;l_vﬂ-;a 7Tn0) <1,my0 =0, (17b)

where function g, (77, 7, my0) in the normalization constraint is of the form w; mF +u_ 7 +unomnro,
where u.l, u,, U, are given normalization coefficients, and the Lagrangian relaxation £, (7", 7., Tno; Zo(n))
is given as follows:

+ .
‘cn(ﬁy—i_aﬂ-;aﬁno;i‘a(n)) = Tini{(ﬂ-;rﬂ.r;) (Zn) + Tho (Q;(w:{vw;7ia(n))) ,(wj;,w;) S Z“ft }

Za(n)
Way Wy n

In Section 2.4, we discuss how to choose the normalization coefficients u,}, u,, ,u,o to obtain cuts
with desired properties.

Based on an optimal solution (7,5, %, ,#,0) of the normalized dual (17), the resulting normalized
cut is

. ih oAl o~ At A w;h

7Tn00n > ‘Cn(ﬂ—:a W;v Tno; xa(n)) - (,/T;fa ﬂ-;) wri . (18)



The validity of cut (18) for epiyuise (Q;) follows from Lemma 3.7 of . It is easy

Fa(n)

to see that this validity implies that the associated ReLU cut

’frn()en > »Cn(ﬁ—;:a 7};7 ’ﬁ—nO; ‘%a(n)) - Z Wik(znk - ja(n),k)+ - Z W;k(znk - fi‘a(n),k)_a (19)
ke[da(n)] k€lda(n)]

is also valid for the set epiy, ot )(Qn) Now, consider the incumbent (Z4(y), én) in the original space
such that 6, < Q, (Ta(n)) = Q;(0,0;fca(n)). Then, we seek a cut of the form (18) to cut off this
incumbent. Our next result establishes that such a cut always exists.

Proposition 2. If 6, > Q (Zam)) = Q;(0,0;ia(n)) then vNP((0,0),6,) = 0. Otherwise, there
exists a cut of the form (18)1 such that the incumbent ((0,0),0,,) violates this cut. In the original
space, the incumbent (Lq(n),0n), violates the corresponding ReLU cut of the form (19).

Proof. We prove the two statements separately. First, we suppose that 0, > Q;(0,0;i:a(n)) and

show that vNP((0,0),6,) = 0. Let @(f) denote the closed convex envelop of function f and co(f(y))
denote the function ¢o(f) evaluated at y.

Since the closed convex envelope satisfies @(Q;((O, 0); a?a(n))> < Q;(O, 0; Z,4(n)), we have ((0,0), én) €
epiz{if't (w(Q;(a ) ﬁja(n)))) .

Zq(n)

Now, note that the normalization function g, of the form w}m " + u, 7, + wnomno is homogeneous.
Therefore, by Lemma 3.14 of , we obtain v ((0,0),0,,) = 0.

Next, suppose that 6, < Qn(:%a(n)) = Q’n(o, 0;Z4(n)). By Theorem 3.5 and Remark 3.13 of
, it suffices to show that 6,, < @(Q;((O, 0); ;i“a(n))), because then there exists a normal-

ized Lagrangian cut of the form (18) that separates the incumbent.

To this end, Theorem 3.13 of implies that @(Q;((O, 0); xa(n))) Q (0,0;24(n))

left
a(n)
A€ (0,1) and let (v}, v]), (va,v5) € Zga{i) satisfy A(vi,v7) 4+ (1 — A)(v5,vy) = (0,0). With

known bounds on state variable x,,; € [0, B],k € [dq(n)], the domain Z?a{i) - Rf(") X Ri‘l("), SO

whenever (0,0) is an extreme point of We now verify that (0,0) is an extreme point. Let

all components of v}, v, v3",v; are nonnegative. The above convex-combination equality therefore

forces (vi,v7) = (v§,v5) = (0,0) proving that (0,0) is an extreme point of Zizf(t)

E(Q;((O, 0); i‘a(n))> = Qn(O, 0; Z,(n)) and since 0, is strictly smaller than this value, a separating

Consequently,

normalized cut exists.

Using linear reformulation in (9b)-(9e), this translates to a ReLU cut of the form (19) that cuts-off
the incumbent (Z,(y), 0n). O

In , the existence of a separating normalized Lagrangian cut is established
under the condition (i‘a(n),én) ¢ epiz, (@(Qn)) Proposition 2 strengthens this by showing

that, a normalized cut of the form (19) exists whenever (ia(n),én) ¢ epiz, (Q,)- Consequently,
normalized ReLU cuts preserve the separation property needed for asymptotic convergence.



2.4 Normalization Coefficients and their Impact on Cut Quality

In this section, we discuss how to choose the normalization coefficients u;,u,, and wu,o in the
normalization constraint (17b). This choice impacts cut quality, which we evaluate through two
properties: Pareto-optimality and tightness at the incumbent. We first study these properties in the
extended space and then translate the results back to the original state space.

2.4.1 Pareto-optimal Cuts

The concept of Pareto-optimal cuts is introduced in for affine cuts.

Definition 1 (Pareto-optimal affine cut). A cut of the form 6, > ¢* — (7') T2, (,) dominates the cut
O, > 02— (72)T Taeny if O*—( HT Ta(n) = 02— ()7 Ta(n) for all xq(ny € Xoen), with strict inequality
for at least one point in X,,). A walid cut is Pareto-optimal for reference set eplXa(n) (Qn) if no
other valid cut dominates it.

Pareto-optimality is always defined relative to a reference set. Importantly, while establishing Pareto-
optimality on a larger set such as epicqn,(x, (n))(@(gn)) may be easier, it does not guarantee Pareto-
optimality on the original epigraph epiy . (Qn) We refer the reader to Figure 3.4 and Figure 3.5
of for an example depicting the importance of the reference set in the definition of
the Pareto-optimal cuts.

We now apply this concept to the normalized (and linear) cut (18) in the extended space. Our goal is
to identify the choice of normalization coefficients u,", u., u,0 in constraint (17b) that yields Pareto-
optimal cuts. The following result provides this characterization. Throughout, relint(-) denotes the
relative interior of a set.

Proposition 3. For all (u;,u,, ,uno) € relint (epi(@(QiL(, 3 Zqwmy))) — (0,0, én)>, any optimal so-

lution (7%, 7, , Tno) to the normalized dual (17) with 7,0 > 0 defines a Pareto-optimal cut of form

(18) for the reference set epi(@(gg(y 5 Za(n)))) on conv(Zl’af(i))

The proof follows immediately from Theorem 3.25 of . In the standard literature,
normalization coefficients that yield Pareto-optimal cuts or satisfy the requirement in Proposition
3 are referred to as core points. While identifying core points remains a challenge and typically
requires solving an additional MIP subproblem ( ,

), we show that when the incumbent solution &, satlsﬁes 0 < Zan)k < Bi
for all k € [dq(n)], a core point can be constructed efficiently without additional subproblem solves,
as shown below.

Proposition 4. Suppose that the incumbent solution &,y satisfies 0 < Zqny,k < Bg for all k €
[da(ny]. Then any point (u),u,, , uno) with

(ut,,u, =ul,) € relint (conv{(O,O)7 (Bk = Za(n), k> 0), (0, ﬁa(n),k)}) (20)
for all k € [dyny], and uno € (Qn(fca(n)) — én,oo), defines a core point, that is, (ul, u,  uno) €
relint (epl(@(Q;(v " :i'a(n)))) - (Oa 0, en)) :

Proof. Consider any coefficients (u,},u,, ,uno) satisfying condition (20) with ung € (Q (Za(n)) —
0, 00). We prove that (u;},u,, ,un0) € relint (epi(ﬁ(g’n(.v S a(ny))) — (0,0, Gn))
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Since Q/ (+y 5 Za(n)) is defined on Zi’f(t) @(Q;@ 3 &4 (n))) is defined on conv(Zi”c(t )) Thus, it suffices

to show that (u},u, ) € relint(conv(Z lfi))) and upo > TO(Q' (uf, 1y Za(ny)) — O,

We first show that the chosen w,},u, satisfy the relative interior requirement. To this end, we
analyze the lifted domain Zélaf( i) defined in (10). For notational simplicity, we denote Z¥ := th t

La(n)
and Z := Z,(y) in this proof. Since Z = [],[0, Bx] under the assumptions made in Section 2.1, we
can decompose Z dimension-wise. Define ZL for k € [da(n)] as follows:

