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Abstract

We consider cardinality-constrained optimization problems (CCOPs), which are
general nonlinear programs with an additional constraint limiting the num-
ber of nonzero continuous variables. The continuous reformulation of CCOPs
involves complementarity constraints, which pose significant theoretical and com-
putational challenges. To address these difficulties, we propose and analyze two
numerical solution approaches: a general penalty method and a general regular-
ization method. Both approaches generate a sequence of easier to solve problems,
and we show convergence of the corresponding KKT points against an M-
stationary point under CC-MFCQ. Both methods rely on structural properties of
the penalty and regularization functions, which we introduce and illustrate with
examples. Finally, we present comprehensive numerical experiments to assess
the practical performance of the proposed methods and to compare them with
established approaches.
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1 Introduction

In this paper, we consider general nonlinear optimization problems with an additional
cardinality constraint, refered to as cardinality constrained optimization problems
(CCOPs). The cardinality constraint restricts the number of nonzero variables in a
solution. In other words, the cardinality of the support of feasible points is constrained.

*felix.broesamle@kit.edu


mailto:felix.broesamle@kit.edu

Cardinality constrained optimization problems (CCOPs) arise in a wide range of appli-
cations. Prominent examples include feature selection or sparse principal component
analysis in machine learning [1, 2], image and signal processing, as well as portfolio
optimization, in particular sparse portfolio selection [3]. For a comprehensive overview
of applications and related problem classes, we refer to [4].

We now introduce notation used throughout the paper. Let e € R™ denote the vec-
tor of all ones and e; € R™ the i-th canonical unit vector. For z € R", the fy-norm
(0-norm) is defined as

]l = [supp(z)],

where

supp(z) ={i € {1,...,n} : z; # 0}

denotes the support of z. A general cardinality constrained optimization problem is
given by [5]

Hel%g}l flx) st g(x) <0, h(x)=0, |zlo<S, (CCOP)

where S € Nand f:R® - R, g : R® — R™ and h : R® — RP are assumed to be at
least continuously differentiable. Throughout this work, we assume N 3 S < n, since
otherwise the cardinality constraint ||z|lp < S is superfluent.

Early work on this class of problems includes [6], where cardinality constraints were
studied in the context of sparse portfolio optimization. In recent years, CCOPs have
attracted growing attention. This is due both to their relevance in applications such as
feature selection in machine learning and to the introduction of a continuous reformu-
lation in [5, 7], along with the development of a specially tailored optimality theory.
This optimality theory is closely related to that of Mathematical Programs with Com-
plementarity Constraints (MPCCs) [8, 9] and Mathematical Programs with Vanishing
Constraints (MPVCs) [10, 11]. Several numerical methods have been proposed for
the continuous reformulation of CCOPs that build on established MPCC solution
methods; see, for instance, [5, 12]. The regularization methods for the continuous
reformulation presented in [5, 12] are respectively closely related to the regularization
methods for MPCCs presented in [13, 14]. The specially tailored solution methods
for the continuous reformulation often yield high-quality solutions. A comprehensive
optimality theory for the continuous reformulation is now available; see, e.g., [15-17].
In addition to MPCC-based solution methods, specially tailored solution methods
have also been developed; see, e.g., [18].

Finally, we note that a penalty method for solving the continuous reformulation
was proposed in [19]. However, this approach was restricted by the additional sign
restriction x > 0, which allowed the use of the ¢;-penalty term.

The structure of this paper is as follows. In Section 2, we introduce fundamental con-
cepts in nonlinear optimization, and the continuous reformulation of CCOPs. Section



3 presents a penalty method for the continuous reformulation, inspired by penalty-
based approaches developed for MPCCs [9, 20]. We characterize structural properties
of the penalty term that allow convergence of the KKT points to an M-stationary
point under CC-MFCQ. In Section 4, we propose a general regularization method,
constructed using the same structural properties. Under CC-MFCQ, convergence of
the KKT points to an M-stationary point is again established. Finally, in Section 5,
we present comprehensive numerical experiments comparing the newly introduced
solution methods with established approaches. The numerical experiments will show
that the general penalty method introduced in Section 3 is highly robust and performs
exceptionally well.

2 Preliminaries

In this section, we briefly review fundamental definitions and concepts from nonlinear
programming and the continuous reformulation of CCOPs.

2.1 Nonlinear Programming

We consider a general nonlinear program, given by
m]iRn f(z) st. gi(z) <0, foralli=1,...,m, (NLP)
zeR™
hi(z) =0, foralli=1,...,p,

with all functions f, g;, h; : R™ — R, at least continuously differentiable.

Definition 2.1 A point z* € R" is called Karush-Kuhn-Tucker point (KKT point) of the
optimization problem (NLP), if there exist A1, ..., Am, g1, .., up € R, such that the Karush-
Kuhn-Tucker conditions (KKT conditions) hold:

m P
Vi) + Y AiVgi(a) + Y niVhi(z*) =0,
=1 =1

gi(x*) <0, Vi=1,...,m and hi(z")=0, Vi=1,...,p,
i >0, )\igi(aj*):() Vi=1,...,m.

We call the corresponding multipliers A1, ..., Am, g1, .., p € R to * Lagrange multipliers
of the KKT point x*.

Definition 2.2 ([21], Definition 2.1) A set of vectors {a; : ¢ € [1} U {b; : ¢ € I3} is said to
be positive-linearly dependent if there exist o € ]Rlll‘,ﬂ € lezl’ (a, B) # 0 with @ > 0 and
Z a;a; + Z Bib; = 0.
i€l i€ls
Otherwise, we say that these vectors are positive-linearly independent.

Given a local minimum z* of (NLP) sucht that certain conditions are satisfied at
x*, it is possible to show that x* is also a KKT point. These conditions are called
constraint qualifications (CQ). The following CQ is in the following relevant.



Definition 2.3 Let z* be feasible for the optimization problem (NLP). Then we say that z*
satisfies the Mangasarian-Fromovitz Constraint Qualification (MFCQ) if the following two
conditions hold:

1. There exists d € R™ such that
Vgi(z)Td <0, VielI(z*), and Vhi(z*)Td=0, Vi=1,...,p,

where I(z*) == {i € {1,...,m} : g;(z*) = 0} denotes the active set at x*.
2. The gradients Vhq(z*),..., Vhy(z*) are linearly independent.

Definition 2.4 (NCP function ([22], Definition 1)) A function ¢ : R? — R is called a non-
linear complementarity problem function (NCP function) if it satisfies the complementarity
condition

¢(a,b)=0 <= a>0, ab=0, b>0.

An overview of the properties and construction of NCP functions, together with an
extensive collection of NCP functions, is provided in [22]. Moreover, NCP functions can
be used to reformulate nonlinear complementarity problems as systems of equations
[23].

Corollary 2.5 The following functions are NCP functions:

1. The Fischer-Burmeister function [24/, defined by ¢rp(a,b) = vVa? + b2 —a —b.
2. The Kanzow-Kleinmichel function [25], for A € (0,4), defined by ¢ i pi(n)(a,b) =

(a —b)%2 + Xab — a — b. For the special case of X\ = 2, it holds ¢k i ar(2y(a,b) =
¢rB(a,b).

2.2 A continuous reformulation of CCOP

In [5], the following mixed-integer-nonlinear formulation of (CCOP) was introduced

e
st g(z) <0, h(z) =0, (CCOP-MINLP)
e'y>n—5,
z;y; = 0, foralli=1,...,n,
y; € {0,1}, foralli=1,...,n.

By standard relaxation of the binary variables, we obtain the continuous optimization
problem

ik @
st. g(z) <0, h(z) =0, (CCOP-NLP)



T

efy>n—29,

z;y; = 0, foralli=1,...,n,
0<y; <1, foralli=1,...,n.

The optimization problem (CCOP-NLP) is a continuous reformulation of (CCOP) [5].
Its theoretical properties, with regard to specially tailored stationarity concepts and
constraint qualification, were first introduced in [5, 7] and have been further extended
in subsequent works; see, e.g., [15-17].

