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Abstract

We introduce a new class of semidefinite programming (SDP) relaxations for sparse box-
constrained quadratic programs, obtained by a novel integration of the Reformulation Lin-
earization Technique into standard SDP relaxations while explicitly exploiting the sparsity of
the problem. The resulting relaxations are not implied by the existing LP and SDP relaxations
for this class of optimization problems. We establish a sufficient condition under which the con-
vex hull of the feasible region of the lifted quadratic program is SDP-representable; the proof is
constructive and yields an explicit extended formulation. Although the resulting SDP may be of
exponential size in general, we further identify additional structural conditions on the sparsity of
the optimization problem that guarantee the existence of a polynomial-size SDP-representable
formulation, which can be constructed in polynomial time.

Keywords: nonconvex quadratic programming, sparsity, convex hull, Reformulation-Linearization
Technique, semidefinite programming relaxation, polynomial-size extended formulation.

1 Introduction

We consider a nonconvex box-constrained quadratic program:

min x>Qx+ c>x (QP)

s.t. x ∈ [0, 1]n,

where c ∈ Rn and Q ∈ Rn×n is a symmetric matrix that is not positive semidefinite. Following
a common practice in nonconvex optimization, we linearize the objective function of Problem QP
by introducing new variables Y := xx>, thus, obtaining a reformulation of this problem in a lifted
space of variables:

min 〈Q,Y 〉+ c>x (`QP)

s.t. Y = xx>

x ∈ [0, 1]n,

where 〈Q,Y 〉 denotes the matrix inner product. Given a set S, we denote by conv(S) the convex
hull of the set S. We then define

QPn := conv
{

(x, Y ) ∈ Rn+
n(n+1)

2 : Y = xx>, x ∈ [0, 1]n
}
.
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Constructing strong and cheaply computable convex relaxations for QPn has been the subject
of extensive research over the last three decades [31, 36, 5, 10, 2, 4]. The most popular convex
relaxations of Problem `QP are semidefinite programming (SDP) relaxations [34]. The key idea
is to replace the nonconvex set defined by the constraint Y = xx> by its convex hull defined by
Y � xx>, to obtain the following convex relaxation for QPn:

CSDP
n :=

{
(x, Y ) ∈ Rn+

n(n+1)
2 :

[
1 x>

x Y

]
� 0, diag(Y ) ≤ x, x ∈ [0, 1]n

}
,

where diag(Y ) denotes the vector in Rn containing the diagonal entries of Y . In [10], the authors
investigated some fundamental properties of QPn. In particular, they studied the relationship
between QPn, and its well-known discrete counterpart; namely, the Boolean quadric polytope [27]:

BQPn := conv
{

(x, Y ) ∈ Rn+
n(n−1)

2 : Yij = xixj , ∀1 ≤ i < j ≤ n, x ∈ {0, 1}n
}
.

The Boolean quadric polytope is a well-studied polytope in the context of binary quadratic pro-
gramming, and the max-cut problem and its facial structure has been thoroughly investigated in the
literature [27, 19]. The authors of [10] obtained a sufficient condition under which a facet-defining
inequality for BQPn defines a facet of QPn as well. Their result implies that the McCormick
inequalities [25] given by:

Yij ≥ 0, Yij ≥ xi + xj − 1, Yij ≤ xi, Yij ≤ xj , ∀1 ≤ i < j ≤ n, (1)

and the triangle inequalities [27] given by:

Yij + Yik ≤ xi + Yjk

Yij + Yjk ≤ xj + Yik

Yik + Yjk ≤ xk + Yij

xi + xj + xk − Yij − Yik − Yjk ≤ 1

∀1 ≤ i < j < k ≤ n, (2)

define facets of QPn. We then define two stronger convex relaxations of QPn, the first one is
obtained by adding McCormick inequalities to CSDP

n :

CSDP+MC
n :=

{
(x, Y ) ∈ Rn+

n(n+1)
2 : (x, Y ) ∈ CSDP

n , (x, Y ) satisfy inequalities (1)
}
, (3)

while the second one is obtained by adding triangle inequalities to CSDP+MC
n :

CSDP+MC+Tri
n :=

{
(x, Y ) ∈ Rn+

n(n+1)
2 : (x, Y ) ∈ CSDP

n , (x, Y ) satisfy inequalities (1)− (2)
}
. (4)

In [5], building upon the results in [9], the authors proved that if n = 2, then QPn = CSDP+MC
n .

Moreover, they showed that if n = 3, then QPn ( CSDP+MC+Tri
n . In fact, to date, obtaining an

explicit algebraic description for QP3 remains an open question. Since Problem QP is NP-hard
in general, unless P = NP, one cannot construct in polynomial time a polynomial-size extended
formulation for QPn. Recall that, given a convex set C ⊆ Rn, an extended formulation for C is a
convex set Q ⊆ Rn+r, for some r > 0, such that C = {x ∈ Rn | ∃y ∈ Rr such that (x, y) ∈ Q}. It
can be shown that if C admits a polynomial-size extended formulation that can be constructed in
polynomial time, then optimizing a linear function over C can also be performed in polynomial time.
However, the key observation is that many quadratic programs are sparse; i.e., qij = 0 for many
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pairs i, j. Motivated by the same observation in the context of binary quadratic programming,
Padberg [27] introduced the Boolean quadric polytope of a sparse graph G = (V,E):

BQP(G) := conv
{

(x, Y ) ∈ {0, 1}V ∪E : Yij = xixj , ∀{i, j} ∈ E
}
.

In [24, 20, 8], the authors proved that for a graph G = (V,E) with treewidth tw(G) = κ, the
polytope BQP(G) has a linear extended formulation with O(2κ|V |) variables and inequalities.
This result implies that if κ ∈ O(log |V |), then BQP(G) admits a polynomial-size linear extended
formulation. Moreover, from [11, 1] it follows that the linear extension complexity of BQP(G)
grows exponentially in the treewidth of G. Recall that given a polytope P, the linear extension
complexity of P is the minimum number of linear inequalities and equalities in a linear extended
formulation of P. Hence, a bounded treewidth for G is a necessary and sufficient condition for the
existence of a polynomial-size linear extended formulation for BQP(G).

Motivated by these ground-breaking results for sparse binary quadratic programs, in [18], the
authors considered sparse box-constrained quadratic programs. They then introduced a graph
representation for this class of optimization problems, which we define next. Consider a graph
G = (V,E, L), where V denotes the node set of G, E denotes the edge set of G in which each
{i, j} ∈ E is an edge connecting two distinct nodes i, j ∈ V , and L denotes the loop set of G in
which each {i, i} ∈ L is a loop connecting some node i ∈ V to itself. We then associate a graph G
with Problem `QP (or with Problem QP), where we define a node i for each independent variable
xi, for all i ∈ [n] := {1, · · · , n}, two distinct nodes i and j are adjacent if the coefficient qij is
nonzero, and there is a loop {i, i} for some i ∈ [n], if the coefficient qii is nonzero. Moreover, we
say that a loop {i, i} is a plus loop, if qii > 0 and is a minus loop, if qii < 0. We denote the set
of plus loops and minis loop by L+ and L−, respectively. Henceforth, for notational simplicity, we
denote variables xi by zi, for all i ∈ [n], and we denote variables Yij by zij , for all {i, j} ∈ E ∪ L.
Similarly to [18], we consider the following reformulation of Problem `QP:

min
∑
{i,i}∈L

qiizii + 2
∑
{i,j}∈E

qijzij +
∑
i∈V

cizi (`QPG)

s.t. zii ≥ z2
i , ∀{i, i} ∈ L+

zii ≤ z2
i , ∀{i, i} ∈ L−

zij = zizj , ∀{i, j} ∈ E
zi ∈ [0, 1], ∀i ∈ V.

Furthermore, we define:

QP(G) := conv
{
z ∈ RV ∪E∪L : zii ≥ z2

i , ∀{i, i} ∈ L+, zii ≤ z2
i , ∀{i, i} ∈ L−, zij = zizj ,

∀{i, j} ∈ E, zi ∈ [0, 1],∀i ∈ V
}
.

In [18], the authors proposed a new second-order cone (SOC) representable relaxation for QP(G).
They then examined the tightness of the proposed relaxation; namely, they proved that if the set
of nodes of G with plus loops forms a stable set of G, then QP(G) is SOC-representable. While
the proposed SOC relaxation may be of exponential size in general, they proved if G admits a tree
decomposition whose width is bounded and the spreads of nodes with plus loops are also bounded,
then the proposed SOC formulation is polynomial size.

In this paper, we introduce a new class of SDP relaxations for box-constrained quadratic pro-
grams. Our proposed relaxations are obtained via a novel incorporation of the Reformulation-
Linearization Technique (RLT) [32] into the existing SDP relaxations and are provably stronger
than the existing LP and SDP relaxations. The main contributions of this paper are as follows:
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(i) We introduce a new type of SDP relaxations for box-constrained quadratic programs by
combining the existing RLT framework and SDP relaxations, while exploiting the sparsity of
the problem to control the size of the resulting relaxation. We prove that the SOC relaxation
of [18] is implied by the proposed SDP relaxation. We further show that the proposed
relaxations can be interpreted as a special case of Schmüdgen hierarchy, where the multipliers
and factors have a specific structure.

(ii) We examine the tightness of the proposed SDP relaxation, and obtain a sufficient condition
under which QP(G) is SDP-representable. Namely, we prove that if G does not have any three
nodes with plus loops such that at least two pairs among them are adjacent, then QP(G)
is SDP-representable. Our proof is constructive and yields a simple algorithm for explicitly
constructing the corresponding SDP formulation.

(iii) In general, the proposed SDP formulation may be of exponential size. We then identify suffi-
cient conditions based on the structure of graph G, under which QP(G) admits a polynomial-
size SDP-representable formulation that can be constructed in polynomial time. Our sufficient
condition essentially states that if the treewidth of G and the degrees of nodes with plus loops
are both bounded, then the SDP formulation is guaranteed to be of polynomial size.

Our theoretical results significantly generalize those of [18]. However, this generalization comes
at a cost: the proposed SDP relaxations are computationally more expensive to solve than the SOC
relaxations in [18].

The remainder of the paper is structured as follows. In Section 2, we review the preliminary
material that we need to develop our new relaxations. In Section 3, we introduce a new class of
SDP relaxations for box-constrained quadratic programs. In Section 4, we examine the tightness
of the proposed SDP relaxations and obtain a sufficient condition for the SDP-representability of
QP(G). In Section 5, we derive sufficient conditions under which QP(G) admits a polynomial-size
SDP-representable formulation that can be constructed in polynomial time. Finally, in Section 6,
we detail on the connections between our proposed relaxations and the existing SDP hierarchies.

2 Preliminaries

In this section, we review the preliminary material that we will use to develop and analyze our
proposed SDP relaxations in the subsequent sections.

2.1 Higher-order extended formulations and decomposability of QP(G)

In this paper, we propose new SDP relaxations for sparse box-constrained quadratic programs
via a novel incorporation of the RLT framework into existing SDP relaxations. The proposed
relaxations lie in an extended space where some extended variables represent products of more
than two original variables. In this section, we present the necessary background to construct these
extended formulations.

A hypergraph G is a pair (V,E), where V is a finite set of nodes and E is a set of subsets of V of
cardinality at least two, called the edges of G. In this paper, we consider hypergraphs with loops;
i.e., G = (V,E, L), where V,E are the same as those of ordinary hypergraphs and L denotes the set
of loops of G. As for graphs with loops, we partition the loop set of hypergraphs as L = L− ∪ L+,
where L− and L+ denote the sets of minus loops and plus loops of G, respectively. With any
hypergraph G = (V,E, L), we associate the convex set PP(G) defined as

PP(G) := conv
{
z ∈ RV ∪E∪L : zii ≥ z2

i , ∀{i, i} ∈ L+, zii ≤ z2
i , ∀{i, i} ∈ L−, ze =

∏
i∈e

zi, ∀e ∈ E,
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zi ∈ [0, 1], ∀i ∈ V
}
. (5)

In the special case where G is a graph, PP(G) simplifies to QP(G). Moreover, if the hypergraph G
does not have any loops, then PP(G) coincides with the well-studied multilinear polytope MP(G)
in the context of binary polynomial optimization [13, 14, 16]. In the next four lemmata, we review
some basic properties of PP(G) that we will later use to prove our results. These results were
originally proved in [18].

