EXACT AND HEURISTIC METHODS FOR
-ROBUST MIN-MAX PROBLEMS
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ABSTRACT. Bilevel optimization is a powerful tool for modeling hierarchical
decision-making processes, which arise in various real-world applications. Due
to their nested structure, however, bilevel problems are intrinsically hard to
solve—even if all variables are continuous and all parameters of the problem are
exactly known. Further challenges arise if mixed-integer aspects and problems
under uncertainty are considered. In this article, we summarize selected results
from the author’s dissertation (Beck [2024). We study mixed-integer linear
min-max problems with a I-robust treatment of uncertain data, for which
we present exact and heuristic solution approaches. The performance of the
methods is assessed in a computational study on 560 instances of the knapsack
interdiction problem. Our results show that the heuristic closes the optimality
gap for a significant portion of the considered instances and often practically
outperforms both heuristic and exact benchmark approaches.

1. INTRODUCTION

Over the last years and decades, bilevel problems have gained increasing atten-
tion because of their ability to model hierarchical interactions between two decision-
makers—the leader and the follower. For an overview of the many applications of
bilevel optimization, we refer to Dempe (2020) and to the recent surveys in Kleinert
et al. (2021) and Beck et al. (2023b)). The latter focuses on bilevel problems under
uncertainty, which is also at the core of this article. In what follows, we consider
mixed-integer linear min-max problems of the form

min ¢ z+fy (1a)
T,y
st. zeX, (1b)
ycargmax{f'y':y € Y(z)} (1c)
y/

with Y(z) € {0,1}™, X := {& € R"® x Z"": Az > a}, n, = n¢ + np, ¢ € R"=,
feERw, Ac R* and acR. We refer to 7 as the upper-level (or
the leader’s) problem and to as the lower-level (or the follower’s) problem. To
ensure that an optimal solution to Problem exists, we impose the following for
the remainder of this article.

Assumption 1. (1) For all x € X, the set Y (z) is non-empty.
(2) The set {(z,y): x € X, y € Y(z)} is non-empty and compact.
(3) All variables x that appear in the lower-level constraints are bounded inte-
gers.

In this article, we study Problem with uncertainty in the objective function
coefficients f. For all i € [n,] := {1,...,n,}, we thus consider f; € [fi — Afi, fi]
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instead of f;. Here, f; is the nominal value of the ith objective function coefficient
and Af; > 0 is its maximum deviation from the nominal value. We address this
kind of uncertainty using a I'-robust approach (Bertsimas and Sim 2003) in which
the follower hedges against at most I' € [n,] deviations that adversely affect his
optimal objective function value. This leads us to considering the bilevel problem

Igiyn clz+f'y st. zeX,ye Sp(x), (2)

where Sr(z) is the set of optimal solutions to the I'-robust lower-level problem

®,op(2) := max Ty— max Afiy; o 3
ob(T) vy i) {f Y (sCin). \S\SF}; fzyz} (3)
Using the optimal-value function ®,.(x), we can re-state Problem as
min ¢ z+n st x€X,n>d(x). (4)
z,m

In the dissertation (Beck [2024)), two solution approaches have been derived—an
exact branch-and-cut method and a heuristic—which are the first to tackle Prob-
lem directly. The methods have been published in Beck et al. (2023a)) and
Beck et al. (2025)), respectively, and they rely on the following auxiliary result. For
further details and a proof of this result, we refer to Lemma 1 and the respective
discussion in Beck et al. (2025]).

Lemma 1. Let x € X be given arbitrarily and suppose that the indices are ordered
such that Af; > Afiy1 holds for all i € [n,] with Af,, +1:=0. Then, the I'-robust
counterpart of the lower-level problem can be solved by solving

op(7) = max {Dy(x)},

where L ={T+1,T'+3,T+5,...,T+~,n,+1} with v being the largest odd integer
such that I' + v < mny + 1, and

¢ ny
®y(x) ;= —I'Afy + max {Z(fi —Afi+ ALY+ Y fiyi} , LelL.

