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Abstract

We consider cardinality-constrained optimization problems (CCOPs), which are
general nonlinear programs with an additional constraint limiting the num-
ber of nonzero continuous variables. The continuous reformulation of CCOPs
involves complementarity constraints, which pose significant theoretical and com-
putational challenges. To address these difficulties, we propose and analyze two
numerical solution approaches: a general penalty method and a general regular-
ization method. Both approaches generate a sequence of easier to solve problems,
and we show convergence of the corresponding KKT points against an M-
stationary point under CC-MFCQ. Both methods rely on structural properties of
the penalty and regularization functions, which we introduce and illustrate with
examples. Finally, we present comprehensive numerical experiments to assess
the practical performance of the proposed methods and to compare them with
established approaches.
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1 Introduction

In this paper, we consider general nonlinear optimization problems with an additional
cardinality constraint, refered to as cardinality constrained optimization problems
(CCOPs). The cardinality constraint restricts the number of nonzero variables in a
solution. In other words, the cardinality of the support of feasible points is constrained.
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Cardinality constrained optimization problems (CCOPs) arise in a wide range of appli-
cations. Prominent examples include feature selection or sparse principal component
analysis in machine learning [1, 2], image and signal processing, as well as portfolio
optimization, in particular sparse portfolio selection [3]. For a comprehensive overview
of applications and related problem classes, we refer to [4].
We now introduce notation used throughout the paper. Let e ∈ Rn denote the vec-
tor of all ones and ei ∈ Rn the i-th canonical unit vector. For x ∈ Rn, the ℓ0-norm
(0-norm) is defined as

∥x∥0 := |supp(x)|,

where

supp(x) := {i ∈ {1, . . . , n} : xi ̸= 0}

denotes the support of x. A general cardinality constrained optimization problem is
given by [5]

min
x∈Rn

f(x) s.t. g(x) ≤ 0, h(x) = 0, ∥x∥0 ≤ S, (CCOP)

where S ∈ N and f : Rn → R, g : Rn → Rm and h : Rn → Rp are assumed to be at
least continuously differentiable. Throughout this work, we assume N ∋ S < n, since
otherwise the cardinality constraint ∥x∥0 ≤ S is superfluent.
Early work on this class of problems includes [6], where cardinality constraints were
studied in the context of sparse portfolio optimization. In recent years, CCOPs have
attracted growing attention. This is due both to their relevance in applications such as
feature selection in machine learning and to the introduction of a continuous reformu-
lation in [5, 7], along with the development of a specially tailored optimality theory.
This optimality theory is closely related to that of Mathematical Programs with Com-
plementarity Constraints (MPCCs) [8, 9] and Mathematical Programs with Vanishing
Constraints (MPVCs) [10, 11]. Several numerical methods have been proposed for
the continuous reformulation of CCOPs that build on established MPCC solution
methods; see, for instance, [5, 12]. The regularization methods for the continuous
reformulation presented in [5, 12] are respectively closely related to the regularization
methods for MPCCs presented in [13, 14]. The specially tailored solution methods
for the continuous reformulation often yield high-quality solutions. A comprehensive
optimality theory for the continuous reformulation is now available; see, e.g., [15–17].
In addition to MPCC-based solution methods, specially tailored solution methods
have also been developed; see, e.g., [18].
Finally, we note that a penalty method for solving the continuous reformulation
was proposed in [19]. However, this approach was restricted by the additional sign
restriction x ≥ 0, which allowed the use of the ℓ1-penalty term.

The structure of this paper is as follows. In Section 2, we introduce fundamental con-
cepts in nonlinear optimization, and the continuous reformulation of CCOPs. Section
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3 presents a penalty method for the continuous reformulation, inspired by penalty-
based approaches developed for MPCCs [9, 20]. We characterize structural properties
of the penalty term that allow convergence of the KKT points to an M-stationary
point under CC-MFCQ. In Section 4, we propose a general regularization method,
constructed using the same structural properties. Under CC-MFCQ, convergence of
the KKT points to an M-stationary point is again established. Finally, in Section 5,
we present comprehensive numerical experiments comparing the newly introduced
solution methods with established approaches. The numerical experiments will show
that the general penalty method introduced in Section 3 is highly robust and performs
exceptionally well.

2 Preliminaries

In this section, we briefly review fundamental definitions and concepts from nonlinear
programming and the continuous reformulation of CCOPs.

2.1 Nonlinear Programming

We consider a general nonlinear program, given by

min
x∈Rn

f(x) s.t. gi(x) ≤ 0, for all i = 1, . . . ,m, (NLP)

hi(x) = 0, for all i = 1, . . . , p,

with all functions f, gi, hi : Rn → R, at least continuously differentiable.

Definition 2.1 A point x∗ ∈ Rn is called Karush-Kuhn-Tucker point (KKT point) of the
optimization problem (NLP), if there exist λ1, . . . , λm, µ1, . . . , µp ∈ R, such that the Karush-
Kuhn-Tucker conditions (KKT conditions) hold:

∇f(x∗) +
m∑
i=1

λi∇gi(x
∗) +

p∑
i=1

µi∇hi(x
∗) = 0,

gi(x
∗) ≤ 0, ∀i = 1, . . . ,m and hi(x

∗) = 0, ∀i = 1, . . . , p,

λi ≥ 0, λigi(x
∗) = 0 ∀i = 1, . . . ,m.

We call the corresponding multipliers λ1, . . . , λm, µ1, . . . , µp ∈ R to x∗ Lagrange multipliers
of the KKT point x∗.

Definition 2.2 ([21], Definition 2.1) A set of vectors {ai : i ∈ I1} ∪ {bi : i ∈ I2} is said to

be positive-linearly dependent if there exist α ∈ R|I1|, β ∈ R|I2|, (α, β) ̸= 0 with α ≥ 0 and∑
i∈I1

αiai +
∑
i∈I2

βibi = 0.

Otherwise, we say that these vectors are positive-linearly independent.

Given a local minimum x∗ of (NLP) sucht that certain conditions are satisfied at
x∗, it is possible to show that x∗ is also a KKT point. These conditions are called
constraint qualifications (CQ). The following CQ is in the following relevant.
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Definition 2.3 Let x∗ be feasible for the optimization problem (NLP). Then we say that x∗

satisfies the Mangasarian-Fromovitz Constraint Qualification (MFCQ) if the following two
conditions hold:

1. There exists d ∈ Rn such that

∇gi(x
∗)T d < 0, ∀ i ∈ I(x∗), and ∇hi(x

∗)T d = 0, ∀ i = 1, . . . , p,

where I(x∗) := {i ∈ {1, . . . ,m} : gi(x
∗) = 0} denotes the active set at x∗.

2. The gradients ∇h1(x
∗), . . . ,∇hp(x

∗) are linearly independent.

Definition 2.4 (NCP function ([22], Definition 1)) A function ϕ : R2 → R is called a non-
linear complementarity problem function (NCP function) if it satisfies the complementarity
condition

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, ab = 0, b ≥ 0.

An overview of the properties and construction of NCP functions, together with an
extensive collection of NCP functions, is provided in [22]. Moreover, NCP functions can
be used to reformulate nonlinear complementarity problems as systems of equations
[23].

Corollary 2.5 The following functions are NCP functions:

1. The Fischer–Burmeister function [24], defined by ϕFB(a, b) =
√
a2 + b2 − a− b.

2. The Kanzow–Kleinmichel function [25], for λ ∈ (0, 4), defined by ϕKKM(λ)(a, b) =√
(a− b)2 + λab − a − b. For the special case of λ = 2, it holds ϕKKM(2)(a, b) =

ϕFB(a, b).

2.2 A continuous reformulation of CCOP

In [5], the following mixed-integer-nonlinear formulation of (CCOP) was introduced

min
x,y∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0, (CCOP-MINLP)

eT y ≥ n− S,

xiyi = 0, for all i = 1, . . . , n,

yi ∈ {0, 1}, for all i = 1, . . . , n.

By standard relaxation of the binary variables, we obtain the continuous optimization
problem

min
x,y∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0, (CCOP-NLP)
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eT y ≥ n− S,

xiyi = 0, for all i = 1, . . . , n,

0 ≤ yi ≤ 1, for all i = 1, . . . , n.

The optimization problem (CCOP-NLP) is a continuous reformulation of (CCOP) [5].
Its theoretical properties, with regard to specially tailored stationarity concepts and
constraint qualification, were first introduced in [5, 7] and have been further extended
in subsequent works; see, e.g., [15–17].
One might consider treating (CCOP-NLP) as a nonlinear program and attempting
to solve it with standard software. However, its feasible set is very complicated and
violates most of the standard constraint qualifications typically required for standard
nonlinear programming algorithms [5]. This difficulty mainly arises from the com-
plementarity constraints xiyi = 0, for all i = 1, . . . , n. Due to the complementarity

x

y

Fig. 1: {(x, y) ∈ R× R : xy = 0, 0 ≤ y ≤ 1}

constraints, the continuous reformulation exhibits strong similarities to both classes of
optimization problems, namely Mathematical Programs with Complementarity Con-
straints (MPCCs) [8, 9] and Mathematical Programs with Vanishing Constraints
(MPVCs) [10, 11]. The generalized and specially tailored stationarity concepts and
constraint qualifications for the continuous reformulation are closely related to those
developed for MPCCs and MPVCs. However, (CCOP-NLP) can be viewed directly
as an MPCC only under the additional assumption x ≥ 0. A detailed comparison
between the concepts introduced for MPCCs and those for (CCOP-NLP) under this
assumption is provided in [7]. We introduce the following index sets:

Ig(x
∗) := {i ∈ {1, . . . ,m} : gi(x

∗) = 0},
I0(x

∗) := {i ∈ {1, . . . , n} : x∗
i = 0},

I±0(x
∗, y∗) := {i ∈ {1, . . . , n} : x∗

i ̸= 0, y∗i = 0},
I00(x

∗, y∗) := {i ∈ {1, . . . , n} : x∗
i = 0, y∗i = 0},

I0+(x
∗, y∗) := {i ∈ {1, . . . , n} : x∗

i = 0, y∗i ∈ (0, 1)},
I01(x

∗, y∗) := {i ∈ {1, . . . , n} : x∗
i = 0, y∗i = 1}.

