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Abstract. We describe inexact proximal Newton-like methods for solving degenerate regularized optimization problems and for
the broader problem of finding a zero of a generalized equation that is the sum of a continuous map and a maximal monotone operator.
Superlinear convergence for both the distance to the solution set and a certain measure of first-order optimality can be achieved under
a Hölderian error bound condition, including for problems in which the continuous map is nonmonotone, with Jacobian singular at the
solution and not Lipschitz. Superlinear convergence is attainable even when the Jacobian is merely uniformly continuous, relaxing the
standard Lipschitz assumption to its theoretical limit. For convex regularized optimization problems, we introduce a novel globalization
strategy that ensures strict objective decrease and avoids the Maratos effect, attaining local Q-superlinear convergence without prior
knowledge of problem parameters. Unit step size acceptance in our line search strategy does not rely on continuity or even existence of
the Hessian of the smooth term in the objective, making the framework compatible with other potential candidates for superlinearly
convergent updates.

Key words. proximal-Newton methods, regularized optimization, degenerate problems, superlinear convergence, Maratos effect,
error bound

MSC codes. 90C53, 90C30

1. Introduction. Consider the following generalized equation:

(1.1) Findx ∈ H such that 0 ∈ (A+B)(x),

where H is a real Hilbert space with an inner product ⟨·, ·⟩ and induced norm ∥·∥, A : H → H is continuously
differentiable, B : H ⇒ 2H is a maximal-monotone set-valued operator, the solution set S is nonempty (and
closed), and A is locally L-Lipschitz continuous in a neighborhood of S. A point x solves (1.1) if and only if the
forward-backward step R(x) defined by

(1.2) R(x) := x− (Id +B)
−1

(Id−A) (x)

is zero, where Id is the identity operator for H. We define the norm of the forward-backward step as

(1.3) r(x) := ∥R(x)∥.

Denoting the solution set of (1.1) by S := {x ∈ H |R(x) = 0}, we further assume that the following order-q
Hölderian error bound condition holds locally to S:

(1.4) dist(x,S) = dist
(
x, (A+B)−1(0)

)
≤ κr(x)q, ∀x ∈ {x | r(x) ≤ ϵ} ,

for some κ, ϵ > 0 and q ∈ (0, 1], where dist(x,S) is the distance between the point x and the set S, measured
by the endowed norm on H. Without assuming knowledge of the values of κ, ϵ, or q, we propose algorithms that
attain fast local rates for a certain range of values of the exponent q. A well-known sufficient condition for (1.4) is
the Hölderian metric subregularity condition of the same order q.

Some of our results assume also that the Jacobian ∇A is p-Hölder continuous in a neighborhood U of S for
some p ∈ (0, 1], while others only assume uniform continuity. We say that ∇A is p-Hölder continuous in U if, for
some ζ ≥ 0, we have

(1.5) ∥∇A(x)−∇A(y)∥ ≤ ζ∥x− y∥p, ∀x, y ∈ U ⊃ S.

For simplicity, we often assume that U is the same as the neighborhood in which (1.4) holds, that is, U = {x |
r(x) ≤ ϵ}. Through simple calculus, we then have

∥A(x)−A(y)−∇A(y)(x− y)∥ ≤ ζ

1 + p
∥x− y∥1+p

= O(∥x− y∥1+p
), ∀x, y ∈ U.(1.6)
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∇A is Lipschitz continuous when it is Hölder continuous with p = 1.
In this work, we analyze a damped variant of a forward-backward method with Newton-like scaling for (1.1)

under conditions of possible degeneracy. We account for cases in which the Jacobian of A at any x∗ ∈ S could
be singular and the solution set S may not be compact. We do not assume that the iterates {xt} have a limit
or an accumulation point. We will first analyze local convergence under such degeneracy conditions, assuming
that the Hölderian error bound (1.4) and the Hölder continuity condition on the Jacobian (1.5) are satisfied in a
neighborhood of the solution set S. For a certain range of values of p and q, we prove that both r(xt) and dist(xt,S)
converge superlinearly to 0 and that the full sequence of iterates {xt} converges. We show further that for the most
widely considered case of q = 1 in (1.4), superlinear convergence is still attainable even if the assumption of Hölder
continuity of ∇A is relaxed to local uniform continuity, provided that some algorithm parameters are adapted.

We then discuss the special case of regularized optimization

(1.7) min
x∈H

F (x) := f(x) + Ψ(x),

where Ψ : H → [−∞,∞] is convex, proper, and closed; and f : H → R is twice continuously differentiable with
Lipschitz continuous gradient in an open set containing the domain of Ψ. We can express (1.7) in the form (1.1)
by setting A(x) := ∇f(x) and B(x) := ∂Ψ(x). When specialized to (1.7), the algorithmic framework considered
in this work (see (1.8) below) is often called proximal-Newton or sequential quadratic approximation. We describe
a globalization strategy for (1.7) that ensures global convergence and strict decrease of the objective even when
conditions (1.4) and (1.5) do not hold. When (1.4) is satisfied and f is convex, the strategy guarantees eventual
acceptance of the unit step size without requiring knowledge of problem-dependent parameters. This leads to fast
local superlinear convergence for not only r(xt) and dist(xt,S) but also the objective value F (xt), provided ∇2f
is Hölder (or uniformly) continuous. Notably, in the scenario q = p = ρ = 1, our strategy achieves quadratic
convergence, unlike existing backtracking and trust-region-like approaches.

Our algorithm for (1.1) is an inexact forward-backward method with Newton-like scaling, for which iteration
t has the following form:

(1.8) xt+1 ≈ (Ht +B)
−1

(Ht −A) (xt), Ht := (µtId + Jt) , µt := cr(xt)
ρ,

where r(xt) is defined in (1.2) and (1.3), c > 0 and ρ ≥ 0 are parameters, and Jt is a positive semidefinite but
possibly non-Hermitian linear operator satisfying

(1.9) ∥Jt −∇A(xt)∥ = O
(
r(xt)

θ
)
, for some θ ≥ ρ.

When A is maximal monotone and differentiable, ∇A(x) is positive semidefinite for any x [15, see Lemma 3.5],
so we could simply set Jt = ∇A(xt) in this case. But we allow other scenarios too, such as when A is maximal
monotone only in some region. The scheme (1.8) can be viewed as replacing L · Id in the classical forward-backward
splitting scheme (where L is an upper bound on the Lipschitz constant for A) by Ht = µtId+Jt as a variable-metric
variant. Because the resolvent (Id +B)−1 of B is well-defined and single-valued due to the maximal monotonicity
of B, so is (Ht +B)−1, by positive semidefiniteness of Jt.

We can also view the scheme (1.8) as a generalization of the Newton method for solving the nonlinear equation

(1.10) Findx ∈ H such that A(x) = 0,

which is a special case of (1.1) with B ≡ 0.
We denote the exact solution for the next-iterate formula (1.8) by x̂t+1, that is,

x̂t+1 := (Ht +B)
−1

(Ht −A) (xt),

equivalently,
find x̂t+1 ∈ H such that 0 ∈ (B +Ht) (x̂t+1)− (Ht −A) (xt).

If we define

(1.11) R̂t(x) := x− (Id +B)
−1

((Id−Ht) (x) + (Ht −A) (xt)) , r̂t(x) := ∥R̂t(x)∥,

then we have r̂t(x̂t+1) = 0. Using this residual, we consider the following requirement on the inexactness of the
next iterate xt+1:

(1.12) r̂t(xt+1) ≤ νr(xt)
1+ρ,

for some parameter ν ≥ 0, where ρ has the same meaning as in (1.8), where it is used to define µt.
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1.1. Related Works. Most analyses of (1.1) focus on fixed-point algorithms and global convergence prop-
erties. There are fewer works on the variable-metric framework of (1.8), despite its practical interest. Newton
and quasi-Newton approaches for the special case (1.10) (where B ≡ 0) are well-studied for both local and global
properties under various globalization strategies (see, for example, [12, Chapter 11]). To our knowledge, there is
no systematic treatment for extensions (1.8) of these approaches to the general case (1.1).

For regularized optimization (1.7), there is a substantial literature on algorithms like (1.8), sometimes known
in this case as proximal-(quasi-)Newton or sequential quadratic approximation. Following the classical analysis for
Newton’s method, Lee et al. [7] assumed f strongly convex and Lipschitz twice continuously differentiable, and
showed that xt approaches the unique minimizer x∗ Q-superlinearly and Q-quadratically for inexact and exact
proximal-Newton methods, respectively, where µt ≡ 0 in (1.8). Later, Yue et al. [16] showed that for f convex
and Lipschitz twice continuously differentiable with a Lipschitz gradient, convergence of a variant of the damped
proximal-Newton approach (1.8) (which they termed IRPN) is locally Q-superlinear for ρ ∈ (0, 1), and Q-quadratic
if ρ = 1 and the unit step size is eventually always accepted in their Armijo line search. Convergence here is for
both r(xt) and dist(xt,S) to 0 when the Luo-Tseng error-bound condition holds. (The latter condition corresponds
to (1.4) with q = 1.) A disadvantage of the quadratic convergence result in [16], pointed out by Mordukhovich
et al. [11], is that the Maratos effect must be avoided by selecting the line search parameters carefully to satisfy
certain conditions involving the Lipschitz constants and the coefficient κ in (1.4). (The Maratos effect occurs when
the unit step size might not yield sufficient decrease in the objective, causing unit steps that make good progress
toward the solution to be rejected.) Selection of these parameters can be difficult in practice.

