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Abstract. Two-stage stochastic programs are used to model problems
with uncertain data, where a decision maker first decides the values of
first-stage variables, then observes the values of the uncertain data, and
finally decides the values of the second-stage decisions. In many appli-
cations, however, it is convenient to only have a small set of precom-
puted second-stage solutions from which to choose. The K-adaptability
approach for two-stage problems under uncertainty calculates K second-
stage solutions already in the first stage. In the case where uncertainty
can be modeled by a finite number of scenarios, the K-adaptability prob-
lem can be formulated as a minimization problem over all the possible
partitions of the scenario set [4,7]. We present new partition-based heuris-
tic methods able to provide upper bounds for the K-adaptability problem
for two-stage stochastic optimization. Experimental results on linear and
quadratic knapsack and facility location problems are presented.

Keywords: Stochastic Programming · Heuristics and Metaheuristics.

1 Introduction

The extensive formulation of two-stage stochastic programs [2] where uncertainty
is represented by a finite set of scenarios S, |S| = ℓ > 0, is as follows:

min f(x) +
∑
s∈S

psgs(ys)

x ∈ X,

ys ∈ Ys(x), s ∈ S,

(1)

where x are the first-stage variables, and the second-stage variables are explicitly
described for each scenario s ∈ S by the corresponding vector ys. The sets
X ⊆ Rnx , Ys(x) ⊆ Y ⊆ Rny may include integrality constraints on the variables
x and ys for each s ∈ S. Functions f : Rnx → R and gs : Rny → R are the first
and second-stage objective functions respectively. We consider the most general
case in which uncertainty can affect both the objective function and the feasible
set and we do not assume the functions to be linear.

In this paper, we study the K-adaptable version of the two-stage stochastic
optimization problem (1). The objective is that of finding, in the first stage,
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not only the optimal value of variable x, but also an optimal set of K second-
stage solutions. In the second stage, once the uncertain parameters are known,
we proceed to choose the best policy for the current scenario, among the set
of precomputed solutions. The K second-stage solutions are determined so that
they are feasible for the chosen first-stage solution and the objective value of the
best of these solutions, calculated in each scenario, is optimal in expectation.
Formally, the problem can be formulated as follows (see also [5]):

min f(x) +
∑
s∈S

ps min
{
gs(y) : y ∈ Ys(x) ∩

{
y1, . . . , yK

}}
x ∈ X,

y1, . . . , yK ∈ Y.

(K-2SSP)

We call an instance of (K-2SSP) feasible if x ∈ X and y1, . . . , yK ∈ Y exist such
that, for each s ∈ S, at least one yk, k ∈ [K], is feasible, i.e., yk ∈ Ys(x). Note
that we use the notation [K] := {1, . . . ,K}.

The K-adaptability approach was first formulated in [1] for robust opti-
mization problems and it has been extensively studied in its applications to
robust optimization [6,10]. In [4] K-adaptability was studied for the first time
for stochastic optimization under (linear) objective uncertainty. Exact solution
methods are proposed for solving the K-adaptability problem, however, the au-
thors point out that heuristics represent an effective alternative, as they con-
sistently deliver near-optimal solutions within a short computation time. In [7]
the K-adaptability approach was extended to optimization problems with uncer-
tainty in the constraints and in [8] heuristic approaches to deal with this setting
are formulated and tested. In [5] K-adaptability for two-stage stochastic pro-
grams is formulated for the first time and a new exact solution method relying
on partitions of the scenario set is presented.

In this paper, we generalize and extend the heuristics from [4,8] and apply
them to solve the K-adaptability approach for two-stage stochastic (nonlinear)
programs. To the best of our knowledge this is the first time that heuristics are
formulated and tested for this setting. In prior works, the K-adaptability prob-
lem was either feasible by construction [3], or assumed to be feasible through
the inclusion of dummy policies that are valid for all scenarios [8]. In contrast,
we do not adopt this assumption and instead we introduce an additional step in
the heuristic to attempt to recover feasibility when it is not guaranteed. Our nu-
merical results on linear instances of the two-stage stochastic knapsack problem
with setup and the capacitated facility location problem show that, even in the
two-stage setting, heuristic approaches consistently yield near-optimal solutions
within short computation times. Numerical results on quadratic instances are
also provided.
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2 Heuristic solution strategies for two-stage stochastic
K-adaptability