In the presence of nonlinear constraints in (CCOP-NLP), the Guignard constraint
qualfication (GCQ), the weakest standard constraint qualification, typically fails to
hold [5]. This fundamental difficulty motivates the development of specially tailored
stationarity concepts and constraint qualifications.
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Definition 2.6 ([5], Definition 4.6) Let (x∗, y∗) be feasible for the continuous reformulation
(CCOP-NLP). Then (x∗, y∗) is called the following:

a) S-stationary (S = Strong) if there exist multipliers λ ∈ Rm, µ ∈ Rp, and γ ∈ Rn

such that the following conditions hold:

∇f(x∗) +

m∑
i=1

λi∇gi(x
∗) +

p∑
i=1

µi∇hi(x
∗) +

n∑
i=1

γiei = 0,

λi ≥ 0, λigi(x
∗) = 0, ∀ i = 1, . . . ,m,

γi = 0, ∀ i = 1, . . . , n : y∗i = 0.

b) M-stationary (M = Mordukovich) if there exist multipliers λ ∈ Rm, µ ∈ Rp, and
γ ∈ Rn such that the following conditions hold:

∇f(x∗) +

m∑
i=1

λi∇gi(x
∗) +

p∑
i=1

µi∇hi(x
∗) +

n∑
i=1

γiei = 0,

λi ≥ 0, λigi(x
∗) = 0, ∀ i = 1, . . . ,m,

γi = 0, ∀ i = 1, . . . , n : x∗
i ̸= 0.

M-stationarity is a weaker condition than S-stationarity. For an M-stationary point,
the multiplier γi = 0 is only enforced for i with x∗

i ̸= 0. By feasibility of (x∗, y∗), it
follows y∗i = 0 for all i with x∗

i ̸= 0. In contrast, S-stationarity requires γi = 0 for all
i with y∗i = 0, and therefore also for the so-called biactive indices, where x∗

i = 0 and
y∗i = 0.

Proposition 2.7 ([5], Proposition 4.8) Let (x∗, y∗) be feasible for the continuous reformu-
lation (CCOP-NLP). Then (x∗, y∗) is a KKT point of (CCOP-NLP) if and only if (x∗, y∗)
is S-stationary for (CCOP-NLP).

Since M-stationarity is a weaker condition than S-stationarity, it is also weaker
than the standard KKT conditions. In fact, the M-stationarity conditions coincide
exactly with the KKT conditions of the following tightened nonlinear program [5]:

min
x,y∈Rn

f(x) s.t. g(x) ≤ 0, h(x) = 0, (TNLP(x∗))

xi = 0, for all i ∈ I0(x
∗).

It follows that a local minimizer x∗ of the original problem (CCOP) is also a local
minimizer of (TNLP(x∗)), and thus an M-stationary point under suitable constraint
qualifications [5].

Definition 2.8 (CC-CQ, [5]) Let (x∗, y∗) be feasible for (CCOP-NLP), and consider the
corresponding tightened nonlinear program (TNLP(x∗)). We say that (x∗, y∗) satisfies
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the CC-Constraint Qualification (Cardinality-Constrained Constraint Qualification, CC-CQ)
for the continuous reformulation (CCOP-NLP) if x∗ satisfies the corresponding standard
constraint qualification for (TNLP(x∗)).

Definition 2.9 ([7], Definition 3.11) Let (x∗, y∗) be feasible for the continuous reformulation
(CCOP-NLP). Then (x∗, y∗) satisfies CC-MFCQ if the gradients

{∇gi(x
∗) : i ∈ Ig(x

∗)} ∪ {{∇hi(x
∗) : i ∈ {1, . . . , p}} ∪ {ei : i ∈ I0(x

∗)}}

are positive-linearly independent.

Proposition 2.10 ([16], Proposition 2.3) Let (x∗, y∗) ∈ Rn × Rn be feasible for
(CCOP-NLP). If (x∗, y∗) is M-stationary, then there exists z∗ ∈ Rn such that (x∗, z∗) is
S-stationary.

Numerically, this implies that any method which generates a sequence converging
to an M-stationary point only, essentially gives an S-stationary point [16].

3 A general penalty method

The central idea is to address the challenging complementarity constraints

xiyi = 0, for all i = 1, . . . , n,

by omitting them from the constraints and penalizing their violation in the objective
function via a suitable penalty term and a penalty parameter ρ > 0 with ρ ↑ ∞. This
approach leads to a sequence of relaxed penalty subproblems parametrized by ρ.
This approach has already been applied to MPCCs, e.g., in [20] and [9], and to
(CCOP-NLP) under the assumption x ≥ 0 in [19]. In this special case, the ℓ1-norm
can be used as the penalty term.

We consider the general case without a sign restriction and therefore introduce
conditions that enable the construction of a suitable penalty term. The following con-
ditions are motivated by those used in the construction of penalty terms for MPCCs,
as proposed in [20].

Condition 3.1 The function ϕ : R × R → R is at least continuously differentiable and
satisfies the following conditions:

A) For all x ∈ R and y ≥ 0:

i) ϕ(x, y) = 0 if and only if xy = 0.
ii) ϕ(x, y) > 0 if and only if x ̸= 0 and y > 0.

B) Let x ∈ R, and y ≥ 0. Then it holds that:
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i)

∂ϕ(x, y)

∂x
= 0 if y = 0, and

∂ϕ(x, y)

∂y
= 0 if x = 0,

ii)

∂ϕ(x, y)

∂x
̸= 0 and

∂ϕ(x, y)

∂y
> 0 for all (x, y) ∈ R× [0, 1] with x ̸= 0, y > 0.

C) Let (xk, yk)k∈N be a sequence in R × R≥0 with xk ̸= 0, yk > 0 for all k ∈ N, and
suppose that (xk, yk) → (x∗, y∗) as k → ∞. If x∗ ̸= 0, y∗ = 0, then

∂ϕ(xk, yk)

∂x
∂ϕ(xk, yk)

∂y

k→∞−→ 0.

Conversely, if x∗ = 0, y∗ > 0, then

∂ϕ(xk, yk)

∂y

∂ϕ(xk, yk)

∂x

k→∞−→ 0.

From now on, we assume that ϕ : R×R → R is at least continuously differentiable
and satisfies Condition 3.1.
The subproblems for the penalty method for (CCOP-NLP), parameterized by ρ > 0,
are given by

min
x,y∈Rn

f(x) + ρΦ(x, y) = f(x) + ρ
n∑

i=1

ϕ(xi, yi) (CCOP-PEN(ρ))

s.t. g(x) ≤ 0, h(x) = 0,

eT y ≥ n− S,

0 ≤ yi ≤ 1, for all i = 1, . . . , n.

Condition 3.1 A) ensures that the penalty term Φ : Rn × Rn → R, defined by
Φ(x, y) =

∑n
i=1 ϕ(xi, yi), is strictly positive at feasible points of (CCOP-PEN(ρ))

that violate the complementarity constraints, and equals 0 whenever the complemen-
tarity constraints are satisfied. Hence, Condition 3.1 A) guarantees the fundamental
property of a penalty term.
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3.1 Penalty term

In this section, we present continuously differentiable functions that satisfy Condition
3.1.

Theorem 3.2 The function ϕ : R× R → R, defined by

ϕ(x, y) = x2y2,

is continuously differentiable and satisfies Condition 3.1.

Proof We omit the proof, as the function is clearly continuously differentiable, and the
properties of Condition 3.1 can be verified by a straightforward computation. □

The following observation motivates the construction of the function ϕ(x, y) in the
subsequent theorem. Let g : R× R → R be an NCP function. Then

g(|x|, y) = 0 ⇐⇒ y ≥ 0, xy = 0,

so that the constraints yi ≥ 0, xiyi = 0 in (CCOP-NLP) can equivalently be replaced
by g(|xi|, yi) = 0 for i = 1, . . . , n. Our goal is to construct a continuously differentiable
function g : R× R → R such that g(x, y) ≥ 0 for x ∈ R, y ≥ 0, and

g(x, y) = 0 ⇐⇒ xy = 0, x ∈ R, y ≥ 0, (1)

which corresponds to Condition 3.1 A).
For the Kanzow–Kleinmichel NCP function ϕKKM(λ)(x, y) with λ ∈ (0, 4) from Corol-
lary 2.5, it is known that ϕKKM(λ)(x, y)

2 is continuously differentiable [25].
However, ϕKKM(λ)(|x|, y)2 is not continuously differentiable at points where x = 0
and y ≤ 0. To address this, in the following theorem we define the function to be the
constant 0-function for y < 0. This modification ensures that the resulting function is
continuously differentiable and satisfies Condition 3.1.

Theorem 3.3 The function ϕ : R×R → R, based on the Kanzow–Kleinmichel NCP-function
[25] with λ ∈ (0, 4), defined by

ϕ(x, y) =


(
−
√

(|x| − y)2 + λ|x|y + |x|+ y
)2

, if y ≥ 0,

0, if y < 0,

is continuously differentiable and satisfies Condition 3.1.

Proof We omit the proof. The continuous differentiability of the function, as well as the
properties of Condition 3.1 can be verified by a straightforward computation. □
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3.2 Properties of the penalty subproblems

From now on, we assume that ϕ : R × R → R in (CCOP-PEN(ρ)) is at least contin-
uously differentiable and satisfies Condition 3.1. Additionally, we denote by Z the
feasible set of (CCOP-NLP), and by ZPEN the feasible set of (CCOP-PEN(ρ)) for any
ρ > 0. Then, we have Z = ZPEN ∩ {(x, y) ∈ Rn ×Rn : xiyi = 0, for all i = 1, . . . , n}.

The following result is inspired by [9, Theorem 5.1 (b)].

Theorem 3.4 Let (x∗, y∗) be feasible for (CCOP-NLP) and satisfy CC-MFCQ for
(CCOP-NLP). Then (x∗, y∗) is feasible for (CCOP-PEN(ρ)) and satisfies MFCQ for
(CCOP-PEN(ρ)).