Mordukhovich et al. [11] showed that, under the same assumptions on f as [16], the conditions for superlinear
convergence can be relaxed to (1.4) with q > 1/2, although a slightly weaker, R-superlinear convergence for
dist(xt,S) is obtained. They also established a convergence rate faster than quadratic when q > 1, but as we will
see in the proof of Lemma 2.2, r(x) = O(dist(x, S)) always holds, so (1.4) with q > 1 cannot hold in regimes of
interest.1

To avoid the Maratos effect in the regime of quadratic convergence, [11] proposed a hybrid strategy that accepts
unit steps when r(x) decreases at a specified linear rate; they do not always check the objective value in (1.7),
so it is not guaranteed to be monotonically decreasing. Doikov and Nesterov [3] studied the global convergence
of a damped Newton approach for (1.7) that is a special case of (1.8). When both f and Ψ are convex and f is
H-Lipschitz twice continuously differentiable, setting ρ = 0.5 and c =

√
H/3 in (1.8) and solving the subproblem

exactly (that is, r̂t(xt+1) = 0 in (1.11)) leads to strictly decreasing objective values and a global convergence rate
of O(t−2) for the objective value to the optimum. No special globalization strategies are required for this approach.

More recently, Liu et al. [8] extended the algorithm of [11] to nonconvex f restricted to the specific form of
f(x) = h(Ax − b) for some matrix A, vector b and a twice-differentiable function h whose Hessian is implicitly
assumed to be locally Lipschitz. T Their approach requires computing the smallest eigenvalue of ∇2h. Following
an earlier preprint version of [11], they proved Q-superlinear convergence for q > (

√
5 − 1)/2 ≈ .618 under the

assumption that the iterates have an accumulation point x∗ with ∇2f(x∗) positive semidefinite. This requirement
of local convexity is similar to our assumption that A is maximal monotone locally. When q = 1, their algorithm
does not provide quadratic convergence as those variants in [11, 16]. Vom Dahl and Kanzow [14] proposed a
trust-region-like variant of the method in [8] and obtained convergence results similar to those of that paper.

1.2. Contributions. We advance the state of the art in several respects.
1. In the degenerate setting where the Jacobian ∇A is singular at the solutions,We establish that superlinear

convergence of proximal-Newton methods is significantly more robust to lack of smoothness than previously
understood. Our analysis relaxes the standard assumption of Lipschitz continuity of the Jacobian to Hölder
continuity of any order while retaining superlinear rates. We further show that superlinear convergence
remains attainable even when this assumption is relaxed to merely uniform continuity, provided that the
damping term and the stopping tolerance decay sufficiently slowly.

2. We propose a novel general line search strategy for convex regularized optimization that ensures strict
function decrease at every iteration, guarantees global convergence to S, and avoids the Maratos effect
for any “fast direction” yielding superlinear convergence. Our strategy is agnostic to problem-dependent
parameters and maintains acceptance of the unit step size even in difficult scenarios where existing back-

1 Technically speaking, they assumed a q-metric subregularity condition such that dist(x,S) ≤ κdist(0, (A + B)(x))q and showed
that this condition is equivalent to (1.4) with the same q provided that q ∈ (0, 1] in their Proposition 2.4. They then utilized (1.4)
to obtain their convergence rates under the assumption of q-metric subregularity. For the case of q > 1, they leveraged the same
proposition and claimed that such an equivalence continues to hold to obtain their rate — but the proof of their Proposition 2.4 shows
that q-metric subregularity with q > 1 implies (1.4) only with q = 1. Therefore, for their proof of the faster-than-quadratic rate to
hold, it is necessary to assume that (1.4) holds with q > 1.
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tracking and trust-region approaches fail, such as the quadratic convergence regime and the non-Lipschitz
Hessian setting described above. Notably, our analysis of unit step size acceptance does not rely on con-
tinuity properties or even the existence of the Hessian, but instead leverages the interplay between the
Hölderian error bound condition and properties of the update direction. This feature makes the framework
compatible with any direction yielding superlinear convergence, including potential candidates like proxi-
mal semismooth Newton or proximal quasi-Newton methods for more difficult scenarios, such as when f
is not twice-differentiable.

3. Our line-search framework achieves Q-superlinear convergence for the objective value F in (1.7). We believe
this result to be the first of its kind, even for nondegenerate instances of (1.7) in which ∇2f is nonsingular.

4. We extend local convergence rates previously established for regularized optimization to the generalized
equation setting (1.1) in Hilbert spaces. We thus allow the use of a non-Hermitian Jacobian in (1.8).
Through a refined error analysis, we broaden the range of the error bound exponent for Q-superlinear
convergence of dist(xt,S) to 1 ≥ q > (

√
33 − 1)/8 ≈ 0.593, improving upon q = 1 in [16] and 1 > q >

(
√
5 − 1)/2 ≈ 0.618 in [8, 14]. We obtain the same range of q > 1/2 for R-superlinear convergence of

dist(xt,S) and Q-superlinear convergence of r(xt), matching the range in [11] but for the more general
problem (1.1).

1.3. Notation. For bounded nonnegative scalar sequences {σk} and {τk}, we say that σk = o(τk) if for any
β > 0 we have σk ≤ βτk for all k sufficiently large. We say σk = O(τk) if this bound holds for some β > 0 and all
k sufficiently large. We say σk = Ω(τk) if there is some β > 0 such that σk ≥ βτk for all k sufficiently large.

1.4. Organization. Section 2 discusses local convergence rates of (1.8), including the ranges of q, p, and ρ
that yield R- and Q-superlinear convergence, respectively. In Section 3 we propose a new globalization strategy
for (1.7), analyzing its global convergence as well as local Q-superlinear convergence for r(xt), dist(xt,S), and
F (xt). Simplification of our algorithm for the case of smooth optimization is discussed in Section 4. The result of
superlinear convergence when ∇A is only uniform continuity is in Appendix A.

2. Local Convergence. We describe local convergence properties of our basic algorithm (1.8), (1.12) in this
section. Section 2.1 shows convergence of {xt} to the solution set S, and of the residual r(xt) to zero, at superlinear
rates, under certain conditions.

2.1. Superlinear Convergence. For the problem (1.1), we start by showing that under suitable conditions,
the sequence {xt} defined by (1.8), (1.12) exhibits local superlinear convergence to the solution set S (and quadratic
convergence, under stronger assumptions) and that r(xt) converges to 0 at the same rate. We define the notation

(2.1) dt := dist(xt,S), rt := r(xt), pt := xt+1 − xt,

and derive estimates of some key quantities in terms of these values. Lemma 2.1 is a generalization to the setting
of (1.1) with Hölder continuous ∇A of [16, Lemma 4] and [11, Lemma 4.1], which apply to (1.7) with Lipchitz
continuous ∇2f .

Lemma 2.1. Fix an iterate xt and consider the update scheme (1.8), (1.12) for (1.1) with ν ≥ 0, ρ ≥ 0, A
single-valued and continuously differentiable, B maximal monotone, and S ≠ ∅. Assume that in a neighborhood
containing both xt and xt+1, A is L-Lipschitz continuous for some L ≥ 0 and ∇A is p-Hölder continuous for some
p ∈ (0, 1]. Then we obtain

(2.2) ∥pt∥ = ∥xt+1 − xt∥ ≤ O(dt) +O
(
µ−1
t d1+p

t

)
+O

(
µ−1
t r1+ρ

t

)
+O

(
r1+ρ
t

)
.

Proof. Let x̄t ∈ PS(xt), where PS denotes projection onto the solution set S using the endowed norm, so
that dt = ∥xt − x̄t∥.2 Denoting by Ū the neighborhood assumed in the lemma, we have from the local Lipschitz
continuity of A that

(2.3) ∥∇A(x)∥ ≤ L, ∀x ∈ Ū .

Defining

(2.4) ξt := R̂t (xt+1) ,

2 The solution set S might be nonconvex and thus the projection could be non-unique. However, according to our assumption that
S ̸= ∅, there must exist at least one such x̄t ∈ PS(xt). Regardless, dt is uniquely defined.
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we have after rearranging (1.11) that

(Ht −A) (xt)− (Ht − Id) (xt+1) ∈ (Id +B) (xt+1 − ξt)

⇒ ξt −Ht(ξt) ∈ (A−Ht) (xt) + (Ht +B) (xt+1 − ξt) ,(2.5)

while the condition (1.12) implies that

(2.6) ∥ξt∥ ≤ νr1+ρ
t .

Because x̄t ∈ S, we have from the optimality condition of (1.1) that

−A(x̄t) ∈ B(x̄t)

⇒ Ht (x̄t − xt) +A(xt)−A(x̄t) ∈ (A−Ht) (xt) + (Ht +B) (x̄t) .(2.7)

Since Jt is positive semidefinite and B is monotone, we have from the definition of Ht in (1.8) that

⟨v − u, Ht(v − u)⟩+ ⟨v − u, z − w⟩ ≥ µt∥u− v∥2, for any (u,w) and (v, z) in graph(B).