One might consider treating (CCOP-NLP) as a nonlinear program and attempting
to solve it with standard software. However, its feasible set is very complicated and
violates most of the standard constraint qualifications typically required for standard
nonlinear programming algorithms [5]. This difficulty mainly arises from the com-
plementarity constraints z;y; = 0, for all ¢ = 1,...,n. Due to the complementarity

Fig. 1: {(z,y) e RxR:2y=0,0<y <1}

constraints, the continuous reformulation exhibits strong similarities to both classes of
optimization problems, namely Mathematical Programs with Complementarity Con-
straints (MPCCs) [8, 9] and Mathematical Programs with Vanishing Constraints
(MPVCs) [10, 11]. The generalized and specially tailored stationarity concepts and
constraint qualifications for the continuous reformulation are closely related to those
developed for MPCCs and MPVCs. However, (CCOP-NLP) can be viewed directly
as an MPCC only under the additional assumption = > 0. A detailed comparison
between the concepts introduced for MPCCs and those for (CCOP-NLP) under this
assumption is provided in [7]. We introduce the following index sets:

Ij(z") ={ie{l,...,m} : gi(z") =0},

Ip(z*) ={ie{l,...,n}:xf =0},
Lio(z",y") ={ie{1,....,n} :z] #0,y; =0},
TIno(z*,y*) ={ie{l,...,n}:z] =0,y =0},
Ioi(z*,y*)={ie{1,...,n}:z; =0,y € (0,1)},
Ti(z*,y*) ={ie{l,....,n} 2 =0,y =1}.

In the presence of nonlinear constraints in (CCOP-NLP), the Guignard constraint
qualfication (GCQ), the weakest standard constraint qualification, typically fails to
hold [5]. This fundamental difficulty motivates the development of specially tailored
stationarity concepts and constraint qualifications.



Definition 2.6 ([5], Definition 4.6) Let (z*,y™) be feasible for the continuous reformulation
(CCOP-NLP). Then (z*,y") is called the following:

a) S-stationary (S = Strong) if there exist multipliers A € R™, u € RP, and v € R
such that the following conditions hold:

+Z>‘v91 JFZlMVh JFZ'Yzez—O

)\120, )\191(113):0, Vz:l,...,m,
=0, Vi=1,...,n:y7 =0.

b) M-stationary (M = Mordukovich) if there exist multipliers A € R™, € RP, and
v € R™ such that the following conditions hold:

+ZA Vgi(x +mez +Z%ez_o

/\ZZO, )xigi(o:):(), szl,...,m
v =0, Vi=1,...,n:z; #0.

M-stationarity is a weaker condition than S-stationarity. For an M-stationary point,
the multiplier 7; = 0 is only enforced for ¢ with x} # 0. By feasibility of (x*,y*), it
follows y; = 0 for all 4 with «} # 0. In contrast, S-stationarity requires v; = 0 for all
1 with y7 = 0, and therefore also for the so-called biactive indices, where x} = 0 and
yi = 0.

Proposition 2.7 ([5], Proposition 4.8) Let (z*,y") be feasible for the continuous reformu-
lation (CCOP-NLP). Then (z*,y*) is a KKT point of (CCOP-NLP) if and only if (z*,y™)
s S-stationary for (CCOP-NLP).

Since M-stationarity is a weaker condition than S-stationarity, it is also weaker
than the standard KKT conditions. In fact, the M-stationarity conditions coincide
exactly with the KKT conditions of the following tightened nonlinear program [5]:

min  f(x) st g(x) <0, h(z) =0, (TNLP(z*))

x,yeR?
x; =0, forallie Ih(z™).

It follows that a local minimizer «* of the original problem (CCOP) is also a local
minimizer of (TNLP(z*)), and thus an M-stationary point under suitable constraint
qualifications [5].

Definition 2.8 (CC-CQ, [5]) Let (z*,y") be feasible for (CCOP-NLP), and consider the
corresponding tightened nonlinear program (TNLP(z*)). We say that (x*,y") satisfies



the CC-Constraint Qualification (Cardinality-Constrained Constraint Qualification, CC-CQ)
for the continuous reformulation (CCOP-NLP) if z* satisfies the corresponding standard
constraint qualification for (TNLP(z")).

Definition 2.9 ([7], Definition 3.11) Let (z*,y") be feasible for the continuous reformulation
(CCOP-NLP). Then (z*,y™) satisfies CC-MFCQ if the gradients
{Vgi(z™) 1i € Ig(xz")} U {{Vhi(=™) :i € {1,...,p}} U {e; :i € In(z")}}

are positive-linearly independent.

Proposition 2.10 ([16], Proposition 2.3) Let (z*,y*) € R"™ x R" be feasible for
(CCOP-NLP). If (z*,y*) is M-stationary, then there exists z* € R™ such that (z*,2%) is
S-stationary.

Numerically, this implies that any method which generates a sequence converging
to an M-stationary point only, essentially gives an S-stationary point [16].

3 A general penalty method

The central idea is to address the challenging complementarity constraints
ziy; =0, foralli=1,... n,

by omitting them from the constraints and penalizing their violation in the objective
function via a suitable penalty term and a penalty parameter p > 0 with p 1 co. This
approach leads to a sequence of relaxed penalty subproblems parametrized by p.
This approach has already been applied to MPCCs, e.g., in [20] and [9], and to
(CCOP-NLP) under the assumption x > 0 in [19]. In this special case, the ¢;-norm
can be used as the penalty term.

We consider the general case without a sign restriction and therefore introduce
conditions that enable the construction of a suitable penalty term. The following con-
ditions are motivated by those used in the construction of penalty terms for MPCCs,
as proposed in [20].

Condition 3.1 The function ¢ : R x R — R is at least continuously differentiable and
satisfies the following conditions:

A) Forallz €R and y > 0:

i) ¢(x,y) =0 if and only if xy = 0.
it) ¢(x,y) >0 if and only if x # 0 and y > 0.

B) Let x € R, and y > 0. Then it holds that:



9@y o ry—0, and 2208 o ey,
Oz dy
ii)
W%O and W>O for all (z,y) € R x [0,1] with x # 0,y > 0.
z Y

C) Let (2%, y*)ren be a sequence in R x Rsq with x* # 0,y* > 0 for all k € N, and
suppose that (x¥, y*) — (x*,y*) as k — oo. If x* # 0,y* = 0, then

dp(x*,y")
ox

(", y")
dy

B

— 00

— 0.

Conversely, if x* = 0,y* > 0, then

(", y"¥)

Oy

(", y")
Ox

x>

—
=3 0.

From now on, we assume that ¢ : R x R — R is at least continuously differentiable
and satisfies Condition 3.1.
The subproblems for the penalty method for (CCOP-NLP), parameterized by p > 0,
are given by

Juin - f@) + p®(ay) = @)+ p D élwi i) (CCOP-PEN(p))
’ i=1
st. g(z) <0, h(zx) =0,
ely>n-5,
0<y, <1, foralli=1,...,n.

Condition 3.1 A) ensures that the penalty term ® : R™ x R® — R, defined by
O(z,y) = Y1 d(4,y:), is strictly positive at feasible points of (CCOP-PEN(p))
that violate the complementarity constraints, and equals 0 whenever the complemen-
tarity constraints are satisfied. Hence, Condition 3.1 A) guarantees the fundamental
property of a penalty term.



3.1 Penalty term

In this section, we present continuously differentiable functions that satisfy Condition
3.1.

Theorem 3.2 The function ¢ : R x R — R, defined by
$(z,y) = 2y,

is continuously differentiable and satisfies Condition 3.1.

Proof We omit the proof, as the function is clearly continuously differentiable, and the
properties of Condition 3.1 can be verified by a straightforward computation. O

The following observation motivates the construction of the function ¢(z,y) in the
subsequent theorem. Let g : R X R — R be an NCP function. Then

g(lz,y) =0 <=y > 0,2y =0,

so that the constraints y; > 0, z;y; = 0 in (CCOP-NLP) can equivalently be replaced
by g(|x;|,y;) =0for i =1,...,n. Our goal is to construct a continuously differentiable
function g : R x R — R such that g(z,y) > 0 for x € R,y > 0, and

g(x,y) =0<=azy =0,z €R,y >0, (1)

which corresponds to Condition 3.1 A).

For the Kanzow—Kleinmichel NCP function ¢x g ar(r) (2, y) with A € (0,4) from Corol-
lary 2.5, it is known that ¢x g ar(r)(, y)? is continuously differentiable [25].
However, ¢KKM(A)(|x|,y)2 is not continuously differentiable at points where z = 0
and y < 0. To address this, in the following theorem we define the function to be the
constant O-function for y < 0. This modification ensures that the resulting function is
continuously differentiable and satisfies Condition 3.1.

Theorem 3.3 The function ¢ : RXxR — R, based on the Kanzow—Kleinmichel NCP-function
[25] with X € (0,4), defined by

2
$(w,y) = {(‘ (el = o)2 + Naly + o] +3) ify=0
0 if y <0,

is continuously differentiable and satisfies Condition 3.1.