Proof Let (x∗, y∗) ∈ Z. Since Z ⊆ ZPEN , the point (x∗, y∗) is feasible for (CCOP-PEN(ρ)).
Suppose that CC-MFCQ holds at (x∗, y∗). Then x∗ satisfies MFCQ for the tightened
nonlinear program (TNLP(x∗)), so there exists a d̃ ∈ Rn such that

∇gi(x
∗)T d̃ < 0, i ∈ Ig(x

∗), (CC-MFCQ1)

∇hi(x
∗)T d̃ = 0, i = 1, . . . , p, eTi d̃, i ∈ I0(x

∗), (CC-MFCQ2)

and the set of gradients

{∇h1(x
∗), . . . ,∇hp(x

∗)} ∪ {ei : i ∈ I0(x
∗)} is linearly independent. (CC-MFCQ3)

To establish MFCQ for (CCOP-PEN(ρ)) at (x∗, y∗), we seek a direction d = (dx, dy) ∈
Rn × Rn such that

∇gi(x
∗)T dx < 0, i ∈ Ig(x

∗), (PEN-MFCQ1)

− eT dy < 0, if eT y∗ = n− S, (PEN-MFCQ2)

− eTi dy < 0, i ∈ I00(x
∗, y∗) ∪ I±0(x

∗, y∗), eTi dy < 0, i ∈ I01(x
∗, y∗), (PEN-MFCQ3)

∇hi(x
∗)T dx = 0, i = 1, . . . , p, (PEN-MFCQ4)

and the set of gradients

{∇h1(x
∗), . . . ,∇hp(x

∗)} is linearly independent. (PEN-MFCQ5)

We directly obtain (PEN-MFCQ5) from (CC-MFCQ3). By setting dx = d̃, we obtain
(PEN-MFCQ1) and (PEN-MFCQ4) from (CC-MFCQ1) and (CC-MFCQ2), respectively.
If −eT y∗ + n − S < 0, the constraint on dy corresponding to eT y = n − S is inactive. We
define dy ∈ Rn with an arbitrary σ > 0 by

(dy)i =


σ, if y∗i = 0,

−σ, if y∗i = 1,

0, otherwise,

for all i = 1, . . . , n,

which ensures that (PEN-MFCQ3) is satisfied.
If −eT y∗ + n− S = 0, since 1 ≤ S < n, it follows that eT y∗ < n. Consequently, there exists
an index j /∈ I01(x

∗, y∗). We define dy ∈ Rn with an arbitrary σ > 0 by

(dy)i =


nσ, if y∗i = 0,

−σ, if y∗i = 1,

nσ, otherwise,

for all i = 1, . . . , n.

This choice ensures that both (PEN-MFCQ2) and (PEN-MFCQ3) are satisfied. □
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The following result is inspired by [9, Theorem 5.2].

Theorem 3.5 Let (x∗, y∗) be feasible for (CCOP-NLP) and a KKT point of
(CCOP-PEN(ρ)). Then (x∗, y∗) is S-stationary for (CCOP-NLP).

Proof As (x∗, y∗) is feasible for (CCOP-NLP), we have x∗i y
∗
i = 0 for all i = 1, . . . , n.

Let (x∗, y∗) be a KKT point. Then there exist corresponding Lagrange multipliers λ ∈ Rm,
µ ∈ Rp, δ ∈ R, and ν ∈ Rn satisfying

∇f(x∗) +
n∑

i=1

ρ
∂ϕ(x∗i , y

∗
i )

∂xi
ei +

m∑
i=1

λi∇gi(x
∗) +

p∑
i=1

µi∇hi(x
∗) = 0, (PEN-KKT1)

− δe+

n∑
i=1

ρ
∂ϕ(x∗i , y

∗
i )

∂yi
ei +

n∑
i=1

νiei = 0, (PEN-KKT2)

λi

{
≥ 0, if gi(x

∗) = 0,

= 0, else,
for all i = 1, . . . , n, (PEN-KKT3)

δ

{
≥ 0, if eT y∗ = n− S,

= 0, else,
(PEN-KKT4)

νi


≤ 0, if y∗i = 0,

≥ 0, if y∗i = 1,

= 0, else,

for all i = 1, . . . , n. (PEN-KKT5)

Here, νi denotes the Lagrange multiplier associated with the box-constraint 0 ≤ yi ≤ 1 for
all i = 1, . . . , n. In order to show that (x∗, y∗) is S-stationary for (CCOP-NLP), we construct
multipliers λ̄ ∈ Rm, µ̄ ∈ Rp, and γ̄ ∈ Rn such that they satisfy

∇f(x∗) +
m∑
i=1

λ̄i∇gi(x
∗) +

p∑
i=1

µ̄i∇hi(x
∗) +

n∑
i=1

γ̄iei = 0, (S1)

λ̄i

{
≥ 0, if gi(x

∗) = 0,

= 0, else,
for all i = 1, . . . ,m, (S2)

γ̄i

{
= 0, if y∗i = 0,

arbitrary , else,
for all i = 1, . . . , n. (S3)

First, we set µ̄ = µ and λ̄ = λ. Then (S2) follows directly from (PEN-KKT3). Next, we define

γ̄i = ρ
∂ϕ(x∗i , y

∗
i )

∂xi
for all i = 1, . . . , n, which yields (S1) from (PEN-KKT1). By Condition 3.1

B.i), we have
∂ϕ(x∗

i ,y
∗
i )

∂xi
= 0, if y∗i = 0. Therefore, γ̄i = 0 for all i with y∗i = 0, and (S3) is

satisfied. □

The following result is analogous to [19, Lemma 4.15].

Theorem 3.6 Let (x∗, y∗) be a KKT point for (CCOP-PEN(ρ)), and let δ, the Lagrange
multiplier corresponding to the constraint eT y ≥ n−S, satisfy δ = 0. Then (x∗, y∗) is feasible
for (CCOP-NLP).
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Proof By assumption, (x∗, y∗) is a KKT point for (CCOP-PEN(ρ)). Therefore, there exist
Lagrange multipliers δ ∈ R, ν ∈ Rn that satisfy

− δe+

n∑
i=1

ρ
∂ϕ(x∗i , y

∗
i )

∂yi
ei +

n∑
i=1

νiei = 0,

δ

{
≥ 0, if eT y∗ = n− S,

= 0, else,

νi


≤ 0, if y∗i = 0,

≥ 0, if y∗i = 1,

= 0, else,

for all i = 1, . . . , n. (2)

Here, νi denotes the Lagrange multiplier corresponding to the box-constraint 0 ≤ yi ≤ 1 for
all i = 1, . . . , n.
By assumption, δ = 0, which implies that, for all i = 1, . . . , n, we have

ρ
∂ϕ(x∗i , y

∗
i )

∂yi
+ νi = δ = 0. (3)

To show feasibility of (x∗, y∗) for (CCOP-NLP), it suffices to prove that x∗i y
∗
i = 0 for all

i = 1, . . . , n. We proceed by contradiction.
Suppose there exists an index j ∈ {1, . . . , n} such that x∗j ̸= 0, y∗j > 0. Then, by Condition

3.1 B.ii), we have
∂ϕ(x∗

j ,y
∗
j )

∂yj
> 0, and from (3) it follows that νj < 0. However, (2) implies

that y∗j = 0, which is a contradiction. Hence, the claim follows. □

3.3 Convergence result

In the following, we consider a sequence of penalty subproblems (CCOP-PEN(ρ))
parameterized by ρ > 0, and study their behavior as ρ ↑ ∞. The following result
is motivated by the convergence theorems for the Scholtes-type regularization [12,
Theorem 2] and penalty method for MPCCs [20, Theorem 2.1].

Theorem 3.7 Let (ρk)k∈N be a sequence with ρk > 0 for all k ∈ N and ρk ↑ ∞ as k → ∞.
Let (xk, yk)k∈N be a sequence of KKT points for (CCOP-PEN(ρ)) with ρ = ρk, and assume

that (xk, yk)
k→∞−→ (x∗, y∗), with (x∗, y∗) feasible for (CCOP-NLP). If the limit point (x∗, y∗)

satisfies CC-MFCQ for (CCOP-NLP), then (x∗, y∗) is M-stationary for (CCOP-NLP).

Proof By assumption, (xk, yk) is a KKT point for all k ∈ N. Therefore, there exist Lagrange
multipliers (λk, µk, δk, νk) ∈ Rm × Rp × R × Rn for all k ∈ N such that the conditions
(PEN-KKT1) - (PEN-KKT5) are satisfied. We define for each k ∈ N

γki := ρk
∂ϕ(xki , y

k
i )

∂x
, for all i = 1, . . . , n.

Together with (PEN-KKT1), we obtain for all k ∈ N

∇f(xk) +

m∑
i=1

λki ∇gi(x
k) +

p∑
i=1

µk
i ∇hi(x

k) +

n∑
i=1

γki ei = 0. (4)

12



We now show by contradiction the boundedness of the sequence (λk, µk, γk)k∈N.

Suppose, to the contrary, that ∥(λk, µk, γk)∥ k→∞−→ ∞. The normed sequence(
(λk, µk, γk)

∥(λk, µk, γk)∥

)
k∈N

is obviously bounded, and we can without loss of generality assume that the whole sequence
converges

lim
k→∞

(λk, µk, γk)

∥(λk, µk, γk)∥
= (λ̄, µ̄, γ̄) ̸= 0.

By (PEN-KKT3), we have λki ≥ 0 for all i = 1, . . . ,m and all k ∈ N, which implies that λ̄ ≥ 0.

For all i such that gi(x
∗) < 0, continuity of gi ensures that gi(x

k) < 0 for sufficiently large k.
Hence, by (PEN-KKT3), λki = 0 for all sufficiently large k, and thus λ̄i = 0. Consequently,
it holds

supp(λ̄) ⊆ Ig(x
∗). (5)

We now show by contradiction that supp(γ̄) ⊆ I0(x
∗). Suppose there exists an index j ∈

{1, . . . , n} such that γ̄j ̸= 0 and x∗j ̸= 0. Then, for sufficiently large k, we have γkj ̸= 0 and

xkj ̸= 0, which implies

ρk
∂ϕ(xkj , y

k
j )

∂x
= γkj ̸= 0,

By Condition 3.1 B), we have ykj > 0 for all sufficiently large k.