We thus obtain from (2.5) and (2.7) that

(2.8)
⟨Ht (x̄t − xt) +A (xt)−A (x̄t)− ξt +Ht(ξt), x̄t − xt+1 + ξt⟩

≥ µt∥x̄t − xt+1 + ξt∥2,

which together with (1.8), (1.9), and (2.6) implies that

∥x̄t − xt+1 + ξt∥
(1.8),(1.9)

≤ µ−1
t

(∥∥(µt + rθt ) (x̄t − xt) +∇A (xt) (x̄t − xt) +A (xt)−A (x̄t)
∥∥

+(1 + ∥Ht∥)∥ξt∥
)

(1.6),(2.3),(2.6)

≤ µ−1
t

(
O (µtdt) +O

(
d1+p
t

)
+ ν (1 + L+O (µt)) r

1+ρ
t

)
,(2.9)

where in the final inequality, we used the fact that θ ≥ ρ implies rθt = O(rρt ) = O(µt) and set y = xt, x = x̄t in
applying (1.6). We also used the fact ∥Ht∥ = O(1) derived from the below with θ ≥ ρ > 0:

∥Ht∥
(1.8),(1.9)

=
∥∥µtI +∇A(xt) +O(rθt )

∥∥ (1.8)

≤ O(rρt ) + ∥∇A(xt)∥
(2.3)

≤ O(rρt ) + L = O(1).

Finally, using the triangle inequality, we can bound ∥xt+1 − xt∥ by

∥xt+1 − xt∥
≤ ∥x̄t − xt+1 + ξt∥+ ∥xt − x̄t∥+ ∥ξt∥

(2.9),(2.6)

≤ µ−1
t

(
O (µtdt) +O

(
d1+p
t

)
+O

(
1 + µt

)
O
(
r1+ρ
t

))
+ dt +O

(
r1+ρ
t

)
,

verifying (2.2).

Lemma 2.2. Suppose the assumptions of Lemma 2.1 hold. Then for xt+1 satisfying (1.12), we have

(2.10) rt+1 = O
(
d1+ρ
t

)
+O

(
d1+p
t

)
+O

((
r−ρ
t d1+p

t

)1+p)
.

Proof. We have

(2.11)

rt+1 ≤ ∥R (xt+1)− R̂t (xt+1) ∥+ ∥R̂t (xt+1) ∥
=

∥∥(Id +B)−1(Id−A)(xt+1)− (Id +B)−1 ((Ht −A) (xt)− (Ht − Id) (xt+1))
∥∥

+ r̂t(xt+1).

From the nonexpansiveness of the resolvent of B, we can bound the first term on the right-hand side of (2.11) by

(2.12)

∥∥(Id +B)−1(Id−A)(xt+1)− (Id +B)−1 ((Ht −A) (xt)− (Ht − Id) (xt+1))
∥∥

≤ ∥A(xt)−A(xt+1)−Ht (xt − xt+1)∥.
5



Next, the fact that x̄t ∈ PS (xt) is a solution of (1.1) indicates that

(Id +B)−1(Id−A)(x̄t) = x̄t.

From the nonexpansiveness of the resolvent of B and the expressions above, we obtain by applying the triangle
inequality again that

(2.13)

r (xt) =
∥∥xt − (Id +B)−1(Id−A)(xt)

∥∥
=

∥∥(xt − (Id +B)−1(Id−A)(xt)
)
−

(
x̄t − (Id +B)−1(Id−A)(x̄t)

)∥∥
≤ ∥x̄t − xt∥+ ∥x̄t − xt +A(xt)−A(x̄t)∥
≤ (L+ 2)∥x̄t − xt∥ = (L+ 2)dt,

where we used local Lipschitz continuity of A in the last inequality. We also note from the definition of µt in (1.8)
that

(2.14) µ−1
t r1+ρ

t = c−1rt
(2.13)
= O(dt).

By substituting (2.12) and (1.12) into (2.11) and using the definition pt := xt+1−xt, we can prove (2.10) as follows:

r (xt+1)

≤ ∥A(xt)−A (xt+1)−Ht (xt − xt+1)∥+ νr1+ρ
t

(1.8),(1.9)
=

∥∥∇A(xt) (xt+1 − xt) +A(xt)−A (xt+1) + (µt +O(rθt )) (xt+1 − xt)
∥∥

+νr1+ρ
t

(1.6),(1.8),(1.9),(2.1)

≤ O
(
∥pt∥1+p)

+O (µt) ∥pt∥+ νr1+ρ
t .(2.15)

Thus from Lemma 2.1, we obtain

rt+1 ≤ O
(
d1+p
t +

(
µ−1
t d1+p

t

)1+p
+
(
µ−1
t r1+ρ

t

)1+p
+

(
r1+ρ
t

)1+p
)

+O(µtdt) +O
(
d1+p
t

)
+O

(
r1+ρ
t

)
+O

(
µtr

1+ρ
t

)
(2.13),(2.14)

= O
(
d1+p
t

)
+O

((
r−ρ
t d1+p

t

)1+p
)
+O

(
d1+ρ
t

)
,

where in the last equality we used ρ > 0 to deduce that (1 + ρ)(1 + p) ≥ (1 + p) and 1 + 2ρ ≥ 1 + ρ.

It follows from (2.13) that q > 1 in (1.4) is possible only in trivial circumstances. Our main superlinear convergence
is as follows.

Theorem 2.3. Consider the update scheme (1.8), (1.12) for (1.1) for some ν, ρ ≥ 0, with A single-valued
and continuously differentiable, B maximal monotone, and S ̸= ∅. Assume that (1.4) holds for some q > 0 in
a neighborhood V := {x | r(x) ≤ ϵ} of S for some ϵ > 0, and that A is L-Lipschitz continuous for some L ≥ 0
and ∇A is p-Hölder continuous (1.5) for some p ∈ (0, 1] within the same neighborhood. Suppose that the following
inequalities are satisfied:

(2.16)


(1 + ρ)q > 1,

(1 + p)q > 1,

(q + pq − ρ) (1 + p) > 1.

Then if r0 is sufficiently small, we have Q-superlinear convergence of {rt} and {dt} according to

(2.17) rt+1 = O
(
r1+s
t

)
, dt+1 = O

(
d1+s
t

)
,

where s is the smallest gap between the left- and right-hand sides in (2.16), that is,

s := min
{
(1 + ρ)q, (1 + p)q, (q + pq − ρ)(1 + p)

}
− 1 > 0.
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Proof. Suppose for some t ≥ 0 that rt ≤ ϵ1 for some ϵ1 ∈ (0, ϵ] whose value is defined below. From (1.4) we
have

(2.18) r−ρ
t = (rqt )

− ρ
q = O

(
d
− ρ

q

t

)
.

By substituting (2.18) into (2.10) we then have

rt+1 = O
(
d1+ρ
t

)
+O

(
d1+p
t

)
+O

((
d
− ρ

q

t d1+p
t

)1+p)
= O

(
d1+ρ
t + d1+p

t + d
(1+p− ρ

q )(1+p)

t

)
.(2.19)

By applying (1.4) to the right-hand side of (2.19), we obtain the first equation in (2.17), as well as rt+1 = O(ϵs1rt).
Because s > 0, we can decrease ϵ1 if necessary to ensure that rt+1 < 99

100rt ≤
99
100ϵ1 for all xt with rt ≤ ϵ1, showing

that xt+1 ∈ V . We can thus also apply (2.19) to (1.4) to obtain

dt+1 = O
(
rqt+1

)
= O

(
d
(1+p)q
t + d

(1+ρ)q
t + d

(q+pq−ρ)(1+p)
t

)
= O

(
d1+s
t

)
,

proving the case of Q-superlinear convergence for {dt}. The proof is completed by noting that if x0 is such that
r0 ≤ ϵ1, then {rt} decreases monotonically to zero.

If we seek onlyR-superlinear convergence for {dt}, while retainingQ-superlinear convergence for {rt}, a different
range of parameters is allowed.

Theorem 2.4. Suppose that the assumptions of Theorem 2.3 hold, except that in place of (2.16), the following
inequalities are satisfied:

(2.20)


(1 + p)q > 1,

(q + pq − ρ) (1 + p) > 1,

ρ+ q > 1,

ρ > 0.

Then we obtain Q-superlinear convergence within V for {rt} according to

(2.21) rt+1 = O
(
r1+s̄
t

)
,

where s̄ is the smallest gap between the left- and right-hand sides in (2.20), that is,

(2.22) s̄ := min
{
(1 + p)q, (q + pq − ρ)(1 + p), ρ+ q, 1 + ρ

}
− 1 > 0.

Moreover, we have R-superlinear convergence within V for {dt}.
Proof. As in the proof of Theorem 2.3, suppose that rt ≤ ϵ1 ≤ ϵ for some ϵ1 > 0. From (1.4) we have

dt = O(rqt ), so that r−1
t = O(d

−1/q
t ). Using this bound together with Lemma 2.1 and (2.13), we obtain

(2.23) pt := xt+1 − xt = O(dt) +O
(
d
1+p− ρ

q

t

)
= O

(
d
min{1,1+p− ρ

q}
t

)
.

Substitution of (2.23) into (2.15) then leads to

rt+1 ≤ O(d1+p
t ) +O

(
d
(1+p− ρ

q )(1+p)

t

)
+ µtO(dt) + µtO

(
d
1+p− ρ

q

t

)
+ νr1+ρ

t

(1.4)
= O(r

q(1+p)
t ) +O

(
r
(q+pq−ρ)(1+p)
t

)
+O(rρ+q

t ) +O
(
r
ρ+(q+pq−ρ)
t

)
+O(r1+ρ

t )

(2.22)
= O(r1+s̄

t ),

which is exactly (2.21), and s̄ > 0 if and only if (2.20) holds. Note that by choosing ϵ1 sufficiently small, we can
ensure that rt+1 ≤ 99

100rt ≤
99
100ϵ1, so by requiring that r0 ≤ ϵ1, we have that {rt} decreases to zero, and in fact

converges superlinearly to zero since s̄ > 0.
To prove R-superlinear convergence of {dt}, we note that by defining d̂t = κrqt and combining (2.21) and (1.4),

we have
dt ≤ d̂t, d̂t+1 = O(d̂1+s̄

t ), ∀t ≥ 0,

thus showing that {dt} is dominated by a Q-superlinearly convergent sequence.
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When the conditions of either Theorem 2.3 or Theorem 2.4 hold, we also obtain strong convergence for the
iterates to a solution point.