Proof We omit the proof. The continuous differentiability of the function, as well as the
properties of Condition 3.1 can be verified by a straightforward computation. O



3.2 Properties of the penalty subproblems

From now on, we assume that ¢ : R x R — R in (CCOP-PEN(p)) is at least contin-
uously differentiable and satisfies Condition 3.1. Additionally, we denote by Z the
feasible set of (CCOP-NLP), and by Zpgy the feasible set of (CCOP-PEN(p)) for any
p > 0. Then, we have Z = Zppy N{(z,y) ER" xR" : z;y;, =0, for all i =1,...,n}.

The following result is inspired by [9, Theorem 5.1 (b)].

Theorem 3.4 Let (z*,y") be feasible for (CCOP-NLP) and satisfy CC-MFCQ for
(CCOP-NLP). Then (z*,y*) is feasible for (CCOP-PEN(p)) and satisfies MFCQ for
(CCOP-PEN(p)).

Proof Let (z*,y*) € Z. Since Z C Zpgn, the point (z*,y") is feasible for (CCOP-PEN(p)).
Suppose that CC-MFCQ holds at (z*,y"). Then z* satisfies MFCQ for the tightened
nonlinear program (TNLP(z")), so there exists a d € R" such that
Vai(z)Td <0, i€ I(z"), (CC-MFCQ1)
Vhi(z)'d=0,i=1,...,p, eld, icly), (CC-MFCQ2)
and the set of gradients
{Vhi(z™),...,Vhp(x")} U {e; : i € In(z")} is linearly independent. (CC-MFCQ3)
To establish MFCQ for (CCOP-PEN(p)) at (z*,y"), we seek a direction d = (dz,dy) €
R™ x R™ such that

Vgi(z*)Tde <0, i € Iy(z"), (PEN-MFCQ1)
—eldy <o, ite’y* =n—5, (PEN-MFCQ2)
—eldy <0,i€ Ioo(z*,y") Ulro(z*,y"), eldy <0,icIp(z*,y"), (PEN-MFCQ3)
Vhi(z*) de =0,i=1,...,p, (PEN-MFCQA4)

and the set of gradients
{Vhi(z"),...,Vhp(z™)} is linearly independent. (PEN-MFCQ5)

We directly obtain (PEN-MFCQ5) from (CC-MFCQ3). By setting dy = d, we obtain
(PEN-MFCQ1) and (PEN-MFCQ4) from (CC-MFCQ1) and (CC-MFCQ2), respectively.
If feTy* +n — S < 0, the constraint on dy corresponding to eTy =n — S is inactive. We
define dy € R™ with an arbitrary o > 0 by

o, if yf =0,

(dy); = —o, ifyf =1, foralli=1,...,n,
0, otherwise,

which ensures that (PEN-MFCQ3) is satisfied.
If —eTy*+n—8=0,since 1 < S < n, it follows that e’ y* < n. Consequently, there exists
an index j ¢ Io1(z*,y™). We define dy € R™ with an arbitrary o > 0 by

no, ify; =0,

(dy)i =< —o, ifyf =1, foralli=1,...,n.
no,  otherwise,
This choice ensures that both (PEN-MFCQ2) and (PEN-MFCQ3) are satisfied. O

10



The following result is inspired by [9, Theorem 5.2].

Theorem 3.5 Let (z*,y*) be feasible for (CCOP-NLP) and a KKT point of
(CCOP-PEN(p)). Then (z*,y*) is S-stationary for (CCOP-NLP).

Proof As (z*,y") is feasible for (CCOP-NLP), we have z]y; =0 for all 1 = 1,.
Let (z*,y*) be a KKT point. Then there exist correspondlng Lagrange multlphers )\ e R™,
un€RP §eR, and v € R™ satisfying

n
8o (
+Z G “y’ +Z/\ Vgi(x +ZMNh (z*) =0, (PEN-KKT1)
=1
—se+ > p 1 ’ yl ei + Z vie; = 0, (PEN-KKT?2)
=1
>0, ifg(a*)=0
3120 @) =0 i1, (PEN-KKT3)
=0, else,
> e T % —
5120 eyt =n=5 (PEN-KKT4)
=0, else,
<0, ify; =0,
vid>0, ify =1, foralli=1,. .. n. (PEN-KKT5)
=0, else,

Here, v; denotes the Lagrange multiplier associated with the box-constraint 0 < y; < 1 for
alli =1,...,n. In order to show that (z*,y*) is S-stationary for (CCOP-NLP), we construct
multipliers A € R™, i € R?, and ¥ € R” such that they satisfy

+Z/\ Voi(x +ZuNh +Zmel =0, (51)
- > if g; =
Ai >0, 1 gz(x ) 07 for all i = 1,...,m, (SQ)
=0, else,
= if yf =
¥i 0’. ity =0, foralli=1,...,n. (83)
arbitrary , else,

First, we set i = pand A = X. Then (S2) follows directly from (PEN-KKT3). Next, we define
i = p8¢( i) for all i =1,...,n, which yields (S1) from (PEN-KKT1). By Condition 3.1

Ox;
B.i), we have 22U18) — 0 if y¥ = 0. Therefore, 3; = 0 for all i with y} = 0, and (S3) is
satisfied. ' O

The following result is analogous to [19, Lemma 4.15].

Theorem 3.6 Let (z*,y") be a KKT point for (CCOP-PEN(p)), and let 8, the Lagrange
multiplier corresponding to the constraint eTy >n—_S, satisfy 6 = 0. Then (x*,y™) is feasible
for (CCOP-NLP).

11



Proof By assumption, (z*,y*) is a KKT point for (CCOP-PEN(p)). Therefore, there exist
Lagrange multipliers § € R, v € R™ that satisfy

~ 0(r.y)) LN
756+Zp a;;yl elJrZVzel:O,

5{20, ifely*=n—2,

=0, else,
<0, ify; =0,
v >0, ifyf=1, foralli=1,...,n. (2)
=0, else,

Here, v; denotes the Lagrange multiplier corresponding to the box-constraint 0 < y; < 1 for
alli=1,...,n

By assumption, § = 0, which implies that, for all i = 1,...,n, we have
3¢( i, Yi)
+v;,=6=0. 3
i (3)
To show feasibility of (z*,y*) for (CCOP-NLP), it suffices to prove that z}y; = 0 for all
i=1,...,n. We proceed by contradiction.

Suppose there exists an index j € {1,...,n} such that 2 # 0,y; > 0. Then, by Condition
3.1 B.ii), we have M > 0, and from (3) it follows that v; < 0. However, (2) implies

that y] = 0, which is a contradlctlon Hence, the claim follows. O

3.3 Convergence result

In the following, we consider a sequence of penalty subproblems (CCOP-PEN(p))
parameterized by p > 0, and study their behavior as p T co. The following result
is motivated by the convergence theorems for the Scholtes-type regularization [12,
Theorem 2] and penalty method for MPCCs [20, Theorem 2.1].

Theorem 3.7 Let (pk)keN be a sequence with pk >0 for all k € N and pk 1T oo as k — oo.
Let (mk,yk)keN be a sequence of KKT points for (CCOP-PEN(p)) with p = pk, and assume
that (z*,y*) koge (z*,y"), with (z*,y") feasible for (CCOP-NLP). If the limit point (z*,y")
satisfies CC-MFCQ for (CCOP-NLP), then (z*,y*) is M-stationary for (CCOP-NLP).

Proof By assumption, (ack, yk) is a KKT point for all k& € N. Therefore, there exist Lagrange
multipliers (A¥, 1% 6% %) € R™ x RP x R x R™ for all k € N such that the conditions
(PEN-KKT1) - (PEN-KKT5) are satisfied. We define for each k € N

e Ot ui)
i =P 9z )
Together with (PEN-KKT1), we obtain for all k € N

foralli=1,...,n

-I-Z)\ Vgi(x —l—Zu,Vh +27161—0 (4)

12



We now show by contradiction the boundedness of the sequence ()\k, uk, 'yk)keN.

Suppose, to the contrary, that H(/\k7 uk,fyk)H k2% . The normed sequence

( (F, ¥, 5") >
k ,k ~k
[N Lol
is obviously bounded, and we can without loss of generality assume that the whole sequence
converges

A0

koo [|[(AF, uk, R)
By (PEN-KKT3), we have )\f >0foralli=1,...,mand all k € N, which implies that X > 0.
For all i such that g;(z*) < 0, continuity of g; ensures that g;(z*) < 0 for sufficiently large k.
Hence, by (PEN-KKT3), /\i»C = 0 for all sufficiently large k, and thus A; = 0. Consequently,
it holds

=(\[1,7) #0.

supp(\) C Iy(=™). (5)
We now show by contradiction that supp(¥y) C Io(z"). Suppose there exists an index j €
{1,...,n} such that 7; # 0 and :z:]* # 0. Then, for sufficiently large k, we have yjk # 0 and

mf # 0, which implies

(945(13’?, yk)
k JJ37 _ k
P ox % 70

By Condition 3.1 B), we have yé“ > 0 for all sufficiently large k.