Since (x∗, y∗) is feasible for (CCOP-NLP), it follows that y∗j = 0. Together, ykj
k→∞−→ 0 with

0 < ykj < 1. From (PEN-KKT5), we then obtain νkj = 0 for sufficiently large k. Consequently,

there exists a subsequence along which ykj is strictly monotone decreasing. Without loss

of generality, we assume that ykj as strictly monotone decreasing along the entire sequence

(xk, yk)k∈N.

From (PEN-KKT2), it follows that δk = ρk
∂ϕ(xk

j ,y
k
j )

∂y > 0 for all sufficiently large k ∈ N,
under Condition 3.1 B). Moreover, by (PEN-KKT4), it holds eT yk = n−S for all sufficiently
large k.
Since ykj ↓ 0 as k → ∞, maintaining the equality eT yk = n − S requires the existence of at

least one indexm such that ykm is strictly monotone increasing along the sequence (xk, yk)k∈N.
Hence, for sufficiently large k, we obtain 0 < ykm < 1, which implies y∗m > 0, x∗m = 0 and
νkm = 0.

From (PEN-KKT4), we have ρk
∂ϕ(xk

m,yk
m)

∂y = δk > 0, which, by Condition 3.1 B), implies

xkm ̸= 0 for sufficiently large k. Furthermore, Condition 3.1 B) ensures that γkm =

ρk
∂ϕ(xk

m,yk
m)

∂x ̸= 0 for sufficiently large k.

Now, we have (xkj , y
k
j )

k→∞−→ (x∗j , y
∗
j ) with x∗j ̸= 0, y∗j = 0, and xkj ̸= 0, ykj > 0 for all k ∈ N,

as well as (xkm, ykm)
k→∞−→ (x∗m, y∗m) with x∗m = 0, y∗m > 0, and xkm ̸= 0, ykm > 0 for all k ∈ N.

Therefore, by applying Condition 3.1 C), we obtain

γkj

γkm
=

ρk
∂ϕ(xk

j ,y
k
j )

∂x

ρk
∂ϕ(xk

m,yk
m)

∂x

=

δk

∂ϕ(xk
j
,yk

j
)

∂y

∂ϕ(xk
j ,y

k
j )

∂x

δk

∂ϕ(xk
m,yk

m)

∂y

∂ϕ(xk
m,yk

m)
∂x

=

∂ϕ(xk
m,yk

m)
∂y

∂ϕ(xk
m,yk

m)
∂x

·
∂ϕ(xk

j ,y
k
j )

∂x
∂ϕ(xk

j ,y
k
j )

∂y

k→∞−→ 0.
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This is a contradiction to

0 ̸= |γ̄j | = lim
k→∞

|γkj |
∥(λk, µk, γk)∥

≤ lim
k→∞

|γkj |
|γkm|

= 0.

Therefore, we have

supp(γ̄) ⊆ I0(x
∗). (6)

Dividing (PEN-KKT1) by ∥(λk, µk, γk)∥, using (5) and (6), and letting k → ∞, we obtain
from (4) for k → ∞ ∑

i∈Ig(x∗)

λ̄i∇gi(x
∗) +

p∑
i=1

µ̄i∇hi(x
∗) +

∑
i∈I0(x∗)

γ̄iei = 0.

Since λ̄ ≥ 0 and (λ̄, µ̄, γ̄) ̸= 0, this leads to a contradiction with CC-MFCQ in (x∗, y∗). This
would imply that the relevant gradients are positive linearly dependent, contradicting CC-
MFCQ, which requires them to be positively linearly independent.
Therefore, the sequence (λk, µk, γk)k∈N is bounded. Without loss of generality, we assume
that the sequence converges. Let limk→∞(λk, µk, γk) = (λ, µ, γ). Taking the limit in (4) as
k → ∞ yields

∇f(x∗) +
m∑
i=1

λi∇gi(x
∗) +

p∑
i=1

µi∇hi(x
∗) +

n∑
i=1

γiei = 0.

Analogously to above, we can show λ ≥ 0, supp(λ) ⊆ Ig(x
∗) and supp(γ) ⊆ I0(x

∗).
Consequently, (x∗, y∗) is M-stationary for (CCOP-NLP) with multipliers (λ, µ, γ). □

Corollary 3.8 Let (ρk)k∈N be a sequence with ρk > 0 for all k ∈ N and ρk ↑ ∞ for k → ∞.
Let (xk, yk)k∈N be a sequence of KKT points for (CCOP-PEN(ρ)) with ρ = ρk, and assume

that (xk, yk)
k→∞−→ (x∗, y∗), with (x∗, y∗) feasible for (CCOP-NLP). If the limit point (x∗, y∗)

satisfies CC-MFCQ for (CCOP-NLP), then (x∗, y∗) is M-stationary for (CCOP-NLP) and
there exists a z∗ ∈ Rn such that (x∗, z∗) is S-stationary for (CCOP-NLP).

Proof By Theorem 3.7, this follows directly from Proposition 2.10. □

4 A general regularization method

Regularization approaches for the continuous reformulation (CCOP-NLP) are based
on the same ideas as those developed for MPCCs.
The complementarity constraints xiyi = 0, i = 1, . . . , n in (CCOP-NLP) introduce
substantial analytical and numerical challenges. To address these, the complementar-
ity constraints are suitably replaced, resulting in regularized optimization problems
with better analytical and numerical properties. The resulting regularized optimiza-
tion problems depend on a parameter t > 0 and converge to the original optimization
problem (CCOP-NLP) as t ↓ 0.
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To relax the complementarity constraints xiyi = 0, i = 1, . . . , n, we consider a contin-
uously differentiable function ϕ : R× R → R that satisfies Condition 3.1. For a given
parameter t > 0, the complementarity constraints are replaced by

ϕ(xi, yi) ≤ t, for all i = 1, . . . , n.

This approach defines a general regularization method. The corresponding regularized
optimization problems, parameterized by t > 0, are then given by

min
x,y∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0, (REG(t))

− eT y + n− S ≤ 0,

ϕ(xi, yi) ≤ t, for all i = 1, . . . , n,

0 ≤ yi ≤ 1, for all i = 1, . . . , n.

The following theorem is motivated by [12, Theorem 2].

xi

yi

(a) Kanzow–Schwartz

xi

yi

(b) Scholtes-type

xi

yi

(c) General

Fig. 2: Geometric interpretation of the regularization approaches: Kanzow–Schwartz
regularization [5] (Figure 2a), Scholtes-type regularization [12] (Figure 2b), and general
regularization (Figure 2c) where the function from Theorem 3.3 with λ = 1 is used

Theorem 4.1 Let (tk)k∈N be a sequence with tk > 0 for all k ∈ N and tk ↓ 0 as k → ∞. Let
(xk, yk)k∈N be a sequence of KKT points of (REG(t)) with t = tk, converging to (x∗, y∗). If
CC-MFCQ holds at (x∗, y∗), then (x∗, y∗) is an M-stationary point of (CCOP-NLP).

Proof First, observe that (x∗, y∗) is feasible for (CCOP-NLP). Since (xk, yk)k∈N is a sequence
of KKT points for (REG(t)) with t = tk, there exist Lagrange multipliers (λk, µk, γ̃k, δk, νk) ∈
Rm × Rp × Rn × R× Rn for all k ∈ N such that

∇f(xk) +

m∑
i=1

λki ∇gi(x
k) +

p∑
i=1

µk
i ∇

k
i hi(x

k) +

n∑
i=1

γ̃ki
∂ϕ(xki , y

k
i )

∂x
ei = 0, (REG-KKT1)

− δke+

n∑
i=1

νki ei +
n∑

i=1

γ̃i
k ∂ϕ(x

k
i , y

k
i )

∂y
ei = 0, (REG-KKT2)
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λki

{
≥ 0, if gi(x

k) = 0,

= 0, else,
for all i = 1, . . . ,m, (REG-KKT3)

δk
{
≥ 0, if eT yk = n− S,

= 0, else
(REG-KKT4)

γ̃ki

{
≥ 0, if ϕ(xki , y

k
i ) = tk,

= 0, else,
for all i = 1, . . . , n, (REG-KKT5)

νki


≤ 0, if yki = 0,

≥ 0, if yki = 1,

= 0, else,

for all i = 1, . . . , n. (REG-KKT6)

Here, νi denotes the Lagrange multiplier corresponding to the box-constraint 0 ≤ yi ≤ 1 for
i = 1, . . . , n. From (REG-KKT2), we then obtain, for all i = 1, . . . , n,

δk = νki + γ̃ki
∂ϕ(xki , y

k
i )

∂y
. (7)

Suppose there exists an index i ∈ {1, . . . , n} such that νki < 0. Then, by (REG-KKT6), we

have yki = 0. Condition 3.1 A) implies tk > 0 = ϕ(xki , y
k
i ) if and only if xki = 0 or yki = 0,

which yields γ̃ki = 0.

Substituting into (REG-KKT2) gives 0 > νki = δk ≥ 0, which is a contradiction. Therefore,

for all i = 1, . . . , n, it holds that νki ≥ 0.
For all k ∈ N, we define

γki := γ̃ki
∂ϕ(xki , y

k
i )

∂x
, for all i = 1, . . . , n.

We prove the boundedness of the sequence (λk, µk, γk)k∈N by contradiction. Suppose that

lim
k→∞

∥(λk, µk, γk)∥ = ∞. The normalized sequence(
(λk, µk, γk)

∥(λk, µk, γk)∥

)
k∈N

is bounded, and without loss of generality, we assume that it converges

0 ̸= (λ̄, µ̄, γ̄) := lim
k→∞

(λk, µk, γk)

∥(λk, µk, γk)∥
.