Zk = {(w}, wh,w ) s 32k € [0, By and Iy, € {0,1} s.t.
W = W = Znk — Za(n) k>
0 < wrtk < (Bk - ‘%a(n),k){rnka

O S w;k S ja(n),k(l — Tnk)}-

Now, we can write ZL = Mreia, ) ZE. This implies that

conv(zZl) = H conv(ZF). (21)
k€[da(n)]
This further implies that relint(conv(Z%)) = [T o] relint(conv(ZF)). Now, it is easy to see that

conv(ZL) is the convex hull of points (0,0), (B — &,k,0) and (0,2,%). The given (u),,u,,) in (20)
thus belongs to relint(conv(Z{)). Consequently, the entire vector (u,'},u,; )refa defined in (20)
belongs to relint(conv(ZL)).

a(n)]

Next, we establish the second requirement: u,o > to(Q ;L(u y U3 Ta(n))) — 6, Since Q (0,0;Z4(,)) =
Qn(:ia(n)) and the closed convex envelope satisfies CO(Q’n(uTJ{, o a(n))) < Qn( oun; i (n)), we
have

@(Q:L(u:au;;i'a(n )) é SQ ( Uy, naxa(n)) 0n
=Q, (Zan) + ul — ) — 0,

The second equality follows from the definition of Q; in (11). Since uf = u;, componentw1se we have
To(n)FUt —Uy, = Zq(n), 50 Q, ( () Fut —u, ) = Qn(ia(n)). Therefore, co(Q’ (un U xa(n)))fﬂn <

Q (:Ua(n )— 0,,. Since upo € (Q (xa(n))—Qn, 00), we conclude that u,o > Co(Qn(uj{, Uy s Ta(n))) —én,
completlng the proof.

The advantage of Proposition 4 is that it provides a computationally efficient way to obtain a
core point when the incumbent solution does not lie on the boundary. Specifically, the scalar u,g
can be computed directly from Q (Tq(n)), which is readily available, without requiring additional
subproblem solves. For incumbent solutions that lie on the boundary of the feasible region, we
discuss our approach for deriving a core point in the computational results section.

Having established Pareto-optimality of the normalized Lagrangian cuts in the extended space
(Proposition 3), we now investigate the implications of this property in the original space. To-
wards this end, we consider the following definition of Pareto-optimal cuts.

Definition 2 (Pareto-optimal h-cut). A cut of the form 0, > h(zqn); 0", 7") dominates the cut
0, > h(ma(n);gg,ﬂj) if h(ma(n);fl,ﬂl) > h(xa(n);fz,ﬁ2) for all 4,y € Xoeny, with strict inequality
for at least one point in X,(n). A valid h-cut is Pareto-optimal for reference set epiXa(n) (Qn) if no
other valid h-cut dominates it.
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Note that Definition 2 generalizes Definition 1 of Pareto-optimal linear cuts. For a given incumbent
Zqa(n), the function h of interest is:

_ 1 _ .
h(xa(n); Trj;a Ty 771'”0) = TO (‘cn (W:’ Ty s Tno; xa(n))

= Y @k = Famr) T D Tok(@am —i“a(n),k)_) (22)

k€[da(n)] k€(da(n)]

The cut 6, > h(zqn); T, 7, , Tno) is equivalent to the ReLU cut (19) in the original space. This
formulation allows us to define Pareto-optimality for all valid ReLLU cuts at a given incumbent.

In defining Pareto optimality, it is essential to specify the reference set over which Pareto optimality
is attained. In our setting, the reference set of interest is defined as follows:

Hp = {($a(7L)a 011) Ta(n) S COHV(Za(n))a
On = W(Ta(n); T Ty s o), Vet € R0 0 > 03 (23)

ny»'n

Both function h and set H,, depend on the incumbent Z,), although we omit this dependence from
the notation for brevity. The set H, can be interpreted as the epigraph generated by adding all
ReLU cuts of the form (19) for a fixed incumbent Z,¢,). We depict an example of the set #,, in
Figure 1.

5
Q, (Tam))
41 > T O =3 = (Tam) = 1) = (Tam) = 1)~
s === 0,=1+ (xa(n) — 1)+ + (xa(n) — 1)_
7 Hy,
P ]
3 e
0, < '/'/
2 K ]
N Rd N
. p
N\ .7
1 . v
0 ‘
0 1 2 3 4
La(n)

Figure 1: The solid (grey) line depicts Qn(aca(n)), a piecewise-linear function. The domain Z,) =
[0,4] and the shaded region shows the epigraph H, at incumbent Z,(,) = 1. Two ReLU cuts are
shown: 0, =3 — (za(n) — 1) — (24(n) — 1)~ (dotted line) and 6, = 1 + (z4(n) — 1)T + (Zo(n) — 1)~
(dashed line). These cuts are obtained using different normalization coefficients, and their epigraph
intersection equals H,,. Observe that epi(Q ) C H, < epi(co(Q )).

We now establish a useful property of the proposed cut with respect to this new notion of Pareto
optimality.

Proposition 5. Let Z4(,) be the incumbent solution and function h be as defined in (22). For all
points (ul,u, ,ung) that belong to relint (epi(@(g’n(.7 S a(ny))) — (0,0, én)), any optimal solution

(70,5, 7 7o) to the mormalized dual (17) with T,0 > 0 defines a Pareto-optimal h-cut of form

12



On > h(Za(n): T30, 7y s Tno) for reference set Hy,. Further, we have H, C epiconv(za(n))(@(gn)), and
’Lf CO(Qn)(xa(n)) < Qn(ja(n)); then Hn g epiconv(Za(n))(ﬁ(Qn))'

Proof. Consider the dual problem (17) with normalization coefficients
(u),u  upo) € relint (epi(@(g;(.7 i Zam))) — (0,0, én)) .

Let (7,5, %, , fno) be an optimal solution of the dual problem with 7,9 > 0. Assume, for a contra-
diction, that the resulting ReLU cut,

On > h(xa(n); ﬁ-:a ﬁ';, ﬁ-no) (24)

is not a Pareto-optimal h-cut for H,,. This implies that there exists different set of dual variables
(7, 7 Tino) with 7,9 > 0, such that the cut

On > h(xa(n)’ ﬁ:a ﬁ—;v T 0) (25)

dominates cut (24) for (z4(n),0n) € Hn. Now, reformulating the ReL U functions, we can represent

cuts (24) and (25) in the form (18), in the extended space lef ' . Specifically, we reformulate (24)
as:

1 P S oy (W
0n > — En(ﬂnyﬂn,ﬁno;%(n))—(7Tn77Tn) i . (26)

wt
en Z = (En(ﬁ-;:7ﬁ-;;ﬁn05i‘a(n)) - (ﬁ-’r—i—aﬁ-;) ( n)) . (27)

We show that if cut (25) dominates (24) on H,,, then cut (27) dominates cut (26) in the extended
space epi(@(Q;(-, 3 ®q(n)))) on conv(lef(t ). This contradicts Proposition 3, which states that cut

(26) is Pareto-optimal on conv(Zi’f(t))

Since, the set Z,,) = er[da(n)] [0, By], we consider points 4, € er[da(n)]{o, Zo(n), ks Br} C Za(n),
where er[da(n)]{O,ia(n),k,Bk} denotes the cartesian product of the set {0, Zq(n)k, Bx} across all
dimensions k € [dy(y,)]. Furthermore, since cut (25) dominates cut (24) on H,,, by definition of H,,

the dominance will also hold over er[da(n)]{O, Tq(n),k> Br}. In other words:

h( La(n); ﬂ—:{a T 77Tn0) 2 h( La(n)s 7T:Lra T, 77Tn0)a an(n) € H {O, i'a(n),ka Bk}' (28)
k€[da(n)]

Next, for i € [2d, ()], let € € R*@a() denote the i*" unit vector, i.e., the vector whose i*"

equals 1 and whose remaining components are zero. We index the coordinates of R?% so that,
for each k € [dy(n)], the k'™ component corresponds to the variable w;,, while the (dy,) + k)"
component corresponds to the variable w,_ .

component

In addition, define scalars v; for i € [2dy(,)] by

v = B — i‘a(n)Jm Vdy(py+k *= i‘a(n),k; Vk € [da(n)]

13



Now, consider all points {v;e'},i € [2d4(y)]. Clearly, they belong to the set Z?f(i) and, therefore, also

to the set conv(ZgHii’)). Under the mapping (9b), these points belong to er[da(n)]{o, To(n),k> Br} in
the Z,(,) space. Furthermore, for these points, the right-hand side of (26) and (27) match with right-
hand side of (24) and (25), respectively, on the corresponding points in er[da(n)]{o,fca(n)’k, By}
Owing to domination relation in (28), this implies that cut (27) dominates cut (26) on points
{viei},i € [2d,(n)] in the extended space. Now, due to the decomposition relation established in

(21), we know that conv({viei}iepda(")]) = conv(ng(t)). This proves that cut (27) dominates cut

(26) on entire conv(Zl;a]: i)) This contradicts Proposition 3, hence our original claim in Proposition
5 is true.