Since (z*,y") is feasible for (CCOP-NLP), it follows that y; = 0. Together, yf F2%° () with
0< y;-“ < 1. From (PEN-KKT5), we then obtain ujl-f = 0 for sufficiently large k. Consequently,
there exists a subsequence along which y;-c is strictly monotone decreasing. Without loss
of generality, we assume that y;-“ as strictly monotone decreasing along the entire sequence

k k
(.’L' Y )kGN'
From (PEN-KKT?2), it follows that sk = p > 0 for all sufficiently large k € N,

under Condition 3.1 B). Moreover, by (PEN-KKT4), it holds eTyk = n— S for all sufficiently
large k.
Since yf } 0 as k — oo, maintaining the equality eTyk = n — S requires the existence of at

i 0o (xh u})
Oy

least one index m such that y]ncl is strictly monotone increasing along the sequence (ack, yk)keN.
Hence, for sufficiently large k£, we obtain 0 < y,kn < 1, which implies y;, > 0,2, = 0 and
Z/fn =0.

kO (zr, ym) k : ., o
From (PEN-KKT4), we have p — g = 6% > 0, which, by Condition 3.1 B), implies
zk, # 0 for sufficiently large k. Furthermore, Condition 3.1 B) ensures that ’y,’% =

k k
pk% # 0 for sufficiently large k.

k—o0

Now, we have (x?,yf) — (#},yj) with 2} # 0,y; = 0, and mf #* O,y;-c > 0 for all k € N,

as well as (z%,, yk) i (z%,,y%,) with %, = 0,55, > 0, and z¥, # 0,4, > 0 for all k € N.

Therefore, by applying Condition 3.1 C), we obtain
sk Oo(zh k)

k k9 (=5 yk) oshyF) Oz (T ym)  Ob(ah yf)
Bl P ox oy Oy Jx k—oo
= E ok ko k) E o k) k ok > 0.
77’% k Od(xk, k) 5k Op(xk, ,yk.) 0(xy ym)  9d(ah .yf)
p oz a¢(zk k) ox oz T 9y
9y
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This is a contradiction to

B A
0# || = lim < lim - =0.
! oo [[(AF, uF yR) ||~ k—oo [y
Therefore, we have
supp(7) C Io(z"). (6)

Dividing (PEN-KKT1) by ||(A¥, 1%, ~+%)]|, using (5) and (6), and letting k — oo, we obtain
from (4) for k — oo

> AiVgila +me + > Fiei=0.

i€ly(x*) i€lo(z*)
Since A > 0 and (), i, 7) # 0, this leads to a contradiction with CC-MFCQ in (z*,y™). This
would imply that the relevant gradients are positive linearly dependent, contradicting CC-
MFCQ), which requires them to be positively linearly independent.
Therefore, the sequence ()\k, uk,'yk) keN is bounded. Without loss of generality, we assume
that the sequence converges. Let limkﬁoo()\k,uk,’yk) = (A, i, y). Taking the limit in (4) as
k — oo yields

+Z)\ng +ZH’1V}L +Z'716170

Analogously to above, we can show A > 0,supp(A) C I4(z*) and supp(y) C Ip(z™).
Consequently, (z*,y*) is M-stationary for (CCOP-NLP) with multipliers (X, u, 7). O

Corollary 3.8 Let (pk)keN be a sequence with pk >0 for all k € N and pk 1 oo for k — co.
Let (2", yk)keN be a sequence of KKT points for (CCOP-PEN(p)) with p = p*, and assume

—

that (z*,y*) s (z*,y"), with (z*,y"*) feasible for (CCOP-NLP). If the limit point (z*,y™)
satisfies CC-MFCQ for (CCOP-NLP), then (z*,y") is M-stationary for (CCOP-NLP) and
there exists a z* € R"™ such that (z*,2%) is S-stationary for (CCOP-NLP).

Proof By Theorem 3.7, this follows directly from Proposition 2.10. O

4 A general regularization method

Regularization approaches for the continuous reformulation (CCOP-NLP) are based
on the same ideas as those developed for MPCCs.

The complementarity constraints z;y; = 0,i = 1,...,n in (CCOP-NLP) introduce
substantial analytical and numerical challenges. To address these, the complementar-
ity constraints are suitably replaced, resulting in regularized optimization problems
with better analytical and numerical properties. The resulting regularized optimiza-
tion problems depend on a parameter ¢ > 0 and converge to the original optimization
problem (CCOP-NLP) as ¢ | 0.

14



To relax the complementarity constraints x;y; = 0,7 = 1,...,n, we consider a contin-
uously differentiable function ¢ : R x R — R that satisfies Condition 3.1. For a given
parameter ¢ > 0, the complementarity constraints are replaced by

d(xi,y;) <t, foralli=1,...,n

This approach defines a general regularization method. The corresponding regularized
optimization problems, parameterized by ¢t > 0, are then given by

ot @)
st. g(z) <0, h(z) =0, (REG(t))
—efy+n—8<0,
P(xiyi) < t, foralli=1,...,n,
0<y; <1, foralli=1,...,n

The following theorem is motivated by [12, Theorem 2].

(a) Kanzow—Schwartz (b) Scholtes-type (c) General

Fig. 2: Geometric interpretation of the regularization approaches: Kanzow—Schwartz
regularization [5] (Figure 2a), Scholtes-type regularization [12] (Figure 2b), and general
regularization (Figure 2c) where the function from Theorem 3.3 with A = 1 is used

Theorem 4.1 Let (tk)keN be a sequence with t* >0 for allk € N and tk 10 ask — oco. Let
(2, yF)ken be a sequence of KKT points of (REG(t)) with t = t*, converging to («*,y*). If
CC-MFCQ holds at (z*,y"), then (z*,y*) is an M-stationary point of (CCOP-NLP).

Proof First, observe that (z*,y*) is feasible for (CCOP-NLP). Since (z¥, y*),cn is a sequence
of KKT points for (REG(t)) with t = t* | there exist Lagrange multipliers ()\k, ,uk, ﬁk, 5", I/k) €
R™ x RP x R™ x R x R" forallk’ENsuchthat

+Z)\Vgl +va;z +Z~’“a¢ “yl) ; =0, (REG-KKT1)

ox
1=1

- e—|—Zulel Z -k 00 “yz) ei =0, (REG-KKT?2)
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if o () =

0.1 gi@™) =0, i1, .m, (REG-KKT3)
=0, else,

0

,ifely A

(REG-KKT4)
=0, else

k
) 1f¢( 27y7,)7t ’

foralli=1,...,n, (REG-KKTS5)
, else,

0

0

0, if y¥ =0,

0,ifyf =1, foralli=1,...,n. (REG-KKT6)
0, else,

Here, v; denotes the Lagrange multiplier corresponding to the box-constraint 0 < y; < 1 for
i=1,...,n. From (REG-KKT?2), we then obtain, for all i =1,...,n,

5k:uf+af%y’y’). (7)
Suppose there exists an index i € {1,...,n} such that v¥ < 0. Then, by (REG-KKT6), we
have y¥ = 0. Condition 3.1 A) implies t* > 0 = ¢(z¥, y¥) if and only if #¥ = 0 or y¥ =0,
which yields 7F = 0.

Substituting into (REG-KKT2) gives 0 > Vf = 6 > 0, which is a contradiction. Therefore,
for all i =1,...,n, it holds that Z/f > 0.

For all k € N, we define

k ~k8¢( )

¥i =7, T’ foralli=1,...,n
We prove the boundedness of the sequence (Ak,uk,yk)keN by contradiction. Suppose that
. kok kv .
lim [|(A™, u,4")|| = co. The normalized sequence
k—o0

( (F, 1* ") )
k ,k ~k
[N lol (.
is bounded, and without loss of generality, we assume that it converges
< AN
04 (A7) = lim ST
koo [[(XR, ik AR

It holds that A > 0. For all i with g;(z*) < 0, continuity of g; implies that g;(z ) < 0 for
sufficiently large k, implying by (REG-KKT3) that )\k = 0 and hence ); = 0; consequently,
supp(A) C Ig(z").

We prove supp( ) C Ig(z™) by contradiction. Suppose there exists an index j € {1,...,n}
such that ac # 0 and 7; # 0. Feasiblity then implies y;‘ =0.