Theorem 2.5. Assume that the conditions of either Theorem 2.3 or Theorem 2.4 hold. Then {xt} converges
strongly to some point x∗ ∈ S.

Proof. Theorem 2.3 and Theorem 2.4 both show that xt ∈ V for all t and that {rt} converges superlinearly to
zero. By using (1.4) in (2.2), we see that pt is bounded by rt as follows:

∥pt∥ ≤ O(rqt ) +O
(
r
(1+p)q−ρ
t

)
+O(rt) +O

(
r1+ρ
t

)
= O

(
r
min{q,1,1+ρ,(1+p)q−ρ
t

)
.

From the constraints in (2.16) and (2.20), together with ρ ≥ 0 and q > 0, we obtain

min
{
1 + ρ, (1 + p)q − ρ, q, 1

}
> 0,

so (1.4) and (2.23) indicate that there is τ > 0 such that ∥pt∥ = O(rτt ). Theorems 2.3 and 2.4 show that {rt}
converges superlinearly to 0. Therefore, we can find t1 ≥ 0 and η ∈ [0, 1) such that

rt+1 ≤ ηrt, ∀t ≥ t1.

Thus we get
∞∑

t=t1

∥pt∥ = O

( ∞∑
t=t1

ητ(t−t1)rτt1

)
= O

(
rτt1

1− ητ

)
<∞,

so {∥pt∥} is summable. Thus {xt} is a Cauchy sequence, so it converges strongly to a point x∗ because of com-
pleteness of the Hilbert space H. Moreover, dist(xt,S) → 0 implies that dist(x∗,S) = 0, so by closedness of S we
have x∗ ∈ S.

Comparing (2.16) and (2.20), we see that the difference is that the inequality

(2.24) (1 + ρ)q > 1

in the former is replaced by the two inequalities

(2.25) ρ+ q > 1, ρ > 0

in the latter. Since q ≤ 1, we have ρ ≥ ρq, so (2.24) implies (2.25). We discuss several interesting realizations of
(2.16) and (2.20) below. (To our knowledge, the analysis for generalized equation (1.1) is new, and for the special
case (1.7), our bounds are new.)

Remark 2.6 (Convergence Regimes).
1. Quadratic convergence occurs when p = ρ = q = 1, that is, when the Luo-Tseng error bound holds and ∇2f

is Lipschitz continuous (for (1.7)) or when the error bound condition with q = 1 holds with ∇A Lipschitz
continuous (for (1.1)). (Our results show that p = 1 and q ≥ ρ ≥ 1 imply a convergence rate that is at
least quadratic.)

2. If p = 1 and q ≤ 1, (2.16) implies
2q > 1

(1 + ρ)q > 1

2 (2q − ρ) > 1

⇔


q > 1

2

ρ > 1−q
q

2q − 1
2 > ρ

⇔


q > 1

2

q > −1+
√
33

8

ρ ∈ ( 1−q
q , 2q − 1

2 ).

.

(We obtain the second formula in the last column by ensuring the ρ-interval is nonempty.) We thus attain
Q-superlinear convergence of {dt} provided that q > 1

8 (
√
33− 1)) ≈ 0.593, as long as ρ < 2q − 1

2 . (We can

set ρ = 1
4 (
√
33−1)− 1

2 = 1
4 (
√
33−3) to maximize the allowable range of q.) By comparison with the result

of [8, 11, 14], which required ρ ≤ q, our analysis shows that superlinear convergence can be obtained even
in some situations where ρ > q. In addition, [11] does not guarantee Q-superlinear convergence of {dt},
while the result of Yue et al. [16] has such a guarantee only for q = 1 and [8, 14] for q > 1

2 (
√
5−1) ≈ 0.618.

By contrast, our bound allows a wider range for q. When our analysis is applied to smooth optimization

8



problems, the allowed range is also wider than that in [5, Theorem 5]. For (2.20), p = 1 and q ≤ 1 then
imply that 

ρ > 0,

q > 1
2 ,

ρ+ q > 1,

4q − 2ρ > 1,

so q > 1/2 with ρ = 1/2 implies Q-superlinear convergence for {rt} and R-superlinear convergence for
{dt}.

3. If q = 1 and p > 0, then any ρ ∈ (0, p) implies superlinear convergence. In contrast, if q = 1, p = ρ = 0,
the damping becomes a positive constant, making Jt uniformly bounded. Linear convergence could then
by obtained from standard analysis of first-order-like variable metric approaches.

Inspired by the last item in Remark 2.6, we further demonstrate that the p-Hölder assumption on ∇A can be
relaxed to merely uniform continuity, provided the damping and stopping tolerance decay sufficiently slowly. We
present this result in Appendix A as its proof is technical but largely mirrors the analysis in this section.

3. A Line Search Strategy for Convex Regularized Optimization. In this section, we focus on (1.7),
the special case of (1.1) obtained by setting A = ∇f and B = ∂Ψ. Although solutions of (1.1) in general only
correspond to stationary points of (1.7), we make the further assumption that f is convex (similar to [11, 16]),
which causes the solution sets of (1.1) and (1.7) to coincide in this case. In this scenario, A is also maximal
monotone, so [4, Theorem 3.5] indicates that

(3.1) r(x) ≤ dist(0, (A+B)(x)),

or equivalently r(x) ≤ dist(0, ∂F (x)) for (1.7), for all x. Therefore, the error bound (1.4) further implies a more
intuitive local upper bound of dist(x, S) by ∂F . Moreover, [10, Theorem 3.4] shows that this bound, together
with convexity, implies a growth condition that effectively upper bounds dist(x, S) by the objective gap. This
characterization serves as a critical tool in our subsequent analysis.

We describe algorithms that attain global convergence to the solution set, and examine their rates of conver-
gence. To simplify the description of our globalization strategy, we further assume that ∇f is globally L-Lipschitz
continuous in its domain, not just locally Lipschitz, as in our discussion above.

We first discuss an existing algorithm due to [11], and argue that it guarantees global convergence and ensures
local superlinear convergence of both rt and dt to 0 when the conditions in Theorem 2.3 or Theorem 2.4 hold.
We then propose a novel strategy that retains these properties and adds another property, namely, strict decrease
of the objective function at each iteration. Importantly, our new approach exhibits Q-superlinear convergence of
the objective value to its optimal value, which we believe to be a new result even for nondegenerate problems.
Existing analyses for ensuring local superlinear convergence in proximal-Newton-type methods require Lipschitz
continuity of the Hessian of f and depend on a Taylor expansion to guarantee acceptance of the unit step size.
We use instead a novel mechanism and analysis that relies on the convexity of F and the Hölderian error bound
condition to guarantee sufficient function decrease for a unit step. Note that we do not need to assume that the
Hessian A(x) = ∇2f(x) is Lipschitzian.

3.1. Two Algorithms. In our following discussion of both the existing approach and our new globalization
approaches for (1.7), a tentative iterate x̃t+1 is first obtained from the approximate minimization

(3.2) x̃t+1 ≈ arg min
x

qt(x),

with

(3.3)
qt(x) := ⟨gt, x− xt⟩+

1

2
⟨Ht (x− xt) , x− xt⟩+Ψ(x) ,

gt := ∇f(xt), Ht := Jt + µtId, µt := cr(xt)
ρ,

where r(·) follows the definition in (1.2) and (1.3), which can be written equivalently in this setting as follows:

(3.4) R(x) = x− proxΨ (x−∇f(x)) , r(x) = ∥R(x)∥,
9



and Jt is a linear operator satisfying3

(3.5) Jt symmetric, Jt ⪰ 0,
∥∥Jt −∇2f(xt)

∥∥ = O
(
r(xt)

θ
)
for some θ ≥ ρ.

A line search procedure is applied to the update direction

(3.6) p̃t := x̃t+1 − xt

to find a suitable step size αt > 0; we then set xt+1 ← xt + αtp̃t. To ensure a descent direction and global
convergence, the point x̃t+1 from (3.2) is required to satisfy the conditions

(3.7) qt(x̃t+1) ≤ qt(xt), r̂t(x̃t+1) ≤ νmin
{
r(xt)

1+ρ, r(xt)
}
, ν ∈ [0, 1).

In the setting of regularized optimization, we have that r̂t(·) in (1.11) is equivalent to

(3.8) r̂t(x̃t+1) = ∥R̂t(x̃t+1)∥, R̂t (x̃t+1) = x̃t+1 − proxΨ (x̃t+1 − gt −Ht (x̃t+1 − xt)) .

The conditions above are just specific realizations of (1.8), (1.9), (1.11), and (1.12) for the case of (1.7), except
that (3.7) contains additional requirements on qt, ν, and rt = r(xt). Thus, the results that we derived for pt in
Section 2, such as (2.23), apply to p̃t as well. Moreover, we require Jt to be symmetric, which is natural in this
setting, since it is an approximation of the Hessian ∇2f(xt).

The first approach we consider, shown in Algorithm 3.1, is due to [11]. (Both this approach and its successor,
Algorithm 3.2, require the conditions (3.7) to hold.)