The K-adaptability problem (K-2SSP) can be reformulated as a minimization
problem over all the possible partitions of the scenario set S. In particular, we
say that P = (P1, . . . , PK) is a partition of S of order K, if ∪k∈[K]Pk = S, Pk ̸=
∅, ∀k ∈ [K], and Pk1 ∩ Pk2 = ∅ for each k1, k2 ∈ [K], k1 ̸= k2. Then, (K-2SSP)
is equivalent to

min{pip(P) | P is a partition of S of order K}, (2)

where, given a partition P, we define the corresponding partition induced problem
as

min f(x) +
∑

k∈[K]

∑
s∈Pk

psgs(y
k)

x ∈ X,

yk ∈ YPk
(x), k ∈ [K],

(pip(P))

where YPk
(x) := ∩s∈Pk

Ys(x), for each k ∈ [K]. Problem (pip(P)) is feasible only
if x ∈ X exists such that YPk

(x) ̸= ∅, ∀ k ∈ [K]. If (pip(P)) is feasible, then
its optimal solution, which we indicate with (xP , y

1
P , . . . , y

K
P ), is the solution

induced by partition P and provides a valid upper bound for (K-2SSP) . We say
that partition P is feasible if the corresponding problem (pip(P)) is feasible.

Note that every feasible solution (x, y1, . . . , yK) of (K-2SSP) induces a par-
tition of the scenario set (or even more than one). Indeed, for each s ∈ S, we
define

sip(s;x, y1, . . . , yK) =
{
k ∈ [K] | yk ∈ Ys(x)

}
(3)

as the set of indices corresponding to the second-stage solutions that are feasible
for that scenario. For ease of notation we will refer to the previous sets as sip(s).
Since (x, y1, . . . , yK) is feasible, each set sip(s) is non-empty and we say that P
is a partition induced by (x, y1, . . . , yK) if P is defined by setting

Pk :=
{
s ∈ S | k ∈ argmin{psgs(yj) | j ∈ sip(s)}

}
, k ∈ [K], (4)

where, if for a certain s ∈ S more than one index j ∈ sip(s) exists realizing
min{psgs(yj)}, we add s to the element Pk such that k is the lowest numbered
index realizing the minimum. Finally, for each k ∈ [K] such that Pk = ∅, let
k′ ∈ [K] such that |Pk′ | > 1. We select s ∈ Pk′ , and we set Pk = {s} and
Pk′ = Pk′ \ {s}. Following this procedure, P is a partition of S by construction.

Finally, we say that P = (P1, . . . , PK) is a subpartition of S if ∪k∈[K]Pk ⊂ S,
Pk ̸= ∅, ∀k ∈ [K], and Pk1

∩Pk2
= ∅ for each k1, k2 ∈ [K], k1 ̸= k2. That is, the

elements of a subpartition do not cover the whole scenario set. Note that, if P
is a subpartition of S the corresponding problem (pip(P)) is still well defined,
however its solution is not necessarily a feasible solution of (K-2SSP).
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2.1 A basic heuristic for two-stage stochastic K-adaptability

Given an initial partition P of S, we generalize the basic heuristic from [4,8]
to the K-adaptability problem for two-stage stochastic programs. The resulting
heuristic method is described in Algorithm 1.

Algorithm 1 Basic Heuristic
Input: P partition of S
Output: (x, y1, . . . , yK)

1: Set P ′ = (∅, . . . , ∅)
2: while P ′ ̸= P do
3: Set P ′ ← P
4: Compute the solution (x, y1, . . . , yK) induced by P ′