It holds that λ̄ ≥ 0. For all i with gi(x
∗) < 0, continuity of gi implies that gi(x

k) < 0 for
sufficiently large k, implying by (REG-KKT3) that λki = 0 and hence λ̄i = 0; consequently,
supp(λ̄) ⊆ Ig(x

∗).
We prove supp(γ̄) ⊆ I0(x

∗) by contradiction. Suppose there exists an index j ∈ {1, . . . , n}
such that x∗j ̸= 0 and γ̄j ̸= 0. Feasiblity then implies y∗j = 0.

Since γ̄j ̸= 0, it follows that γkj ̸= 0 and hence γ̃kj > 0 for sufficiently large k. By (REG-KKT5)

and Condition 3.1, this implies xkj ̸= 0 and ykj > 0. Together with Condition 3.1 B), this
implies

δk = νkj + γ̃kj
∂ϕ(xkj , y

k
j )

∂y
> 0.

Therefore,

δk = νki + γ̃ki
∂ϕ(xki , y

k
i )

∂y
> 0,
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must hold for all i = 1, . . . , n. Assuming δk > 0 for sufficiently large k, (REG-KKT4) then
implies

eT yk = n− S.

Since ykj → y∗j = 0 and ykj > 0 for all sufficiently large k, we may assume that ykj is strictly

monotone decreasing along the entire sequence (xk, yk)k∈N. Moreover, because eT yk = n−S
holds for all sufficiently large k, the strict monotone decrease of ykj implies the existence of an

index m such that ykm is strictly monotone increasing along the whole sequence (xk, yk)k∈N,
exactly compensating the decrease of ykj to maintain eT yk = n − S. Therefore, for all
sufficiently large k, we obtain

y∗m > 0, x∗m = 0 and 0 < ykm < 1, νkm = 0, xkm ̸= 0.

We thus conclude that xkm ̸= 0 for sufficiently large k, since δk > 0 and νkm = 0, by
(REG-KKT2), (REG-KKT5) and Condition 3.1 A) and B).

Moreover, we have (xkj , y
k
j )

k→∞−→ (x∗j , y
∗
j ) with x∗j ̸= 0, y∗j = 0 and xkj ̸= 0, ykj > 0 for all

k ∈ N, as well as (xkm, ykm)
k→∞−→ (x∗m, y∗m) with x∗m = 0, y∗m > 0 and xkm ̸= 0, ykm > 0 for all

k ∈ N.
Combining the above, and applying Condition 3.1 C), we obtain

∣∣γkj ∣∣∣∣γkm∣∣ =
∣∣γ̃kj ∂ϕ(xk

j ,y
k
j )

∂x

∣∣∣∣γ̃km ∂ϕ(xk
m,yk

m)
∂x

∣∣ νk
j =νk

m=0
=

∣∣∣∣∣ δk

∂ϕ(xk
j ,y

k
j )

∂y

· ∂ϕ(xk
j ,y

k
j )

∂x

∣∣∣∣∣∣∣∣∣∣ δk

∂ϕ(xk
m,yk

m)
∂y

· ∂ϕ(xk
m,yk

m)
∂x

∣∣∣∣∣
=

∣∣∣∣∣
∂ϕ(xk

m,yk
m)

∂y

∂ϕ(xk
m,yk

m)
∂x

∣∣∣∣∣ ·
∣∣∣∣∣
∂ϕ(xk

j ,y
k
j )

∂x
∂ϕ(xk

j ,y
k
j )

∂y

∣∣∣∣∣ k→∞−→ 0.

This leads to the contradiction

0 ̸= |γ̄j | = lim
k→∞

|γkj |
∥(λk, µk, γk)∥

≤ lim
k→∞

|γkj |
|γkm|

= 0.

Hence, we obtain supp(γ̄) ⊆ I0(x
∗).

To show the boundedness of the sequence (λk, µk, γk)k∈N, we use the assumption that CC-
MFCQ holds at (x∗, y∗). Dividing the first KKT condition (REG-KKT1) by ∥(λk, µk, γk)∥
and letting k → ∞, it follows, together with the preceding arguments, that∑

i∈Ig(x∗)

λ̄i∇gi(x
∗) +

p∑
i=1

µ̄i∇hi(x
∗) +

∑
i∈I0(x∗)

γ̄iei = 0.

Together with λ̄ ≥ 0, supp(λ̄) ⊆ Ig(x
∗), supp(γ̄) ⊆ I0(x

∗), and (λ̄, µ̄, γ̄) ̸= 0, this contradicts
CC-MFCQ in (x∗, y∗), since CC-MFCQ requires these gradients to be positive linearly inde-
pendent. Consequently, the sequence of multipliers (λk, µk, γk)k∈N is bounded. Without loss
of generality, we assume that the whole sequence (λk, µk, γk)k∈N converges

(λ∗, µ∗, γ∗) := lim
k→∞

(λk, µk, γk).

Taking the limit ask → ∞ in the first KKT condition (REG-KKT1), we obtain

∇f(x∗) +
m∑
i=1

λ∗i∇gi(x
∗) +

p∑
i=1

µ∗
i∇hi(x

∗) +
n∑

i=1

γ∗i ei = 0.

Hence, (x∗, y∗), together with the multipliers λ∗, µ∗, γ∗, satisfies the first condition for M-
stationarity. Analogous arguments as above yield λ∗ ≥ 0, supp(λ∗) ⊆ Ig(x

∗), and supp(γ∗) ⊆
I0(x

∗). Therefore, (x∗, y∗) is M-stationary. □
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Corollary 4.2 Let (tk)k∈N be a sequence with tk > 0 for all k ∈ N and tk ↓ 0 as k → ∞.
Let (xk, yk)k∈N be a sequence of KKT points of (REG(t)) with t = tk converging to (x∗, y∗).
If CC-MFCQ holds at (x∗, y∗), then (x∗, y∗) is M-stationary and there exists a z∗ ∈ Rn such
that (x∗, z∗) is S-stationary for (CCOP-NLP).

Proof By Theorem 4.1, this follows directly from Proposition 2.10. □

The following result is analogous to [12, Theorem 3].

Theorem 4.3 Let (x∗, y∗) be feasible for (CCOP-NLP) and CC-MFCQ hold there. Then
there is a neighbourhood U of (x∗, y∗) such that for all t > 0 the standard MFCQ for (REG(t))
holds at every (x, y) ∈ U feasible for (REG(t)).

Proof We prove the statement by contradiction. Assume, to the contrary, that the statement

does not hold. Then there exists a sequence (xk, yk)k∈N
k→∞−→ (x∗, y∗) and (tk)k∈N > 0 for

all k ∈ N, such that (xk, yk) is feasible for (REG(t)), with t = tk, but in (xk, yk) MFCQ is
violated for (REG(t)), with t = tk. Consequently, there exist multipliers (λk, µk, γ̃k, δk, νk) ∈
Rm × Rp × Rn × R× Rn for all k ∈ N such that

(λk, µk, γ̃k, δk, νk) ̸= 0, (8)

and the conditions,

m∑
i=1

λki ∇gi(x
k) +

p∑
i=1

µk
i ∇

k
i hi(x

k) +

n∑
i=1

γ̃ki
∂ϕ(xki , y

k
i )

∂x
ei = 0, (LOC-MFCQ1)

and (REG-KKT2) - (REG-KKT6) are satisfied. Here, νi denotes the multiplier corresponding
to the box-constraint 0 ≤ yi ≤ 1, for all i = 1, . . . , n. Since MFCQ is violated for (REG(t))
with t = tk, the relevant gradients are positve linearly dependent at (xk, yk).
As in the proof of Theorem 4.1, we can rule out the case νki < 0, and thus assume νki ≥ 0 for
all i = 1, . . . , n.

Define γki := γ̃ki
∂ϕ(xki , y

k
i )

∂x
for all i = 1, . . . , n and k ∈ N. By (REG-KKT5), we have

ϕ(xki , y
k
i ) = tk, and Condition 3.1 A) implies yki > 0, xki ̸= 0 if γ̃ki > 0. In particular, for

these indices i and k ∈ N, Condition 3.1 B) ensures
∂ϕ(xki , y

k
i )

∂x
̸= 0. This yields

supp(γk) = supp(γ̃k) ∀k ∈ N. (9)

In addition, from (REG-KKT5) and Condition 3.1 B), we also obtain

γ̃ki
∂ϕ(xki , y

k
i )

∂y
=


γki ·

∂ϕ(xk
i ,y

k
i )

∂y

∂ϕ(xk
i ,y

k
i )

∂x

, if ϕ(xki , y
k
i ) = tk,

0, else.

(10)

Therefore, for all k ∈ N, we can write (LOC-MFCQ1) and (REG-KKT2) as

m∑
i=1

λki ∇gi(x
k) +

p∑
i=1

µk
i ∇hi(x

k) +

n∑
i=1

γki ei = 0, (11)
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δk =


νki + γki ·

∂ϕ(xk
i ,y

k
i )

∂y

∂ϕ(xk
i ,y

k
i )

∂x

, if ϕ(xki , y
k
i ) = tk,

νki , else,

for all i = 1, . . . , n. (12)

For all i = 1, . . . , n and all k ∈ N, we have γ̃ki
∂ϕ(xk

i ,y
k
i )

∂y ≥ 0, by (REG-KKT5) together with

Condition 3.1 A) and B).
We now show that this contradicts the assumption that CC-MFCQ holds at (x∗, y∗).
By assumption, (λk, µk, γ̃k, δk, νk) ̸= 0 for all k ∈ N. Without loss of generality, we can choose
the multipliers such that ∥(λk, µk, γk, δk, νk)∥ = 1 for all k ∈ N and the whole sequence
converges

0 ̸= (λ, µ, γ, δ, ν) := lim
k→∞

(λk, µk, γk, δk, νk). (13)

We have λ ≥ 0. For all i with gi(x
∗) < 0, continuity implies gi(x

k) < 0 for sufficiently large
k, and thus λki = 0. It follows that

supp(λ) ⊆ Ig(x
∗). (14)

We proceed to prove supp(γ) ⊆ I0(x
∗) by contradiction.