Algorithm 3.1 Proximal Newton Method in [11]

input : x0 ∈ H, β, γ, σ ∈ (0, 1), ρ > 0, ν ≥ 0, c > 0, C̄ > F (x0)
1 η ← r(x0)
2 for t = 0, 1, . . . do
3 Select Ht satisfying (3.3) and (3.5) with θ = 1 and find an approximate solution x̃t+1 of (3.2) satisfying (3.7)
4 p̃t ← x̃t+1 − xt

5 if t > 0, r(x̃t+1) ≤ ση, and F (x̃t+1) ≤ C̄ then
6 αt ← 1, η ← r(x̃t+1)
7 else
8 αt ← βmt , where mt is the smallest nonnegative integer m such that

(3.9) F (xt + βmp̃t) ≤ F (xt)− γµtβ
m∥p̃t∥2.

9 Set xt+1 ← xt + αtp̃t.

If the conditions of Theorems 2.3 and 2.4 hold, then when r(xt) is small enough, all subsequent iterations of
Algorithm 3.1 will accept the unit step through the condition in Line 5 (no backtracking required), asQ-superlinearly
convergence of {r(xt)} implies that this sequence also converges Q-linearly with an arbitrarily fast rate, and global
convergence of r(xt) to 0 is guaranteed by [11, Theorem 3.1]. In the latter reference, local superlinear convergence
requires local Lipschitz continuity of ∇2f , so our analysis in Section 2 (which required Hölder continuity of ∇2f)
slightly broadens the problem class for which Algorithm 3.1 is superlinearly convergent. Theorem 2.3 provides
additional guarantees for Q-superlinear convergence of {dt} not covered by [11]. Moreover, our requirement for
θ ≥ ρ in (3.5) is less restrictive than the choice θ = 1 in [11].

Algorithm 3.1 does not require monotonic decrease of function values, as the conditions of Line 5 can be satisfied
without having F (x̃t+1) < F (xt). Our new approach, Algorithm 3.2, will ensure strict function decrease at each
step while retaining Q-superlinear convergence of the function values.

The first distinctive element in Algorithm 3.2 is to replace the sufficient decrease condition (3.9) with

(3.10) F (xt+1) ≤ F (xt)− γα2
t ∥p̃t∥

2+δ

3 For Jt to satisfy this definition, ∇2f needs to be positive semidefinite at any accumulation point x̄ of the sequence {xt} that
satisfies the stationarity condition r(x̄) = 0. We refer to this property as “local convexity.” Our algorithm can be extended to
nonconvex problems by considering other choices of upper-bounded and positive-definite Jt, with the global convergence results of the
next subsection continuing to hold. However, this local convexity assumption is necessary for superlinear convergence.
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(where γ, p̃t, and αt are defined as in Algorithm 3.1, but xt+1 is defined differently; see below) for some given
δ ≥ 0. Our analysis in the next subsection will show that when the conditions (2.16) are satisfied by p, q, and ρ,
we can set δ = 2. Since p̃t ̸= 0 for all t, the objective value is always decreasing. The second distinctive element of
Algorithm 3.2, inspired by a technical result from [1, Lemma 2.3] on how r(x) and dist(x, S) bound the objective
gap, is to test the condition (3.10) on a point obtained from a proximal gradient step. In this vein, we first compute

(3.11) yt+1(αt)← xt + αt (x̃t+1 − xt) = xt + αtp̃t,

and then compute a proximal gradient step from yt+1(αt) to obtain the candidate x̄t+1(αt) for the next iterate, as
follows

(3.12)
x̄t+1(αt)← prox(Ψ/L)

(
yt+1(αt)− 1

L∇f(yt+1(αt))
)

= yt+1(αt)− 1
LGL(yt+1(αt)),

where L is the Lipschitz constant for ∇f ,

(3.13) GL(x) := L
(
x− proxΨ

L

(
x− 1

L
∇f(x)

))
is the proximal gradient, and proxg denotes the proximal operator

proxg(x) := min
y∈H

1
2∥y − x∥2 + g(y)

for any function g.4

The full algorithm can be specified as follows.

Algorithm 3.2 A Proximal Newton Method Guaranteeing Strict Decrease and Superlinear Convergence for the
Objective Value

input : x0 ∈ H, β ∈ (0, 1), γ ∈ (0, 1), ν ∈ [0, 1), ρ ∈ (0, 1], c > 0, δ ≥ 0, Lipschitz constant L for ∇f
1 for t = 0, 1, . . . do
2 Select Ht satisfying (3.3) and (3.5) with θ ≥ ρ and find an approximate solution x̃t+1 of (3.2) satisfying (3.7)
3 αt ← 1, p̃t ← x̃t+1 − xt

4 Terminate if p̃t = 0
5 while True do
6 Compute yt+1(αt) from (3.11) and x̄t+1(αt) from (3.12)

7 if F (x̄t+1(αt)) ≤ F (xt)− γα2
t ∥p̃t∥

2+δ
then

8 xt+1 ← x̄t+1(αt)
9 Break

10 else αt ← βαt

The step taken at each iteration of Algorithm 3.2 is a composition of a prox-Newton step (with backtracking)
and a short prox-gradient step (with the conservative choice 1/L for the steplength parameter). (One could instead

use min{∥p̃t∥2, ∥p̃t∥2+δ} in Line 7 to make the acceptance condition easier to achieve in the early stage when ∥p̃t∥
is still large, and our analysis below still remains valid.)

3.2. Analysis. We show first that the line search criterion in Algorithm 3.2 is satisfied for all αt sufficiently
small (Lemma 3.1), and then deduce global convergence (Lemma 3.2). The first lemma does not require convexity of
f ; the second requires the property (3.5), which holds only if ∇2f is positive semidefinite at stationary accumulation
points of the sequence {xt}. From standard analysis of proximal gradient, we know that

(3.14) F (x̄t+1(αt)) ≤ F (yt+1(αt)), ∀αt ≥ 0,

where x̄t+1 is defined in (3.12). This fact will play an important role in the following two results.

4 For simplicity, we use a given (possibly rough) upper bound L on the actual Lipschitz constant here, but we can also conduct
another backtracking on L to remove dependency on knowledge of this problem parameter. Our analysis still holds (with some additional
calculations and notations) as long as L satisfies the following condition:

F (x̄t+1(αt)) ≤ F (yt+1(αt)) + ⟨∇f(yt+1(αt)), zt+1(αt)⟩+
L

2
∥zt+1(αt)∥2 +Ψ(x̄t+1(αt)),

where zt+1(αt) := x̄t+1(αt)− yt+1(αt).
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Lemma 3.1. Given β ∈ (0, 1) and γ ∈ (0, 1), assume that f is L-Lipschitz-continuously differentiable for some
L > 0 and that Ψ is convex, proper, and closed. At iteration t of Algorithm 3.2, the final value of αt satisfying the
sufficient decrease condition (3.10) satisfies the following condition:

(3.15) either αt = 1 or αt ≥ βµt

(
L+ 2γ∥p̃t∥δ

)−1
.

Proof. Since f is L-Lipschitz-continuously differentiable, we have

f (xt + αtp̃t) ≤ f (xt) + αt⟨∇f(xt), p̃t⟩+
α2
tL

2
∥p̃t∥2.

Convexity of Ψ implies that

Ψ(xt + αtp̃t)−Ψ(xt) ≤ αt (Ψ(xt + p̃t)−Ψ(xt)) = αt (Ψ (x̃t+1)−Ψ(xt)) .

By summing these two inequalities, we obtain

F (xt + αtp̃t) ≤ F (xt) + αt (⟨∇f(xt), p̃t⟩+Ψ(x̃t+1)−Ψ(xt)) +
α2
tL

2
∥p̃t∥2

(3.7)

≤ F (xt)−
αt

2
⟨p̃t, Htp̃t⟩+

α2
tL

2
∥p̃t∥2.(3.16)

From Jt ⪰ 0, we have that Ht ⪰ µtI and thus −⟨p̃t, Htp̃t⟩ ≤ −µt∥p̃t∥2. Therefore, (3.16) and (3.14) lead to

F (x̄t+1 (αt))− F (xt) ≤ F (xt + αtp̃t)− F (xt) ≤
∥p̃t∥2

2

(
α2
tL− αtµt

)
,

implying that (3.10) is satisfied provided that

∥p̃t∥2

2

(
α2
tL− αtµt

)
≤ −α2

tγ∥p̃t∥
2+δ αt,∥p̃t∥≥0⇐⇒ αt ≤ µt

(
L+ 2γ∥p̃t∥δ

)−1
.

The bound (3.15) is then obtained after considering the overshoot of backtracking.

In the following result, we denote by S the set of stationary points for (1.7), that is, points x for which r(x) = 0.
Such points are solutions of (1.1). This result additionally requires θ ≤ 1, but we note that this condition is more
flexible than existing results such as those in [11], which require θ = 1. The condition θ ≤ 1 together with (3.5)
imply that we also need ρ ≤ 1. From Item 3 of Remark 2.6, we see that when q = 1 in (1.4) (that is, when the
Luo-Tseng error bound holds), since p ≤ 1, then ρ ≤ 1 is already a necessary condition for superlinear convergence.
Thus, our requirement is not more restrictive than existing conditions in the literature. In the proof of the following
lemma, we use a technical result originally from [16, (12)] to upper bound rt by ∥p̃t∥. For completeness, we state
and prove it in Appendix B.