5: Compute the partition P induced by (x, y1, . . . , yK)
6: end while

In line 4, a solution (x, y1, . . . , yK) induced by P ′ can be found by solv-
ing (pip(P)) with P = P ′. Then, in line 5, a partition induced by a solution can
be computed as shown in (4), after having defined the sets sip(s;x, y1, . . . , yK)
for each s ∈ S. Observe that, if we apply the basic heuristic in Algorithm 1
with a feasible partition P as input, we obtain a sequence of partitions whose
feasibility is always guaranteed, and the algorithm terminates once the current
partition cannot be further improved. However, if the first partition P is not
feasible, i.e. (pip(P)) is infeasible, then Algorithm 1 cannot be applied since P
does not induce a solution. Additionally, note that in [4,8] the absence of first
stage variables allowed for the decomposition of the partition induced problem
into smaller independent problems, one for each element of the partition. Since
here we have first stage variables and we are considering objective functions that
are not necessarily linear, solving the problem (pip(P)) to check the feasibility
of a partition P, and to compute an induced solution, might be time consum-
ing. Motivated by these considerations, we propose a novel heuristic procedure
that evaluates the feasibility of a partition without solving the full partition in-
duced problem. If the feasibility of the current partition cannot be proven, the
algorithm iteratively modifies it until a feasible partition is found.

2.2 Recovering feasibility

Finding a feasible solution for (K-2SSP) is equivalent to finding a partition P of
S such that (pip(P)) is feasible. For the K-adaptability problem studied in [4],
since the uncertainty only affected the objective function, every partition induced
problem was feasible. In [8], constraint uncertainty is considered, however, it is
also assumed that a dummy policy with infinitely large cost exists, so that the
feasibility of the partition induced problem is always guaranteed. In our setting,
we do not make this assumption, therefore, given a partition P the corresponding
partition induced problem might be infeasible.
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Algorithm 2 provides a heuristic method to recover (or prove) feasibility when
a given partition P is such that its corresponding (pip(P)) is infeasible (or when
no feasible solution is found before a given time limit) by iteratively modifying
the partition until a feasible one is obtained.

The algorithm starts from a partition P of S and from a feasible first-stage
variable x ∈ X, for example we can set x = x∗ where (x∗, {y∗s}s∈S) is the optimal
solution of (1). At each iteration, the first-stage variable is fixed to a value x̂,
so that we can decompose the corresponding problem (pip(P)) into independent
components, one for each k ∈ [K], i.e. we can define the problems

min
∑
s∈Pk

psgs(y
k)

yk ∈ YPk
(x̂).

(decp(x̂, k))

These new problems allow us to localize infeasibility within specific elements Pk.
If all such problems are feasible, then the current partition P is feasible and the
algorithm terminates. Otherwise, the algorithm identifies all indices k ∈ [K] such
that (decp(x̂, k)) is infeasible and removes a scenario from each corresponding
element Pk, provided that |Pk| > 1. This step aims at isolating the source of
infeasibility by progressively reducing the size of the infeasible subsets. At this
point P is a subpartition of S, since it does not cover the whole scenario set.
As we have observed in the previous section, the problem (pip(P)) remains well-
defined and it contains fewer constraints since we have removed some scenarios.
If (pip(P)) is infeasible (or its feasibility cannot be proven within the time limit),
the algorithm continues to remove scenarios from P until feasibility is achieved.
Once a feasible solution (x̃, ỹ1, . . . , ỹK) is found, a new partition can be defined.
If (x̃, ỹ1, . . . , ỹK) induces a partition P̃, then we conclude that P̃ is feasible and
the algorithm terminates. Otherwise, we define the partition P̃ that is obtained
from the current subpartition P, by adding all the scenarios that had previously
been removed from P to a set different from their original one. At this point, the
first stage solution is updated to x̃ and the procedure restarts with a new first
stage variable x = x̃ and a new (still not necessarily feasible) partition P = P̃.

The procedure is guaranteed to make progress: if necessary, repeated removals
eventually lead to a subpartition where each element Pk contains a single sce-
nario, in which case (pip(P)) is feasible, since the original (1) is feasible. At this
point, either a feasible partition is induced, or the algorithm restarts from a new
first-stage decision and partition configuration. While the method is heuristic in
nature, it provides an effective and systematic way to explore different partitions
of the scenario set to recover or prove feasibility in settings where it cannot be
easily guaranteed a priori.