Now, we prove the second part of the proposition which states that set H,, C epicony(z, (n))(@(gn))

and if ©0(Q, )(Za(n)) < @, (Za(n)); then Hy C epieony(z,,,)(€(Q, ). According to Proposition 4 of

, any tight Lagrangian cut derived in the original space, from the Lagrangian

dual obtained by relaxing the standard copy constraints, is a ReLU Lagrangian cut (8) with

LE(xk 7 To(n)) = Q (%4(n)). More generally, the same proof works in showing that any normal-

ized Lagrangian cut derived in the original space can be expressed as a normalized ReLU Lagrangian

cut. This implies that the set H,, defined in (23) also consists of normalized Lagrangian cuts (linear
cuts obtained in original space). From Theorem 3.5, Remark 3.13, and Lemma 3.14 of

, the collection of all normalized Lagrangian cuts recovers the epigraph epiony(z, ,,)(€0(Q,))-

It therefore follows that #H, with linear Lagrangian cuts and additional non-linear ReLU cuts is a

subset of epiconv(za(m)(@(Q ).

—n

Next consider the case when €0(Q ) (Za(n)) < @, (Za(n)). We know that point (Z4(n),0(Q, )(Za(n)))
belongs to epiconv(za(m)(@(gn)). Since, €0(Q ) (Za(n)) < Q,,(Za(n)), We also know that there exists
a ReLU cut that violates this point. So, this point does not belong to H,. This proves that

Hn g epiconv(Za(n))(@<Qn)>' -

Note that if we do not employ ReLLU copy constraints and instead use the standard copy constraints,
then normalizing the respective dual yields linear Lagrangian cuts. As shown by

such cuts can attain Pareto-optimality only with respect to the epigraph epi,q,,(z, ) (@(Qn)

Since the set H,, is a strict subset of this epigraph, Proposition 5 establishes that the nonlinear ReLLU
cuts achieve a stronger notion of Pareto-optimality than the linear cuts derived by normalizing the
standard Lagrangian dual.

2.4.2 Tight Cuts

In discussing tight cuts, it is important to distinguish between two notions of cut strength that
are often conflated in the literature. The first is tightness at incumbent solution: a cut is tight
if it matches the cost-to-go function Qn exactly at the current state variable solution. Under this
definition, several families of cuts—including ReLU cuts obtained by solving dual (7)—are tight.
For instance, A-shaped cuts (see , ), which extend classical
L-shaped cuts to mixed-integer state variables and are obtained by imposing w7 = =, in (7),
are also tight at the incumbent. Tightness is a convenient sufficient condition for convergence—if
one generates a tight cut at every iteration, asymptotic convergence follows. It is not, however, a
necessary condition. Proposition 2 establishes asymptotic convergence without requiring tightness
at the incumbent.

The second notion is global approximation quality: a cut is globally strong if it yields strong lower
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bounds not only at the incumbent but also across the feasible region. A-shaped cuts are typically
weak in this sense, since their approximation can be weak away from the incumbent (see compu-
tational studies of integer L-shaped cuts ( , ) and of
A-shaped cuts ( ) for reference). For this reason, the Pareto-optimality concept
introduced in the previous section provides a more meaningful measure of approximation quality.
In this section, we study how to select normalization coefficients to obtain ReLU cuts that are tight
at the incumbent while also being Pareto-optimal over the domain.

Proposition 6. There exists an e-ball B.(0,0), around (0,0) in extended space conV(Zéif(:)) such

that for normalization coefficients (w}, u, ,uno) satisfying:

(u)},u;,) € B:(0,0) N relint(conv(Zilf(i)))

Upo 2 Q (un s Up s xa(n)) O,

an optimal dual solution (7,5, 7, , 7ino) to (17) with 7o > 0 defines a tight ReLU cut at the incumbent
solution Ty, that is, %0 ([, (AT Fonos Bg n))) Q (xa(n)) Furthermore, the cut is a Pareto-
optimal h-cut over the reference set H,, for h defined in (22)

Proof. We prove this result in four parts.

6.1 We first show that the function Q;(, s ¥4(n)) is piecewise polyhedral with finitely many pieces.

6.2 There is a neighborhood B.(0,0) of the extreme point (0,0) in the lifted space conv(Zga]Zi))

where all affine pieces that locally define the function @(Q;(, ;Ta(n))) must agree at (0,0).
Furthermore, the value of the closed convex envelope at (0,0) is Q ((0 0); Ta(n)) = Q (Ta(n))-

—n

6.3 We show that if the coefficients (u,}, u,, , u,0) satisfy the conditions of the proposition, then an
optimal solution of (17) induces a cut of the form (18) that is tight at some point (w;",w,,) €
relint(B¢(0,0)) with respect to the closed convex envelope co(Qn( 5 Za(n)))-

6.4 If the cut is tight at (w,",w, ) € relint(B.(0,0)) for @(Q;(, 3 &q(n))), then it is also tight at
(0,0) for @ (Q’ (-,;2a(n))). By Part 6.2, tightness at (0,0) for €6(Q’ ) implies tightness at
(0,0) with respect to Q; Projecting to the original space, this yields tightness with respect

to Qn at Z4(p).. Furthermore, the cut written in the original space is a Pareto-optimal h-cut
over the reference set H,, for h defined in (22).

We first prove Part 6.1. By Lemma 2.2 of , the function Qn is piecewise

polyhedral with finitely many pieces. Observe that the function Q;L(, s #4(n)) can be written as
the composition Qn o G, where the affine mapping G : R?%s(») — R is defined as G(w;F,w;) =
Za(n) + w; — w, . For notational simplicity, we omit the dependence of the function G' on the
incumbent xa(n) To show that Q o (G is piecewise polyhedral, it suffices to prove that its epigraph
is a finite union of polyhedra. Indeed

Define the affine map V : R?atm ¥l — Rl as V(w!, w,,0,) = (G(w,},w,),0,). With this

n?

notation, epi(Qn oG = V’l(epi(gn)). Since @ is piecewise polyhedral, its epigraph epi(Qn)
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can be expressed as a finite union of polyhedra The preimage of a polyhedron under an affine
map is again a polyhedron. Consequently, V— (epl(Q )) is a finite union of polyhedra and hence
epl(Q o () is piecewise polyhedral. This completes the proof of the first part.

We next prove Part 6.2. Since @(Q;(, “;&4(n))) is a polyhedral convex function, it admits a finite
max-representation. The representation is finite because of Part 6.1. Specifically, there exists a finite
index set I and affine functions

Gi(wwy) = o wi + Blwy + i, i€l (29)
such that @(Q;(w:{, Wy 3 Ea(ny)) = maxier i (w;h, wy,). Now, define

M := T(Q (0 0; %(n))) = max ¢;(0,0) = maxy;,

i€l i€l

where the second equality follows from substituting (0,0) in (29). Let I* :={i € I : £;(0,0) = M}
denote the set of affine pieces attaining the maximum at (0,0). If I* = I, then any € > 0 suffices
for the ball B.(0,0). Otherwise, we construct € as follows. Fix any ¢ ¢ I* (such an 4 exists since
I* C I). Then ¢;(0,0) < M. Choose any j € I* and consider the affine difference

dij(wyy wy, ) = 4w, wy,) = Li(wy wy).

Since d;; is affine and

d;;(0,0) = ¢;(0,0) — ¢;(0,0)

= M — £;(0,0) > 0,
by continuity, there exists €;; > 0 such that
dij(w,},w, ) >0 for all (w,!,w,) € B, (0,0).
Equivalently,
Ci(wl wy) < Li(wh wy,) forall (w),wy,) € Be,(0,0).