Lemma 1 (lemma 2 and lemma 3 in [18]). Let G = (V,E, L) be a hypergraph and consider the
convex set PP(G) as defined by (5). Then:

(i) PP(G) is a closed set.
(ii) The set of extreme points of PP(G) is given by:

ext(PP(G)) =
{
z ∈ RV ∪E∪L :zi ∈ [0, 1],∀i ∈ V : {i, i} ∈ L+, zi ∈ {0, 1},∀i ∈ V : {i, i} /∈ L+,

zp =
∏
i∈p

zi,∀p ∈ E ∪ L
}
,

(iii) The recession code of PP(G) is given by:

rec(PP(G)) =
{
z ∈ RV ∪E∪L : zii ≥ 0,∀{i, i} ∈ L+, zii ≤ 0, ∀{i, i} ∈ L−, zp = 0, ∀p ∈ V ∪ E

}
.

Now, let G = (V,E,L) be a graph and let G′ = (V,E′, L) be a hypergraph such that E ⊆ E′.
The next lemma indicates that a formulation for PP(G′) serves as an extended formulation for
QP(G).

Lemma 2 (lemma 4 in [18]). Consider two hypergraphs G1 = (V,E1, L) and G2 = (V,E2, L) such
that E1 ⊆ E2. Then a formulation for PP(G2) is an extended formulation for PP(G1).

The next result implies that, to construct QP(G), one can essentially ignore the minus loops.

Lemma 3 (lemma 5 in [18]). Consider a hypergraph G = (V,E, L), where L = L− ∪ L+. Define
G′ = (V,E, L+). Then a formulation for PP(G) is obtained by putting together a formulation for
PP(G′) together with the following linear inequalities:

zii ≤ zi, zi ∈ [0, 1], ∀{i, i} ∈ L−. (6)

We say that a hypergraph G = (V,E,L) is a complete hypergraph if E contains all subsets
of V of cardinality at least two. Given a hypergraph G = (V,E, L), and V ′ ⊆ V , the section
hypergraph of G induced by V ′ is the hypergraph G′ = (V ′, E′, L′), where E′ = {e ∈ E : e ⊆ V ′}
and L′ = {{i, i} ∈ L : i ∈ V ′}. Moreover, if a loop is a plus (resp. minus) loop in G, it is also
a plus (resp. minus) loop in G′. Given hypergraphs G1 = (V1, E1, L1) and G2 = (V2, E2, L2), we
denote by G1 ∩ G2 the hypergraph (V1 ∩ V2, E1 ∩ E2, L1 ∩ L2), and we denote by G1 ∪ G2 the
hypergraph (V1 ∪ V2, E1 ∪ E2, L1 ∪ L2). In the following, we consider a hypergraph G, and two
distinct section hypergraphs of G, denoted by G1 and G2, such that G1 ∪ G2 = G. We say that
PP(G) is decomposable into PP(G1) and PP(G2) if the system comprising a description of PP(G1)
and a description of PP(G2) is a description of PP(G). The next proposition provides a sufficient
condition for the decomposability of PP(G). This result is a consequence of a result in [15] regarding
the decomposability of the multilinear polytope (see theorem 1 in [15]).
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Lemma 4 (corollary 1 in [18]). Let G = (V,E, L) be a hypergraph. Let G1,G2 be section hypergraphs
of G such that G1 ∪ G2 = G and G1 ∩ G2 is a complete hypergraph. Suppose that the hypergraph
G1 ∩G2 has no plus loops. Then, PP(G) is decomposable into PP(G1) and PP(G2).

Consider the graph G = (V,E, L). By Lemma 3, if G has no plus loops, then QP(G) is a
polyhedron. Now suppose that L+ 6= ∅. Define

V + := {i ∈ V : {i, i} ∈ L+}. (7)

Denote byGV + the subgraph ofG induced by V + and denote by Vc, c ∈ C the connected components
of GV + . The next result indicates that there exists an extended formulation for QP(G) whose
structure depends on the “size” of the connected components Vc, c ∈ C.
Proposition 1. Let G = (V,E,L) be a graph. Denote by Vc, c ∈ C the connected components of
GV +, where GV + is the subgraph of G induced by V + defined by (7). For each c ∈ C, define

N(Vc) := {i ∈ V \ Vc : {i, j} ∈ E, for some j ∈ Vc}. (8)

Then QP(G) admits an extended formulation obtained by putting together formulations for PP(G′c),
c ∈ C ∪ {0}, where G′c, c ∈ C is a hypergraph with |Vc|+ |N(Vc)| nodes and |Vc| plus loops, and G′0
is a hypergraph with |V | −

∑
c∈C |Vc| nodes and no plus loops.

Proof. Let G′ = (V,E′, L) be a hypergraph with E′ ⊇ E such that for each edge e ∈ E′ \ E we
have e ⊆ N(Vc) for some c ∈ C. We prove that PP(G′) admits an extended formulation obtained
by putting together formulations for PP(G′c), c ∈ C ∪ {0}, where G′c, c ∈ C is a hypergraph with
|Vc|+ |N(Vc)| nodes and |Vc| plus loops, and G′0 is a hypergraph with |V | −

∑
c∈C |Vc| nodes and no

plus loops. Then by Lemma 2, the statement follows for QP(G). Notice that since by assumption,
for each edge e ∈ E′ \ E we have e ⊆ N(Vc) for some c ∈ C, the section hypergraph of G′ induced
by V + coincides with the subgraph of G induced by V +; i.e., the graph GV + .

We prove by induction on the number of connected components of the section hypergraph of G′

induced by nodes with plus loops; i.e., |C|. In the base case we have |C| = 0; in this case, PP(G′) is a
polyhedron and therefore by defining G′0 := G′ the statement follows. Hence, suppose that |C| ≥ 1.
Consider a connected component Vc̃ for some c̃ ∈ C. Define the hypergraph Ḡ = (V, Ē, L), where
Ē := E′ ∪ {e ⊆ N(Vc̃) : |e| ≥ 2}. By Lemma 2, a formulation for PP(Ḡ) serves as an extended
formulation for PP(G′). Denote by Ḡc̃ the section hypergraph of Ḡ induced by Vc̃ ∪ N(Vc̃) and
denote by H the section hypergraph of Ḡ induced by V \ Vc̃. Notice that Ḡ = Ḡc̃ ∪ H and
that Ḡc̃ ∩ H is a complete hypergraph with node set N(Vc̃). Moreover, since Vc̃ is a connected
component of GV + , we have V + ∩ N(Vc̃) = ∅; i.e., the hypergraph Ḡc̃ ∩ H does not have any
plus loops. Therefore, all assumptions of Lemma 4 are satisfied and PP(Ḡ) is decomposable into
PP(G′c̃) and PP(H). By construction, the hypergraph Ḡc̃ has |Vc̃| + |N(Vc̃)| nodes and |Vc̃| plus
loops. Moreover, the connected components of the section hypergraph of H induced by nodes with
plus loops are Vc, c ∈ C \ {c̃}. Therefore, by the induction hypothesis, PP(H) admits an extended
formulation obtained by putting together formulations for PP(G′c), c ∈ C \ {c̄} ∪ {0}, where G′c,
c ∈ C \ {c̄} is a hypergraph with |Vc|+ |N(Vc)| nodes and |Vc| plus loops, and G′0 is a hypergraph
with |V | −

∑
c∈C |Vc| nodes and no plus loops and this completes the proof.

In the special case where |Vc| = 1 for all c ∈ C; i.e., the set V + defined by (7) is a stable set of
the graph G, from Proposition 1 it follows that QP(G) has an extended formulation obtained by
putting together formulations for PP(G′v), v ∈ V + ∪ {0}, where each G′v, v ∈ V + is a hypergraph
with one plus loop and deg(v) + 1 nodes, where deg(v) denotes the degree of node v, and where G′0
is a hypergraph with |V |− |V +| nodes with no plus loops. In [18], the authors use this key property
to show that in this case QP(G) is SOC-representable. In this paper, we will use Proposition 1 to
obtain a more general sufficient condition under which QP(G) is SDP-representable.
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2.2 The RLT hierarchy for polynomial optimization

The RLT is a systematic procedure for constructing a hierarchy of increasingly stronger LP relax-
ations for mixed-integer polynomial optimization problems [32]. In the pure binary setting, the
nth-level relaxation, where n is the number of variables, coincides with the convex hull of the fea-
sible set. Although RLT was originally developed for 0-1 problems, several extensions have been
proposed for continuous optimization problems [31, 33, 3, 7]. These approaches yield strong re-
laxations for general nonconvex problems, but they typically do not characterize the convex hull.
In contrast, in [18], the authors present an extension of RLT for box-constrained quadratic pro-
grams and obtain sufficient conditions under which the proposed SOC-representable relaxations
characterize QP(G). Their construction combines classical RLT constraints with convex quadratic
inequalities of the form zii ≥ z2

i . In this paper, we significantly generalize this convexification
framework by developing a novel way to integrate RLT constraints into existing SDP relaxations.

In the following, we provide a brief overview of the RLT terminology and results that we will
use to develop our convexification technique. Consider any S ⊆ {0, 1}n, let z ∈ S. In a similar vein
to [32], for some d ∈ [n], we define a polynomial factor as

fd(J1, J2) :=
∏
i∈J1

zi
∏
i∈J2

(1− zi), J1, J2 ⊆ [n], J1 ∩ J2 = ∅, |J1 ∪ J2| = d, (9)

where we define z∅ = 1. Since by assumption z ∈ {0, 1}n, it follows that fd(J1, J2) ≥ 0 for all
d ∈ [n] and all J1, J2 satisfying the above conditions. We then expand these polynomial factors
and rewrite them as

fd(J1, J2) =
∑
t:t⊆J2

(−1)|t|
∏
i∈J1

zi
∏
i∈t

zi.

Next, we linearize the polynomial factors by introducing new variables

zJ1∪t :=
∏
i∈J1

zi
∏
i∈t

zi, ∀t ⊆ J2, (10)

to obtain the following system of valid linear inequalities, in an extended space, for the set S:

`d(J1, J2) :=
∑
t:t⊆J2

(−1)|t|zJ1∪t ≥ 0, J1, J2 ⊆ [n], J1 ∩ J2 = ∅, |J1 ∪ J2| = d. (11)

Observation 1. In [32], the authors proved that for any 1 ≤ d < n, the system of inequalities
`d(J1, J2) ≥ 0 for all J1, J2 ⊆ [n] satisfying J1 ∩ J2 = ∅ and |J1 ∪ J2| = d is implied by the system
of inequalities `d+1(J1, J2) ≥ 0 for all J1, J2 ⊆ [n] satisfying J1 ∩ J2 = ∅ and |J1 ∪ J2| = d+ 1. The
proof uses the fact that for any k ∈ [n] \ (J1 ∪ J2) we have

fd(J1, J2) = fd+1(J1 ∪ {k}, J2) + fd+1(J1, J2 ∪ {k}),

implying that the nonnegativity of `d(J1, J2) follows from the nonnegativity of `d+1(J1 ∪ {k}, J2)
and `d+1(J1, J2 ∪ {k}) (see Lemma 1 [32]).