Note that if I(x̂) is empty (see line 3), we have a feasible partition P and
a feasible solution of (K-2SSP) given by x̂ and the ŷj found as the optimal
solutions of (decp(x̂, k)). Similarly, if Algorithm 2 terminates in line 15, then
(x̃, ỹ1, . . . , ỹK) is a feasible solution of (K-2SSP). Note that Algorithm 2 never
requires the solution of a partition induced problem. Indeed, in line 10 prob-
lem (pip(P)) is always solved for a subpartition of S.
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The behavior of the algorithm is illustrated in Example 1, which shows how,
starting from an infeasible partition, the removal and reinsertion mechanism
leads to the unique feasible partition of the problem.

Example 1. Consider the problem with no first-stage variables, where S = {1, . . . , 6},
K = 2, and without objective uncertainty, i.e. g = gs for each s ∈ S. Consider
the feasible regions defined as

Ys =

{
y ∈ {0, 1}

∣∣∣y ≤ 0.5− 1

2s

}
, s ∈ {2, 4, 6},

and
Ys =

{
y ∈ {0, 1}

∣∣∣y ≥ 0.5 +
1

2s

}
, s ∈ {1, 3, 5}.

Then, Ys1∩Ys2 = ∅, for each s1 ∈ {1, 3, 5} and s2 ∈ {2, 4, 6}, while ∩s∈{2,4,6}Ys =
{y = 0} and ∩s∈{1,3,5}Ys = {y = 1}. Therefore, the only partition such that the
corresponding (pip(P)) is feasible is (a permutation of) P∗ = ({1, 3, 5}, {2, 4, 6}).
If we start Algorithm 2 with input P = ({1, 3, 6}, {2, 4, 5}) and if, in line 6, we
remove s = 6 from P1, and s = 5 from P2, then P reduces to the subpartition P =
({1, 3}, {2, 4}). The corresponding (pip(P)) is feasible, and its optimal solution
is ỹ1 = 1 and ỹ2 = 0, which induces the feasible partition ({1, 3, 5}, {2, 4, 6}).

3 Numerical results

In this section, we present the numerical tests we performed to evaluate the
effectiveness and efficiency of the heuristic strategies described in the previous
sections. In particular, we define two heuristic methods, which we will refer
to as PR-H and TS-KA-H. Method PRH starts from an initial partition P and
solves (pip(P)) to compute an upper bound. In case (pip(P)) (and then P) is
infeasible, or if its feasibility cannot be proven by a solver within a time limit, we
apply Algorithm 2. As soon as a feasible partition P is found PR-H terminates
by computing the optimal solution of (pip(P)) to obtain an upper bound. The
second method, TS-KA-H, starts from the feasible partition found with PR-H and
then uses Algorithm 1 to improve the incumbent upper bound.

To define the initial partition, we consider two different strategies. First, we
consider a permutation of the scenario set S and we produce a balanced partition
by splitting the scenario set into subsets of the same cardinality (when possible).
We will refer to this strategy as random. As a second strategy, we apply the k-
means algorithm to partition the scenario set S into K subsets, where scenarios
that have similar uncertain parameters in the left-hand side of the constraints
are grouped together. We mention [8] for other strategies to select the initial
partition.
As a first set of experiments, we address linear two-stage stochastic instances
obtained from the knapsack problem with setup and the capacitated facility lo-
cation problem. As a second set of experiments, in order to deal with nonlinear
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Algorithm 2 Partition Repair Heuristic
Input: (P, x)
1: Set x̂ = x and U = ∅
2: Let I(x̂) = {k ∈ [K]|(decp(x̂, k)) is infeasible}
3: if I(x̂) = ∅ then return P
4: else
5: for k ∈ I(x̂) such that |Pk| > 1 do
6: Choose s ∈ Pk

7: Pk ← Pk \ {s}, U ← U ∪ {s}
8: Choose k(s) ∈ [K], k(s) ̸= k
9: end for

10: if (pip(P)) is feasible then
11: Let (x̃, ỹ1, . . . , ỹK) be the optimal solution of (pip(P))
12: for s ∈ S do
13: Compute sip(s) = sip(s; x̃, ỹ1, . . . , ỹK) as in (3)
14: end for
15: if (x̃, ỹ1, . . . , ỹK) induces a partition P as in (4) then return P
16: else
17: Let P̃ be the subpartition induced by (x̃, ỹ1, . . . , ỹK)
18: for s ∈ U such that sip(s) = ∅ do
19: P̃k(s) ← P̃k(s) ∪ {s}
20: end for
21: Set x = x̃ and P = P̃ and go to 1
22: end if
23: else
24: Go to 5
25: end if
26: end if

two-stage stochastic problems, we address instances that involve quadratic ob-
jectives. The extended formulation of the problems, as well as the parameters
used to build the instances, can be found in [5].