Assume there exists an index j ∈ {1, . . . , n} with γj ̸= 0, x∗j ̸= 0. Feasibility then implies

y∗j = 0. Moreover, γkj ̸= 0 and hance γ̃kj ̸= 0, with ϕ(xkj , y
k
j ) = tk. By Condition 3.1 A), this

gives xkj ̸= 0, ykj > 0, with ykj → 0 as k → ∞. Thus, for sufficiently large k, we have ykj < 1

and νkj = 0 by (REG-KKT6).
Using Condition 3.1 C) and (12), we obtain

δk = νkj + γkj

∂ϕ(xk
j ,y

k
j )

∂y

∂ϕ(xk
j ,y

k
j )

∂x

= γkj
1

∂ϕ(xk
j ,y

k
j )

∂x
∂ϕ(xk

j ,y
k
j )

∂y

k→∞−→ ∞.

Since (λk, µk, γk, δk, νk)k∈N converges, this yields a contradiction. Therefore, we conclude
that

supp(γ) ⊆ I0(x
∗). (15)

It remains to show that (λ, µ, γ) ̸= 0. We proceed by contradiction and assume (λ, µ, γ) = 0.
Since (λ, µ, γ, δ, ν) ̸= 0, it follows that (δ, ν) ̸= 0. From the arguments above, we have νk ≥ 0
and, by (12), δk ≥ maxi=1,...,n νki . Hence, (δ, ν) ̸= 0 implies δ > 0 and δk > 0 for sufficiently

large k. This is only possible if eT yk = n− S for all sufficiently large k.
For all i with y∗i > 0, we have x∗i = 0, and without loss of generality, we assume that along

the sequence (xki , y
k
i )

k→∞−→ (x∗i , y
∗
i ), either x

k
i = 0, yki > 0 or xki ̸= 0, yki > 0 for all k ∈ N.

If xki = 0, yki > 0 for all k ∈ N, then, by (REG-KKT2) and Condition 3.1 B), it follows that

0 < δ∗ = lim
k→∞

νki + γ̃ki
∂ϕ(xki , y

k
i )

∂y
= νi,

and, if xki ̸= 0, yki > 0 for all k ∈ N, then γ = 0, which, together with Condition 3.1 C) and
(12), yields

0 < δ∗ = lim
k→∞

νki + γki

∂ϕ(xk
i ,y

k
i )

∂y

∂ϕ(xk
i ,y

k
i )

∂x

= νi.
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Hence, for all sufficiently large k and i with yki > 0, (REG-KKT6) implies yki = 1, and

consequently y∗i = 1. However, since eT yk = n − S < n for all sufficiently large k, there

must exist at least one index m such that ykm = 0 for all sufficiently large k. By Condition
3.1 A), it follows that ϕ(xkm, ykm) = 0 < tk and νkm = 0. This, however, implies δk = 0, a
contradiction. Therefore, the assumption (λ, µ, γ) = 0 is false, and we conclude that

(λ, µ, γ) ̸= 0.

Alltogether, taking the limit k → ∞ and using (14) and (15), we obtain∑
i∈Ig(x∗)

λi∇gi(x
∗) +

p∑
i=1

µi∇hi(x
∗) +

∑
i∈I0(x∗)

γiei = 0.

Since (λ, µ, γ) ̸= 0 and λ ≥ 0, the corresponding gradients are positive linearly dependent,
which contradicts CC-MFCQ. The statement therefore follows. □

The following global convergence result is analogous to [18, Theorem 4.1].

Theorem 4.4 Let (tk)k∈N be a sequence with tk > 0 for all k ∈ N and tk ↓ 0 as k → ∞.
Suppose that (xk, yk) is a globally optimal solution of (REG(t)) for t = tk and (x∗, y∗) is
an accumulation point of the sequence (xk, yk)k∈N as k → ∞. Then, (x∗, y∗) is a globally
optimal solution of (CCOP-NLP).

Proof Denote by Z(tk) the feasible set of the regularized optimization problem (REG(t))
with t = tk and by Z the feasible set of (CCOP-NLP). For all t ≥ 0, it holds that Z ⊆ Z(t),
and for 0 ≤ t1 ≤ t2 we have Z(t1) ⊆ Z(t2).

Taking a subsequence if necessary, we assume that lim
k→∞

(xk, yk) = (x∗, y∗). We observe that

(x∗, y∗) is feasible for (CCOP-NLP). Let (xk, yk) be a globally optimal solution of (REG(t))
with t = tk for all k ∈ N. Since Z ⊆ Z(tk) for all k ∈ N, it follows that

f(xk) ≤ f(x), ∀(x, y) ∈ Z.

Letting k → ∞ and using the continuity of f , we obtain

f(x∗) ≤ f(x), ∀(x, y) ∈ Z.

Hence, (x∗, y∗) is a globally optimal solution of (CCOP-NLP). □

5 Numerical experiments

In this section, we conduct an extensive numerical study to evaluate the performance
of the proposed solution methods and compare them with established approaches.
All experiments were performed on a computer equipped with an Apple M1 chip, 8 GB
of RAM, and an 8-core CPU (3.2 GHz). The numerical experiments were implemented
in Python 3.11.1.
We use the following notation to denote the solution methods:

1. RELAX: Directly solves the continuous reformulation (CCOP-NLP).
2. Gurobi: Solves a mixed-integer (nonlinear) reformulation of the corresponding

cardinality-constrained optimization problem.
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3. SCHOL-REG: Applies the Scholtes-type regularization proposed in [12] and solves a
sequence of the corresponding regularized optimization problems.

4. KS-REG: Applies the Kanzow–Schwartz regularization proposed in [14] and solves a
sequence of the corresponding regularized optimization problems.

5. KKM-PEN(λ): Applies the proposed penalty method and solves a sequence of opti-
mization problems (CCOP-PEN(ρ)) with penalty term Φ(x, y) =

∑n
i=1 ϕ(x, y),

where ϕ(x, y) =


(
−
√

(|x| − y)2 + λ|x|y + |x|+ y
)2

, if y ≥ 0,

0, if y < 0,
as introduced in

Theorem 3.3. We consider λ ∈ {1, 0.1, 0.01}.
6. QUAD-PEN: Applies the proposed penalty method and solves a sequence of optimiza-

tion problems (CCOP-PEN(ρ)), with penalty term Φ(x, y) =
∑n

i=1 x
2
i y

2
i .

To solve the respective mixed-integer programs, we use the commercial solver Gurobi
12.0.3 [26], accessed via gurobipy 12.0.3 and set the Gurobi-parameter MIPFocus
= 3.
For solving each optimization problem in the penalty and regularization approaches,
we use IPOPT 3.14.16 via Pyomo 6.8.2. Thereby, MUMPS 5.6.2 is used to solve the
single linear equation systems. See [27, 28] for IPOPT, [29, 30] for Pyomo, and [31, 32]
for MUMPS. We select the IPOPT parameter tol = 10−9 and contr viol tol = 10−10.
For the regularization methods, the initial value is chosen as t0 = 1, and decreased
in each step according to tk+1 = 0.1 · tk. To solve the (k + 1)-th regularized opti-
mization problem, we initialize the solver with the solution obtained from the k-th
subproblem. The choice of the initial starting point for t0 = 1 is specified in each
experiment. If IPOPT terminates with an error, we proceed by reducing tk according
to the update rule, and reinitialize the solver with the last successfully computed solu-
tion. The regularization method is terminated when either the maximum violation
of the complementarity constraint is below 10−5, i.e., maxi=1,...,n{|xi|yi} ≤ 10−5, or
after solving the regularized optimization problem with t = 10−9.
For the penalty method, the penalty parameter is updated according to ρk+1 = 2ρk.
The initial penalty parameter ρ0 and starting point are specified in each experiment.
As in the regularization method, the solution of the previous subproblem is used as the
starting point for the next one. The procedure is terminated once the maximum viola-
tion of the complementarity constraint satisfies maxi=1,...,n{|xi|yi} ≤ 10−5. If IPOPT
reports an error while solving a subproblem, we simply increase the penalty parame-
ter according to the update rule and reinitialize the solver with the last successfully
computed solution. With this strategy, the penalty method terminated successfully in
all experiments.
In all experiments, we initialize the numerical methods with the starting point (x0, y0),
where we set y0 = e.
To solve the continuous relaxation (CCOP-NLP) directly, we use IPOPT with the same
settings and the same initial point as in the regularization methods and penalty meth-
ods.
The newly introduced general regularization method is excluded from the numeri-
cal experiments. In the final experiment in section 5.3, it fails to achieve the desired
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maximum complementarity constraint violation. We note, however, the general reg-
ularization method performs very well in the numerical experiments presented in
sections 5.1 and 5.2.

5.1 Sensitivity starting point

We consider the following cardinality-constrained optimization problem

min
x1,x2∈R

f(x1, x2) = 6.85x1 + ex1+1 + 0.7(0.5x1 + 2)2 − 8.25x2 + (x2 − 1)2 (EXP1)

s.t. (x1 − 1)2 + x2
2 ≤ 10, ∥x∥0 ≤ 1.

The local minima of (EXP1) are given by z1 = (−
√
10+1, 0) ≈ (−2.16228, 0), f(z1) ≈

−12.9078, and z2 = (0, 3.0), f(z2) ≈ −15.2317, where z2 is the unique global min-
imum. The optimization problem (EXP1) is constructed such that after removing
the cardinality constraint, the global minimum lies between the two local minima of
(EXP1). For the choice of the starting point (x0, y0), x0, y0 ∈ R2, we discretize the set
[2.625, 4.875]×[−3.75, 3.75], by considering L = {(x1, x2) : x1 = −2.625+0.375z1, x2 =
−3.75+0.375z2, z1, z2 ∈ {0, 1, . . . , 20}}, such that we obtain |L| = 441 starting points,
by choosing (x0, y0) with x0 ∈ L and y0 = (1, 1).
We choose as the initial penalty parameter ρ0 = 2. Table 1 reports the result of
the experiment by indicating for each numerical solution method, how often the x-
component of the computed solutions converges to z1, z2 or (0, 0).