Lemma 3.2. Consider the setting of Lemma 3.1 and assume that θ ≤ 1, δ ≤ 2, F is lower bounded by some
F̄ > −∞, and Jt satisfies (3.5) for all t. Then either Algorithm 3.2 terminates at some xt for which r(xt) = 0
(thus xt ∈ S), or else

(3.17) lim
t→∞

r(xt) = 0.

If in addition S is nonempty, then any accumulation point of {xt} is in S.
Proof. In the case of finite termination, it follows from the condition (3.7) that x̃t+1 = xt only if r(xt) = 0.

Otherwise, by summing (3.10) from t = 0 to t = ∞ with the understanding that xt+1 = x̄t+1(αt), and by
telescoping, we have that

(3.18) γ

∞∑
t=0

α2
t ∥p̃t∥

2+δ ≤ F (x0)− F̄ ⇒ lim
t→∞

α2
t ∥p̃t∥

2+δ
= 0.

Let K1 be the subsequence of iterates t for which αt = 1 and K2 be the complementary set, for which αt ≥
βµt

(
L + 2γ∥p̃t∥δ

)−1
, by Lemma 3.1. We further partition K2 as K2 = K2a ∪ K2b, where for t ∈ K2a we have

L/(2γ) ≥ ∥pt∥δ, while for t ∈ K2b we have L/(2γ) < ∥pt∥δ.
12



If K1 is infinite, we have from (3.18) that

(3.19) lim
t→∞, t∈K1

∥p̃t∥ = 0.

From our assumption that f is L-Lipschitz continuous, we have that
∥∥∇2f

∥∥ ≤ L, which together with (3.3) and
(3.5) indicates that

∥Ht∥ ≤ L+ µt +O(rθt ).

Combination of this inequality with Lemma B.1 then implies that

(3.20) (1− ν)rt ≤ (∥Ht∥+ 2)∥p̃t∥ ≤ (L+ µt +O(rθt ) + 2)∥p̃t∥.

Assume for contradiction that {rt}t∈K1 is not upper bounded, then there is a subsequence Kr
1 ⊂ K1 such that

(3.21) lim
t→∞,t∈Kr

1

rt =∞.

The equation above together with (3.20), the definition of µt in (3.3), and the condition θ ≥ ρ in (3.5) implies that
there is a constant C ≥ 0 such that

(3.22) rt ≤ Crθt ∥p̃t∥, ∀t ∈ Kr
1.

The conditions (3.21) and (3.22) together imply that

∞ = lim
t→∞,t∈Kr

1

r1−θ
t ≤ lim

t→∞,t∈Kr
1

C∥p̃t∥, if θ < 1,

1 ≤ lim
t→∞,t∈Kr

1

C∥p̃t∥, if θ = 1,

a contradiction with (3.19). Therefore, we know that {rt}t∈K1 is upper bounded, and (3.19) and (3.20) thus imply
that

(3.23) lim
t→∞,t∈K1

rt = 0.

Now we turn to the situation of K2 infinite. From (3.18), we have

(3.24) lim
t→∞,t∈K2

∥p̃t∥2+δ µ
2
t

4

(
L

2
+ γ∥p̃t∥δ

)−2

= 0.

When the subsequence K2a is infinite, we have from (3.24) that

(3.25) lim
t→∞,t∈K2a

∥pt∥2+δ µ2
t

4L2
= 0 ⇒ lim

t→∞,t∈K2a

∥pt∥2+δ
µ2
t = 0.

By applying (3.20) to (3.25), we then obtain

(3.26) lim
t→∞,t∈K2a

µ2
t r

2+δ
t(

2 + L+ µt +O
(
rθt
))2+δ

= 0.

By inserting the definition (3.3) of µt into (3.26), we get

(3.27) lim
t→∞,t∈K2a

c2r2ρ+2+δ
t(

2 + L+ crρt +O
(
rθt
))2+δ

= 0.

If the sequence {rt}t→∞,t∈K2a
has an accumulation point at some positive finite value, the limit (3.27) cannot hold.

If there is a subsequence approaching ∞, then because 1 ≥ θ ≥ ρ, the denominator in (3.27) is O(r2+δ
t ) and since

the numerator is c2r2ρ+2+δ
t , so the limit in (3.27) over this subsequence is infinite, contradicting(3.27). We therefore

conclude that

(3.28) lim
t→∞,t∈K2a

rt = 0.

13



(To double check, we see that when (3.28) holds, (2 + L+ crρt + O(rθt )) = O(1), and it indeed leads to (3.27) and
thus (3.26).)

Suppose next that the subsequence K2b is infinite. If δ = 2, we have from (3.24) that

(3.29) lim
t→∞,t∈K2b

µ2
t = 0

(3.3)⇒ lim
t→∞,t∈K2b

rt = 0.

For δ < 2, from the lower-boundedness of ∥p̃t∥ in K2b, we see that

(3.30) lim
t→∞,t∈K2b

∥p̃t∥2−δ
µ2
t = 0 ⇒ lim

t→∞,t∈K2b

µ2
t = 0 ⇒ lim

t→∞,t∈K2b

rt = 0.

The desired result for the full sequence {rt} is thus obtained by combining (3.23) and (3.28)–(3.30). The claim
that accumulation points are in S follows from the continuity of r(·).

The previous two lemmas require no Hölder continuity of ∇2f nor the Hölderian error bound condition, and
are therefore valid even if the problem does not fall in the class that allows for superlinear convergence in our
previous analysis.

Next, we show in Theorem 3.3 that the unit step αt = 1 is eventually always accepted when the conditions
of Theorem 2.3 hold and f is convex, so that Q-superlinear convergence of {dt} and {rt}, defined in (2.1), is
guaranteed, and the objective function converges superlinearly to its optimal value. Theorem 3.3 requires δ to be

large enough such that ∥p̃t∥2+δ is dominated by d
(q+1)/q
t for all large t, or equivalently when p̃t is sufficiently small,

where p̃t is the prox-Newton update step defined in (3.6). Noting the bound (2.23) (which, as noted above, applies
to p̃t as well as to pt), we need to select δ to satisfy

(3.31) (2 + δ)min
{
1, 1 + p− ρ

q

}
> 1 + q−1.

It suffices for this inequality that the following two conditions hold:

δ > q−1 − 1,(3.32a)

2 + δ ≥ q + 1

q
(1 + p)q = (1 + p)(1 + q).(3.32b)

To confirm that (3.32b) suffices, we have from (2.16) that

(2 + δ)

(
1 + p− ρ

q

)
≥ (1 + p)(1 + q)

1 + pq − ρ

q
>

1 + q

q
.

When q ≤ 1, since p ∈ (0, 1], the condition (3.32b) is satisfied as long as δ ≥ 2. For condition (3.32a), we see from
Remark 2.6 that when p = 1 we have q−1 < 8/(−1+

√
33) < 1.7. (If p < 1, the lower bound for q is larger, making

q−1 even smaller.) Thus, it suffices for (3.32a) that δ ≥ 0.7. Setting δ = 2 thus works for both conditions in (3.32).

Theorem 3.3. Consider (1.7) and assume that the settings of Theorem 2.3 hold, with A(x) = ∇f(x) and
B(x) = ∂Ψ(x), and in particular that the quantities ρ ≥ 0, p ∈ (0, 1] and q > 0 satisfy (2.16). Assume too that the
settings of Lemma 3.1 hold and f is convex. Consider Algorithm 3.2 and let F ∗ := minF (x). If δ > 0 satisfies

∥p̃t∥2+δ
= o(d

(q+1)/q
t ), for all t sufficiently large, then there is t0 ≥ 0 such that αt = 1 is accepted for all t ≥ t0

and, for s > 0 defined as in Theorem 2.3, we have

(3.33)


dt+1 = O

(
d1+s
t

)
,

rt+1 = O
(
r1+s
t

)
,

F (xt+1)− F ∗ = O
(
(F (xt+1)− F ∗)

1+s )
,

∀t ≥ t0.

Proof. For purposes of this proof, we use the abbreviations

x̄t+1 := x̄t+1(1), yt+1 := yt+1(1).

We first list two auxiliary results. From [1, Lemma 2.3], we have that

(3.34) F
(
x− 1

LGL(x)
)
− F ∗ ≤ ∥GL(x)∥2

(
dist(x,S)
∥GL(x)∥

− 1

2L

)
, ∀x ∈ H.
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Moreover, [13, Lemma 3] indicates that there are constants C1 ≥ C2 > 0 such that r(x) and the norm of GL(x)
are related by

(3.35) C1r(x) ≥ ∥GL(x)∥ ≥ C2r(x), ∀x.

Now, using (3.34) with x = yt+1 and x̄t+1 = yt+1 − 1
LGL(yt+1) as in (3.12), we have that

F (x̄t+1)− F ∗ ≤ ∥GL(yt+1)∥dist (yt+1,S)
(3.35)

≤ C1r(yt+1)dist (yt+1,S)
(1.4)

≤ C1κr (yt+1)
1+q

.(3.36)

When αt = 1, we have yt+1 = x̃t+1. Therefore, we can apply (2.19) to (3.36) and obtain

(3.37) F (x̄t+1)− F ∗ ≤ O
(
d
(1+q)min{1+ρ,1+p,(1+p− ρ

q )(1+p)}
t

)
= O

(
d
(1+s)(1+q)/q
t

)
,

where we used the definition of s from Theorem 2.3. On the other hand, (3.1) (due to convexity of f) and (1.4)
imply that there is ϵ2 > 0 such that

dist (x,S) ≤ κ∥z∥q, ∀z ∈ ∂F (x), ∀x ∈ {x | dist (x,S) ≤ ϵ2} ,

which together with convexity of F implies that

(3.38) F (x)− F ∗ ≤ κ min
z∈∂F (x)

∥z∥1+q
, ∀x ∈ {x | dist (x,S) ≤ ϵ2} .