We should remark that the McCormick inequalities (1) are obtained by letting d = 2 in (11),
while the triangle inequalities (2) are implied by inequalities (11) with d = 3. For binary polynomial
optimization, the explicit description for the multilinear polytope of a complete hypergraph can be
obtained using the RLT framework.
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Theorem 1 ([32]). Let G = (V,E) be a complete hypergraph with n nodes. Then the multilinear
polytope MP(G) is given by

`n(J, V \ J) ≥ 0, ∀J ⊆ V, (12)

where `n(J, V \ J) is defined by (11).

To obtain extended formulations for QP(G), by Lemma 2 and Lemma 3, it suffices to general-
ize Theorem 1 to the case where the hypergraph G has plus loops. In [18], the authors address the
special case in which G has one plus loop.

Theorem 2 (theorem 1 in [18]). Let G = (V,E, L) be a complete hypergraph with n nodes. Suppose
that L = L+ = {j, j} for some j ∈ V . Then PP(G) is given by:

zjj ≥
∑

J⊆V :J3{j}

(`n(J, V \ J))2

`n−1(J \ {j}, V \ J)

`n(J, V \ J) ≥ 0, ∀J ⊆ V.

(13)

In this paper, we consider the case where the complete hypergraph G has two plus loops and
obtain an SDP-representable extended formulation for PP(G).

3 New SDP relaxations

In this section, we introduce a new class of SDP relaxations for box-constrained quadratic programs.
Our proposed relaxations are obtained by a novel incorporation of the RLT framework into existing
SDP relaxations. Moreover, our SDP relaxations exploit the sparsity of the optimization problem.
In the remainder of the paper, thanks to Lemma 3, for simplicity of presentation and without loss
of generality, we assume that the graph G has no minus loops.

To extend the RLT scheme to continuous quadratic programs, we introduce additional polyno-
mial factors that contain a square term z2

i , for some i ∈ [n]. In the remainder of this paper, for
notational simplicity, instead of fd(J1∪J2) (resp. `d(J1∪J2)), we write f(J1∪J2) (resp. `(J1∪J2)),
since d is uniquely determined by J1, J2; i.e., d = |J1∪J2|. In addition, unlike the original definition,
we include the case where J1 = J2 = ∅, for which we have d = 0 and f(∅, ∅) = `(∅, ∅) = 1. Now, for
any J1, J2 ⊆ [n] satisfying J1 ∩ J2 = ∅, consider the polynomial factor f(J1, J2) as defined by (9).
For any i ∈ [n] \ (J1 ∪ J2), we define a new polynomial factor:

g(i, J1, J2) := z2
i f(J1, J2). (14)

We further expand and linearize g(i, J1, J2) by introducing new variables

zJ1∪tii := z2
i

∏
j∈J1∪t

zj , ∀t ⊆ J2, (15)

where we define z∅ii := zii = z2
i . Hence, we obtain the following linear relationships in an extended

space:

ρ(i, J1, J2) :=
∑
t:t⊆J2

(−1)|t|zJ1∪tii , ∀J1, J2 ⊆ [n] : J1 ∩ J2 = ∅, ∀i ∈ [n] \ (J1 ∪ J2). (16)

Henceforth, given two convex sets S ⊆ Rn and C ⊆ Rn+d for some d ≥ 0, we say that C is a convex
relaxation of S if the projection of C onto the space of S contains S; i.e., {x ∈ Rn : ∃y ∈ Rd, (x, y) ∈
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C} ⊇ S. Moreover, whenever we give an explicit description for C in which some of the variables in
S are not explicitly present, we imply that those variables can take any value in R and we still say
that the explicit description defines a convex relaxation for S.

Consider a graph G = (V,E, L). Denote by P ⊆ V a set of nodes with plus loops and denote
by M ⊆ V a set of nodes such that M ∩ P = ∅. Moreover, if M 6= ∅, then suppose that each
node in M is adjacent to at least one node in P . The next proposition presents a new type of SDP
relaxations for Problem `QP.

Theorem 3. Let G = (V,E, L) be a graph and let P,M be (possibly empty) subsets of V as defined
above. Define

MR := (M ∪ P ) \R, ∀R ⊆ P

Then the following defines a convex relaxation of QP(G):

`(J,MR \ J) `(J ∪ {i1},MR \ J) `(J ∪ {i2},MR \ J) · · · `(J ∪ {ip},MR \ J)

`(J ∪ {i1},MR \ J) ρ(i1, J,MR \ J) `(J ∪ {i1, i2},MR \ J) · · · `(J ∪ {i1, ip},MR \ J)

`(J ∪ {i2},MR \ J) `(J ∪ {i1, i2},MR \ J) ρ(i2, J,MR \ J) · · · `(J ∪ {i2, ip},MR \ J)

...
...

...
. . .

...

`(J ∪ {ip},MR \ J) `(J ∪ {i1, ip},MR \ J) `(J ∪ {i2, ip},MR \ J) · · · ρ(ip, J,MR \ J)


� 0

∀R := {i1, · · · , ip} ⊆ P, ∀J ⊆MR. (17)

Proof. We first establish the convexity of the set defined by constraints (17). Two cases arise: if
R = ∅, we have MR = M ∪ P ; it then follows that inequalities (17) simplify to level-|M | + |P |
RLT inequalities, which are linear; i.e., `(J, (M ∪ P ) \ J) ≥ 0 for all J ⊆ M ∪ P . If R 6= ∅,
then by definition of `(., .) and ρ(., ., .), each constraint in (17) is the inverse image of the positive
semidefinite cone under an affine mapping, hence, defining a convex set.

Next, we show that the set defined by (17) is a convex relaxation of QP(G). Letting R = ∅,
as we described above, we obtain level-|M | + |P | RLT inequalities which are valid inequalities for
QP(G). Now let R = {i1, · · · , ip} for some 1 ≤ p ≤ |P |. Let GR denote the subgraph of G induced
by R. Then the following linear matrix inequality (LMI) defines a convex relaxation for QP(GR)
and therefore it is a convex relaxation for QP(G):

1 zi1 · · · zip
zi1 zi1i1 · · · zi1ip
...

...
. . .

...
zip zi1ip · · · zipip

 � 0, (18)

where as before we define zij = zizj for all 1 ≤ i ≤ j ≤ n. Now, for any J ⊆ MR, consider
the polynomial factor f(J,MR \ J) as defined by (9). Recall that f(J,MR \ J) ≥ 0 over the unit
hypercube. Multiplying the LMI (18) by f(J,MR \ J), using (9) and (14) to deduce the following
relations

f(J ∪ {i},MR \ J) = zif(J,MR \ J), ∀i ∈ R
f(J ∪ {i, j},MR \ J) = zijf(J,MR \ J), ∀i 6= j ∈ R
g(i, J,MR \ J) = ziif(J,MR \ J), ∀i ∈ R,

and linearizing the resulting monomials using (10) and (15), we obtain (17). Therefore, the set
defined by the collection of LMIs (17) defines a convex relaxation of QP(G).
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In Theorem 3, letting P = ∅, LMIs (17) simplify precisely to the level-|M | RLT inequalities.
Otherwise, if |P | ≥ 1, letting R = ∅ in (17), we obtain level-|M | RLT inequalities. Moreover, if M =
∅, then LMI (17) corresponding to R = P (i.e., corresponding to MR = ∅), simplifies to LMI (18),
which is used in existing SDP relaxations. However, as we will prove in this section, for any MR 6= ∅,
the corresponding systems of LMI (17) imply LMI (18). That is, our proposed convexification
technique combines and strengthens existing LP and SDP relaxations, while exploiting the sparsity
of box-constrained QPs.

Now, consider a pair P,M corresponding to LMIs (17); suppose that there exists some node
k ∈M such that {k, k} ∈ L+; i.e., node k has a plus loop. Define P ′ := P ∪{k} and M ′ = M \{k}.
Then all LMIs (17) corresponding to P,M are present in the LMIs (17) corresponding to P ′,M ′.
That is, the convex relaxation corresponding to P ′,M ′ is stronger than the convex relaxation
corresponding to P,M . Henceforth, we assume that the nodes in M do not have plus loops.

Observation 2. The convexification technique of [18] can be obtained as a special case of our
proposed convexification technique by letting |P | = 1. To see this, without loss of generality, let
P = {1} and let M ⊆ [n] \ {1}. Then system (17) simplifies to:

`(J,M ∪ {1} \ J) ≥ 0, ∀J ⊆M ∪ {1}. (19)[
`(J,M \ J) `(J ∪ {1},M \ J)

`(J ∪ {1},M \ J) ρ(1, J,M \ J)

]
� 0, ∀J ⊆M. (20)

Inequalities (19) are obtained by letting R = ∅ in (17), while LMIs (20) are obtained by letting
R = P = {1} in (17). From RLT inequalities (19) and Observation 1 it follows that `(J,M \J) ≥ 0
for all J ⊆M . Therefore, constraints (20) can be equivalently written as

ρ(1, J,M \ J) ≥ (`(J ∪ {1},M \ J))2

`(J,M \ J)
, ∀J ⊆M, (21)

where we define 0
0 := 0. We next prove that by projecting out variables zJ11, for all nonempty

J ⊆M from system (21), we obtain

z11 ≥
∑
J⊆M

(`(J ∪ {1},M \ J))2

`(J,M \ J)
, (22)

which together with inequalities (19) coincide with the convex relaxation proposed in [18] (see
proposition 5 in [18]). To see this, we first prove that inequality (22) is implied by inequalities (21).
From (16) it follows that∑

J⊆M
ρ(1, J,M \ J) =

∑
J⊆M

∑
t:t⊆M\J

(−1)|t|zJ1∪t11

=
∑
J⊆M

∑
S⊆M :S⊇J

(−1)|S|−|J |zS11

=
∑
S⊆M

zS11

∑
J⊆S

(−1)|S|−|J |

=z∅11 −
∑

S⊆M,S 6=∅

zS11

|S|∑
k=0

(
|S|
k

)
(−1)|S|−k

=z11 −
∑

S⊆M,S 6=∅

zS11(1− 1)|S|
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=z11.

Recall that by definition z∅11 = z11. Therefore, summing up the inequalities (21) we obtain the
inequality (22). To complete the proof, we next show that for any z satisfying inequality (22),
we can find zS11 for all nonempty S ⊆ M such that inequalities (21) are satisfied. For notational
simplicity for each J ⊆M , denote by uJ the right-hand side of inequality (21). For any z satisfying
the inequality (22), let

zS11 =
∑
J⊇S

uJ , ∀S ⊆M : S 6= ∅. (23)

Substituting (23) in inequalities (21) we obtain:

ρ(1, J,M \ J) =
∑

S⊆M :S⊇J
(−1)|S|−|J |zS11

≥
∑

S⊆M :S⊇J
(−1)|S|−|J |

∑
K⊇S

uK

=
∑
K⊇J

uK
∑

S:J⊆S⊆K
(−1)|S|−|J |

=uJ ,

where the inequality follows from (22)- (23) and z∅11 = z11. Moreover, the last equality follows since

∑
S: J⊆S⊆K

(−1)|S|−|J | =

|K|−|J |∑
i=0

(
|K| − |J |

i

)
(−1)i = (1− 1)|K|−|J | =

1, if K = J,

0, if K 6= J.