Since ¥; # O it follows that q/j #* 0 and hence ¥ k> 0 for sufficiently large k. By (REG-KKT5)
and Condition 3.1, this implies m] # 0 and y] > 0. Together with Condition 3.1 B), this
implies

k k
& =vf + 7 Dy > 0.
Therefore,
9 k
5k V! +5/zk ¢( 7,7yz)>0,

0y
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must hold for all i = 1,...,n. Assuming 6% > 0 for sufficiently large k, (REG-KKT4) then
implies

eTyk =n-25.
Since y;? — y; =0 and y;»c > 0 for all sufficiently large k, we may assume that yf is strictly

monotone decreasing along the entire sequence (mk , yk )ken- Moreover, because eTyk =n—3=5
holds for all sufficiently large &, the strict monotone decrease of y;-“ implies the existence of an

index m such that y,’% is strictly monotone increasing along the whole sequence (mk, yk)keN,
exactly compensating the decrease of y? to maintain eTyk = n — S. Therefore, for all
sufficiently large k, we obtain

Y > 0,20 =0and 0 < y&, < 1,05 =0,2F, #0.

We thus conclude that zF, # 0 for sufficiently large k, since §F > 0 and vF, = 0, by
(REG-KKT2), (REG-KKT5) and Condition 3.1 A) and B).

k—o

k _k * ok . * * k k
Moreover, we have (z7,yj) — (z},y;) with 27 # 0,y; = 0 and z; # 0,yj > 0 for all

k €N, as well as (zF,, y%) kg0 (z,,y%,) with 2, = 0,45 > 0 and z¥, # 0,95, > 0 for all

keN.
Combining the above, and applying Condition 3.1 C), we obtain

LA Cr)
1 0 (zh yF) g (xk yk) O Bo(zE yh) | | ap(a®,y")
|'VJ| ) ]]‘ =0 # | oy L ki’fo
= ok 0(ak yk - K | 9(ak, yk, O (zk y* )
‘7m| |'y7]§17( 6:ny )’ 1) O¢(xk, yk) 9(@,Ym) Bzy ) %
Op(xk, ,yk,) ox
dy
This leads to the contradiction
k k
0# |3 = 11 hj' lim m:O.

b IR 1) 0 o]
Hence, we obtain supp(y) C Io(z").

To show the boundedness of the sequence (/\k7 uk, 'yk )ken, we use the assumption that CC-
MFCQ holds at (z*,y*). Dividing the first KKT condition (REG-KKT1) by ||(A¥, u*,~%)]|
and letting k — oo, it follows, together with the preceding arguments, that

Y. AiVeile +th )+ D e =0.
i€lg(x*) i€lo(xz*)

Together with A > 0,supp(\) C I4(z*),supp(¥) C Io(z*), and (X, fi,J) # 0, this contradicts
CC-MFCQ in (z*,y"), since CC-MFCQ requires these gradients to be positive linearly inde-
pendent. Consequently, the sequence of multipliers (/\k7 ,uk, 'yk )ken is bounded. Without loss
of generality, we assume that the whole sequence ()\k, 1" ) pen converges

(5 1%, 7%) = Tim (AF, 1%, 4").
k—o0
Taking the limit ask — oo in the first KKT condition (REG-KKT1), we obtain

+Z/\ Vgi(z +Zth +2%6sz

Hence, (z*,y"), together with the multlphers DRI satlsﬁes the first condition for M-
stationarity. Analogous arguments as above yield A* > 0, supp(A*) C I4(z*), and supp(y*) C
Io(z™). Therefore, (z*,y*) is M-stationary. O
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Corollary 4.2 Let (tk)keN be a sequence with t* >0 for all k € N and t* 10 as k — .
Let (Jck,yk)keN be a sequence of KKT points of (REG(t)) with t = t* converging to (z*,y*).
If CC-MFCQ holds at (z*,y™), then (z*,y™) is M-stationary and there exists a z* € R™ such
that (z*,2%) is S-stationary for (CCOP-NLP).

Proof By Theorem 4.1, this follows directly from Proposition 2.10. O

The following result is analogous to [12, Theorem 3].

Theorem 4.3 Let (z*,y") be feasible for (CCOP-NLP) and CC-MFCQ hold there. Then
there is a neighbourhood U of (z*,y™) such that for allt > 0 the standard MFCQ for (REG(t))
holds at every (z,y) € U feasible for (REG(t)).

Proof We prove the statement by contradiction. Assume, to the contrary, that the statement

does not hold. Then there exists a sequence (mk,yk)keN hoge (z*,y*) and (tk)keN > 0 for
all k € N, such that (z*,y") is feasible for (REG(t)), with ¢ = ¢t*, but in (z*,y*) MFCQ is

violated for (REG(t)), with ¢t = . Consequently, there exist multipliers ()\k, ,uk, S/k, 5", yk) €
R™ x RP x R™ x R x R" for all k£ € N such that
(A", u*, 55,85, 08) # 0, (8)
and the conditions,
k 1k 08(xf, yF) ) e
Z Ai Vgi(a®) + Zuz Vihi(z") + Z e =0, (LOC-MFCQ1)

ox
i=1

and (REG—KKTQ) - (REG—KKTG) are satisfied. Here, v; denotes the multiplier corresponding
to the box-constraint 0 < y; < 1, for all 4 = 1,...,n. Since MFCQ is violated for (REG(t))
with ¢t = tk, the relevant gradients are positve linearly dependent at (:vk, yk)

As in the proof of Theorem 4.1, we can rule out the case 1/11C < 0, and thus assume 1/11C > 0 for
alli=1,...,n

ko ~kM -
Define v;° = 7, 3 for all ¢ = 1,...,n and k € N. By (REG-KKT5), we have
x
¢($f7yf) = tk, and Condition 3.1 A) implies yf > 0,3@%C # 0 if 7)/5 > 0. In particular, for

L . .. 8(1)(:5?, yf) .
these indices ¢ and k € N, Condition 3.1 B) ensures B # 0. This yields
x

supp(7*) = supp(7*) vk € N. (9)
In addition, from (REG-KKT5) and Condition 3.1 B), we also obtain
CLICHID)
k. Oy k
;yk:a(ﬁ( zayz): Yi g (zk yk)’ lf¢( zvyz)_t ) (10)
8y Ox
0, else.

Therefore, for all kK € N, we can write (LOC-MFCQ1) and (REG-KKT?2) as

ZAngl —I—Zm Vh;( +Z% e; =0, (11)
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(=¥ yF)

k k Jy if ko ky_ 4k
A AT A MYy =t
b = VT g gy TOELY) = 21, o, (12)
oz
vk else,

K2

Foralli=1,...,n and all £k € N, we have ;ﬁc%@y?) >0, by (REG-KKT5) together with
Condition 3.1 A) and B). ‘

We now show that this contradicts the assumption that CC-MFCQ holds at (z*,y™).

By assumption, (/\k7 pk, ﬁk, 5k, I/k) # 0 for all £ € N. Without loss of generality, we can choose
the multipliers such that ||()\k,uk7'yk,5k,uk)|\ =1 for all ¥ € N and the whole sequence
converges

0# (A p7.8v) = lim (A uF % 6% 05, (13)

We have A > 0. For all i with g;(z*) < 0, continuity implies g;(z*) < 0 for sufficiently large
k, and thus A\¥ = 0. Tt follows that

supp(\) C I4(x™). (14)
We proceed to prove supp(y) C Ip(z*) by contradiction.
Assume there exists an index j € {1,...,n} with v; # 0,2} # 0. Feasibility then implies
y; = 0. Moreover, 'y]k # 0 and hance '7]]? # 0, with d)(a:f,yf) = t¥. By Condition 3.1 A), this
gives ar:éc #0, yf > 0, with y}“ — 0 as k — oo. Thus, for sufficiently large k, we have y;‘-' <1
and v = 0 by (REG-KKT6).
Using Condition 3.1 C) and (12), we obtain

ICHETD)

k k., k__ 0Oy k 1 k—o
0" =vi 4+ =7, — oo0.
T gk ) T ag(ak uh)
ox z

O (=} k)
Oy
Since (/\k , uk ,fyk ,6’€ , vk Jken converges, this yields a contradiction. Therefore, we conclude
that

supp(y) C Io(z"). (15)
It remains to show that (A, u,7y) # 0. We proceed by contradiction and assume (A, i, y) = 0.
Since (A, i, 7, d,v) # 0, it follows that (d,r) # 0. From the arguments above, we have vk >0
and, by (12), sk > max;—1,..n I/f. Hence, (6,v) # 0 implies § > 0 and 6k > 0 for sufficiently
large k. This is only possible if eTyk =n — S for all sufficiently large k.

For all ¢ with y; > 0, we have ] = 0, and without loss of generality, we assume that along

the sequence (zF,y¥) iy (z%,y¥), either 2 = 0,9F > 0 or ¥ #0,y¥ > 0 for all k € N.