Now define €; := minjes+ €;; > 0. Then, for all (w;}, w,) € B, (0,0),

f,‘ (U}

ow )<€(w W, ), Vi e I™,

n)<§1éé}x£ (w,w,)

)

< max £ (wyy, wy,)

=0 (Q, (wy, wy; Ea(m)))-
Thus, no affine piece ¢; with i ¢ I* can locally define the function in B, (0,0). Since there are
finitely many indices i ¢ I*, let € := min;g 7+ €; > 0. Then, for every (w;},w;,) € B(0,0), any affine
piece that locally defines @(Q’n(, i #4(n))) must belong to I* and therefore agree at (0,0). This

proves the first statement in Part 6.2. The second statement in this part follows immediately from
the proof of Proposition 2.

Now, we prove Part 6.3. We use Lemma 3.21 of , which states that the normalized
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dual problem (17) can be formulated as an LP, and the dual of the LP is given by:

min Mn,
An yw: S Wn 370

(A, wihwy,) € conv(Ws, )

M > 0, (30)
unOnn Z C )\

—0,,
+
i) = () - ()
Here, the notation A, denotes the set of variables (2, yn, (6m )meC(n)) and ¢, )\, denotes the ob-

jective function f,,(n, yn) + ZmEC(n) Qqnmbm. Further, the set W; ainy 18 defined as:

Wﬁfa(m = {(Anvwwi;) (Tn,Yn) € Hy (fa(n) + w:{ —wy, ) N (Xp X Yy),
+ — lift
(w’n ) wn ) Z;c (n)

(@n,0m) € ¥,, VYme C(n)}.

Now consider the ball B.(0,0) defined in the proof of Part 6.2. The relatively complete re-
course assumption dom(Q ) = Za(n) = [[,,[0, Bx| ensures that for every (w;},w,) € conv(Zi”;t))
the corresponding state Z4(,) + w — w, lies in the domain of Qn, and hence the feasible set
Hy(Za(n) + w,y — w;,) is non-empty. Consequently, for (w,},w,) € conv(Zéia]Zi)), there exists
A = (@0, Yns (Om)mec(n)) such that (A, w,f,w,, ) € Wy, .. In other words,

B.(0,0) C Proj,,+ .- conv(Ws, ., )-

€ relint(B¢(0,0)) ﬂrelint(conv(Zi”Zt))) and choose u,o > Q (uf Uy s Za(n)) —

Hn. We claim that the LP dual (30) has optimal value n* < 1. To see this, consider the candidate
solution 7, = 1 and (w;,w,) = (u},u, ). By the inclusion above, and definition of W;,, and
Q' , there exists A, such that (A,,u;},u,) € conv(Ws,,) and oA < Q L (u,uy s #a(ny). The
constraint nn(uj,un)T = (wf,w;)" —(0,0)7 is satisfied since 7, = 1. Further, since ung >
Q (u,,uy, ma(n)) - Gn, the constraint u,gn, > CI)\n - én is also satisfied. Hence n,, = 1 is feasible,

1mply1ng n* < 1.

Now fix any (u,}

n’ n)

By Corollary 3.22 of , the projection of ((0,0),6,) onto epi(@(g;(-, 5 Za(n))))
along direction (u,}, u, , ung) is given by

(w:v i, . 0. ) (Ov )+77n(un7 nauno)’ (31)
and the normalized cut (18) supports ep i(co(Q’ (55 %a(n)))) at this point. Since n; < 1 and
(uf,u;) € relint(B(0,0)), we have (0, w,) = ( T u,) € relint(Be(0,0)). This completes

the proof of Part 6.3.

Finally, we prove Part 6.4. Recall from Part 6.2, that
Ej((),()) =7 = Q;(0,0;ia(n)) = Qn(ia(n)), for all j eI

For simplicity, we denote the value Q;(O, 0; Z4(n)) as Qo in rest of this proof. Now, the function
0(Q' (s Za(n))) for (wi,wy) € Be(0,0) can be written as:

oO(Q, (Wi w3 ) = Qo -+ maxa w + 5wy = Qo +pwy wy)

17



where p(w;, w;, ) := max;cy- a;rwf{ + B]-ng. Note that the function p is positively homogeneous,

that is, p(tw;,tw, ) = tp(w;,w,, ) for t > 0. Now, consider the normalized cut obtained in Part

6.3. Again, for simplicity, we denote this cut as 6, > ctw, + ¢~ w, + co. Since the cut is valid,
ctwl +c w, + oo <0(Q (Wi, wy s &awm))), V(w!,w,) € B(0,0).

/
n n’
This implies that

ctwl +cTwy + o — Qo < plwl,wy), V(wh w,) € B(0,0).

n? n

Now, for (w;},w; ) identified in Part 6.3, we have ctw} + ¢~ w, + co = 0(Q (W}, Wy, Tan))),
therefore, the above implication leads to

Tt + Wy 4 co — Qo = p(wy @y,
Furthermore, since (w7, w; ) € relint(B.(0,0)) and also (0,0) € B.(0,0), there exists § > 0 such
that ¢(w;},w; ) € B(0,0) for all t € [1 — §,1 + §]. For such ¢, we have:

t(ctaiy, + Ty, ) + co = Qo < p(tiy, tby, ) = tp(dy, by, ) = ey + e, +co = Qo).

This gives: co—Qo < t(co—Qo), which implies that (co—Qo)(1—t) < 0 for allt € [1—0,144]. Taking
t<1gives co—Qp < 0andt>1gives cg — Qg > 0, and hence ¢y — Qp = 0 or ¢y = Qy. This proves
that the obtained cut of the form 6, > ctwl +c w, + ¢o is tight at (0,0) for T(Q' (-, Za(n)))-
By Part 6.2, tightness at (0, 0) for %(Q/n) implies tightness at (0,0) with respect to Q/n Projecting
to the original space, this yields tightness with respect to Qn at £4(,). Moreover, the coefficients
(u,f,u,,, uno) selected in Part 6.3 satisfy the requirements of Proposition 5, so the normalized cut is

also a Pareto-optimal h-cut. O

The main insight of Proposition 6 is that tight cuts can be attained through an appropriate choice
of the core point. In particular, the proposition suggests selecting the core point sufficiently close to
(0,0) in order to obtain a cut that is tight at the incumbent. We next strengthen Proposition 6 by
showing that for any vectors (u;', u, ) satisfying the relative-interior requirement, we can tune the
scalar u,o to produce a tight cut.

Proposition 7. There exists a scalar o > 1 such that for normalization coefficients (uiuaum)
satisfying:
(uf“ u, ) € relint(cOnV(le'fi) )

a?a(
Upo = & (Q;(U:;»U;»fa(n)) - én) ;

the optimal dual solution (7,5, 7, 7ino) to (17) with 7,0 > 0 defines a tight ReLU cut at incumbent
solution Tq(ny. Furthermore, the cut is Pareto-optimal h-cut over the reference set H,, for h defined

in (22).

The proof of Proposition 7 is provided in Appendix B. The proposition shows that, for any core point,
one can obtain a tight cut by choosing the coefficient w, sufficiently large. Together, Propositions
6 and 7 establish normalization as a method to construct cuts that are simultaneously tight and
Pareto-optimal. Moreover, our arguments extend to the setting with standard copy constraints (as
opposed to ReLU-based constraints), in which case the resulting cuts reduce to linear normalized
Lagrangian cuts. Recent literature (e.g., ) also proposes an alternative approach
to producing tight, Pareto-optimal cuts; we contrast this approach with our method in the next
section.
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3 Normalization vs. Regularization

We first revisit recently proposed regularization-based approaches for constructing strong cuts when
dual degeneracy can yield cuts with poor approximation quality. We then relate these approaches
to normalization and highlight the advantages of the normalization perspective.

The key idea behind regularization is to characterize (or implicitly represent) the set of all optimal
solutions to dual (7), and then select a desired solution by optimizing a regularized objective over
this set. This objective augments the original dual objective with additional terms involving the
dual variables, weighted by appropriately chosen coefficients that ensure tight, Pareto-optimal cuts.
We refer to this approach as regularization in analogy with machine learning, where one augments
a loss function with penalty terms to bias the optimizer toward solutions with preferred structure.