For both problems we considered nx = 5 first-stage variables and ny =
10 second-stage variables. Concerning the number of scenarios, we used ℓ ∈
{50, 100}, while K ∈ {3, 5}. For each combination of parameters K and ℓ we
randomly generated 5 instances. To test the performance of the methods in a
context where the feasibility of a partition is not guaranteed, we considered addi-
tional constraints requiring a minimum capacity to be satisfied. Specifically, the
minimum capacity threshold was set to p ∈ {60%, 70%, 80%} for the knapsack
instances and p ∈ {20%, 40%, 60%} for the capacitated facility location instances
(both linear and quadratic).

Using the optimal solution of the two-stage stochastic problem, computed
offline, or the best lower bound found within a time limit, as a valid lower
bound lb for the K-adaptability problem, we consider the following performance
measures: (i) the number of instances for which no upper bound was found within
a time limit; (ii) the average optimality gap, computed as min

{
ub−lb
ub , 1

}
, as well
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as the number of instances for which the gap is strictly less than 1 (reported
within the parenthesis); and (iii) the average time t required to obtain the first
upper bound ub. Averages are computed over the instances for which an upper
bound is obtained within the time limit.

For the linear instances, we use a time limit of 120 seconds and we compare
our heuristics with the performance of the MIQP solver of Gurobi [9] on a
compact formulation of (1) (see [5]). For the MIQP solver of Gurobi, we show the
results for both the first detected upper bound, as well as for the best incumbent
solution found within the time limit.

The results for the linear instances are reported in Tables 1 and 2. In both
cases, we observe that, for the smaller values of p, PR-H quickly finds a feasible
partition and thus an upper bound. As the value of p increases, finding a feasible
partition becomes increasingly harder, in particular for the case of ℓ = 100
and K = 3, and the average time to find a first feasible solution is longer.
Similarly, TS-KA-H is successful in improving the gap for smaller values of p.
Whenever finding a first feasible partition is challenging, the basic heuristic
cannot further improve the incumbent upper bound. Note that, for the facility
location instances, starting from the initial partition found using k-means leads
to generally better optimality gaps, however, for the knapsack instances there is
no clear benefit in using k-means over a random initial partition.

Finally, both heuristics obtain upper bounds that are better than the first one
found by the MIQP solver of Gurobi, and in some cases these bounds are even
better than the best incumbent solution identified by the MIQP solver within
the 120-second time limit.

For the quadratic instances, we considered a time limit of 30 minutes, both to
compute the solution of the two-stage stochastic problem, to be used as a lower
bound, and also for the heuristic methods. In the majority of the instances, the
two-stage stochastic problem could not be solved within the time limit, thus
the best lower bound found was used in place of the optimal solution as lb to
compute the optimality gaps. The results for the quadratic knapsack instances
are shown in Table 3, while we do not report the table for the quadratic facility
location instances since, for all the settings we considered, no feasible solutions
could be found within the time limit. Table 3 highlights how, for the quadratic
instances, the average computation time needed to find a first feasible partition
is much longer. While in most cases PR-H is able to find a feasible partition, the
addition of the basic heuristic in TS-KA-H rarely succeeds in improving the best
incumbent upper bound. As for the linear instances, different initial partitions
lead to different results, but neither option consistently outperforms the other.