If zF = 0,yF > 0 for all k € N, then, by (REG-KKT2) and Condition 3.1 B), it follows that
~k 8(;5(:25, yf)

0< 6 = lim ulk—l—’yi

k—oc0 By v

and, if zf #0, yf > 0 for all k¥ € N, then v = 0, which, together with Condition 3.1 C) and
(12), yields

6¢(ﬂéf$yf)
. k k Y
0<6 = lim vi4~F—24 _ —y,.
koo T Bt gD)
ox
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Hence, for all sufficiently large k& and i with yf > 0, (REG-KKT6) implies yf =1, and
consequently y; = 1. However, since eTylC =n — S < n for all sufficiently large k, there
must exist at least one index m such that y,’% = 0 for all sufficiently large k. By Condition
3.1 A), it follows that qb(xfn,y,]%) =0 < t; and vk, = 0. This, however, implies 6* = 0, a
contradiction. Therefore, the assumption (A, i, y) = 0 is false, and we conclude that

(A, p,y) # 0.
Alltogether, taking the limit £k — oo and using (14) and (15), we obtain

P
> AV + Y uiVhi) + Y yies =0.
iel,(z*) i=1 iclo(z*)
Since (A, pu,y) # 0 and XA > 0, the corresponding gradients are positive linearly dependent,
which contradicts CC-MFCQ. The statement therefore follows. O

The following global convergence result is analogous to [18, Theorem 4.1].

Theorem 4.4 Let (tk)keN be a sequence with t* >0 for all k € N and t* 10 as k — oco.
Suppose that (z*,y*) is a globally optimal solution of (REG(t)) for t = t* and (z*,y*) is
an accumulation point of the sequence (:Bk,yk)keN as k — oco. Then, (z*,y*) is a globally
optimal solution of (CCOP-NLP).

Proof Denote by Z(t*) the feasible set of the regularized optimization problem (REG(t))

with ¢ = t* and by Z the feasible set of (CCOP-NLP). For all ¢ > 0, it holds that Z C Z(t),

and for 0 < t; < t9 we have Z(t1) C Z(t2).

Taking a subsequence if necessary, we assume that kl';m (;ck, yk) = (2*,4"). We observe that
o

(z*,y*) is feasible for (CCOP-NLP). Let (z¥,y*) be a globally optimal solution of (REG(t))
with ¢ = t* for all k € N. Since Z C Z(t*) for all k € N, it follows that

k
fa®) < f(x), V(z,y) € Z
Letting k — oo and using the continuity of f, we obtain
f@@®) < fz), Y(z,y)€Z
Hence, (z*,y™) is a globally optimal solution of (CCOP-NLP). O

5 Numerical experiments

In this section, we conduct an extensive numerical study to evaluate the performance
of the proposed solution methods and compare them with established approaches.
All experiments were performed on a computer equipped with an Apple M1 chip, 8 GB
of RAM, and an 8-core CPU (3.2 GHz). The numerical experiments were implemented
in Python 3.11.1.

We use the following notation to denote the solution methods:

1. RELAX: Directly solves the continuous reformulation (CCOP-NLP).
2. Gurobi: Solves a mixed-integer (nonlinear) reformulation of the corresponding
cardinality-constrained optimization problem.
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3. SCHOL-REG: Applies the Scholtes-type regularization proposed in [12] and solves a
sequence of the corresponding regularized optimization problems.

4. XS-REG: Applies the Kanzow—Schwartz regularization proposed in [14] and solves a
sequence of the corresponding regularized optimization problems.

5. KKM-PEN(\): Applies the proposed penalty method and solves a sequence of opti-
mization problems (CCOP-PEN(p)) with penalty term ®(z,y) = >, ¢(z,y),

2
(~VT =97+ Al + [l +) ity >0,
0, if y <0,
Theorem 3.3. We consider A € {1,0.1,0.01}.

6. QUAD-PEN: Applies the proposed penalty method and solves a sequence of optimiza-
tion problems (CCOP-PEN(p)), with penalty term ®(z,y) = Y., z2y2.

where ¢(z,y) = as introduced in

To solve the respective mixed-integer programs, we use the commercial solver Gurobi
12.0.3 [26], accessed via gurobipy 12.0.3 and set the Gurobi-parameter MIPFocus
=3.

For solving each optimization problem in the penalty and regularization approaches,
we use IPOPT 3.14.16 via Pyomo 6.8.2. Thereby, MUMPS 5.6.2 is used to solve the
single linear equation systems. See [27, 28] for IPOPT, [29, 30] for Pyomo, and [31, 32]
for MUMPS. We select the TPOPT parameter tol = 10~% and contr_viol_tol = 1071C,
For the regularization methods, the initial value is chosen as t° = 1, and decreased
in each step according to t**1 = 0.1 - t*. To solve the (k + 1)-th regularized opti-
mization problem, we initialize the solver with the solution obtained from the k-th
subproblem. The choice of the initial starting point for t° = 1 is specified in each
experiment. If IPOPT terminates with an error, we proceed by reducing t* according
to the update rule, and reinitialize the solver with the last successfully computed solu-
tion. The regularization method is terminated when either the maximum violation
of the complementarity constraint is below 107>, i.e., max;—1__,{|z;|y:} < 107>, or
after solving the regularized optimization problem with ¢ = 1077,

For the penalty method, the penalty parameter is updated according to p*+1 = 2pF.
The initial penalty parameter p° and starting point are specified in each experiment.
As in the regularization method, the solution of the previous subproblem is used as the
starting point for the next one. The procedure is terminated once the maximum viola-
tion of the complementarity constraint satisfies max;—1__,{|@;|y;} < 1075. If IPOPT
reports an error while solving a subproblem, we simply increase the penalty parame-
ter according to the update rule and reinitialize the solver with the last successfully
computed solution. With this strategy, the penalty method terminated successfully in
all experiments.

In all experiments, we initialize the numerical methods with the starting point (2°,y"),
where we set y° = e.

To solve the continuous relaxation (CCOP-NLP) directly, we use IPOPT with the same
settings and the same initial point as in the regularization methods and penalty meth-
ods.

The newly introduced general regularization method is excluded from the numeri-
cal experiments. In the final experiment in section 5.3, it fails to achieve the desired
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maximum complementarity constraint violation. We note, however, the general reg-
ularization method performs very well in the numerical experiments presented in
sections 5.1 and 5.2.

5.1 Sensitivity starting point

We consider the following cardinality-constrained optimization problem

min_ f(xy,29) = 6.8521 + ™ +0.7(0.521 + 2)? — 8.25z5 + (z2 — 1)* (EXP1)

z1,22€R

st. (xp—1)% + 22 <10, llzllo < 1.

The local minima of (EXP1) are given by 2! = (—v/10+1,0) ~ (—2.16228,0), f(z!) ~
—12.9078, and 22 = (0,3.0), f(2?) ~ —15.2317, where 22 is the unique global min-
imum. The optimization problem (EXP1) is constructed such that after removing
the cardinality constraint, the global minimum lies between the two local minima of
(EXP1). For the choice of the starting point (2°,9°),2°,¢y" € R?, we discretize the set
[2.625,4.875] x [—3.75, 3.75], by considering L = {(z1, 22) : 1 = —2.625+0.375z21, 22 =
—3.754+0.37522, 21, 22 € {0,1,...,20}}, such that we obtain |L| = 441 starting points,
by choosing (2°,4°) with 2° € L and ¢° = (1,1).

We choose as the initial penalty parameter p® = 2. Table 1 reports the result of
the experiment by indicating for each numerical solution method, how often the x-
component of the computed solutions converges to 2%, 22 or (0,0).

Table 1: Frequencies of finding local (global)
minimizers by starting point for (EXP1)

Method 22 (global minimum) 2! (0,0)
RELAX 122 146 173
SCHOL-REG 441 0 0
KS-REG 358 83 0
KKM-PEN (1) 441 0 0
KKM-PEN (0.1) 351 90 0
KKM-PEN(0.01) 341 100 O
QUAD-PEN 441 0 0

First, we observe that all penalty and regularization methods outperform RELAX, and
that the solution methods exhibit distinct local convergence behavior, reflecting their
sensitivity to the choice of starting point as well as to the regularization and penalty
parameters.

5.2 N-dimensional Rosenbrock function

We consider the following n-dimensional version of the well-known Rosenbrock function
(Banana function or Rosenbrock’s banana function) f : R — R, given by f(x) =
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st (100(z;41 — 2)? + (1 — ;)?). Based on this function, we consider the following

i=1 i
cardinality-constrained optimization problem

n—1
min  f(z) = ; (100141 — 22)? + (1 — 2:)?) (CC-RB)
st. —10<z; <10, foralli=1,...,n,
zllo < S.