Formally, let II,,(#,(,)) denote the set of all optimal solutions of the ReLU dual (7). Given a core

point (@}, a,, ) € relint(conv(Zilf( t))) prove that the cut coefficients resulting

from solving the following problem:

ThE

N ~max ‘Cg(ﬂi_’ T3 i'a(n)) (7T:fa 7'(';) (gn) ) (32)
Ty s Tn €1 (4 (n)) n

produces a tight and Pareto-optimal cut of the form (8). This approach is inspired by the classical

work of on accelerating Benders decomposition when LP subproblems

have dual degeneracy. show that the set II,,(Z4(,)) can be modeled using the

constraint

Lﬁ(”;% Ty s :i‘a(n)) > Qn(g}a(n)) — € (33)

where € > 0 is a small value. Since the function ER(Wn s T 3 a(n)) s concave and piecewise linear, it
is approximated iteratively using gradient cuts via the level-bundle method ( ).

The normalized dual problem (17) is also solved using the level-bundle method. Moreover, note that
the Lagrangian relaxation £, in the extended space is simply a mixed-integer reformulation of the
Lagrangian relaxation £ in the original space. Consequently, the computational complexity of
solving the regularized and normalized duals is comparable.

follow a similar approach to (32) but instead of approximating the set IL,,(Z4(n))
exactly using convex program of the form (33), they approximate it using an LP. Specifically, instead
of using the function LE (7.}, 7, ; #4(n)) defined in (6), they use the LP relaxation of LE (7,5, 7 ; #q(n))
with additional constraints to prevent the approximate linear program from becoming 1nfeasib1e.
Furthermore, the authors discuss only the choice of regularization coefficients that yield a bounded
linear program, but provide no guarantees regarding cut quality. The motivation for this LP-based
approach is to recover extreme points of II,,(Z4(,)), which correspond to facet-defining cuts in the
extended space. However, because the LP only approximates the true optimal set, it may introduce
spurious extreme points or exclude existing ones, thereby producing weaker cuts. We empirically
compare our normalization approach with both regularization-based methods in the computational
results section.

Next, we show that any cut attained by the regularization method (32) can also be attained by
solving the normalized dual problem (17) using appropriate normalization coefficients.

Proposition 8. For (4}, u;) € relint(conv(Zg{t))), consider a cut of the form (8) obtained by
solving the regularized dual (32). Then, there exist normalization coefficients (4., 1, ,Tno) such

that the coefficients of the regularized cut (up to scaling) are also optimal to the normalized dual
(17).
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Proof. We prove the result in the following steps:

8.1

8.2

For a given core point (u;, 4, ), consider the regularized dual in (32). Let (7,7, ) be any
optimal solution of this dual problem. We first show that the resulting cut of the form:
Ri~+ ~ S~ w,t
en > En (ﬂ-j{a 777:; j;a(n)) - (ﬂ-n ’ 7777) : (wn> ’ (34)

supports E(Q (-, Zq(n))) on the segment S = {t(a;}, ;) : t € [0,€]}, for some € > 0.

n’ ’I’L

Since (7}, 7;,) € Iy (Zq(n)), We have by (strong) duality that
‘CR(WTJLra T3 a(n)) = Qn(ja(n)) = @(Q;(Ov 0; "%a(n)))v

and therefore (34) passes through ((0,0), €6(Q’ (0,0;d,(n)))) in the lifted space.
Moreover, by Part 6.2 of Proposition 6, there exist € > 0, a finite index set I'*, and vectors

{(aj, Bj)}jer+ such that, for all (w;,w, ) € B.(0,0)N conv(Zi”zt))

@(Q (w wy, s Ta(n))) = Qn(fca(n)) + gré&}i( {a;—w;f + B;Fw;} . (35)
In particular, every affine function on the right-hand side of (35) is a supporting hyperplane
of @(Q;(, 3 &4(n))) that is tight at (0,0). Since (32) maximizes a linear functional over the

set II,, (ia(n)) of dual-optimal cut coefficients (all of which are tight at (0,0)), the optimality
of (7,7, ) implies that

L .,
(=T =7n) - (Z") = rjg@%{(%ﬁj) : (Z)} =: K.

€ := min{ 1, % ,
(@t i)

so that t(a,}, ;) € B.(0,0) ﬂconv(Z”ft ) for all t € [0, €']. Then for any t € [0, €], using (35)

n n

Choose

and the definition of x, we obtain

@(Q (ta) t,; Tam))) = Q (Za(n)) + max {t(a],ﬁj)- (W)}

jeI* a,,

_Q (xa n))+t/'<’
T o [(tuf
= ﬁf(ﬂffaﬁn (”)) (7T+77Tn)' ( ~) .

tu,
Hence, (34) is tight (and therefore supports E(Q;(, 5 Zq(n)))) at every point of the segment
S.

Next, we consider a point (4,4, ) € SN B(0,0) where the ball B.(0, 0) is defined in Proposi-
tion 6. Such a point always exists because by choosing ¢ sufficiently small, we can ensure that
t(wh, 1, ) € B.(0,0). The scalar i, is then chosen to satisfy the requirements in Proposition

n? ’I’L

6, that is, 4,0 = Q () Uy 5 T ()) — 6,,. Now, by Corollary 3.22 of (see also

discussion around ( 1)), the normalized dual (17) with normalization coefficients (@}, 4., , fin0)
produces a cut of the form (18) that supports co(Qn(-, 1 Za(n))) at a point n(a,, 4, ) for some
0<n<1(and (0,0) €S).

’I’L7 71
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8.3

8.4

8.5

8.6

Let the optimal solution of the normalized dual be (&7, #, , #n0). We know that the resulting
cut is tight at (0, 0); this follows from Proposition 6. This implies that the following equality

holds,

7ATVLOQTL(Iia(n)) =Ly (fl’:{, T s n0; i‘a(n))

Therefore, the optimal objective value in the normalized dual is #,0(Q, (£a(n)) — 6) for the
solution (7,5, 7, 7no)-

From Part 8.2, the normalized cut supports @(Q;(, 1 Za(ny)) at (@}, 4, ), which means that:

S+
Q (Gam) — (4,77 - (“) — o(Q. (78 ity ().

- Tno Up,

From Part 8.1, the regularized cut (34) also supports @(Q:l(, S ia(n))) at n(at, d;,), which
implies that

ot
Q (b)) — it 77) (”) = Q. (it i Baguy).

Uy,

Now, we prove that some scaling of the regularized cut is also optimal to the normalized dual.
In particular, the solution of interest is (7,7, 7, ,1). Note, that the regularized cut (9a) with
coefficients (7,5, 7, ) is the same as the normalized cut (19) with coefficients (7,7, 7., 1). Now,
we consider the following scaled solution (7,07, 07, , Ano), and on substituting in function
gn defining the normalization constraint, we have

ot oA e . _— at .
Gn(Fno®) , FnoTr s fino) = Fno <(7T,J{,7Tn) . <af) +uno>

n

.1 R _ N J N
= Fno (Qn(wa(n)) —o(Q (i), nity; fﬂa(n)))> + Tnotlno

ot
(7}7—:77?7:) ' (An> + 7ATnOﬂnO < 1.
U’n

The second equality follows from Part 8.5 and the third equality follows from Part 8.4. The final
inequality follows from the fact that (7,7, , 7n0) is a feasible solution to the normalized dual
problem. This means that the solution (7,07, , 707, , Tno) is also feasible to the normalized
dual problem. Furthermore, since the scaled cut associated with (7,7, 7., 7n0) is tight, using
a similar argument as in Part 8.3, it has the same objective value as the optimal solution
(75, 7, 7no)- So, it must be optimal as well. This completes the proof.

O

The converse, however, does not hold: normalization can generate cuts that cannot be obtained
from the regularized problem. In particular, Pareto-optimal cuts that are not tight at the incumbent
can be attained via the normalized dual but are excluded by regularization-based approaches. We
illustrate this distinction with a small example below.

Example 1. We consider a two-stage MSIP with a scalar state variable Tq(ny € Za(n) = [0,3] and
second-stage value function

Qn(Zamy) = min{z, | 152, > 240,), zn € {0,1,2,3} }.
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For the incumbent Ty = 1 with 6= 0.1, Figure 2 illustrates the value function together with two
valid cuts, shown both in the original space and in the lifted space. The cut depicted with dashed
lines is tight at the incumbent and Pareto-optimal. By contrast, the cut depicted with dotted lines
is mot tight at &) but remains Pareto-optimal. The latter cut can be obtained via mormalization
but not via reqularization-based approaches, because its coefficients are infeasible in the regularization
problem. In particular, the reqularization constraint w7, € I, (&q(,)) or its e-approzimation (33),
is violated because the dotted cut is not tight.