Therefore, inequalities (21) are satisfied. Hence, we have proved that the projection of the set
defined by the system (19)- (20) onto the z space is given by inequalities (19) and (22), which is
identical to the convex relaxation of [18]. While in the special case with |P | = 1, it is possible to
project out the auxiliary variables zJ11, J ⊆ M , such a simplification is not possible for |P | > 1.
Moreover, as detailed in [18], in the special case with |P | = 1, the proposed convex relaxation is
SOCP-representable. For |P | > 1, however, which is the focus of this paper, our proposed convex
relaxation is SDP-representable. Therefore, for |P | = 1, the formulation of [18] is preferable,
whereas for |P | > 1, one should rely on our SDP-representable extended formulations. �

For a graph G = (V,E, L) there are exponentially many choices for subsets P and M in The-
orem 3. As before, denote by GV + the subgraph of G induced by V + as defined by (7). Again,
denote by Vc, c ∈ C the connected components of GV + . From the proof of Proposition 1 it follows
that an extended formulation for QP(G) is obtained by putting together formulations for PP(G′c),
c ∈ C ∪ {0}, where the node set of each hypergraph G′c, c ∈ C consists of Vc and all nodes in V \ Vc
that are adjacent to at least one node in Vc. Notice that the latter does not have any plus loops
since Vc is a connected component of GV + . Moreover, the hypergraph G′0 has no plus loops. As
our proposed SDP relaxations are closely related to the extended formulation constructed in the
proof of Proposition 1, henceforth, we assume that each P ⊆ Vc for some c ∈ C and that each
node in M is adjacent to at least some node in P . In the remainder of this paper, we refer to
any such P and M as a plus set, and a minus set, respectively. Note that PP(G′0) coincides with
the multilinear polytope MP(G′0), whose facial structure has been extensively studied in the litera-
ture [13, 14, 16, 17]. The following proposition establishes a simple criterion for selecting plus and
minus sets that result in stronger relaxations.
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Proposition 2. Let G = (V,E,L) be a graph such that V + 6= ∅, where V + is defined by (7). Then
we have the following:
(i) Let P and P ′ be two plus sets, and let M be a corresponding minus set. If P ⊆ P ′, then

LMIs (17) corresponding to P,M are implied by LMIs (17) corresponding to P ′,M .
(ii) Let M and M ′ be two minus sets, and let P be a corresponding plus set. If M ⊆ M ′, then

LMIs (17) corresponding to P,M are implied by LMIs (17) corresponding to P,M ′.

Proof. Part (i) follows since all principal sub-matrices of a positive semidefinite matrix are positive
semidefinite as well. Now consider Part (ii); without loss of generality, let M ′ = M ∪ {k} for some
k /∈M∪P . As before, for any R ⊆ P , define MR := (M∪P )\R and M ′R := (M ′∪P )\R = MR∪{k}.
Without loss of generality, let R := {1, · · · , p} for some p ≥ 0. Then for any J ⊆MR, we have:

f(J,MR \ J) f(J ∪ {1},MR \ J) · · · f(J ∪ {p},MR \ J)

f(J ∪ {1},MR \ J) g(1, J,MR \ J) · · · f(J ∪ {1, p},MR \ J)

...
...

. . .
...

f(J ∪ {p},MR \ J) f(J ∪ {1, p},MR \ J) · · · g(p, J,MR \ J)

 =


f(J ∪ {k},M ′R \ (J ∪ {k})) f(J ∪ {1, k},M ′R \ (J ∪ {k})) · · · f(J ∪ {p, k},M ′R \ (J ∪ k))

f(J ∪ {1, k},M ′R \ (J ∪ k)) g(1, J ∪ {k},M ′R \ (J ∪ {k})) · · · f(J ∪ {1, p, k},M ′R \ (J ∪ k))

...
...

. . .
...

f(J ∪ {p, k},M ′R \ (J ∪ k)) f(J ∪ {1, p, k},M ′R \ (J ∪ k)) · · · g(p, J ∪ {k},M ′R \ (J ∪ {k}))

+


f(J,M ′R \ J) f(J ∪ {1},M ′R \ J) · · · f(J ∪ {p},M ′R \ J)

f(J ∪ {1},M ′R \ J) g(1, J,M ′R \ J) · · · f(J ∪ {1, p},M ′R \ J)

...
...

. . .
...

f(J ∪ {p},M ′R \ J) f(J ∪ {1, p},M ′R \ J) · · · g(p, J,M ′R \ J)

 .
Using (11) and (16) to linearize the polynomial factors, we obtain:

`(J,MR \ J) `(J ∪ {1},MR \ J) · · · `(J ∪ {p},MR \ J)

`(J ∪ {1},MR \ J) ρ(1, J,MR \ J) · · · `(J ∪ {1, p},MR \ J)

...
...

. . .
...

`(J ∪ {p},MR \ J) `(J ∪ {1, p},MR \ J) · · · ρ(p, J,MR \ J)

 =


`(J ∪ {k},M ′R \ (J ∪ {k})) `(J ∪ {1, k},M ′R \ (J ∪ {k})) · · · `(J ∪ {p, k},M ′R \ (J ∪ k))

`(J ∪ {1, k},M ′R \ (J ∪ k)) ρ(1, J ∪ {k},M ′R \ (J ∪ {k})) · · · `(J ∪ {1, p, k},M ′R \ (J ∪ k))

...
...

. . .
...

`(J ∪ {p, k},M ′R \ (J ∪ k)) `(J ∪ {1, p, k},M ′R \ (J ∪ k)) · · · ρ(p, J ∪ {k},M ′R \ (J ∪ {k}))

+


`(J,M ′R \ J) `(J ∪ {1},M ′R \ J) · · · `(J ∪ {p},M ′R \ J)

`(J ∪ {1},M ′R \ J) ρ(1, J,M ′R \ J) · · · `(J ∪ {1, p},M ′R \ J)

...
...

. . .
...

`(J ∪ {p},M ′R \ J) `(J ∪ {1, p},M ′R \ J) · · · ρ(p, J,M ′R \ J)

 .
It then follows that the LMI (17) for some J ⊆ MR is implied by two LMIs of the form (17), one
for J ⊆M ′R and one for J ∪ {k} ⊆M ′R. Therefore, the statement of Part (ii) follows.
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By Proposition 2, the strongest SDP relaxation is obtained by choosing |C| plus and minus sets,
where for each c ∈ C, the plus set P is the connected component Vc, and the minus set M is N(Vc),
as defined by (8); namely, the set of all nodes without plus loops such that each node is adjacent to
some node in P . However, it is important to note that, for a given choice of P,M , the system (17)

consists of ( |P |2 + 1)2|M |+|P | variables, 2|M |+|P | linear inequalities, and 2|M |(3|P | − 2|P |) LMIs. The
extended variables in this formulation are zp for all p ⊆M ∪P such that |p| ≥ 2 and p /∈ E and zJii
for all J ⊆ M ∪ P \ {i} and for all i ∈ P . Therefore, to obtain a polynomial-size SDP relaxation,
we must choose

|M | ∈ O(log2(|V |)) and |P | ∈ O(log3(|V |)).

This mirrors the situation in the RLT hierarchy, where lower-level inequalities are implied by
higher-level ones and the level-d LP relaxation contains 2d variables and inequalities.

The following examples illustrate the application and strength of the proposed SDP relaxations
for box-constrained QPs. In these examples, given a graph G = (V,E) for notational simplicity,
instead of z{ij···k} for some {ij · · · k} ⊆ V , we write zij···k.

Example 1. Consider the graph G = (V,E, L) with V = {1, 2}, E = {{1, 2}}, and L = L+ =
{{1, 1}, {2, 2}}. In this case, we have P = V and M = ∅ and the proposed SDP relaxation for
QP(G) is given by:  1 z1 z2

z1 z11 z12

z2 z12 z22

 � 0

[
z2 z12

z12 z
{2}
11

]
� 0,

[
1− z2 z1 − z12

z1 − z12 z11 − z{2}11

]
� 0[

z1 z12

z12 z
{1}
22

]
� 0,

[
1− z1 z2 − z12

z2 − z12 z22 − z{1}22

]
� 0

z12 ≥ 0, z1 − z12 ≥ 0, z2 − z12 ≥ 0, 1− z1 − z2 + z12 ≥ 0.

(24)

We will prove in the next section that, as a direct consequence of the work by Anstreicher and
Burer [5], the above relaxation is tight; i.e., it is an extended formulation for QP(G) (see Lemma 5).

Notice that this formulation contains two extra variables z
{2}
11 , z

{1}
22 . �

Example 2. Consider the graph G = (V,E, L) with V = {1, 2, 3}, E = {{1, 2}, {1, 3}, {2, 3}}, and
L = L+ = {{1, 1}, {2, 2}}. In this case, we have P = {1, 2} and M = {3}, and the proposed SDP
relaxation for QP(G) is given by:

 z3 z13 z23

z13 z
{3}
11 z123

z23 z123 z
{3}
22

 � 0,

 1− z3 z1 − z13 z2 − z23

z1 − z13 z11 − z{3}11 z12 − z123

z2 − z23 z12 − z123 z22 − z{3}22

 � 0

[
z23 z123

z123 z
{2,3}
11

]
� 0,

[
z2 − z23 z12 − z123

z12 − z123 z
{2}
11 − z

{2,3}
11

]
� 0,

[
z3 − z23 z13 − z123

z13 − z123 z
{3}
11 − z

{2,3}
11

]
� 0,[

1− z2 − z3 + z23 z1 − z12 − z13 + z123

z1 − z12 − z13 + z123 z11 − z{2}11 − z
{3}
11 + z

{2,3}
11

]
� 0,
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[
z13 z123

z123 z
{13}
22

]
� 0,

[
z1 − z13 z12 − z123

z12 − z123 z
{1}
22 − z

{1,3}
22

]
� 0,

[
z3 − z13 z23 − z123

z23 − z123 z
{3}
22 − z

{1,3}
22

]
� 0,[

1− z1 − z3 + z13 z2 − z12 − z23 + z123

z2 − z12 − z23 + z123 z22 − z{1}22 − z
{3}
22 + z

{1,3}
22

]
� 0,

z123 ≥ 0, z12 − z123 ≥ 0, z13 − z123 ≥ 0, z23 − z123 ≥ 0, z1 − z12 − z13 + z123 ≥ 0

z2 − z12 − z23 + z123 ≥ 0, z3 − z13 − z23 + z123 ≥ 0, 1− z1 − z2 − z3 + z12 + z13 + z23 − z123 ≥ 0.
(25)

We will prove in the next section that the above formulation is tight; i.e., it is an extended formula-
tion for QP(G) (see Theorem 4). To demonstrate the strength of the proposed relaxation compared
to existing techniques, let us consider an instance of Problem QP with n = 3, defined by

q11 = 5080, q12 = −5849, q13 = 5767, q22 = 5, q23 = −1824, q33 = −40,

c1 = −254, c2 = 1824, c3 = 37.

Utilizing the above relaxation together with the inequality z33 ≤ z3, we find that the optimal
solution of Problem QP is given by x1 = 3

5 , x2 = 1.0, x3 = 0.0 and its optimal value is −4.0. If
instead we use CSDP+MC+Tri

n (4) to convexify the problem, the optimal value of the resulting SDP
is −177.36; that is, we obtain a very weak lower bound. Alternatively, we can use the relaxation
proposed in [18], which for this example, by Observation 2, can be equivalently written as[

z23 z123

z123 z
{2,3}
11

]
� 0,

[
z2 − z23 z12 − z123

z12 − z123 z
{2}
11 − z

{2,3}
11

]
� 0,

[
z3 − z23 z13 − z123

z13 − z123 z
{3}
11 − z

{2,3}
11

]
� 0,[

1− z2 − z3 + z23 z1 − z12 − z13 + z123

z1 − z12 − z13 + z123 z11 − z{2}11 − z
{3}
11 + z

{2,3}
11

]
� 0,[

z13 z123

z123 z
{13}
22

]
� 0,

[
z1 − z13 z12 − z123

z12 − z123 z
{1}
22 − z

{1,3}
22

]
� 0,

[
z3 − z13 z23 − z123

z23 − z123 z
{3}
22 − z

{1,3}
22

]
� 0,[

1− z1 − z3 + z13 z2 − z12 − z23 + z123

z2 − z12 − z23 + z123 z22 − z{1}22 − z
{3}
22 + z

{1,3}
22

]
� 0,

z123 ≥ 0, z12 − z123 ≥ 0, z13 − z123 ≥ 0, z23 − z123 ≥ 0, z1 − z12 − z13 + z123 ≥ 0

z2 − z12 − z23 + z123 ≥ 0, z3 − z13 − z23 + z123 ≥ 0, 1− z1 − z2 − z3 + z12 + z13 + z23 − z123 ≥ 0.