We consider n = 10,20, 30,40. For each n, we vary the sparsity parameter S =
1,...,n—1, resulting in a total of 96 test instances. To check the quality of the obtained
solutions, we solve the following mixed-integer-nonlinear optimization problem.

n—1
min, - f(z) = (100(zi41 — 2;)? + (1 — 2;)?) (CC-RB-MINLP)
Ly zERT i=1
s.t. —10y; < z; < 10y;, forallt=1,...,n,
n
Zyi < S)
i=1
zi:x?, foralli=1,...,n,
—10<z; <10, y; €{0,1}, foralli=1,...,n.

We choose as the starting point for the numerical methods (2°,¢y") = (e, e) and as the
starting penalty parameter p° = 2. The tables 2, 3, 4 and 5 summarize the results for
n = 10,20, 30,40. The column Global reports the number of instances in which the
z-component of the generated sequence converges to the global solution obtained by
solving (CC-RB-MINLP) using Gurobi (without a TimeLimit). The column T shows
the average computation time in seconds, defined as the time spent solving optimiza-
tion problems. The column v provides the average maximal absolute violation of the
complementarity constriants across all test instances. Let (z*,y*) € R™ x R™ denote
the solution computed by a method for a single instance. The maximum absolute vio-
lation of the complementarity constraint is then defined as max{|zfy}|:i=1,...,n}.

Once again, all regularization and penalty methods outperform RELAX. Particularly
noteworthy is that the methods QUAD-PEN, KKM-PEN(1) and KKM-PEN(0.1) success-
fully computed solutions for all instances, with their z-components converging to the
global minimizer. The methods SCHOL-REG and KKM-PEN(0.01) also performed well,
failing only once and twice, respectively, to find the global optimal solution. Moreover,
the computational effort required by Gurobi illustrates the combinatorial explosion
inherent in solving large-scale MINLPs to global optimality.
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Table 2: Comparison for n = 10

METHOD Global v T
Gurobi 9/9 - 0.0524
RELAX 0/9 2.59-10732  0.0213
SCHOL-REG 8/9 1.00-107¢  0.1598
KS-REG 7/9 4.89-107%  0.1457
KKM-PEN (1) 9/9 8.23-107%  0.3010
KKM-PEN (0.1) 9/9 6.27-107%  0.3033
KKM-PEN(0.01) 9/9 7.63-1076  0.2844
QUAD-PEN 9/9 9.26-1076%  0.4164
Table 3: Comparison for n = 20
METHOD Global mw T
Gurobi 19/19 - 0.4124
RELAX 1/ 19 4.96 - 10734 0.0205
SCHOL-REG 19/19 9.53-107  0.1698
KS-REG 17 /19 5.21-1076  0.1722
KKM-PEN(1) 19/19 856-107%  0.3193
KKM-PEN (0.1) 19/19 5.73-107%  0.3126
KKM-PEN(0.01) 19 /19 6.25-107%  0.3177
QUAD-PEN 19/19 9.63-1076  0.3532
Table 4: Comparison for n = 30
METHOD Global 7w T
Gurobi 29 /29 - 6.6561
RELAX 1/29 1.24-1073%  0.0251
SCHOL-REG 29 /29 1.0-1076 0.1953
KS-REG 23 /29 4.39-107%  0.2460
KKM-PEN (1) 29 /29 8.66-107%  0.3410
KKM-PEN (0.1) 29 /29 5.56-107°  0.3384
KKM-PEN(0.01) 29 /29 5.82-10"%  0.3382
QUAD-PEN 20/29 9.75-107%  0.3765

5.3 Portfolio optimization

We consider cardinality-constrained optimization problems of the form

min
TER™

s.t.

=T Qu

pa > p,
zllo < S.

elx <1,
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Table 5: Comparison for n = 40

METHOD Global mv T
Gurobi 39 /39 - 114.5688
RELAX 1/39 2.45-10731  0.0244
SCHOL-REG 39/39 9.54-1077 0.2087
KS-REG 26 /39 5.91-106 0.3124
KKM-PEN (1) 39 /39 871-10-6 0.4012

KKM-PEN(0.1) 39 /39 5481076 0.3729
KKM-PEN(0.01) 37 /39 5.85-1076 0.3655
QUAD-PEN 39/39 98.107° 0.3999

This is a sparse portfolio optimization problem, where @ denotes the covariance matrix
and p the expected return of n considered assets. The constraint e’z < 1 represents
the budget limitiation, while x; > 0 ensures that there is no short-selling and x; <
u; imposes upper bounds on the individual asset weights. The constraint pu’z > p
guarantees a minimum expected return level, while the objective minimizes risk as
measured by the portfolio variance. The cardinality-constraint restricts the portfolio
to contain at most S assets, i.e., the portfolio is in a certain sense sparse. For general
portfolio optimization problems, we refer to [33] and for sparse portfolio optimization,
see [3].

To generate test instances, we use the same randomly generated data sets for @, u, p,
and u, as in [34], which are available at [35]. These data sets and test instances were also
used in [5] and [18] to evaluate the proposed regularization methods for (CCOP-NLP).
In this experiment, the initial penalty parameter is set to p° = 100. The starting point
for the numerical methods is chosen as (z°,¢°) with 2° = u.

In this experiment, the method RELAX did not always terminate. In such cases, the
number of test instances for which termination failed is reported in the tables 6, 7, 8,
9, 10, 11, 12, 13, 14 and 15 under Failed. For the regularization methods, we report
an instance as Failed if the algorithm does not ensure that the maximum absolute
complementarity constraint violation falls below 1075,

We use only the data sets for problem dimensions n = 200 and n = 300, with 30
test examples per dimension. In addition, we consider the cardinality parameters S =
5,10, 20, 30 and 50, resulting in a total of 300 test instances.

To evaluate the quality of the computed points, we report under « the number of test
instances for which the computed point zjzryop satisfies

f(ZI‘Z;IETHDD) <(1+ a)f(zéurobi)a (16)

where zjpryop denotes the computed point by the respective METHOD for the i-th test
instance, and 2z&,,.,; is the corresponding solution obtained using Gurobi. f denotes
the objective function of (P-OPT-EXP). Under MIPGap we report for Gurobi the
average MIPGap. In this experiment, the Gurobi parameter TimeLimit was set to 600
seconds. The columns mv and T report the same as in the previous experiment. We
consider a € {0.01,0.02,0.05,0.1,025,0.5,1.0}.

Since (P-OPT-EXP) includes the sign restriction x > 0, we effectively apply
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the MPCC regularizations [13] and [14] as the respective regularization methods

SCHOL-REG and KS-REG.

Table 6: Comparison of solution methods for S =5 and n = 200

METHOD a =0.01 0.02 0.05 0.1 0.25 0.5 1.0 MIPGap / mv T Failed
Gurobi - - - - - - - 3.69-10°° 1.43 0
RELAX 0 0 0 0 0 0 3 2.10-10—49 0.65 0
SCHOL-REG 0 0 0 7 21 30 - 9.70 - 107 783 0
KS-REG 0 0 0 0 3 11 24 9.05-10~6 5.45 0
KKM-PEN (1) 4 6 11 24 27 29 30 5.77-107°6 11.71 0
KKM-PEN (0.1) 6 10 21 28 30 - - 7.61-10-6 10.82 0
KKM-PEN (0.01) 6 11 23 29 30 - - 7.42-10-6 9.35 0
QUAD-PEN 0 0 0 11 28 30 - 7.70-10-6 16.44 0
Table 7: Comparison of solution methods for S = 10 and n = 200
METHOD a=0.01 002 005 01 025 05 1.0 MIPGap/mv T Failed
Gurobi - - - - - - - 5.26-10~° 4.38 -
RELAX 0 0 0 0 0 0 0 1.16 - 10—4° 0.63 0
SCHOL-REG 0 0 0 7 25 28 29 1.21-1076 17.86 0
KS-REG 0 0 0 0 1 20 26 7.45.10-6 9.17 0
KKM-PEN (1) 0 0 3 7 12 23 29 6.83-10°6 17.14 0
KKM-PEN (0.1) 4 10 18 22 22 27 29 6.83-1076 13.86 O
KKM-PEN (0.01) 8 19 24 27 27 27 27 7.35-10-6 10.86 0
QUAD-PEN 0 0 2 10 28 30 - 7.64-10"6 11.82 0
Table 8: Comparison of solution methods for S = 20 and n = 200
METHOD a = 0.01 0.02 0.05 0.1 0.25 0.5 1.0 MIPGap /mw T Failed
Gurobi - - - - - - - 1.06-103 172.79 -
RELAX 0 0 0 0 0 0 0 1.63-1074%  0.63 2
SCHOL-REG 0 0 5 20 25 28 28 1.67-10-6 20.40 0
KS-REG 0 0 0 1 11 21 25 4.17-10-6 14.02 0
KKM-PEN (1) 0 0 0 0 12 21 26 7.28 106 29.24 0
KKM-PEN (0.1) 0 0 3 4 7 18 25 7.41-10°6 22.13 0
KKM-PEN (0.01) 5 8 13 15 18 20 25 7.87-10°6 15.96 0
QUAD-PEN 0 0 7 27 30 - - 7.69-10-6 19.26 0
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Table 9: Comparison of solution methods for S = 30 and n = 200