4 Conclusions

We study the K-adaptability approach for two-stage stochastic programs where
uncertainty is represented by a finite set of scenarios. We generalize a basic
heuristic approach from the literature to the two-stage setting. We highlight its
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Table 1. Results for the two-stage stochastic knapsack problem with setup.

p ℓ K

PR-H TS-KA-H miqp
random k-means random k-means first best

TL gap t TL gap t TL gap t TL gap t TL gap t TL gap t

0.6 50 3 0 0.94 (1) 0.2 0 0.95 (3) 0.2 0 0.79 (2) 0.5 0 0.62 (4) 0.4 0 1.00 (0) 0.1 0 0.32 (5) 120.0
0.6 50 5 0 0.88 (3) 0.4 0 0.69 (5) 0.3 0 0.42 (5) 0.7 0 0.29 (5) 0.6 0 1.00 (0) 0.1 0 0.36 (5) 120.0
0.6 100 3 0 0.85 (2) 3.8 0 1.00 (0) 2.7 0 0.84 (2) 3.8 0 0.97 (1) 2.9 0 1.00 (0) 0.1 0 0.46 (5) 120.0
0.6 100 5 0 0.90 (1) 0.8 0 0.98 (1) 0.5 0 0.88 (1) 1.2 0 0.52 (5) 0.9 0 1.00 (0) 1.4 0 0.54 (5) 120.0
0.7 50 3 0 0.85 (2) 1.3 0 0.63 (5) 1.4 0 0.85 (2) 1.3 0 0.62 (5) 1.4 0 0.89 (1) 0.2 0 0.41 (5) 120.0
0.7 50 5 0 0.85 (2) 0.7 0 0.84 (2) 0.4 0 0.72 (3) 1.1 0 0.55 (4) 0.7 0 1.00 (0) 0.4 0 0.46 (5) 120.0
0.7 100 3 0 0.70 (4) 49.9 0 0.77 (3) 10.7 0 0.70 (4) 50.0 0 0.77 (3) 10.7 0 1.00 (0) 2.7 0 0.98 (1) 120.0
0.7 100 5 0 0.82 (4) 5.4 0 0.56 (5) 3.3 0 0.79 (4) 5.5 0 0.52 (5) 3.4 0 1.00 (0) 1.5 0 0.65 (5) 120.0
0.8 50 3 2 0.97 (1) 12.4 1 1.00 (0) 41.1 2 0.97 (1) 12.4 1 1.00 (0) 41.1 0 1.00 (0) 20.9 0 0.97 (1) 120.0
0.8 50 5 0 0.74 (5) 2.4 0 0.71 (4) 3.5 0 0.74 (5) 2.4 0 0.71 (4) 3.6 0 1.00 (0) 1.6 0 0.89 (5) 120.0
0.8 100 3 5 - - 5 - - 5 - - 5 - - 5 - - 5 - -
0.8 100 5 0 0.78 (5) 46.0 0 0.88 (5) 41.4 0 0.78 (5) 46.2 0 0.86 (5) 41.5 0 1.00 (0) 7.4 0 0.95 (2) 120.0

Table 2. Results for two-stage the stochastic capacitated facility location problem.