The optimal value of the above relaxation is given by −4.53. This relaxation can be further
strengthened by adding the LMI: 

1 z1 z2 z3

z1 z11 z12 z13

z2 z12 z22 z23

z3 z13 z23 z33

 � 0. (26)

The optimal value of the resulting SDP is −4.32. Therefore, while for this example, incorporating
the inequalities proposed in [18] leads to a significantly stronger relaxation than the popular relax-
ation (4), it still exhibits an 8% relative gap. However, our proposed relaxation solves this problem
exactly. �
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Example 3. Consider the graph G = (V,E, L) with V = {1, 2, 3}, E = {{1, 2}, {1, 3}, {2, 3}}, and
L = L+ = {{1, 1}, {2, 2}, {3, 3}}. In this case, we have P = V , M = ∅, and the proposed SDP
relaxation for QP(G) is given by:

1 z1 z2 z3

z1 z11 z12 z13

z2 z12 z22 z23

z3 z13 z23 z33

 � 0

 zk zik zjk

zik z
{k}
ii zijk

zjk zijk z
{k}
jj

 � 0,

 1− zk zi − zik zj − zjk
zi − zik zii − z{k}ii zij − zijk
zj − zjk zij − zijk zjj − z{k}jj

 � 0, ∀i, j, k ∈ {1, 2, 3} : i < j, i 6= k, j 6= k

[
zjk zijk

zijk z
{j,k}
ii

]
� 0,

[
zj − zjk zij − zijk
zij − zijk z

{j}
ii − z

{j,k}
ii

]
� 0,

[
zk − zjk zik − zijk
zik − zijk z

{k}
ii − z

{j,k}
ii

]
� 0,[

1− zj − zk + zjk zi − zij − zik + zijk

zi − zij − zik + zijk zii − z{j}ii − z
{k}
ii + z

{j,k}
ii

]
� 0, ∀i, j, k ∈ {1, 2, 3} : j < k, i 6= j, i 6= k

z123 ≥ 0, z12 − z123 ≥ 0, z13 − z123 ≥ 0, z23 − z123 ≥ 0, z1 − z12 − z13 + z123 ≥ 0

z2 − z12 − z23 + z123 ≥ 0, z3 − z13 − z23 + z123 ≥ 0, 1− z1 − z2 − z3 + z12 + z13 + z23 − z123 ≥ 0,

where we define zji := zij for 1 ≤ i < j ≤ 3 and zijk := z123, for all i 6= j 6= k ∈ {1, 2, 3}.
To demonstrate the strength of the proposed relaxation compared to existing techniques, let us
consider an instance of Problem QP with n = 3, defined by

q11 = 8, q12 = 2732, q13 = −4923, q22 = 11, q23 = −5960, q33 = 3500,

c1 = 2, c2 = 140, c3 = 4523.

For this example, the above formulation turns out to be tight and the optimal solution is given by
x1 = 1, x2 = 0, x3 = 2

35 with the optimal value −10
7 ≈ −1.43. If instead we use CSDP+MC+Tri

n (4)
to convexify the problem, we obtain a lower bound of −173.93, which as in the previous example
is very weak. Alternatively, we can use the relaxation proposed in [18], which for this example
by Observation 2, can be equivalently written as[

zjk zijk

zijk z
{jk}
ii

]
� 0,

[
zj − zjk zij − zijk
zij − zijk z

{j}
ii − z

{j,k}
ii

]
� 0,

[
zk − zjk zik − zijk
zik − zijk z

{k}
ii − z

{j,k}
ii

]
� 0,[

1− zj − zk + zjk zi − zij − zik + zijk

zi − zij − zik + zijk zii − z{j}ii − z
{k}
ii + z

{j,k}
ii

]
� 0, ∀i, j, k ∈ {1, 2, 3} : j < k, i 6= j, i 6= k

z123 ≥ 0, z12 − z123 ≥ 0, z13 − z123 ≥ 0, z23 − z123 ≥ 0, z1 − z12 − z13 + z123 ≥ 0

z2 − z12 − z23 + z123 ≥ 0, z3 − z13 − z23 + z123 ≥ 0, 1− z1 − z2 − z3 + z12 + z13 + z23 − z123 ≥ 0,

Utilizing the above relaxation, we obtain a lower bound of −2.93. We can further strengthen the
above relaxation by adding LMI (26) to it. The resulting SDP yields a lower bound of −2.06.
Therefore, the strongest existing relaxation for this example results in about 44% gap, whereas our
proposed relaxation is tight.

For a complete graph with three nodes and three plus loops, we leave it as an open question
whether our proposed SDP relaxation gives an extended formulation for QP(G). �
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In [18], the authors consider the special case with |P | = 1, and prove that if |M | = 1, then
the proposed convex relaxation is implied by CSDP+MC

n (3), while if |M | > 1, then the proposed
relaxation is not implied by CSDP+MC+Tri

n (4). From Proposition 2, it then follows that if |M | > 1
and |P | ≥ 1, our proposed SDP relaxation is not implied by existing relaxations. Hence, it remains
to analyze the case with |M | ∈ {0, 1} and |P | > 1. The following proposition provides a complete
comparison between our relaxation and the existing ones.

Proposition 3. Consider a graph G = (V,E, L) and consider the convex set defined by LMIs (17)
for some plus and minus sets denoted by P and M , respectively. Denote by SP,M the projection of
this set onto the space zl, l ∈ V ∪ E ∪ L. Define p := |P | and m := |M |. We have the following
cases:

1. if p+m ≤ 2, then SP,M is implied by the relaxation CSDP+MC
n defined by (3).

2. if p ≥ 1 and p+m ≥ 3, then SP,M is not implied by the relaxation CSDP+MC+Tri
n defined by (4).

Proof. Part 1 follows from theorem 2 of [5] stating that QPn = CSDP+MC
n for n = 2. Now consider

Part 2; in Proposition 7 of [18], the authors proved that if p = 1 and m ≥ 2, then SP,M is not
implied by the relaxation CSDP+MC+Tri

n . This result has the following implications:

� from Part (i) of Proposition 2 it follows that SP,M is not implied by CSDP+MC+Tri
n for p ≥ 1 and

m ≥ 2.
� since SP,M is not implied by CSDP+MC+Tri

n for p = 1 and m = 2, from the definition of relax-
ation (17) it immediately follows that the same statement holds for p = 2 and m = 1. Therefore,
by Part (ii) of Proposition 2 the same statement holds for p > 2 and m = 1.

The proof of Part (ii) then follows from the two cases above.

We conclude this section by remarking that if we ignore the sparsity of Problem QP, by Propo-
sition 2, the strongest relaxation is obtained by letting P = V . In this case, the resulting SDP
relaxation is stronger than both conventional RLT and SDP relaxations for |V | ≥ 3. Namely, let-
ting R = ∅, inequalities (17) simplifies to level-|V | RLT inequalities `(J, V \ J) ≥ 0 for all J ⊆ V ,
and letting R = V , inequalities (17) simplifies to the standard LMI Y � xx>. By Proposition 3,
the LMIs obtained by letting R ( V are not implied by Y � xx> for p = p + m = n + 0 ≥ 3.
Therefore, in its strongest form, relaxation (17) is strictly stronger than both RLT and SDP re-
laxations. However, the resulting SDP relaxation is of exponential size. Therefore, we exploit the
sparsity of Problem QP to choose plus and minus sets P,M carefully, hence, controlling the size of
the relaxation.

4 SDP-representability of QP(G)

In this section, we obtain a sufficient condition in terms of the structure of the graph G under
which QP(G) is SDP-representable. Recall that a set is SDP-representable if it is the projection of
a higher-dimensional set defined by LMIs. We first show that if G consists of two adjacent nodes
with plus loops, then the proposed SDP relaxation is an extended formulation for QP(G). This
result is a consequence of the following well-known result of Burer and Anstreicher [5]:

Proposition 4 (theorem 2 in [5]). Consider the set

C =
{

(z1, z2, z11, z12, z22) : z11 = z2
1 , z12 = z1z2, z22 = z2

2 , z1, z2 ∈ [0, 1]2
}
. (27)
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Then the convex hull of C is defined by the following inequalities: 1 z1 z2

z1 z11 z12

z2 z12 z22

 � 0

z11 ≤ z1, z22 ≤ z2

z12 ≥ 0, z1 − z12 ≥ 0, z2 − z12 ≥ 0, 1− z1 − z2 + z12 ≥ 0.

We then have the following result:

Lemma 5. Consider the graph G = (V,E, L) with V = {1, 2}, E = {{1, 2}}, and L = L+ =
{{1, 1}, {2, 2}}. Then QP(G) is defined by the following inequalities: 1 z1 z2

z1 z11 z12

z2 z12 z22

 � 0 (28)

z11 ≥
z2

12

z2
+

(z1 − z12)2

1− z2
, z22 ≥

z2
12

z1
+

(z2 − z12)2

1− z1
(29)

z12 ≥ 0, z1 − z12 ≥ 0, z2 − z12 ≥ 0, 1− z1 − z2 + z12 ≥ 0. (30)

Proof. Define the sets

C+ = {(z1, z2, z11, z12, z22) : z11 ≥ z2
1 , z12 = z1z2, z22 ≥ z2

2 , z1, z2 ∈ [0, 1]2},

and
C∞ := {(z1, z2, z11, z12, z22) : z1 = z2 = z12 = 0, z11 ≥ 0, z22 ≥ 0}.

We then have that C+ = C⊕C∞, where the set C is defined by (27) and ⊕ denotes the Minkowski sum
of sets. This, in turn, implies that QP(G) = conv(C+) = conv(C∞)⊕ conv(C). From Proposition 4
it follows that:

QP(G) =
{

(z1, z2, z11 + α, z12, z22 + β) :

 1 z1 z2

z1 z11 z12

z2 z12 z22

 � 0, z11 ≤ z1, z22 ≤ z2, z12 ≥ 0, z2 − z12 ≥ 0,

z1 − z12 ≥ 0, 1− z1 − z2 + z12 ≥ 0, α ≥ 0, β ≥ 0
}
.

Defining z′11 = z11 + α, z′22 = z22 + β, rewriting the positive semidefiniteness condition in terms
of the nonnegativity of the principal minors and using Lemma 2 in [12] to remove the redundant
principal minor inequality, we conclude that QP(G) is obtained by projecting out variables α and
β from the following system:

z12 ≥ 0, z1 − z12 ≥ 0, z2 − z12 ≥ 0, 1− z1 − z2 + z12 ≥ 0

z′11 − α ≥ z2
1 , z

′
22 − β ≥ z2

2

(z′11 − α− z2
1)(z′22 − β − z2

2) ≥ (z12 − z1z2)2

z′11 − α ≤ z1, z
′
22 − β ≤ z2

α ≥ 0, β ≥ 0.
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Notice that the inequalities in the first line of the above system coincide with McCormick in-
equalities (30). To project out α, β from the remaining inequalities, first, consider the inequalities
containing α:

z′11 − α ≥ z2
1 (31)

(z′11 − α− z2
1)(z′22 − β − z2

2) ≥ (z12 − z1z2)2 (32)

z′11 − α ≤ z1 (33)

α ≥ 0. (34)

Projecting out α from (31) and (33) yields z2
1 ≤ z1, which is implied by the McCormick inequali-

ties (30). Projecting out α from (31) and (34) we get

z′11 ≥ z2
1 . (35)

Projecting out α from (32) and (33) gives

(z1 − z2
1)(z′22 − β − z2

2) ≥ (z12 − z1z2)2,

while projecting out α from (32) and (34) gives

(z′11 − z2
1)(z′22 − β − z2

2) ≥ (z12 − z1z2)2.