Y -
veY(z) (i i=0+1

2. AN ExAcT BRANCH-AND-CUT APPROACH

At the root node of the branch-and-cut search tree, we solve the linear problem

rgligl cle4+n st (z,m)e€Qo:={",n)e X xR:y/ >n7}, (5)
which is obtained from Problem (4)) by omitting the constraint n > ®,.,(x) and by
relaxing the integrality restrictions for the leader’s variables . In , we use X to
denote the continuous relaxation of X. Moreover, n~ € R is a given lower bound
on ®,o(z) for all x € X. Details on how to obtain such a bound are given in Beck
et al. (2023a). After considering Problem , we iteratively add valid inequalities
or branch to separate integer-infeasible points, and we also add valid inequalities
to cut off bilevel-infeasible points. At node & of the branch-and-cut search tree, we
consider the problem

rgi? c'z4n st (z,m) €U C X xR (6)
Here, ) is obtained from €y by adding all valid inequalities that have been gen-
erated at nodes along the path from the root node to node k£ and by imposing all
branching decisions that have been made along that path. If Problem @ is infeasi-
ble or if the objective function value corresponding to an optimal solution (x*,n*)
exceeds the current upper bound U, we can prune node k. Otherwise, we pro-
ceed as follows. First, we check if the leader’s variables x* satisfy all integrality
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constraints (¥ € X). If this is not the case, we separate the current solution
by either exploiting standard cutting planes from mixed-integer programming or
by branching. If ¥ € X holds, we check for bilevel feasibility, that is (i.e.), we
check if nk > @rob(:vk) is satisfied. To this end, we need to solve the I'-robust
lower-level problem , which can be done by solving |£| deterministic lower-level
sub-problems; see Lemma [1] If there is at least one such sub-problem ¢ € L for
which n* < ®,(z*) holds, the current solution (z*,n*) is not bilevel feasible and
we add a cut to separate this point. Problem-tailored cuts for the important class
of monotone interdiction problems that can be used for this purpose have been de-
rived in the author’s dissertation; see Section 3.3 in Beck (2024) for the details. To
sum up, the method to process node k of the branch-and-cut search tree is formally
stated in Algorithm

Algorithm 1 Processing Node k of the Branch-and-Cut Search Tree

Solve Problem (6))
if Problem @ is infeasible then
Prune the current node and return to the main method.
Let (z*,n*) denote the solution to Problem (6).
if ¢"2* +n* > U then
Prune the current node and return to the main method.
if 2 ¢ X then
Either generate a cut valid for 5 N (X x R), augment €, and go to Line
or branch.
9: for all / € £ do
10:  Compute ®,(z*).
11:  if n* < ®y(2*) then
12: Generate a valid cut that excludes (z*,n*) from Q and augment €.
13: Set ®yop(2%) + maxpe s {Po(2*)} and U + min{U, ¢ z* + &0 (z%)}.
14: If at least one cut has been added in Line [I2] go to Line

Theorem 1 (See Theorem 1 in Beck et al. (2023al)). If we embed Algorithm (1| in
a classic branch-and-bound framework, we obtain a method that terminates with a
globally optimal solution (x*,n*) to Problem after investigating a finite number
of nodes and after adding an overall finite number of cuts.

3. A HEURISTIC IN THE SPIRIT OF BERTSIMAS & SIM

Given the overall hardness of I'-robust min-max problems, which are ¥3-hard in
general, we also derive a heuristic for these problems. The method relies on the so-
lution of a linear number of appropriately chosen deterministic min-max problems.
More formally, we have the following result. For a proof of this result, we refer to
Proposition 1 in Beck et al. (2025).

Proposition 1. For all ¢ € L, let vy := minge x{c' 2+ ®¢(x)}. Then, v, is a valid
lower bound for the optimal objective function value of Problem .