Table 1: Frequencies of finding local (global)
minimizers by starting point for (EXP1)

Method z2 (global minimum) z1 (0, 0)

RELAX 122 146 173
SCHOL-REG 441 0 0
KS-REG 358 83 0
KKM-PEN(1) 441 0 0
KKM-PEN(0.1) 351 90 0
KKM-PEN(0.01) 341 100 0
QUAD-PEN 441 0 0

First, we observe that all penalty and regularization methods outperform RELAX, and
that the solution methods exhibit distinct local convergence behavior, reflecting their
sensitivity to the choice of starting point as well as to the regularization and penalty
parameters.

5.2 N-dimensional Rosenbrock function

We consider the following n-dimensional version of the well-known Rosenbrock function
(Banana function or Rosenbrock’s banana function) f : Rn → R, given by f(x) =
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∑n−1
i=1

(
100(xi+1 − x2

i )
2 + (1− xi)

2
)
. Based on this function, we consider the following

cardinality-constrained optimization problem

min
x∈Rn

f(x) =
n−1∑
i=1

(
100(xi+1 − x2

i )
2 + (1− xi)

2
)

(CC-RB)

s.t. − 10 ≤ xi ≤ 10, for all i = 1, . . . , n,

∥x∥0 ≤ S.

We consider n = 10, 20, 30, 40. For each n, we vary the sparsity parameter S =
1, . . . , n−1, resulting in a total of 96 test instances. To check the quality of the obtained
solutions, we solve the following mixed-integer-nonlinear optimization problem.

min
x,y,z∈Rn

f(x) =
n−1∑
i=1

(
100(xi+1 − zi)

2 + (1− xi)
2
)

(CC-RB-MINLP)

s.t. − 10yi ≤ xi ≤ 10yi, for all i = 1, . . . , n,
n∑

i=1

yi ≤ S,

zi = x2
i , for all i = 1, . . . , n,

− 10 ≤ xi ≤ 10, yi ∈ {0, 1}, for all i = 1, . . . , n.

We choose as the starting point for the numerical methods (x0, y0) = (e, e) and as the
starting penalty parameter ρ0 = 2. The tables 2, 3, 4 and 5 summarize the results for
n = 10, 20, 30, 40. The column Global reports the number of instances in which the
x-component of the generated sequence converges to the global solution obtained by
solving (CC-RB-MINLP) using Gurobi (without a TimeLimit). The column T shows
the average computation time in seconds, defined as the time spent solving optimiza-
tion problems. The column mv provides the average maximal absolute violation of the
complementarity constriants across all test instances. Let (x∗, y∗) ∈ Rn × Rn denote
the solution computed by a method for a single instance. The maximum absolute vio-
lation of the complementarity constraint is then defined as max{|x∗

i y
∗
i | : i = 1, . . . , n}.

Once again, all regularization and penalty methods outperform RELAX. Particularly
noteworthy is that the methods QUAD-PEN, KKM-PEN(1) and KKM-PEN(0.1) success-
fully computed solutions for all instances, with their x-components converging to the
global minimizer. The methods SCHOL-REG and KKM-PEN(0.01) also performed well,
failing only once and twice, respectively, to find the global optimal solution. Moreover,
the computational effort required by Gurobi illustrates the combinatorial explosion
inherent in solving large-scale MINLPs to global optimality.
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Table 2: Comparison for n = 10

METHOD Global mv T

Gurobi 9 / 9 - 0.0524
RELAX 0 / 9 2.59 · 10−32 0.0213
SCHOL-REG 8 / 9 1.00 · 10−6 0.1598
KS-REG 7 / 9 4.89 · 10−6 0.1457
KKM-PEN(1) 9 / 9 8.23 · 10−6 0.3010
KKM-PEN(0.1) 9 / 9 6.27 · 10−6 0.3033
KKM-PEN(0.01) 9 / 9 7.63 · 10−6 0.2844
QUAD-PEN 9 / 9 9.26 · 10−6 0.4164

Table 3: Comparison for n = 20

METHOD Global mv T

Gurobi 19 / 19 - 0.4124
RELAX 1/ 19 4.96 · 10−34 0.0205
SCHOL-REG 19 / 19 9.53 · 10−7 0.1698
KS-REG 17 / 19 5.21 · 10−6 0.1722
KKM-PEN(1) 19 / 19 8.56 · 10−6 0.3193
KKM-PEN(0.1) 19 / 19 5.73 · 10−6 0.3126
KKM-PEN(0.01) 19 / 19 6.25 · 10−6 0.3177
QUAD-PEN 19 / 19 9.63 · 10−6 0.3532

Table 4: Comparison for n = 30

METHOD Global mv T

Gurobi 29 / 29 - 6.6561
RELAX 1 / 29 1.24 · 10−34 0.0251
SCHOL-REG 29 / 29 1.0 · 10−6 0.1953
KS-REG 23 / 29 4.39 · 10−6 0.2460
KKM-PEN(1) 29 / 29 8.66 · 10−6 0.3410
KKM-PEN(0.1) 29 / 29 5.56 · 10−6 0.3384
KKM-PEN(0.01) 29 / 29 5.82 · 10−6 0.3382
QUAD-PEN 29 / 29 9.75 · 10−6 0.3765

5.3 Portfolio optimization

We consider cardinality-constrained optimization problems of the form

min
x∈Rn

xTQx (P-OPT-EXP)

s.t. µTx ≥ ρ, eTx ≤ 1, 0 ≤ xi ≤ ui, ∀i = 1, . . . , n,

∥x∥0 ≤ S.
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Table 5: Comparison for n = 40

METHOD Global mv T

Gurobi 39 / 39 - 114.5688
RELAX 1 / 39 2.45 · 10−31 0.0244
SCHOL-REG 39 / 39 9.54 · 10−7 0.2087
KS-REG 26 / 39 5.91 · 10−6 0.3124
KKM-PEN(1) 39 / 39 8.71 · 10−6 0.4012
KKM-PEN(0.1) 39 / 39 5.48 · 10−6 0.3729
KKM-PEN(0.01) 37 / 39 5.85 · 10−6 0.3655
QUAD-PEN 39 / 39 9.8 · 10−6 0.3999

This is a sparse portfolio optimization problem, where Q denotes the covariance matrix
and µ the expected return of n considered assets. The constraint eTx ≤ 1 represents
the budget limitiation, while xi ≥ 0 ensures that there is no short-selling and xi ≤
ui imposes upper bounds on the individual asset weights. The constraint µTx ≥ ρ
guarantees a minimum expected return level, while the objective minimizes risk as
measured by the portfolio variance. The cardinality-constraint restricts the portfolio
to contain at most S assets, i.e., the portfolio is in a certain sense sparse. For general
portfolio optimization problems, we refer to [33] and for sparse portfolio optimization,
see [3].
To generate test instances, we use the same randomly generated data sets for Q,µ, ρ,
and u, as in [34], which are available at [35]. These data sets and test instances were also
used in [5] and [18] to evaluate the proposed regularization methods for (CCOP-NLP).
In this experiment, the initial penalty parameter is set to ρ0 = 100. The starting point
for the numerical methods is chosen as (x0, y0) with x0 = u.
In this experiment, the method RELAX did not always terminate. In such cases, the
number of test instances for which termination failed is reported in the tables 6, 7, 8,
9, 10, 11, 12, 13, 14 and 15 under Failed. For the regularization methods, we report
an instance as Failed if the algorithm does not ensure that the maximum absolute
complementarity constraint violation falls below 10−5.
We use only the data sets for problem dimensions n = 200 and n = 300, with 30
test examples per dimension. In addition, we consider the cardinality parameters S =
5, 10, 20, 30 and 50, resulting in a total of 300 test instances.
To evaluate the quality of the computed points, we report under α the number of test
instances for which the computed point ziMETHOD satisfies

f(ziMETHOD) ≤ (1 + α)f(ziGurobi), (16)

where ziMETHOD denotes the computed point by the respective METHOD for the i-th test
instance, and ziGurobi is the corresponding solution obtained using Gurobi. f denotes
the objective function of (P-OPT-EXP). Under MIPGap we report for Gurobi the
average MIPGap. In this experiment, the Gurobi parameter TimeLimit was set to 600
seconds. The columns mv and T report the same as in the previous experiment. We
consider α ∈ {0.01, 0.02, 0.05, 0.1, 025, 0.5, 1.0}.
Since (P-OPT-EXP) includes the sign restriction x ≥ 0, we effectively apply
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the MPCC regularizations [13] and [14] as the respective regularization methods
SCHOL-REG and KS-REG.