Next, consider the remaining inequalities containing β:

z′22 − β ≥ z2
2 (36)

z′22 − β ≤ z2 (37)

(z1 − z2
1)(z′22 − β − z2

2) ≥ (z12 − z1z2)2 (38)

(z′11 − z2
1)(z′22 − β − z2

2) ≥ (z12 − z1z2)2 (39)

β ≥ 0. (40)

Projecting out β from (36) and (37) yields z2
2 ≤ z2, which is implied by inequalities (30). Projecting

out β from (36) and (40) yields
z′22 ≥ z2

2 . (41)

Projecting out β from (37) and (38) yields:

(z1 − z2
1)(z2 − z2

2) ≥ (z12 − z1z2)2. (42)

We now show that inequality (42) is implied by the McCormick inequalities (30). First, suppose
that z12 − z1z2 ≥ 0. In this case, by z12 ≤ z1, we have z12 − z1z2 ≤ z1(1 − z2), while by z12 ≤ z2,
we have z12 − z1z2 ≤ z2(1 − z1). Multiplying the two inequalities and using z12 − z1z2 ≥ 0, we
obtain (42). Next, suppose that z12 − z1z2 ≤ 0. In this case, by z12 ≥ z1 + z2 − 1, we have
z1z2 − z12 ≤ z1z2 − z1 − z2 + 1, while by z12 ≥ 0, we have z1z2 − z12 ≤ z1z2. Multiplying these two
inequalities and using z1z2 − z12 ≥ 0, we obtain (42).

Projecting out β from (37) and (39) yields (z′11− z2
1)(z2− z2

2) ≥ (z12− z1z2)2. It can be checked
that, this inequality can be equivalently written as the first inequality in (29). Projecting out β
from (38) and (40) gives (z1 − z2

1)(z′22 − z2
2) ≥ (z12 − z1z2)2. Again, it can be checked that, this

inequality can be equivalently written as the second inequality in (29). Finally, projecting out β
from (39) and (40), we obtain

(z′11 − z2
1)(z′22 − z2

2) ≥ (z12 − z1z2)2. (43)

By Lemma 2 in [12], the three inequalities (35), (41), and (43) are equivalent to LMI (28). Therefore,
the statement follows.
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Observation 3. It can be checked that, inequalities (28)- (30) can be obtained by projecting

out variables z
{2}
11 , z

{1}
22 from system (24). Namely, the proposed SDP relaxation is an extended

formulation for QP(G) in this case. Moreover, notice that inequalities (29) are not redundant. To
see this, consider the point z̃1 = z̃2 = 1

2 , z̃11 = 1
3 , z̃12 = 0, z̃22 = 1. It is simple to check that

this point satisfies (28) and (30). Now consider the first inequality in (29). Substituting z̃ in this

inequality we obtain: 1
3 6≥ 0 +

( 1
2

)2

1
2

= 1
2 .

We make use of the following lemma to establish our next convex hull characterization.

Lemma 6. Let C, S0, S1 be three convex sets such that C = conv(S0 ∪ S1). Suppose that S̄0 and
S̄1 are extended formulations for S0 and S1, respectively. Then C̄ := conv(S̄0 ∪ S̄1) is an extended
formulation for C.

Proof. Suppose that the sets C, S0, S1 lie in the space x ∈ Rn. Since S̄0 and S̄1 are extended
formulations for S0 and S1, we can write S0 = projx S̄0 and S1 = projx S̄1, where projx denotes
the projection onto the x space. We then have:

C = conv((projx S̄0) ∪ (projx S̄1))

= conv(projx(S̄0 ∪ S̄1))

= projx conv(S̄0 ∪ S̄1)

= projx C̄,

where the second equality follows since projection commutes with union, and the third equality
follows since projection commutes with taking the convex hull.

The next result implies that if the graph G has two plus loops, then the proposed SDP relaxation
is an extended formulation for QP(G).

Theorem 4. Let G = (V,E,L) be a complete hypergraph and L = L+ = {{i, i}, {j, j}} for some
i 6= j ∈ V . Consider the convex set PP(G) defined by (5). Then an extended formulation for
PP(G) with |V |+ |E| − 1 additional variables is given by: `(J, V \ (J ∪ {i, j})) `(J ∪ {i}, V \ (J ∪ {i, j})) `(J ∪ {j}, V \ (J ∪ {i, j}))

`(J ∪ {i}, V \ (J ∪ {i, j})) ρ(i, J, V \ (J ∪ {i, j})) `(J ∪ {i, j}, V \ (J ∪ {i, j}))

`(J ∪ {j}, V \ (J ∪ {i, j})) `(J ∪ {i, j}, V \ (J ∪ {i, j})) ρ(j, J, V \ (J ∪ {i, j}))

 � 0, ∀J ⊆ V \ {i, j}

(44)[
`(J, V \ (J ∪ {i})) `(J ∪ {i}, V \ (J ∪ {i}))

`(J ∪ {i}, V \ (J ∪ {i})) ρ(i, J, V \ (J ∪ {i}))

]
� 0, ∀J ⊆ V \ {i} (45)[

`(J, V \ (J ∪ {j})) `(J ∪ {j}, V \ (J ∪ {j}))

`(J ∪ {j}, V \ (J ∪ {j})) ρ(j, J, V \ (J ∪ {j}))

]
� 0, ∀J ⊆ V \ {j} (46)

`(J, V \ J) ≥ 0, ∀J ⊆ V. (47)

Proof. First, observe that system (44)- (47) is obtained from system (17) by defining P := {i, j}
and M := V \{i, j}. Namely, LMI (44) is obtained by letting R = P , LMI (45) is obtained by letting
R = {i}, LMI (46) is obtained by letting R = {j}, and the RLT inequalities (47) are obtained by
letting R = ∅. Therefore, system (44)- (47) is a valid convex relaxation for PP(G). We next prove
that this system provides an extended formulation for PP(G).

We prove by induction on the number of nodes in M . In the base case, we have M = ∅,
implying that V = P = {i, j}. Using the identities `(∅, ∅) = 1, `(i, ∅) = zi, ρ(i, ∅, ∅) = zii, it can
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be checked that, in this case system (44)- (47) simplifies to system (24) (after replacing V = {1, 2}
with V = {i, j}). By Lemma 5 and Observation 3, system (24) is an extended formulation for
PP(G).

Henceforth, let |M | ≥ 1. Let k ∈ M . Let PP0(G) (resp. PP1(G)) denote the face of PP(G)
defined by zk = 0 (resp. zk = 1). Since by part (i) of Lemma 1, PP(G) is a closed set, by part (ii)
of Lemma 1 at every extreme point of PP(G) we have zk ∈ {0, 1}, and by part (iii) of Lemma 1 at
every extreme direction of PP(G) we have zk = 0, it follows that:

PP(G) = conv(PP0(G) ∪ PP1(G)). (48)

Let Ḡ = (V \ {k}, Ē, L) be a complete hypergraph, and let L = L+ = {{i, i}, {j, j}}. Since Ḡ is a
complete hypergraph with two plus loops and with one fewer node in M than the hypergraph G,
by the induction hypothesis, an extended formulation for PP(Ḡ) is given by: `(J, V \ (J ∪ {i, j, k})) `(J ∪ {i}, V \ (J ∪ {i, j, k})) `(J ∪ {j}, V \ (J ∪ {i, j, k}))

`(J ∪ {i}, V \ (J ∪ {i, j, k})) ρ(i, J, V \ (J ∪ {i, j, k})) `(J ∪ {i, j}, V \ (J ∪ {i, j, k}))

`(J ∪ {j}, V \ (J ∪ {i, j, k})) `(J ∪ {i, j}, V \ (J ∪ {i, j, k})) ρ(j, J, V \ (J ∪ {i, j, k}))

 � 0,

∀J ⊆ V \ {i, j, k}[
`(J, V \ (J ∪ {i, k})) `(J ∪ {i}, V \ (J ∪ {i, k}))

`(J ∪ {i}, V \ (J ∪ {i, k})) ρ(i, J, V \ (J ∪ {i, k}))

]
� 0, ∀J ⊆ V \ {i, k}[

`(J, V \ (J ∪ {j, k})) `(J ∪ {j, k}, V \ (J ∪ {j, k}))

`(J ∪ {j, k}, V \ (J ∪ {j, k})) ρ(j, J, V \ (J ∪ {j, k}))

]
� 0, ∀J ⊆ V \ {j, k}

`(J, V \ (J ∪ {k})) ≥ 0, ∀J ⊆ V \ {k}.

Denote by z̄ the vector consisting of all variables zv, v ∈ V \ {k}, ze for all e ∈ Ē, zJii for all
J ⊆ V \ {i, k} and zJjj for all J ⊆ V \ {j, k}, where as before we define z∅ii := zii and z∅jj := zjj . It
then follows that

PP0(G) =
{
z ∈ RV ∪E∪L : ∃ zJii, J ⊆ V \ {i}, J 6= ∅, zJjj , J ⊆ V \ {j}, J 6= ∅ such that zk = 0, ze = 0,

∀e ∈ E : e 3 k, zJii = 0, ∀J ⊆ V \ {i} : J 3 k, zJjj = 0,∀J ⊆ V \ {j} : J 3 k, z̄ ∈ PP(Ḡ)
}
,

PP1(G) =
{
z ∈ RV ∪E∪L : ∃ zJii, J ⊆ V \ {i}, J 6= ∅, zJjj , J ⊆ V \ {j}, J 6= ∅ such that zk = 1, ze = ze\{k},

∀e ∈ E : e 3 k, zJii = z
J\{k}
ii ,∀J ⊆ V \ {i} : J 3 k, zJjj = z

J\{k}
jj ,∀J ⊆ V \ {j} : J 3 k,

z̄ ∈ PP(Ḡ)
}
.

From (48), Lemma 6, and the standard disjunctive programming technique [6, 29], it follows that
an extended formulation for PP(G) is given by:

λ0 + λ1 = 1, λ0 ≥ 0, λ1 ≥ 0 (49)

zv = z0
v + z1

v , ∀v ∈ V (50)

ze = z0
e + z1

e , ∀e ∈ E (51)

zJii = z0,J
ii + z1,J

ii , ∀J ⊆ V \ {i} (52)

zJjj = z0,J
jj + z1,J

jj , ∀J ⊆ V \ {j} (53)

z0
k = 0 (54)

z0
e = 0, ∀e ∈ E : e 3 k (55)
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z0,J
ii = 0, ∀J ⊆ V \ {i} : J 3 k (56)

z0,J
jj = 0, ∀J ⊆ V \ {j} : J 3 k (57) `0(J, V \ (J ∪ {i, j, k})) `0(J ∪ {i}, V \ (J ∪ {i, j, k})) `0(J ∪ {j}, V \ (J ∪ {i, j, k}))

`0(J ∪ {i}, V \ (J ∪ {i, j, k})) ρ0(i, J, V \ (J ∪ {i, j, k})) `0(J ∪ {i, j}, V \ (J ∪ {i, j, k}))

`0(J ∪ {j}, V \ (J ∪ {i, j, k})) `0(J ∪ {i, j}, V \ (J ∪ {i, j, k})) ρ0(j, J, V \ (J ∪ {i, j, k}))

 � 0,

∀J ⊆ V \ {i, j, k} (58)[
`0(J, V \ (J ∪ {i, k})) `0(J ∪ {i}, V \ (J ∪ {i, k}))

`0(J ∪ {i}, V \ (J ∪ {i, k})) ρ0(i, J, V \ (J ∪ {i, k}))