We then apply [10, Theorem 3.4] to (3.38) to conclude that there is κ2 > 0 such that

(3.39) F (x)− F ∗ ≥ κ2dist(x,S)
1+q
q

holds for all x close enough to S. Since ∥p̃t∥2+δ
= o(d

(1+q)/q
t ), we have from (3.39) that

(3.40) F (xt)− F ∗ − σ∥p̃t∥2+δ ≥ Ω
(
d

1+q
q

t

)
+ o

(
d

1+q
q

t

)
= Ω

(
d

1+q
q

t

)
.

By comparing (3.37) and (3.40), and using the fact that (2.16) implies s > 0, we have for dt sufficiently small that

F (x̄t+1)− F ∗ = o
(
F (xt)− F ∗ − σ∥p̃t∥2+δ)

.

Therefore, from (3.17) and (1.4), we have for all sufficiently large t that

F (x̄t+1)− F (xt) + σ∥p̃t∥2+δ
= F (x̄t+1)− F ∗ −

(
F (xt)− F ∗ − σ∥p̃t∥2+δ) ≤ 0,

meaning that the unit step size is accepted and we have xt+1 = x̄t+1. From convexity of f and [6, (34)], a short
proximal-gradient step does not increase distance to the solution, so we have dt+1 = dist (xt+1,S) = dist (x̄t+1,S) ≤
dist (yt+1,S). We can now apply (2.17), noting that dt+1 in that bound corresponds to dist(yt+1,S) here because
αt = 1 (while our dt+1 in this section corresponds to dist(xt+1,S)), to obtain

(3.41) dist(xt+1,S)︸ ︷︷ ︸
dt+1 in this section

≤ dist(yt+1,S)︸ ︷︷ ︸
dt+1in (2.17)

= O(d1+s
t ) = o(dt).

This proves the first claim in (3.33). When dt is small enough, we further have from (3.41) that dt+1 ≤ dt so that
superlinear convergence and acceptance of the unit step propagates to the next iteration. We note that there must
be t such that dt is small enough to satisfy our requirement according to Lemma 3.2 and (1.4).

Superlinear convergence of the objective follows from (3.39) and (3.37). In particular, using xt+1 = x̄t+1 in
(3.37), we see that

F (xt+1)− F ∗ ≤ O
(
d
(1+s)(1+q)/q
t

)
(3.39)
= O

((
F (xt)− F ∗)1+s)

.
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Finally, to prove the convergence rate for rt, we use the definition (3.4) and nonexpansiveness of proxΨ to
obtain

∥R (xt+1)−R (yt+1)∥
= ∥(xt+1 − yt+1)− (proxΨ(xt+1 −∇f(xt+1))− proxΨ(yt+1 −∇f(yt+1)))∥
≤ ∥(xt+1 − yt+1∥+ ∥(xt+1 −∇f(xt+1))− (yt+1 −∇f(yt+1))∥
≤ (2 + L)∥xt+1 − yt+1∥.(3.42)

Using from (3.12) that xt+1 = x̄t+1 = yt+1 − (1/L)GL(yt+1), and using (3.35), we can bound ∥xt+1 − yt+1∥ by

∥xt+1 − yt+1∥ =
1

L
∥GL(yt+1)∥ ∈

[
C2

L
r (yt+1) ,

C1

L
r (yt+1)

]
,

where C1 ≥ C2 > 0. By substituting into (3.42), we obtain

rt+1 = ∥R(xt+1)∥ ≤ r(yt+1) + (2 + L)∥xt+1 − yt+1∥

≤
(
1 +

(2 + L)C1

L

)
r(yt+1)

= O (r(yt+1))

= O
(
r1+s
t

)
,

(where the last step is from (2.17) in Theorem 2.3), proving (3.33). With the same argument for dt, we see that
(1.4) continues to hold for the next iterate when rt is small enough to ensure rt+1 ≤ rt.

Finally, we show that when q = 1 in (1.4), our linesearch is versatile enough to accept the unit step size for
any update directions that yield Q-superlinear convergence of both dt and rt, regardless of how these directions
are generated.

Corollary 3.4. Consider (1.7) and assume that the settings of Lemma 3.1 hold, f is convex, and (1.4) holds
with q = 1. Consider Algorithm 3.2 but with {x̃t+1} generated in an arbitrary manner that satisfies

(3.43) dist(x̃t+1,S) = o(dt) and r(x̃t+1) = o(rt).

Assume too that the parameter δ > 0 in Algorithm 3.2 satisfies ∥p̃t∥2+δ = o(d2t ). Then for all t sufficiently large,
we have αt = 1, and we have

dt+1 = o(dt), rt+1 = o(rt), F (xt+1)− F ∗ = o(F (xt)− F ∗).

Proof. The proof mainly follows the argument for Theorem 3.3 with a few differences noted here. First, due
to (3.43) and q = 1, and noting that rt = O(dt) from (2.13), (3.37) becomes

F (x̄t+1)− F ∗ ≤ o(d2t ).

On the other hand, our assumption that ∥p̃t∥2+δ = o(d2t ) and (3.39) with q = 1 imply (3.40) with the right-hand
side being Ω(d2t ). By comparing with the inequality above, we conclude that the unit step size is accepted for t
sufficiently large. The claim of superlinear convergence then follows by the same reasoning as in the remainder of
the argument in Theorem 3.3, with d1+s

t , (F (xt)− F ∗)1+s), and r1+s
t replaced by o(dt), o(F (xt)− F ∗), and o(rt),

respectively.

From the proofs of Theorem 3.3 and Corollary 3.4, we can see that the analysis relies solely on the convergence
rate of the update direction rather than the existence or continuity of the Hessian ∇2f . Therefore, our novel
line search serves as a general framework that is also compatible with any “fast directions” obtained beyond the
proximal Newton approach analyzed in Theorem 2.3 and Corollary A.1, such as through a (proximal) semismooth
Newton or a proximal quasi-Newton approach, to simultaneously ensure strict objective decrease and eventual unit
step size acceptance for fast convergence.

4. Simplification For Smooth Problems. Our algorithm can be simplified for the case of convex smooth
optimization — the setting of Section 3 with Ψ ≡ 0, that is, F (x) = f(x). We have in this scenario that
R(x) = ∇f(x) and GL(x) = ∇f(x) for any L > 0, and the bound (3.34) simplifies to

(4.1) F (x)− F ∗ ≤ ∥∇f(x)∥dist(x,S)
16



Algorithm 4.1 A Simple Newton Method for Degenerate Problems

input : x0 ∈ H, β, γ ∈ (0, 1), ν ∈ [0, 1), c > 0, ρ ∈ (0, 1], δ ≥ 0
11 for t = 0, 1, . . . do
12 Select Ht satisfying (3.3) and (3.5) and find an approximate solution x̃t+1 of (3.2) (with Ψ = 0) satisfying (3.7)
13 p̃t ← x̃t+1 − xt, αt ← 1

14 while F (xt + αtp̃t) > F (xt)− γα2
t ∥p̃t∥

2+δ
do

15 αt ← βαt

16 xt+1 ← xt + αtp̃t

from convexity. Therefore, the proximal gradient step can be removed from Algorithm 3.2 without affecting the
bounds on the objective value. The simplified method is shown as Algorithm 4.1.

Clearly, this is identical to the classical truncated Newton method except for the addition of a damping term
to the quadratic approximation and the slightly unconventional step size acceptance criterion. As the proofs of
Lemmas 3.1 and 3.2 do not involve any specific properties of the proximal gradient step, we see that they are still
applicable to Algorithm 4.1. The local convergence result is as follows.

Corollary 4.1. Assume that Ψ ≡ 0 and f ∈ C2 is convex and L-Lipschitz-continuously differentiable in (1.7)
with ∇2f p-Hölder continuous in a neighborhood U of S, and within U , (1.4) holds for some κ > 0 and some
q ∈ (0, 1]. Then for Algorithm 4.1, we have that (3.15) and (3.17) both hold. Further, if (2.16) is satisfied, then
there is t0 ≥ 0 such that αt = 1 for all t ≥ t0, and (3.33) holds.

Proof. The claims for (3.15) and (3.17) follow directly from the same reasoning as before, noting that xt+1 =
yt+1. For the superlinear convergence claim, we see from (1.4) (recalling that R(x) = ∇f(x) in this case) and (4.1)
that the following condition holds.

(4.2) F (x)− F ∗ ≤ κ∥∇f(x)∥1+q
.

Theorem 3.4 of [10] then indicates that (3.39) holds for some κ2 > 0 near S. Finally, using the argument in the
proof of Theorem 3.3, with (3.34) replaced by (4.1) for xt+1 = yt+1, the desired results in (3.33) follow.

Recent works [3, 9] consider a specific damping in the form of (3.3) with ρ = 1/2 and Jt = ∇2f(xt) for
unconstrained convex optimization. Under the assumption that ∇2f is globally H-Lipschitz continuous, these
two works showed that by fixing c to a specific value in (3.3) and solving the subproblem exactly, αt ≡ 1 can be
used and global convergence of the objective value to the optimum is guaranteed, with a speed of O(t−2). They
also showed local superlinear convergence under an additional global strong convexity condition (global strong
convexity, continuous Hessian, and a descent algorithm imply that the gradient is Lipschitz continuous in the
region of interest). However, we notice that their analyses utilized the second-order Taylor approximation of f and
the Lipschitz continuity of the Hessian, and thus are not applicable to the problem we consider here, where we do
not assume Lipschitz continuity of ∇2f . Therefore, Corollary 4.1 extends the problem class on which their damped
truncated Newton leads to superlinear convergence to non-strongly-convex ones with non-Lipschitz Hessians.