METHOD a=0.01 002 005 01 025 05 1.0 MIPGap/mv T Failed
Gurobi - - - - - - - 3.8-1073 395.15 -
RELAX 0 0 0 0 0 0 03.0-1075°  0.643 1
SCHOL-REG 0 2 16 22 25 26 29 8.11-10~6 20.46 1
KS-REG 0 0 0 1 5 14 16 4.7-1074 11.77 5
KKM-PEN (1) 0 0 0 0 5 16 22 6.79-106 36.98 0
KKM-PEN(0.1) 0 0 0 0 7 17 23 7.58 1076 29.52 0
KKM-PEN(0.01) O 2 4 4 9 19 24 7.53-10~6 21.20 0
QUAD-PEN 0 5 28 30 - - - 7.04-1076 14.88 0

Table 10: Comparison of solution methods for S = 50 and n = 200

METHOD a=001 002 005 01 025 05 10 MIPGap/mv T Failed

Gurobi - - - - - - - 5.63-10~3 697.59 -
RELAX 0 0 0 0 0 0 0 2.47-107%  0.68 1
SCHOL-REG 7 16 17 20 26 28 29 5.0-107°6 22.86 0
KS-REG 0 0 1 4 6 9 14 5.8-10% 14.94 6
KKM-PEN (1) 0 0 0 0 3 7 18  6.73-10°6 50.23 0
KKM-PEN (0.1) 0 0 0 0 2 8 14 7.36-10-6 44.02 0
KKM-PEN(0.01) 0 0 0 3 6 11 18  7.22.10°9 37.62 0
QUAD-PEN 13 28 30 - - - - 7.05-1076 16.10 0
Table 11: Comparison of solution methods for S =5 and n = 300

METHOD a=0.01 0.02 005 01 025 05 1.0 MIPGap/mw T Failed
Gurobi - - - - - - - 3.22.1075 339 -
RELAX 0 0 0 0 0 0 4 3.92.107°° 1.38 1
SCHOL-REG 0 1 1 7 22 29 30 9.85-1077 1897 0
KS-REG 0 0 0 1 1 7 17 9.05-10°6 13.76 0
KKM-PEN (1) 1 2 8 20 25 26 28 6.83-10=¢ 34.06 0
KKM-PEN(0.1) 4 7 18 27 30 - - 6.95-10~6 29.72 0
KKM-PEN(0.01) 10 13 24 29 30 - - 7.16-10—6 31.01 0
QUAD-PEN 0 0 0 7 26 30 - 7.30-10-6 3159 0

Overall, the method QUAD-PEN achieved the best performance, producing the best
solutions with relatively low computation times. The performance of QUAD-PEN is
quite remarkable, as it computed for each of the 300 test instances, a point satisfy-
ing (16) with at least o = % Across all 300 test instances, the respective MIPGap of
the solutions computed by Gurobi did not exceed =~ 0.03595. The method SCHOL-REG
also delivered strong results. However, we emphasize the robust and consistent very
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Table 12: Comparison of solution methods for S = 10 and n = 300

METHOD a=0.01 0.02 005 01 025 05 1.0 MIPGap/mv T Failed
Gurobi - - - - - - - 6.03-10-° 10.07 -
RELAX 0 0 0 0 0 0 0 2.54-10—14 1.49 0
SCHOL-REG 0 0 0 6 27 30 - 8.06- 107 40.47 0
KS-REG 0 0 0 0 1 12 23  7.46-10°96 24.23 0
KKM-PEN (1) 0 0 3 9 11 22 29  6.55-10—6 48.80 0
KKM-PEN (0.1) 5 7 16 21 24 25 29 7.17-10-6 39.27 0
KKM-PEN(0.01) 6 11 19 27 29 30 - 7.17-10°6 28.36 0
QUAD-PEN 0 0 0 7 28 30 - 7.30-10-6 39.29 O
Table 13: Comparison of solution methods for S = 20 and n = 300
METHOD a=0.01 002 005 0.1 025 0.5 1.0 MIPGap /mv T Failed
Gurobi - - - - - - - 1.56-10—3 313.20 -
RELAX 0 0 0 0 0 0 0 6.66 - 10—47 1.58 0
SCHOL-REG 0 0 2 16 27 30 - 1.31-10—6 52.56 0
KS-REG 0 0 0 0 5 17 20 1.77-10~% 31.27 1
KKM-PEN (1) 0 0 0 0 5 20 29 7.11-10-6 80.47 0
KKM-PEN (0.1) 0 0 1 4 8 16 25 7.38.10-6 62.67 0
KKM-PEN (0.01) 1 4 13 14 15 21 22 6.88 106 43.35 0
QUAD-PEN 0 0 5 19 30 - - 7.37-1076 47.58 0
Table 14: Comparison of solution methods for S = 30 and n = 300
METHOD a=0.01 0.02 005 01 025 05 1.0 MIPGap/mv T Failed
Gurobi - - - - - - - 9.87-1073 629.8 -
RELAX 0 0 0 0 0 0 0 3.92.10750 1.60 0
SCHOL-REG 1 1 8 18 23 26 28 6.43-10°6 62.73 1
KS-REG 0 0 0 1 4 11 15  6.76-10~% 32.31 6
KKM-PEN (1) 0 0 0 0 5 12 21 7.48 106 105.98 0
KKM-PEN (0.1) 0 0 0 0 6 12 22 6.97-10-6 81.61 0
KKM-PEN (0.01) 0 1 5 6 6 15 20 7.02-10-6 65.26 0
QUAD-PEN 1 2 13 29 30 - - 7.43.10-6 51.36 0

good performance of QUAD-PEN, which reliably outperformed SCHOL-REG. Addition-
ally, also the generally robust regularization method SCHOLTES-REG failed to compute
points which satisfy the maximal absolute complementarity constraint violation by
1075 for some instances. This issue does not arise in the penalty methods. However,
the KKM-PEN (\) methods exhibit the following behaviour: up to a certain threshold of
maximal absolute complementarity constraint violation and the corresponding penalty
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Table 15: Comparison of solution methods for S = 50 and n = 300

METHOD a=0.01 002 005 01 025 05 1.0 MIPGap/mv T Failed

Gurobi - - - - - - - 1.45-1072 602.07 -
RELAX 0 0 0 0 0 0 0 3.86 - 10750 1.63 2
SCHOL-REG 3 7 14 16 20 22 26 7.95.106 72.42 1
KS-REG 0 0 1 1 5 7 8 9.81-10—% 34.37 9
KKM-PEN (1) 1 1 1 1 1 4 9 6.39-106 136.58 0
KKM-PEN(0.1) 0 0 1 1 3 7 9 7.62-106 116.17 0
KKM-PEN(0.01) 0O 0 0 1 3 11 18 7.24-1076 112.50 0
QUAD-PEN 2 9 28 30 - - - 7.03-10°6 51.46 0

parameter, the methods compute high-quality solutions. That is, the cardinality con-
straint is fully utilized, leading to low objective values. Below this threshold, many
entries of the solution vector become numerically negligible, i.e., their absolute value
falls below 10~7. As a result, effectively, the cardinality constraint is no longer fully
exploited, resulting in worse objective values, since the cardinality constraint repre-
sents a critical resource.

Once again, we observe the combinatorial explosion when using Gurobi. At the same
time, we note that Gurobi frequently computed good solutions in a short amount of
time.

6 Conclusions

In this work, we introduced a general penalty method and a general regularization
method for the continuous reformulation of cardinality-constrained optimization prob-
lems. Both approaches share the theoretical property that, under the CC-MFCQ), the
generated sequence of KKT points converges to an M-stationary point, which, for
the continuous reformulation of CCOPs, is essentially an S-stationary point. Further-
more, we analyzed the properties of the subproblems and showed that the general
regularization method exhibits a property analogous to the Scholtes-type regulariza-
tion, while the penalty method satisfies results analogous to those established for the
MPCC penalty method. In the numerical experiments, we observed that the simple
penalty term ®(z,y) = > | x?y? achieves excellent performance, even surpassing the
Scholtes-type regularization, which is known to be highly effective in practice.
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