]
� 0, ∀J ⊆ V \ {i, k} (59)[

`0(J, V \ (J ∪ {j, k})) `0(J ∪ {j, k}, V \ (J ∪ {j, k}))

`0(J ∪ {j, k}, V \ (J ∪ {j, k})) ρ0(j, J, V \ (J ∪ {j, k}))

]
� 0, ∀J ⊆ V \ {j, k} (60)

`0(J, V \ (J ∪ {k})) ≥ 0, ∀J ⊆ V \ {k} (61)

z1
k = λ1 (62)

z1
e = z1

e\{k}, ∀e ∈ E : e 3 k (63)

z1,J
ii = z

J\{k}
ii , ∀J ⊆ V \ {i} : J 3 k (64)

z1,J
jj = z

J\{k}
jj , ∀J ⊆ V \ {j} : J 3 k (65) `1(J, V \ (J ∪ {i, j, k})) `1(J ∪ {i}, V \ (J ∪ {i, j, k})) `1(J ∪ {j}, V \ (J ∪ {i, j, k}))

`1(J ∪ {i}, V \ (J ∪ {i, j, k})) ρ1(i, J, V \ (J ∪ {i, j, k})) `1(J ∪ {i, j}, V \ (J ∪ {i, j, k}))

`1(J ∪ {j}, V \ (J ∪ {i, j, k})) `1(J ∪ {i, j}, V \ (J ∪ {i, j, k})) ρ1(j, J, V \ (J ∪ {i, j, k}))

 � 0,

∀J ⊆ V \ {i, j, k} (66)[
`1(J, V \ (J ∪ {i, k})) `1(J ∪ {i}, V \ (J ∪ {i, k}))

`1(J ∪ {i}, V \ (J ∪ {i, k})) ρ1(i, J, V \ (J ∪ {i, k}))

]
� 0, ∀J ⊆ V \ {i, k} (67)[

`1(J, V \ (J ∪ {j, k})) `1(J ∪ {j, k}, V \ (J ∪ {j, k}))

`1(J ∪ {j, k}, V \ (J ∪ {j, k})) ρ1(j, J, V \ (J ∪ {j, k}))

]
� 0, ∀J ⊆ V \ {j, k} (68)

`1(J, V \ (J ∪ {k})) ≥ 0, ∀J ⊆ V \ {k}, (69)

where we define

z0
∅ := λ0

`0(J, V \ (J ∪ {k})) :=
∑

t:t⊆V \(J∪{k})

(−1)|t|z0
J∪t, ∀J ⊆ V \ {k}

ρ0(i, J, V \ (J ∪ {i, k})) =
∑

t:t⊆V \(J∪{i,k})

(−1)|t|z0,J∪t
ii , ∀J ⊆ V \ {i, k}

z1
∅ := λ1

`1(J, V \ (J ∪ {k})) :=
∑

t:t⊆V \(J∪{k})

(−1)|t|z1
J∪t, ∀J ⊆ V \ {k}

ρ1(i, J, V \ (J ∪ {i, k})) :=
∑

t:t⊆V \(J∪{i,k})

(−1)|t|z1,J∪t
ii , ∀J ⊆ V \ {i, k}.

That is, `0(·, ·) (resp. `1(·, ·)) is obtained from `(·, ·) by replacing zv with z0
v (resp. z1

v) for all v ∈ V ,
ze with z0

e (resp. z1
e ) for all e ∈ E and z∅, with z0

∅ (resp. z1
∅). Similarly, ρ0(i, ·, ·) (resp. ρ1(i, ·, ·)) is

obtained from ρ(i, ·, ·) by replacing zJii with z0,J
ii (resp. z1,J

ii ) for all J ⊆ V \ {i}.
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In the remainder of the proof, we project out variables λ0, λ1, z
0, z1 from the above system

and show that the resulting system coincides with system (44)- (47). First, from (49), (50) (54),
and (62) it follows that

λ0 = 1− zk, λ1 = zk. (70)

Next, from (51), (55), and (63), we get that:

z1
e = z1

e\{k} = ze ∀e ∈ E : e 3 k (71)

z0
e\{k} = ze\{k} − ze ∀e ∈ E : e 3 k (72)

Similarly, from (52), (53), (56), (57), (64), and (65) it follows that

z1,J
ii = z

1,J\{k}
ii = zJii, ∀J ⊆ V \ {i} : J 3 k (73)

z
0,J\{k}
ii = z

J\{k}
ii − zJii, ∀J ⊆ V \ {i} : J 3 k (74)

z1,J
jj = z

1,J\{k}
jj = zJii, ∀J ⊆ V \ {j} : J 3 k (75)

z
0,J\{k}
jj = z

J\{k}
jj − zJjj , ∀J ⊆ V \ {j} : J 3 k. (76)

We use equation (70) to project out λ0, λ1, equation (71) to project out z1
v for all v ∈ V \ {k}

and for all z1
e for all e ∈ Ē, equation (72) to project out z0

v for all v ∈ V \ {k} and z0
e for all

e ∈ Ē, equation (73) (resp. equation (75)) to project out z1,J
ii (resp. z1,J

jj ) for all J ⊆ V \ {i, k}
(resp. J ⊆ V \ {j, k}), and we use equation (74) (resp. (76)) to project out z0,J

ii (resp. z0,J
jj ) for all

J ⊆ V \ {i, k} (resp. J ⊆ V \ {j, k}). By making these substitutions, for any J ⊆ V \ {k}, we get:

`0(J, V \ (J ∪ {k})) =
∑

t⊆V \(J∪{k})

(−1)t(zJ∪t − zJ∪{k}∪t)

=`(J, V \ (J ∪ {k}))− `(J ∪ {k}, V \ (J ∪ {k}))
=`(J, V \ J) (77)

`1(J, V \ (J ∪ {k})) =
∑

t⊆V \(J∪{k})

(−1)tzJ∪t

=`(J ∪ {k}, V \ (J ∪ {k})). (78)

Similarly, for each J ⊆ V \ {i, k}, we get:

ρ0(i, J, V \ (J ∪ {i, k})) =
∑

t⊆V \(J∪{i,k})

(−1)t(zJ∪tii − z
J∪{k}∪t
ii )

=ρ(i, J, V \ (J ∪ {i, k}))− ρ(i, J ∪ {k}, V \ (J ∪ {i, k}))
=ρ(i, J, V \ (J ∪ {i})) (79)

ρ1(i, J, V \ (J ∪ {i, k})) =
∑

t⊆V \(J∪{i,k})

(−1)tz
J∪{k}∪t
ii

=ρ(i, J ∪ {k}, V \ (J ∪ {i, k})). (80)

First, substituting (77) and (78) into (61) and (69) we get RLT inequalities (47). Next, substitut-
ing (77) and (79) into LMI (58), we get `(J, V \ (J ∪ {i, j})) `(J ∪ {i}, V \ (J ∪ {i, j})) `(J ∪ {j}, V \ (J ∪ {i, j}))

`(J ∪ {i}, V \ (J ∪ {i, j})) ρ(i, J, V \ (J ∪ {i, j})) `(J ∪ {i, j}, V \ (J ∪ {i, j}))

`(J ∪ {j}, V \ (J ∪ {i, j})) `(J ∪ {i, j}, V \ (J ∪ {i, j})) ρ(j, J, V \ (J ∪ {i, j}))

 � 0,∀J ⊆ V \{i, j, k},

(81)
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Similarly, substituting (78) and (80) into LMI (66), we get `(J ∪ {k}, V \ (J ∪ {i, j, k})) `(J ∪ {i, k}, V \ (J ∪ {i, j, k})) `(J ∪ {j, k}, V \ (J ∪ {i, j, k}))

`(J ∪ {i, k}, V \ (J ∪ {i, j, k})) ρ(i, J ∪ {k}, V \ (J ∪ {i, j, k})) `(J ∪ {i, j, k}, V \ (J ∪ {i, j, k}))

`(J ∪ {j, k}, V \ (J ∪ {i, j, k})) `(J ∪ {i, j, k}, V \ (J ∪ {i, j, k})) ρ(j, J ∪ {k}, V \ (J ∪ {i, j, k}))

 � 0,

∀J ⊆ V \ {i, j, k} (82)

The two LMI systems (81) and (82) can be equivalently written as one LMI system given by (44).
Similarly, substituting (77) and (79) into LMI (58), we get[

`(J, V \ (J ∪ {i})) `(J ∪ {i}, V \ (J ∪ {i}))

`(J ∪ {i}, V \ (J ∪ {i})) ρ(i, J, V \ (J ∪ {i}))

]
� 0, ∀J ⊆ V \ {i, k}, (83)

while substituting (78) and (80) into LMI (67), we get[
`(J ∪ {k}, V \ (J ∪ {i, k})) `(J ∪ {i, k}, V \ (J ∪ {i, k}))

`(J ∪ {i, k}, V \ (J ∪ {i, k})) ρ(i, J ∪ {k}, V \ (J ∪ {i, k}))

]
� 0, ∀J ⊆ V \ {i, k} (84)

The two LMI systems (83) and (84) can be equivalently written as one LMI system given by (45).
By symmetry, following an identical line of argument, we deduce that by projecting out the extra
variables from LMIs (60) and (68), we obtain LMIs (46). Therefore, system (44)-(47) is an extended
formulation for PP(G). Finally, observe that the extra variables in this extended formulation are
zJii for all nonempty J ⊆ V \ {i} and zJjj for all nonempty J ⊆ V \ {j}. Since G is a complete
hypergraph, V ∪ E consists of all nonempty subsets of V . Therefore, we have |V | + |E| − 1 extra
variables.

By Theorem 4 and Lemma 2, the following result is immediate:

Corollary 1. Let G = (V,E, L) be a complete graph with L = L+ = {{i, i}, {j, j}}. Then an
extended formulation for QP(G) is given by inequalities (44)- (47).

We next show that if the graph G is sparse, then one can obtain a significant generalization
of Corollary 1. Consider a graph G = (V,E, L) and as before denote by Vc, c ∈ C the connected
components of GV + , where GV + is the subgraph of G induced by V + defined by (7). Hence-
forth, if |Vc| ≤ 2 for all c ∈ C, we say that G does not have any connected-plus-triplet. Thanks
to Proposition 1 and Theorem 4, we next present a sufficient condition under which QP(G) is
SDP-representable.

Theorem 5. Consider a graph G = (V,E, L). If G does not have any connected-plus-triplets, then
QP(G) admits a SDP-representable formulation with O(2|V |) variables and inequalities.

Proof. Since G does not have any connected-plus-triplets, we have |Vc| ≤ 2 for all c ∈ C. Therefore,
by Proposition 1, an extended formulation for QP(G) is given by putting together formulations for
PP(G′c), c ∈ C ∪ {0}, where for each c ∈ C, the hypergraph G′c has either one or two plus loops
and the hypergraph G′0 has no plus loops. Consider some c ∈ C; if G′c has one plus loop, then
from Lemma 2, Theorem 2 and Observation 2 it follows that PP(G′c) is SDP-representable. If G′c
has two plus loops, then from Lemma 2 and Theorem 4 it follows that PP(G′c) is SDP-representable.
In either case, the extended formulation contains O(2|V \V

+|) variables and inequalities. Finally,
consider G′0; since G′0 has no plus loops, PP(G′0) coincides with the multilinear polytope MP(G′0)
and therefore an extended formulation for it is given by Theorem 1 which as O(2|V \V

+|) variables
and inequalities. We then conclude that QP(G) is SDP-representable. Moreover, using the fact
that (|V +| + 1)2|V \V

+| ≤ 2|V |, we infer that this extended formulation has O(2|V |) variables and
inequalities.
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It is important to note that the proof of Theorem 5 is constructive. However, the resulting
extended formulation may not be of polynomial size. In the next section, we obtain a sufficient
condition under which QP(G) admits a polynomial-size SDP-representable formulation that can be
constructed in polynomial time.