5. Conclusions. We have examined inexact, damped, proximal Newton-like methods for solving degenerate
regularized optimization problems, and their extension to the generalized equations setting. We have described
algorithms that achieved superlinear convergence even in the presence of nonconvexity of the smooth term and
singularity of its Hessian (or nonmonotonicity, and singularity of the Jacobian, in the case of generalized equations).
Moreover, we show that the standard assumptions of Lipschitz continuity of the Hessian (or Jacobian) and the
Lipschitz error bound can be relaxed to Hölderian ones, and we can further relax the Hölder continuity assumption
of the Hessian (or Jacobian) to uniform continuity. These results require careful choices of the parameters that
govern the damping and the measure of inexactness in the solution of each subproblem.
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Appendix A. Relaxation from p-Hölder Continuity of the Hessian to Uniformly Continuous. This
appendix shows that the p-Hölder assumption (1.5) on ∇A in section 2 can be further relaxed. In particular, for
the case of q = 1, superlinear convergence can be preserved even when the Jacobian is merely uniformly continuous,
provided that the damping and the stopping tolerance decay slowly enough. For this result, we note that for any
function f uniformly continuous in a convex set V , it admits a modulus of continuity ω : [0,∞)→ [0,∞) such that

(A.1) lim
s↓0

ω(s) = ω(0) = 0, ∥f(x)− f(y)∥ ≤ ω(∥x− y∥), ∀x, y ∈ V.

It is known that we can always select an ω that is continuous, monotonically increasing, and subadditive. See, for
example, [2, Chapter 2, Section 6].

Subadditivity and monotonicity of ω play a crucial role in our analysis below. More specifically, subadditivity
and monotonicity of ω imply that

(A.2) f(t) = O(g(t)) ⇒ ω(f(t)) = O(ω(g(t)).

Indeed, by definition, f(t) = O(g(t)) means there is β > 0 such that f(t) ≤ βg(t) for all t large, and thus
monotonicity of ω implies that

ω(f(t)) ≤ ω(βg(t)) ≤ ω(⌈β⌉g(t)),

while subadditivity of ω indicates
ω(⌈β⌉g(t)) ≤ ⌈β⌉ω(g(t)).

These two inequalities in combination then lead to

ω(f(t)) ≤ ⌈β⌉ω(g(t)) = O(ω(g(t)),

which is exactly (A.2).

Corollary A.1. Consider (1.1) with the same assumptions as Theorem 2.3, except that (1.4) holds with q = 1
and ∇A is only uniformly continuous in V . Let ω1 denote the nondecreasing and subadditive modulus of continuity
of ∇A. Consider the update scheme (1.8), but with µt, Jt, and the stopping condition (1.12) replaced by

(A.3) µt = c ω2(rt), ∥Jt −∇A(xt)∥ = O(ω2(rt)), r̂t(xt+1) ≤ νω2(rt)rt
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for some ν ≥ 0 and some given nondecreasing, subadditive, and continuous function ω2 : [0,∞) → [0,∞) that
vanishes at zero. If the problem satisfies

(A.4) ω1(s) ≤ β1ω2(s)

for some β1 > 0 and all s ≥ 0, then, provided r0 is sufficiently small, we have rt+1 = o(rt), dt+1 = o(dt), and {xt}
converges strongly to a point in the solution set S.

Proof. We use the same notations as (2.1) such that

dt := dist(xt,S), rt := r(xt), pt := xt+1 − xt,

and x̄t ∈ PS(xt), where S is the set of solutions. We observe first from (A.1) that uniform continuity of ∇A implies
that

∥A(x)−A(y)−∇A(y)(x− y)∥ =
∥∥∥∥∫ 1

0

∇A(y + t(x− y))(x− y) dt−∇A(y)(x− y)

∥∥∥∥
≤

∫ 1

0

ω1(t∥x− y∥) dt ∥x− y∥

≤ ω1(∥x− y∥)∥x− y∥.(A.5)

Second, since q = 1, (1.4) and (2.13) indicate rt = O(dt) and dt = O(rt). From the definitions (1.11) and (2.4), we
have ∥ξt∥ = r̂(xt+1) and so (A.3) implies that ∥ξt∥ ≤ νω2(rt)rt. Since ω2(rt) → 0 as rt → 0 and rt = O(dt), we
have

(A.6) ∥ξt∥ = o(rt) = o(dt).

We now find a bound on ∥x̄t−xt+1+ξt∥, using (2.8) again in a similar way to how we derived (2.9). Substituting
the parameter choices from (A.3) into (2.8), and using (A.5) with x = x̄t and y = xt, we obtain:

∥x̄t − xt+1 + ξt∥

≤ µ−1
t

(
∥(Jt −∇A(xt))(x̄t − xt)∥+ ∥A(xt)−A(x̄t)−∇A(xt)(xt − x̄t)∥

+ µt∥x̄t − xt∥+ (1 + ∥Ht∥)∥ξt∥
)

≤ 1

cω2(rt)

(
O(ω2(rt))dt + ω1(dt)dt + cω2(rt)dt +O(1) · νω2(rt)rt

)
.

In the last inequality, we used ∥Ht∥ = O(1), which is from

∥Ht∥
(1.8),(A.3)

= ∥µtI +∇A(xt) +O(ω2(rt))∥(A.7)

(A.3)

≤ O(ω2(rt)) + ∥∇A(xt)∥
(2.3)

≤ O(ω2(rt)) + L = O(1).

Using (A.4) and the fact that dt = O(rt), we have from (A.2) and monotonicity and subadditivity of ω2 that
ω2(dt) = O(ω2(rt)). Thus, the numerator is dominated by O(ω2(rt)dt) since rt = O(dt) according to (2.13).
Consequently, the damping term ω2(rt) in the denominator cancels out, yielding:

∥x̄t − xt+1 + ξt∥ ≤ O(dt).

By combining the above inequality with (A.6), and using the definition x̄t = PS(xt) and (2.1), we obtain

(A.8) ∥pt∥ ≤ ∥x̄t − xt+1 + ξt∥+ ∥xt − x̄t∥+ ∥ξt∥ = O(dt) + dt + o(dt) = O(dt).

We now proceed to obtain an upper bound for rt+1 similar to (2.10) by following the proof of Lemma 2.2. We
know that (2.11) and (2.12) still hold as they do not involve elements changed in this corollary, so they indicate

rt+1 ≤ ∥A(xt)−A(xt+1)−Ht(xt − xt+1∥) + r̂t(xt+1)

(A.7),(A.3)

≤ ∥A(xt)−A(xt+1)−∇A(xt)(xt+1 − xt)∥+O(ω2(rt))∥pt∥+O(ω2(rt)rt)

(A.5)

≤ ω1(∥pt∥)∥pt∥+O(ω2(rt)(∥pt∥+ rt)).
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From (1.4) and (A.8), we know that ∥pt∥ = O(rt), and from (A.4) and (A.2) resulted from subadditivity and
monotonicity of ω1 and ω2, we conclude that ω1(∥pt∥)∥pt∥ = O(ω2(rt)rt). Therefore, the inequality above simplifies
to

rt+1 ≤ O(ω2(rt)rt) = o(rt)

as ω2 vanishes at zero. Since dt+1 = O(rt+1) and rt = O(dt), the inequality above also shows that dt+1 = o(dt),
proving the claimed superlinear convergence. Convergence of the sequence {xt} then follows from the argument of
Theorem 2.5 using ∥pt∥ = O(rt).

The case of p-Hölder continuity corresponds to Corollary A.1 with ω1(t) = ζtp. However, for this special case,
Theorems 2.3 and 2.4 provide more refined results with explicit rates.

Comparing Corollary A.1 with Theorems 2.3 and 2.4 reveals an inherent trade-off in the decay rate of the
damping term and the stopping tolerance. To ensure robustness against the lack of smoothness (small p or uniform
continuity), these parameters must decay slowly. Conversely, to accommodate a wider range of the error bound
exponent, they must vanish rapidly.

Appendix B. A Technical Lemma.

Lemma B.1. Consider the setting of Lemma 3.2. For all t ≥ 0, we have

(1− ν)r(xt) ≤ (∥Ht∥+ 2)∥p̃t∥.

Proof. Since ν < 1 and r̂t(x̃t+1) ≤ νr(xt) in (3.7), we obtain from (3.4), (3.7), and (3.8), the triangle inequality,
and the nonexpansiveness of proxΨ due to convexity of Ψ in the fourth inequality that

(1− ν)rt ≤ rt − r̂t(x̃t+1)

≤
∥∥∥Rt(xt)− R̂t(x̃t+1)

∥∥∥
≤ ∥xt − x̃t+1∥+ ∥proxΨ(x̃t+1 − gt −Ht(x̃t+1 − xt))− proxΨ(xt − gt)∥
≤ ∥xt − x̃t+1∥+ ∥(x̃t+1 − gt −Ht(x̃t+1 − xt))− (xt − gt)∥
= ∥xt − x̃t+1∥+ ∥(x̃t+1 − xt −Ht(x̃t+1 − xt))∥
≤ (2 + ∥Ht∥)∥x̃t+1 − xt∥
= (2 + ∥Ht∥)∥p̃t∥,

proving the stated result.
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