p ℓ K

PR-H TS-KA-H miqp
random k-means random k-means first best

TL gap t TL gap t TL gap t TL gap t1 TL gap t TL gap t

0.2 50 3 0 0.29 (5) 0.7 0 0.28 (5) 0.7 0 0.27 (5) 1.4 0 0.26 (5) 1.8 0 0.50 (5) 2.8 0 0.23 (5) 120.0
0.2 50 5 0 0.25 (5) 0.8 0 0.28 (5) 0.8 0 0.22 (5) 4.0 0 0.22 (5) 2.5 0 0.44 (5) 2.0 0 0.27 (5) 120.0
0.2 100 3 0 0.28 (5) 10.1 0 0.28 (5) 3.3 0 0.26 (5) 11.1 0 0.26 (5) 5.4 0 0.39 (5) 4.2 0 0.28 (5) 120.0
0.2 100 5 0 0.28 (5) 1.6 0 0.28 (5) 2.8 0 0.25 (5) 5.1 0 0.23 (5) 5.3 0 0.38 (5) 11.1 0 0.27 (5) 120.0
0.4 50 3 1 0.26 (4) 1.4 1 0.25 (4) 2.3 1 0.24 (4) 2.4 1 0.23 (4) 3.1 1 0.39 (4) 4.3 1 0.28 (4) 120.0
0.4 50 5 0 0.24 (5) 2.8 0 0.27 (5) 4.6 0 0.22 (5) 3.8 0 0.21 (5) 6.0 1 0.37 (4) 5.4 1 0.22 (4) 120.0
0.4 100 3 1 0.22 (4) 34.4 1 0.20 (4) 26.4 1 0.22 (4) 34.7 1 0.20 (4) 26.4 1 0.29 (4) 30.6 1 0.27 (4) 120.0
0.4 100 5 0 0.28 (5) 18.5 1 0.16 (4) 11.0 0 0.27 (5) 19.3 1 0.14 (4) 12.6 1 0.32 (4) 17.9 1 0.23 (4) 120.0
0.6 50 3 4 0.24 (1) 90.6 5 - - 4 0.24 (1) 90.6 5 - - 5 - - 5 - -
0.6 50 5 2 0.13 (3) 31.8 3 0.08 (2) 28.1 2 0.13 (3) 32.0 3 0.08 (2) 28.3 3 0.20 (2) 8.6 3 0.19 (2) 120.0
0.6 100 3 5 - - 5 - - 5 - - 5 - - 5 - - 5 - -
0.6 100 5 5 - - 5 - - 5 - - 5 - - 5 - - 5 - -

Table 3. Results for the quadratic two-stage stochastic knapsack problem with setup.

p ℓ K

PR-H TS-KA-H
random k-means random k-means

TL gap t TL gap t TL gap t TL gap t

0.6 50 3 0 0.96 (1) 443.9 1 1.00 (0) 431.0 0 0.96 (1) 444.4 1 0.96 (1) 431.2
0.6 50 5 0 1.00 (0) 5.6 0 0.92 (2) 12.1 0 1.00 (0) 6.0 0 0.91 (2) 12.5
0.6 100 3 4 1.00 (0) 49.6 4 1.00 (0) 23.0 4 1.00 (0) 49.6 4 1.00 (0) 23.0
0.6 100 5 0 0.93 (1) 584.7 0 1.00 (0) 706.8 0 0.93 (1) 584.8 0 1.00 (0) 706.8
0.7 50 3 0 0.96 (1) 443.0 1 1.00 (0) 428.5 0 0.96 (1) 443.1 1 1.00 (0) 428.6
0.7 50 5 0 1.00 (0) 5.6 0 0.92 (2) 11.9 0 1.00 (0) 6.0 0 0.91 (3) 12.3
0.7 100 3 4 1.00 (0) 94.1 4 1.00 (0) 545.8 4 1.00 (0) 94.1 4 1.00 (0) 545.8
0.7 100 5 0 0.93 (1) 581.5 0 1.00 (0) 699.2 0 0.93 (1) 581.5 0 1.00 (0) 699.2
0.8 50 3 0 0.96 (2) 645.0 1 0.99 (1) 494.4 0 0.96 (2) 645.1 1 0.99 (1) 494.5
0.8 50 5 0 1.00 (0) 5.6 0 0.92 (2) 12.0 0 1.00 (0) 6.0 0 0.91 (3) 12.3
0.8 100 3 5 - - 5 - - 5 - - 5 - -
0.8 100 5 0 0.93 (1) 582.0 0 1.00 (0) 701.2 0 0.93 (1) 582.1 0 1.00 (0) 701.2

limitations in this context, when the feasibility of the K-adaptability problem
cannot be guaranteed a priori. We develop a new heuristic method that explores
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different partitions of the scenario set, in order to find a feasible one, from
which an upper bound of the K-adaptability problem can be computed. Once a
feasible partition is found, the basic heuristic can be used to improve the current
upper bound. We test these heuristics on linear and quadratic instances of two-
stage stochastic knapsack and facility location problems. Experimental results on
linear instances show that, in most cases, our method finds feasible solutions with
small optimality gaps within short computation times, outperforming the MIQP
solver of Gurobi. Moreover, our method is able to compute feasible solutions
for two-stage stochastic quadratic knapsack instances. In contrast, no feasible
solutions are obtained within a time limit of 30 minutes for two-stage stochastic
quadratic facility location instances, highlighting the increased difficulty of the
K-adaptability problem when a nonlinear objective function is considered.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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