Table 6: Comparison of solution methods for S = 5 and n = 200

METHOD α = 0.01 0.02 0.05 0.1 0.25 0.5 1.0 MIPGap / mv T Failed

Gurobi - - - - - - - 3.69 · 10−5 1.43 0
RELAX 0 0 0 0 0 0 3 2.10 · 10−49 0.65 0
SCHOL-REG 0 0 0 7 21 30 - 9.70 · 10−7 7.83 0
KS-REG 0 0 0 0 3 11 24 9.05 · 10−6 5.45 0
KKM-PEN(1) 4 6 11 24 27 29 30 5.77 · 10−6 11.71 0
KKM-PEN(0.1) 6 10 21 28 30 - - 7.61 · 10−6 10.82 0
KKM-PEN(0.01) 6 11 23 29 30 - - 7.42 · 10−6 9.35 0
QUAD-PEN 0 0 0 11 28 30 - 7.70 · 10−6 16.44 0

Table 7: Comparison of solution methods for S = 10 and n = 200

METHOD α = 0.01 0.02 0.05 0.1 0.25 0.5 1.0 MIPGap / mv T Failed

Gurobi - - - - - - - 5.26 · 10−5 4.38 -
RELAX 0 0 0 0 0 0 0 1.16 · 10−49 0.63 0
SCHOL-REG 0 0 0 7 25 28 29 1.21 · 10−6 17.86 0
KS-REG 0 0 0 0 1 20 26 7.45 · 10−6 9.17 0
KKM-PEN(1) 0 0 3 7 12 23 29 6.83 · 10−6 17.14 0
KKM-PEN(0.1) 4 10 18 22 22 27 29 6.83 · 10−6 13.86 0
KKM-PEN(0.01) 8 19 24 27 27 27 27 7.35 · 10−6 10.86 0
QUAD-PEN 0 0 2 10 28 30 - 7.64 · 10−6 11.82 0

Table 8: Comparison of solution methods for S = 20 and n = 200

METHOD α = 0.01 0.02 0.05 0.1 0.25 0.5 1.0 MIPGap / mv T Failed

Gurobi - - - - - - - 1.06 · 10−3 172.79 -
RELAX 0 0 0 0 0 0 0 1.63 · 10−49 0.63 2
SCHOL-REG 0 0 5 20 25 28 28 1.67 · 10−6 20.40 0
KS-REG 0 0 0 1 11 21 25 4.17 · 10−6 14.02 0
KKM-PEN(1) 0 0 0 0 12 21 26 7.28 · 10−6 29.24 0
KKM-PEN(0.1) 0 0 3 4 7 18 25 7.41 · 10−6 22.13 0
KKM-PEN(0.01) 5 8 13 15 18 20 25 7.87 · 10−6 15.96 0
QUAD-PEN 0 0 7 27 30 - - 7.69 · 10−6 19.26 0
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Table 9: Comparison of solution methods for S = 30 and n = 200

METHOD α = 0.01 0.02 0.05 0.1 0.25 0.5 1.0 MIPGap / mv T Failed

Gurobi - - - - - - - 3.8 · 10−3 395.15 -
RELAX 0 0 0 0 0 0 0 3.0 · 10−50 0.643 1
SCHOL-REG 0 2 16 22 25 26 29 8.11 · 10−6 20.46 1
KS-REG 0 0 0 1 5 14 16 4.7 · 10−4 11.77 5
KKM-PEN(1) 0 0 0 0 5 16 22 6.79 · 10−6 36.98 0
KKM-PEN(0.1) 0 0 0 0 7 17 23 7.58 · 10−6 29.52 0
KKM-PEN(0.01) 0 2 4 4 9 19 24 7.53 · 10−6 21.20 0
QUAD-PEN 0 5 28 30 - - - 7.04 · 10−6 14.88 0

Table 10: Comparison of solution methods for S = 50 and n = 200

METHOD α = 0.01 0.02 0.05 0.1 0.25 0.5 1.0 MIPGap / mv T Failed

Gurobi - - - - - - - 5.63 · 10−3 697.59 -
RELAX 0 0 0 0 0 0 0 2.47 · 10−44 0.68 1
SCHOL-REG 7 16 17 20 26 28 29 5.0 · 10−6 22.86 0
KS-REG 0 0 1 4 6 9 14 5.8 · 10−4 14.94 6
KKM-PEN(1) 0 0 0 0 3 7 18 6.73 · 10−6 50.23 0
KKM-PEN(0.1) 0 0 0 0 2 8 14 7.36 · 10−6 44.02 0
KKM-PEN(0.01) 0 0 0 3 6 11 18 7.22 · 10−6 37.62 0
QUAD-PEN 13 28 30 - - - - 7.05 · 10−6 16.10 0

Table 11: Comparison of solution methods for S = 5 and n = 300

METHOD α = 0.01 0.02 0.05 0.1 0.25 0.5 1.0 MIPGap / mv T Failed

Gurobi - - - - - - - 3.22 · 10−5 3.39 -
RELAX 0 0 0 0 0 0 4 3.92 · 10−50 1.38 1
SCHOL-REG 0 1 1 7 22 29 30 9.85 · 10−7 18.97 0
KS-REG 0 0 0 1 1 7 17 9.05 · 10−6 13.76 0
KKM-PEN(1) 1 2 8 20 25 26 28 6.83 · 10−6 34.06 0
KKM-PEN(0.1) 4 7 18 27 30 - - 6.95 · 10−6 29.72 0
KKM-PEN(0.01) 10 13 24 29 30 - - 7.16 · 10−6 31.01 0
QUAD-PEN 0 0 0 7 26 30 - 7.30 · 10−6 31.59 0

Overall, the method QUAD-PEN achieved the best performance, producing the best
solutions with relatively low computation times. The performance of QUAD-PEN is
quite remarkable, as it computed for each of the 300 test instances, a point satisfy-
ing (16) with at least α = 3

2 . Across all 300 test instances, the respective MIPGap of
the solutions computed by Gurobi did not exceed ≈ 0.03595. The method SCHOL-REG

also delivered strong results. However, we emphasize the robust and consistent very
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Table 12: Comparison of solution methods for S = 10 and n = 300

METHOD α = 0.01 0.02 0.05 0.1 0.25 0.5 1.0 MIPGap / mv T Failed

Gurobi - - - - - - - 6.03 · 10−5 10.07 -
RELAX 0 0 0 0 0 0 0 2.54 · 10−14 1.49 0
SCHOL-REG 0 0 0 6 27 30 - 8.06 · 10−7 40.47 0
KS-REG 0 0 0 0 1 12 23 7.46 · 10−6 24.23 0
KKM-PEN(1) 0 0 3 9 11 22 29 6.55 · 10−6 48.80 0
KKM-PEN(0.1) 5 7 16 21 24 25 29 7.17 · 10−6 39.27 0
KKM-PEN(0.01) 6 11 19 27 29 30 - 7.17 · 10−6 28.36 0
QUAD-PEN 0 0 0 7 28 30 - 7.30 · 10−6 39.29 0

Table 13: Comparison of solution methods for S = 20 and n = 300

METHOD α = 0.01 0.02 0.05 0.1 0.25 0.5 1.0 MIPGap / mv T Failed

Gurobi - - - - - - - 1.56 · 10−3 313.20 -
RELAX 0 0 0 0 0 0 0 6.66 · 10−47 1.58 0
SCHOL-REG 0 0 2 16 27 30 - 1.31 · 10−6 52.56 0
KS-REG 0 0 0 0 5 17 20 1.77 · 10−4 31.27 1
KKM-PEN(1) 0 0 0 0 5 20 29 7.11 · 10−6 80.47 0
KKM-PEN(0.1) 0 0 1 4 8 16 25 7.38 · 10−6 62.67 0
KKM-PEN(0.01) 1 4 13 14 15 21 22 6.88 · 10−6 43.35 0
QUAD-PEN 0 0 5 19 30 - - 7.37 · 10−6 47.58 0

Table 14: Comparison of solution methods for S = 30 and n = 300

METHOD α = 0.01 0.02 0.05 0.1 0.25 0.5 1.0 MIPGap / mv T Failed

Gurobi - - - - - - - 9.87 · 10−3 629.8 -
RELAX 0 0 0 0 0 0 0 3.92 · 10−50 1.60 0
SCHOL-REG 1 1 8 18 23 26 28 6.43 · 10−6 62.73 1
KS-REG 0 0 0 1 4 11 15 6.76 · 10−4 32.31 6
KKM-PEN(1) 0 0 0 0 5 12 21 7.48 · 10−6 105.98 0
KKM-PEN(0.1) 0 0 0 0 6 12 22 6.97 · 10−6 81.61 0
KKM-PEN(0.01) 0 1 5 6 6 15 20 7.02 · 10−6 65.26 0
QUAD-PEN 1 2 13 29 30 - - 7.43 · 10−6 51.36 0

good performance of QUAD-PEN, which reliably outperformed SCHOL-REG. Addition-
ally, also the generally robust regularization method SCHOLTES-REG failed to compute
points which satisfy the maximal absolute complementarity constraint violation by
10−5 for some instances. This issue does not arise in the penalty methods. However,
the KKM-PEN(λ) methods exhibit the following behaviour: up to a certain threshold of
maximal absolute complementarity constraint violation and the corresponding penalty
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Table 15: Comparison of solution methods for S = 50 and n = 300

METHOD α = 0.01 0.02 0.05 0.1 0.25 0.5 1.0 MIPGap / mv T Failed

Gurobi - - - - - - - 1.45 · 10−2 602.07 -
RELAX 0 0 0 0 0 0 0 3.86 · 10−50 1.63 2
SCHOL-REG 3 7 14 16 20 22 26 7.95 · 10−6 72.42 1
KS-REG 0 0 1 1 5 7 8 9.81 · 10−4 34.37 9
KKM-PEN(1) 1 1 1 1 1 4 9 6.39 · 10−6 136.58 0
KKM-PEN(0.1) 0 0 1 1 3 7 9 7.62 · 10−6 116.17 0
KKM-PEN(0.01) 0 0 0 1 3 11 18 7.24 · 10−6 112.50 0
QUAD-PEN 2 9 28 30 - - - 7.03 · 10−6 51.46 0

parameter, the methods compute high-quality solutions. That is, the cardinality con-
straint is fully utilized, leading to low objective values. Below this threshold, many
entries of the solution vector become numerically negligible, i.e., their absolute value
falls below 10−7. As a result, effectively, the cardinality constraint is no longer fully
exploited, resulting in worse objective values, since the cardinality constraint repre-
sents a critical resource.
Once again, we observe the combinatorial explosion when using Gurobi. At the same
time, we note that Gurobi frequently computed good solutions in a short amount of
time.

6 Conclusions

In this work, we introduced a general penalty method and a general regularization
method for the continuous reformulation of cardinality-constrained optimization prob-
lems. Both approaches share the theoretical property that, under the CC-MFCQ, the
generated sequence of KKT points converges to an M-stationary point, which, for
the continuous reformulation of CCOPs, is essentially an S-stationary point. Further-
more, we analyzed the properties of the subproblems and showed that the general
regularization method exhibits a property analogous to the Scholtes-type regulariza-
tion, while the penalty method satisfies results analogous to those established for the
MPCC penalty method. In the numerical experiments, we observed that the simple
penalty term Φ(x, y) =

∑n
i=1 x

2
i y

2
i achieves excellent performance, even surpassing the

Scholtes-type regularization, which is known to be highly effective in practice.
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