— Q(w',w)

e 0= (2B)(1T+W -wW) == B=1-w

— Q(x) = Ceiling[x/1.5] == 6=1-Max[0, 1-x]

8= (2B3)x

Figure 2: Left: Q,(-) and the two cuts over the original domain Z,(,). Right: the corresponding
representations in the lifted space Zgjt(n) The value function is shown in black; the cuts are shown
with dotted and dashed boundaries.

Proposition 8 and Example 1 show that normalization provides an additional flexibility: cuts need
not be both tight and Pareto-optimal simultaneously. With an appropriate choice of normalization
coefficients, both properties can be enforced simultaneously. However, normalization also permits
alternative choices that yield Pareto-optimal cuts that are not tight at the incumbent, while still
cutting off the incumbent solution. Another advantage of normalization is that it operates on
the epigraph epi(Q.,), thereby allowing the incorporation of both optimality and feasibility cuts
within a unified framework. In contrast, regularization-based approaches work directly with the
value function @),,, and therefore rely on the assumption of relatively complete recourse. For ease of
exposition, we adopt this assumption throughout the paper; however, our results extend naturally
to settings in which relatively complete recourse does not hold.

Our results also extend to the classical Benders/LP setting. For classical Benders cuts, previous
work (Brandenberg and Stursberg 2021, Hosseini and Turner 2025) shows that both normalization
and the regularization framework of Magnanti and Wong 1981 can attain Pareto-optimal cuts. When
multiple such cuts exist, however, whether normalization could achieve the same cut as regularization
remained unknown. Proposition 8 resolves this question: with an appropriate choice of normalization
constraints, the coefficients of any Pareto-optimal cut obtained via regularization are also optimal
in the normalization dual.
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4 Computational Results

In this section, we report our computational study to assess how normalization and regularization
affect the strength of the generated cuts. Specifically, we compare our normalization approach with
the two regularization-based methods of and . Since neither
implementation is publicly available, we reimplement both approaches.

For , we follow their LP-based approximation of the set II,,(Z4(,)) in (32). When
this LP becomes infeasible, we add the no-good cut proposed in their paper to restore feasibility. To
ensure boundedness of the LP approximation, we select the objective coefficients (@, 4, ) in (32)
using their Strategy 2, which is designed to guarantee boundedness.

For , several algorithmic details of the level-bundle implementation are not spec-
ified. In particular, the dual model—approximated iteratively via gradient cuts—requires explicit
bounds on the dual variables to prevent infeasibility or unboundedness of the approximation. We
therefore impose artificial bounds chosen as sufficiently large multiples of the integer L-shaped cut
coeflicients. The level-bundle method also requires an initial point; we set it to the scaled L-shaped
coefficients, which, in most instances, satisfy the regularization constraint (33).

We evaluate the proposed and existing methods on two-stage instances of the dynamic capacity
allocation problem (DCAP) and the capacitated lot-sizing problem (CLSP), using the formulations
and data-generation procedures of and , respectively. Our
implementation and datasets are available at https://github.com/akulbansal5/RNorm.git. To
the best of our knowledge, it is the first publicly available open-source implementation that ensures
(asymptotic) convergence for general MSIPs and supports both normalization and regularization for

generating strong cuts. In contrast, the SDDP package ( ) implements
Lagrangian cuts that do not guarantee convergence for general MSIPs and can be weak due to
dual degeneracy. The open-source implementation of employs normalization to

strengthen Lagrangian cuts but does not guarantee convergence for general MSIPs.

The stochastic programs and the cut-generation methods are implemented in Julia 1.9 using the
JuMP package ( ). All optimization models are solved using Gurobi 12.0. Our
cut-generation methods are implemented using a multi-cut strategy; we also tested a single-cut
implementation, but it consistently performed worse than the multi-cut approach. The stopping
criterion is triggered when one of the following conditions is met: (a) the optimality gap falls
below 0.1%, (b) 5000 iterations are reached, (c) a 3600-second time limit is exceeded, or (d) no
improvement larger than 10~? is observed in both the lower and upper bounds for 10 consecutive
iterations. Criterion (d) is included to prevent the methods from reaching the time limit when the
bounds have stalled.

Both the normalized dual (17) and regularized dual (32) are solved using the level bundle method
( ). To ensure a fair comparison between these approaches, we use identical
parameters for the level bundle method: a convergence tolerance of 1072 and a maximum of 300
iterations. The parameter € in set II,,(Z,(,)) approximation (33) is also set to 1072

The choice of the core point is made to satisfy the conditions in Proposition 4. For components k
of the incumbent vector that lie on the boundary, we set u:k = 1072 and u,,. = 0 when £, = 0.
Similarly, when 5 = By, we set u,, = 10~3 and uzk = 0. This core point selection is identical for
both the regularization and normalization methods. For the normalization method, the scalar u,g
is set to Qn(fca(n)) —0,, + €, where e = 1076,
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We first report the results for the DCAP instances in Table 1. The columns I, J, N, and S describe
the instance characteristics: I denotes the number of resources, J the number of tasks to which
resources are assigned, N the number of scenarios, and S the number of time periods. For each
instance class, we randomly sample three instances and report the average results across them. All
instances considered are two-stage problems; the parameter S affects the instance size but does
not change the number of stages. The column “App.” indicates the approach used: “Norm” for
normalization, “R-LP” for LP-based regularization proposed by , and “Reg”
for ’s regularization approach, where the dual in (32)-(33) is solved exactly
using the level-bundle method. The columns “Iter” and “Time” report the number of iterations
and computation time (in seconds), respectively. The columns “UB” and “LB” denote the upper
bound and lower bound at termination, and “Gap (%)” reports the relative optimality gap. Column
“D-Iter” denotes the average number of iterations required to solve the dual problem.

From Table 1, we observe that normalization reaches the target gap (below 0.1%) in fewer decom-
position iterations (“Iter”) than regularization, indicating that it produces stronger cuts and a more
accurate approximation of the value function. However, the regularization approach (“Reg”) typ-
ically achieves lower overall solution times. This time advantage is primarily due to the cost of
solving the dual problem: the regularized dual is cheaper to solve than the normalized dual, and its
associated level-bundle procedure usually requires fewer dual iterations (D-Iter). As a result, even
when regularization requires more iterations (Iter) in the decomposition algorithm, it can still yield
shorter overall solution times. This effect is particularly visible for (I,.J, N,S) = (3,4,100,5) and
(4,5,100,6), where normalization uses fewer outer iterations and fewer dual iterations, yet has a
larger total solution time than regularization. We attribute this to the proximal step in the level-
bundle method, which solves a quadratic program that is more difficult to solve, partly due to the
additional variable 7o present in the normalized dual.

Next, we report results for the CLSP instances in Table 2. The columns P and N denote the
number of products and scenarios, respectively. For each (P, N) class, we consider three randomly
sampled instances and report results averaged over these three instances. The columns “App.”,
“Tter”, “D-Tter”, “Time”, “UB”, “LB”, and “Gap (%)” are defined as in the previous tables.

The results in Table 2 indicate that normalization outperforms the regularization-based approach
on these instances. The method “R-LP” makes little progress within the time limit, terminating
with large gaps (approximately 58%-73%) and weak lower bounds. In contrast, both “Reg” and
“Norm” reduce the optimality gap by orders of magnitude and typically achieve gaps below 0.1%
on most instances. Moreover, “Norm” generally requires fewer decomposition iterations and attains
better gaps, suggesting that the normalized method leads to stronger cuts. For larger instances
(P € {10,20}), both “Reg” and “Norm” become substantially more expensive and do not always
reach the 0.1% threshold; nevertheless, “Norm” still tends to produce tighter final gaps than “Reg”
at better or comparable run times. Unlike the DCAP results, “Norm” is also faster than “Reg” on
the CLSP instances. This is mainly because, for CLSP, the normalized dual usually converges in
fewer iterations (“D-Iter”) than the regularized dual, and the resulting reduction in the dual solve
times improves overall solution time.