The heuristic for Problem is formally stated in Algorithm The method
starts by solving |£| deterministic min-max problems. Afterward, we use the solu-
tions (x¢)se, to these problems to compute upper bounds for Problem .

Theorem 2 (See Theorem 1 in Beck et al. (2025)). Algorithm [3 returns a fea-
sible leader’s decision x* as well as valid lower and upper bounds L and U for

Problem .
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Algorithm 2 Heuristic for I-Robust Min-Max Problems

1: Set x* <~ None, L < —o0, and U + oc.
2: for all / € £ do
Compute a solution z¢ to the deterministic min-max problem
v < min {2+ ®y(z)}.

. Set L + maxye,{ve} and i < 1.
while i < |£| and L < U do

Use Lemma to compute @, ().

if ¢c' 2% + @, (z%) < U then

Set z* < 2% and U « ¢ a* 4 Oy (2*).

Set i+ i+ 1.

10: return x*, L, U

o

© %NS Tk

TABLE 1. The number of instances for which a feasible point with
finite gap is found (“feasible”) and the number of instances solved
to global optimality (“optimal”) for E, H-BKP, H-IC, and H-GI. For
those instances with finite but non-zero gap (“open gap”), also the
average gap (“average gap”; in %) is shown.

feasible optimal open gap average gap

E 560 524 36 7.03
H-BKP 560 554 6 0.08
H-IC 481 476 5 0.10
H-GI 560 4 556 100.00

In Beck (2024) and Beck et al. (2025), we further derive sufficient conditions
under which Algorithm [2] terminates with a provably globally optimal solution
after Line [3] i.e., after only solving deterministic min-max problems. Note that
this extends the famous result by Bertsimas and Sim (Bertsimas and Sim 2003) to
the I'-robust min-max setting.

4. COMPUTATIONAL RESULTS

In this article, we report numerical results for 560 instances of the I'-robust
knapsack interdiction problem with continuous deviations Af. Details regarding
the generation of the instances and the computational setup can be found in Beck
et al. (2025)). We compare four solution approaches. The first is the exact branch-
and-cut method presented in Section 2] in which we use the problem-tailored cuts
derived in Beck et al. (2023al). We refer to this method as E. Moreover, we consider
two variants of the heuristic in Algorithm one using the bkpsolver (Weninger
and Fukasawa 2023|) and one using the branch-and-cut method in Fischetti et al.
(2019) to solve the deterministic min-max problems. We refer to these approaches
as H-BKP and H-IC, respectively. Finally, we compare our methods to the “Greedy
Interdiction” heuristic presented in DeNegre (2011)), which we abbreviate as H-GI.
Table |1 and Figure [If summarize our numerical results.

All methods except for H-IC find feasible points for all 560 instances within 1 h.
On the subset of instances that H-1C can tackle, H-1C performs slightly better than E
in terms of runtimes. Overall, H-Gl achieves the smallest runtimes, but its solution
quality is rather poor. In contrast, H-BKP not only outperforms E by significant
orders of magnitude in terms of runtimes, it also proves global optimality for almost
all considered instances. These results indicate that, if efficient black-box solvers
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FIGURE 1. Box-plots of the runtimes for E, H-BKP, H-IC, and H-
Gl. Runtimes (in s) are depicted on a log-scaled y-axis.

are available for the deterministic min-max problems, our heuristic can outperform
both exact and heuristic benchmark approaches.

5. SUMMARY

In this article, we summarize selected results from the author’s dissertation (Beck
2024)). To this end, we present exact and heuristic solution approaches for mixed-
integer linear min-max problems with a I'-robust treatment of objective uncertainty.
The performance of the methods is assessed in a computational study on 560 in-
stances of the knapsack interdiction problem. Our results show that the heuristic
closes the optimality gap for a significant portion of the considered instances and
often practically outperforms both heuristic and exact benchmark approaches.
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