For large-scale instances, solving the dual problem required to generate ReLLU cuts—whether via
the normalized dual (17) or a regularized dual (32)—can become a major computational bottleneck,
a phenomenon widely reported in the stochastic programming literature (e.g., ,

, , ). To reduce this cost, we
adopt an enhancement strategy inspired by the alternating cut criterion of ,
originally proposed to enhance the integer L-shaped method ( ). Rather
than generating ReLLU cuts at every iteration—which is expensive—we alternate them with cheaper
cuts, namely Benders cuts obtained from the LP relaxation of the subproblems. In particular, we
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compute a ReLU cut only when the Benders cut from the LP relaxation fails to cut off the incumbent
solution. This strategy has been shown to significantly improve performance on MSIPs (see

). We report results under this alternating strategy in Tables 3 and 4 for the
DCAP and CLSP instances, respectively. The “Prop.” column indicates the proportion of ReL.U
cuts among all cuts added, including Benders cuts.

Table 3 reports results for DCAP instances with the alternating cut generation approach. Compar-
ing these results to those in Table 1, we observe significant improvements in both solution times
and final optimality gaps across most instances. The “Prop.” column reveals that ReLU cuts are
needed in only a small fraction of iterations: for smaller instances such as (I, J, N, S) = (2,2,10,4)
and (2, 3,10,4), Benders cuts alone suffice (Prop. = 0.00-0.03), meaning the problem can be solved
without generating expensive ReLLU cuts. For larger instances, the proportion increases but remains
modest, reaching at most 0.38 for (I,J, N, S) = (4,5, 10,6) with the “Norm” approach. This trans-
lates to Benders cuts successfully cutting off the incumbent solution approximately 62%-100% of the
time for the “Reg” and “Norm” approaches. The “D-Iter” values appear lower in Table 3 compared
to Table 1, but this is because “D-Iter” now averages over both ReLU cut iterations (which require
dual solves) and Benders cut iterations (which require 0 dual iterations). While the alternating cri-
terion does increase the total number of decomposition iterations (e.g., for (I, J, N, S) = (4, 5,10, 6),
“Reg” increases from 50 to 66 iterations and “Norm” from 28 to 53 iterations) due to the weaker
Benders cuts requiring more iterations to close the gap, the computational savings from cheaper
cuts per iteration result in significantly faster overall solution times. For instance, solution times for
(I, J,N,S) = (4,5,10,6) improve from 1001 to 331 seconds for “Reg” and from 1389 to 910 seconds
for “Norm”, despite the increase in decomposition iterations.

The results in Table 4 show a more mixed impact of the alternating criterion on CLSP instances
compared to DCAP. The “Prop.” column reveals that, unlike DCAP instances, CLSP instances
require ReLU cuts in a much larger fraction of iterations (typically 60%-90%), meaning Benders
cuts fail to cut off the incumbent solution in most iterations. Consequently, the alternating strategy
provides limited computational savings from cheaper Benders cuts, and we observe modest improve-
ments or slight increases in solution times for smaller instances. However, for larger instances that
hit the time limit, the alternating criterion combined with the normalization method yields sig-
nificant improvements in final optimality gaps. For example, for (P, N) = (20,10) and (20, 100),
“Norm” achieves gaps of 1.91% and 3.81%, respectively, compared to gaps of 2.42% and 6.35% when
the alternating criterion is not applied (as seen in Table 2). Consistent with the DCAP results,
the alternating criterion increases the total number of decomposition iterations compared to the
non-alternating approach (e.g., for (P,N) = (5,10), “Reg” increases from 35 to 46 iterations and
“Norm” from 29 to 35 iterations), as weaker Benders cuts require more iterations to close the gap.

To summarize our computational findings, normalization consistently produces stronger cuts than
regularization across both DCAP and CLSP instances, as evidenced by fewer decomposition iter-
ations required to reach the target optimality gap. However, solving the normalized dual can be
more expensive than solving the regularized dual, leading to mixed results in overall solution times
depending on the problem structure. On DCAP instances, regularization often achieves faster so-
lution times despite requiring more iterations, while on CLSP instances, normalization’s advantage
in both cut strength and dual convergence typically results in faster overall performance. The alter-
nating cut criterion substantially improves performance on DCAP instances by leveraging cheaper
Benders cuts, reducing solution times by up to 50% while maintaining or improving optimality gaps.
On CLSP instances, where Benders cuts are less effective, the alternating criterion provides more
modest benefits but still yields notable improvements in final gaps for larger instances that hit the
time limit, particularly when combined with normalization.
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I J N S App. Iter Time UB LB Gap(%) D-Iter
2 2 10 4 R-LP 17 12 1031.57 1031.33 0.021 0
Reg 6 8 1031.41 1031.24 0.016 12
Norm 5 16 1031.43 1030.67 0.075 14
2 2 100 4 R-LP 6 16 1094.71 1093.72 0.09 0
Reg 6 29 1094.28 1093.32 0.088 13
Norm 5 35 1094.37 1093.71 0.063 13

2 3 10 4 RLP 24 13 1499.58 1496.82 0.196 0
Reg 10 11 1497.28 1497.11 0.012 16
Norm 7 11 1497.57 1496.95 0.041 16

2 3 100 4 R-LP 17 36 1675.32 1675.01 0.019 0
Reg 8 53 1675.31 1674.26 0.063 15
Norm 7 47 1675.31 1674.87 0.026 15
3 4 10 5 R-LP 162 1695 2171.00 2127.54 1.89 0

Reg 24 104 2154.60 2154.29 0.014 30
Norm 16 147 2154.96 2153.82 0.053 33
3 4 100 5 R-LP 102 2486 2207.11 2201.32 0.252 0
Reg 15 527 2204.29 2203.25 0.047 28
Norm 12 613 2204.35 2203.40 0.042 25
4 5 10 6 R-LP 214 T 2663.60 2493.28 6.341 0
Reg 50 1001 2621.57 2619.88 0.065 46
Norm 28 1389 2621.37 2619.74 0.062 74
4 5 100 6 R-LP 87 T 3047.66 2896.04 4.953 0
Reg 26 2990 3011.89 2993.50 0.569 45
Norm 21 3315 3006.23 3000.85 0.172 42

Table 1: Comparison of normalization and regularization-based approaches on DCAP instances

5 Conclusion

We studied the problem of weak (and potentially ineffective) Lagrangian cuts that arise from dual
degeneracy in decomposition methods for multistage stochastic integer programs with mixed-integer
state variables. Building on the ReLU-dual framework of and the normalization
framework of , we introduced a normalized version of the ReLU dual that selects
dual solutions through additional normalization constraints. This yields cut coefficients that, in
practice, lead to stronger cuts and improved value-function approximations.

On the theoretical side, we established that normalized ReLU cuts can be interpreted directly in
the original state space and that normalization can be used to recover strong cuts despite dual
degeneracy. In particular, we introduced a notion of Pareto-optimality for nonlinear ReLU cuts in
the original space and showed that normalization produces Pareto-optimal cuts under this definition.
We also proved that there exists a choice of normalization coefficients that yields cuts that are tight
at the current incumbent, providing guidance for selecting normalization coefficients when tightness
is desired. Finally, we clarified the connection to recently proposed regularization strategies: any cut
obtainable from regularization of the optimal ReLLU-dual set can also be obtained via normalization
(up to scaling), while normalization is strictly more flexible because it can generate Pareto-optimal
cuts that are not necessarily tight at the incumbent, yet still separate the incumbent solution.

Our computational study on DCAP and CLSP instances demonstrates that the theoretical advan-
tages of normalization translate into practical benefits: normalized cuts consistently require fewer
decomposition iterations to reach the target gap, confirming their superior strength. The combina-
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P N App. TIter Time UB LB Gap(%) D-Iter
3 2 R-LP 408 T 741.95 23290 68.247 0
Reg 17 6 583.84 583.61 0.046 14
Norm 11 6 546.19 545.90 0.044 13
5 10 R-LP 200 T 861.80 359.72  58.248 0
Reg 35 79 804.32 803.64 0.085 35
Norm 29 43  804.26  803.50 0.095 21
5 50 R-LP 149 T 868.72 360.60 58.483 0
Reg 28 248 814.40 814.01 0.048 37
Norm 21 94 814.48 813.83 0.081 19
5 100 R-LP 130 T 866.44 360.67  58.365 0
Reg 33 667 811.02 810.29 0.090 36
Norm 20 164 811.03 810.37 0.081 17
10 10 R-LP 117 T 2539.38 696.84  72.521 0
Reg 80 T 1838.53 1770.76 3.677 94
Norm 65 T 1834.51 1801.39 1.802 57
10 50 R-LP 103 T 2552.69 697.84 72.660 0
Reg 40 T 1845.30 1726.71 6.431 80
Norm 35 T 1839.71 1778.45 3.342 59
10 100 R-LP 93 T 2539.51 697.98 72.514 0
Reg 30 T 1860.03 1715.24 7.797 63
Norm 26 T 1853.86 1770.69 4.488 57
20 10 R-LP 81 T 3900.79 1331.81  65.850 0
Reg 56 T 3128.01 2848.67 8.930 99
Norm 50 T 3057.22 2983.12 2.419 98
20 50 R-LP 69 T 3877.48 1331.86 65.648 0
Reg 30 T 3150.86 2809.64  10.828 92
Norm 24 T 3108.54 2988.41 3.861 96
20 100 R-LP 62 T 3888.87 1331.87  65.751 0
Reg 27 T 3171.94 2793.52 11.916 92
Norm 20 T 3160.86 2959.74 6.351 80

Table 2: Comparison of normalization and regularization-based approaches on CLSP instances

tion of normalization with the alternating cut criterion further enhances performance, particularly
when Benders cuts can effectively contribute to the decomposition process. Together, these results
suggest that normalization provides a flexible approach to generating strong Lagrangian cuts that
can improve the efficiency of decomposition methods for multistage stochastic integer programs.

Several directions remain for future work. First, developing adaptive, instance-dependent strategies
for selecting normalization coefficients—beyond the baseline rule used in our experiments—could
further improve robustness and speed. Second, combining normalization with cut-selection poli-
cies and more advanced bundle-management techniques may reduce the overhead of solving the

normalized dual on difficult instances.
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I J N S App. TIter Time UB LB Gap (%) D-Iter Prop.

2 2 10 4 R-LP 9 5 1031.4 10314 0 0 0.00
Reg 9 5 1031.40 1031.40 0.000 0 0.00
Norm 9 5 1031.40 1031.40 0.000 0 0.00
2 2 100 4 R-LP 7 7 1094.28 1094.26 0.001 0 0.00
Reg 7 6 1094.28 1094.26 0.001 0 0.00
Norm 7 6 1094.28 1094.26 0.000 0 0.00
2 3 10 4 R-LP 10 7 1497.27 1497.27 0 0 0.08
Reg 10 6 1497.27 1497.27 0.000 1 0.03
Norm 10 6 1497.27 1497.27 0.000 1 0.03
2 3 100 4 R-LP 19 19 1675.31 1675.27 0.002 0 042
Reg 10 14 1675.31 1675.27 0.002 1 0.06
Norm 10 12 1675.31 1675.27 0.000 1 0.06
3 4 10 5 R-LP 123 140 2155.27 2153.57 0.08 0 077
Reg 33 40 2154.60 2153.76 0.038 6 0.26
Norm 32 67 2154.61 2153.98 0.000 12 0.30
3 4 100 5 R-LP 59 255 2204.69 2202.38 0.105 0 0.59
Reg 20 161 2204.33 2203.76 0.026 4 013
Norm 20 176 2204.30 2203.64 0.000 4 013
4 5 10 6 R-LP 268 1696 2625.66 2612.68 0.49 0 0.76
Reg 66 331 2621.65 2620.10 0.059 12 0.34
Norm 53 910 2621.06 2619.73 0.001 39  0.38
4 5 100 6 R-LP 222 T 3006.03 2999.35 0.225 0 081
Reg 46 1381 3005.08 3003.36 0.058 12 0.30
Norm 45 3070 3006.16 3002.92 0.001 13 0.29

Table 3: Alternating criterion applied to normalization and regularization-based approaches on
DCAP instances

Appendix

A Proof of Proposition 1

Recall that the subproblem Q;L (0,0;d4(y,)) is reformulated with copy constraints in (12), and the
corresponding Lagrangian relaxation, dual, and Lagrangian cut in the lifted space are given by
(13), (14), and (15), respectively. The key observation is that the Lagrangian relaxation (13) is
a reformulation of the ReLU-based relaxation (6) using the linearization in (9). Specifically, by
substituting the constraints from (9) into the ReL.U-based relaxation, we obtain £ (7}, 7 Tom)) =

LY (7,5, T s #a(ny)- Similarly, with the constraints (w},w,,) € Z?ii) from (9), the Lagrangian cut
(15) is equivalent to the ReLU cut (8). This establishes that the ReLU Lagrangian cut (8), generated

at @q(y) for epiza(n) (Qn), corresponds to the Lagrangian cut (15) generated at (0,0) for the lifted

epigraphical set epi st (Q:I(, ; ia(n))).

Za(n)

For optimal dual multipliers obtained by solving the ReLU dual (7), we have LE(m,5, 7 i Za(n)) =
Q (Za(n))- Since Lm0 &amy) = LS (T4, 703 Za(ny) and Q (Za(ny) = Q' (0,0;E4(n)), it follows
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P N App. Iter Time (s) UB LB Gap (%) D-Iter Prop
3 2 R-LP 448 T 662.68 380.24 43.032 0 0.997
Reg 14 7 583.87 583.68 0.034 14 0.818
Norm 11 7 583.79 583.55 0.039 9 0.688
5 10 R-LP 238 T 861.44 429.23 50.174 0 0.995
Reg 46 77 804.19  803.78 0.052 29 0.899
Norm 35 57 804.24 803.59 0.080 18 0.901
5 50 R-LP 187 T 870.56 434.98 50.034 0 0.995
Reg 34 254  814.40 813.82 0.072 29 0.877
Norm 28 125  814.57 813.98 0.073 16 0.899
5 100 R-LP 141 T 869.15 433.32 50.136 0 0.993
Reg 38 593 811.05 810.29 0.093 27 0.879
Norm 26 192 811.05 810.47 0.071 14 0.872
10 10 R-LP 270 T 2046.21 971.68 52.568 0 0.986
Reg 105 T 1840.43 1771.32 3.750 73 0.855
Norm 71 T 1832.36 1800.79 1.723 50 0.903
10 50 R-LP 268 T 2089.39 958.68 54.101 0 0.985
Reg 78 T 1856.18 1733.01 6.640 39 0.765
Norm 46 T 1836.98 1779.64 3.128 43 0.825
10 100 R-LP 233 T 2113.81 959.55 54.603 0 0.980
Reg 66 T 1863.00 1713.85 8.015 30 0.699
Norm 40 T 1859.48 1772.68 4.670 36 0.777
20 10 R-LP 179 T 3854.72 1413.01 63.342 0 0.994
Reg 116 T 3110.37 2857.73 8.111 47 0.581
Norm 68 T 3045.22 2987.04 1.908 72 0.766
20 50 R-LP 77 T 3875.89 1411.27 63.585 0 0.987
Reg 83 T 3102.65 2782.38 10.318 28 0.495
Norm 49 T 3101.77 2990.30 3.593 49 0.689
20 100 R-LP 78 T 3886.72 1411.67 63.679 0 0.987
Reg 75 T 3105.93 2719.35 12.448 23 0.457
Norm 48 T 3105.17 2986.95 3.805 42 0.631

Table 4: Alternating criterion applied to normalization and regularization-based approaches on
CLSP instances.

29



that £ (m,}, 75 Ba(n)) = Q:L(O, 0; Z,4(n)). Therefore, the Lagrangian cut (15) is tight at (0,0) with
respect to the lifted value function Q;(, 5 Ea(n))-

B Proof of Proposition 7

The proof is largely similar to the proof of Proposition 6. We showed in that proof that there exits

a ball B¢(0,0) C Proj,+ ,- conv(W; Now, choose any (u,,u}) € relint(conv(Zéiaf(i))), then
we know there, exists scalar #, small enough such that 7, - (u;}},u) € B.(0,0). Now, if we choose
Uno large enough then we can ensure that ) = 7, and using (31), we will have (@, W, ) € B.(0,0).

at )

In particular, we let u,,g = ni (E(Q;(uj, Uy 5 Ta(n))) — 0, ) . Then, following similar reasoning as in

the proof of Proposition 6, we conclude that the resulting cut is tight and Pareto-optimal.
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