5 Polynomial-size SDP-representable formulations

In this section, we obtain a sufficient condition under which the extended formulation of Theorem 5
is of polynomial size. Consider a graph G = (V,E,L). Recall that if L = ∅, then QP(G) coincides
with the Boolean quadric polytope BQP(G), a well-known polytope that has been thoroughly
studied by the integer programming community [27, 19]. As we discussed in Section 1, a bounded
treewidth for G is a necessary and sufficient condition for the existence of polynomial-size linear
extended formulations for BQP(G). This suggests that assuming

tw(G) ∈ O(log |V |), (85)

is reasonable for obtaining a polynomial-size SDP-representable formulation for QP(G) as well. Now
consider the hypergraphs G′c for c ∈ C, as defined in the proof of Theorem 5. Clearly, Theorem 2
and Theorem 4 provide polynomial-size extended formulations for PP(G′c), c ∈ C, only if

|Vc|+ |N(Vc)| ∈ O(log |V |), ∀c ∈ C, (86)

where N(Vc) is defined by (8). We next prove that conditions (85) and (86) are, in fact, sufficient
to guarantee that the extended formulation of Theorem 5 is of polynomial size.

Theorem 6. Consider a graph G = (V,E, L). Suppose that the following conditions are satisfied:

(i) G does not have any connected-plus-triplets.
(ii) The treewidth of G is bounded; i.e., tw(G) ∈ O(log |V |).

(iii) The degree of each node with a plus loop is bounded; i.e., deg(v) ∈ O(log |V |) for all v ∈ V +,
where V + is defined by (7).

Then QP(G) admits a polynomial-size SDP-representable formulation that can be constructed in
polynomial time.

Notice that, given a graph G = (V,E, L), one can check in polynomial time whether it satisfies
conditions (i)-(iii) of Theorem 6.

To prove Theorem 6, we need to introduce some tools and terminology. Given a graph G =
(V,E), a tree decomposition of G is a pair (X , T ), where X = {X1, · · · , Xm} is a family of subsets
of V , called bags, and T is a tree with m nodes, where each node of T corresponds to a bag such
that:

1. V =
⋃
i∈[m]Xi.

2. For every edge {vj , vk} ∈ E, there is a bag Xi for some i ∈ [m] such that Xi 3 vj , vk.
3. For each node v ∈ V , the set of all bags containing v induces a connected subtree of T .

The width ω(X ) of a tree decomposition (X , T ) is the size of its largest bag Xi minus one. The
treewidth tw(G) of a graph G is the minimum width among all possible tree decompositions of
G. Given a hypergraph G = (V,E), the intersection graph of G is the graph with node set
V , where two nodes v, v′ ∈ V are adjacent if v, v′ ∈ e for some e ∈ E. We define the tree
decomposition and treewidth of a hypergraph G = (V,E), as the tree decomposition and treewidth
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of its intersection graph. For a graph (resp. hypergraph) with loops, i.e., G = (V,E, L), we define
its tree decomposition and treewidth as the tree decomposition and treewidth of the corresponding
loopless graph (resp. hypergraph); i.e., (V,E).

In [35, 24, 8], the authors proved that if a hypergraph G has a bounded treewidth, then the
multilinear polytope MP(G) admits a polynomial-size extended formulation.

Proposition 5. Let G = (V,E) be a hypergraph with tw(G) = κ. Then MP(G) has a linear ex-
tended formulation with O(2κ|V |) variables and inequalities. Moreover, if κ ∈ O(log poly(|V |, |E|)),
then MP(G) has a polynomial-size extended formulation that can be constructed in polynomial time.

To prove Theorem 6, we need to show that the treewidth of the intersection graph of the
hypergraph G′0 defined in the proof of Theorem 5 is not “too large”. The next two lemmata
establish this fact. In the following, given a graph G = (V,E) and a node v ∈ V , we say that the
graph G− v := (V ′, E′) is obtained from G by removing v if V ′ = V \ {v} and E′ = {{i, j} ∈ E :
i 6= v, j 6= v}.

Lemma 7. Let G = (V,E) be a graph with tw(G) = κ. Let C ⊆ V be such that the induced
subgraph GC of G is a connected graph. Denote by H a graph obtained from G by (i) adding all
edges between nodes of N(C), where N(C) is defined by (8), and (ii) removing all nodes in C.
Then the treewidth of H is upper bounded by

tw(H) ≤ max(κ, |N(C)| − 1). (87)

Proof. If |N(C)| ≤ 1, then the statement holds trivially, because H is a subgraph of G. Henceforth,
let |N(C)| ≥ 2. Consider a tree-decomposition (X , T ) of G with width ω(X ) = k. For each v̄ ∈ V ,
denote by Wv̄ the set of nodes in T whose corresponding bags contain v̄. Note that by Property 3
of a tree decomposition, Wv̄ induces a connected subtree of T , which we denote by Tv̄. Define
WC := ∪v∈CWv. Since for each v ∈ C, Tv is a connected subtree and GC is a connected graph,
from property 2 of a tree decomposition, we deduce that WC induces a connected subtree of T ,
which we denote by TC . Let t0 ∈ WC . Denote by U the node set of the tree T . Define a new tree
T̄ obtained from T by adding a new leaf t̄ to the parent node t0. Define X̄ := {X̄t, t ∈ U} ∪ {X̄t̄},
where:

X̄t :=

Xt \ C, t ∈ U,

N(C), t = t̄.
(88)

We claim that (T̄ , X̄ ) is a valid tree decomposition for H. To see this, we show that (T̄ , X̄ ) satisfies
the three properties of a tree decomposition:

1. For any v ∈ V \ C, we have v ∈ Xt for some t ∈ U , and by (88), we have v ∈ X̄t. Hence, all
nodes of H are present in some bag of X̄ .

2. Consider an edge {u, v} of H. There are two cases. In the first case, we have {u, v} ∈ E
implying that u, v /∈ C. In this case, we have {u, v} ∈ Xt for some t ∈ U . From (88), it follows
that {u, v} ∈ X̄t. In the second case, we have {u, v} /∈ E implying that u, v ∈ N(C), in which
case by (88) we have {u, v} ∈ X̄t̄. Therefore, all edges of H are in some bag in X̄ .

3. Consider some v ∈ V \ C. Recall that Wv denotes the set of nodes of T whose bags contain v.
By property 3 of a tree decomposition, the subtree of T induced by Wv is a connected subtree.
Two cases arise:
� if v /∈ N(C), then the set of nodes of T̄ whose bags contain v coincides with Wv. Therefore,

property 3 holds.
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� if v ∈ N(C), then the set of nodes of T̄ whose bags contain v is Wv∪{t̄}. Since {v, v′} ∈ E for
some v′ ∈ C, there exists t′ ∈ U such that v, v′ ∈ Xt′ . Therefore t′ ∈Wv ∩Wv′ ⊆Wv ∩WC .
Because WC induces a connected subtree containing t0, the unique path in T from t′ to t0
lies in the subtree induced by WC . Attaching t̄ to t0, yields a path from t′ to t̄ in T̄ , implying
that Wv ∪ {t̄} induces a connected subtree of T̄ . Therefore, property 3 holds.

Therefore, (T̄ , X̄ ) is a valid tree decomposition for H. By (88), we have |X̄t| ≤ |Xt| for all t ∈ U
and |X̄t̄| = |N(C)|, implying the validity of (87).

Lemma 8. Consider a graph G = (V,E) and let S ⊆ V be nonempty. Denote by GS the subgraph
of G induced by S. Denote by V1, · · · , Vp the connected components of GS, for some p ≥ 1. Define
G0 := G. For each i ∈ [p], let Gi be the graph obtained from Gi−1 by removing the nodes in Vi and
adding edges between the pairs of nodes in Gi−1 − Vi that are both adjacent to some node in Vi in
Gi−1. Define

N(Vi) := {u ∈ V \ Vi : ∃v ∈ Vi with {u, v} ∈ E}, ∀i ∈ [p],

and
dmax := max

i∈[p]
|N(Vi)|.

If tw(G) = κ, then
tw(Gp) ≤ max

(
κ, dmax − 1

)
,

where Gp is the graph obtained from G after p component removal and clique addition operations.

Proof. We prove by induction on the number p of component removal and clique addition opera-
tions. In the base case, we have p = 1, and the proof follows immediately from Lemma 7. Next,
by the induction hypothesis, suppose that after p = k component removal and clique addition
operations, we obtain a graph Gk with tw(Gk) ≤ max(κ, d′ − 1), where d′ = maxi∈[k] |N(Vi)|. Let
Gk = (V ′, E′). Consider the connected component Vk+1. Define

N ′(Vk+1) := {u ∈ V ′ \ Vk+1 : ∃v ∈ Vk+1 with {u, v} ∈ E′}.

Since Vk+1 ∩ N(Vi) = ∅ for all i ∈ [k] and no two nodes in Vi and Vj are adjacent for any
i 6= j ∈ [k + 1], we deduce that

N ′(Vk+1) = N(Vk+1).

Therefore, letting C = Vk+1 in Lemma 7, we deduce that

tw(Gk+1) ≤ max(tw(Gk), |N(Vk+1|)) = max(κ, d′′ − 1),

where d′′ = maxi∈[k+1] |N(Vi)|, and this completes the proof.

We are now ready to prove Theorem 6.

Proof of Theorem 6. Since by property (i) the graph G does not have any connected-plus-
triplets, we have |Vc| ≤ 2 for all c ∈ C. Therefore, by Proposition 1, an extended formulation for
QP(G) is given by putting together formulations for PP(G′c), c ∈ C ∪{0}, where for each c ∈ C, the
hypergraph G′c has one or two plus loops and the hypergraph G′0 has no plus loops. Consider some
c ∈ C. From the proof of Proposition 1 it follows that the hypergraph G′c has |Vc|+ |N(Vc)| nodes,
where N(Vc) is defined by (8). Moreover, |N(Vc)| ≤

∑
v∈Vc deg(v), where deg(v) denotes the degree

of node v. Since |Vc| ≤ 2 for all c ∈ C, from Theorem 2 and Theorem 4 it follows that an extended
formulation for PP(G′c) for any c ∈ C contains O(2deg(v1)) variables and inequalities if Vc = {v1}
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and O(2deg(v1)+deg(v2)) variables and inequalities if Vc = {v1, v2}. Since by property (iii), deg(v) ∈
O(log |V |) for any v ∈ V +, it follows that PP(G′c) admits a polynomial-size SDP-representable
formulation for any c ∈ C. Next, consider the hypergraph G0 and denote by H the intersection
graph of G0. Moreover, denote by G′ the intersection graph of the original hypergraph G. It then
follows that H can be obtained from G′ by performing |C| component removals and clique additions,
where these operations are defined in the statement of Lemma 7. Therefore, from Lemma 8 and
properties (i)-(iii) it follows that tw(G0) = tw(H) ∈ O(log |V |). Therefore, by Proposition 5,
the polytope PP(G0) admits a polynomial-size linear extended formulation. Finally, note that
properties (i)-(iii) can be checked in polynomial time and from the proof of Theorem 5 it follows
that the above extended formulation can be constructed in polynomial time as well. Therefore,
QP(G) has a polynomial-size SDP-representable formulation that can be constructed in polynomial
time.

In [18], the authors present a sufficient condition under which QP(G) admits a polynomial-size
SOC-representable formulation using a different proof technique. Their sufficient condition states
that the graph G admits a tree decomposition (X , T ), with X = {X1, · · · , Xm} satisfying the
following properties:

(I) for each bag Xj ∈ X , there exists at most one node v ∈ Xj such that v ∈ V +.
(II) the width of the tree decomposition is bounded; i.e., ω(X ) ∈ O(log |V |),

(III) for each node v ∈ V +, the spread of node v is bounded; i.e.,

sv(X ) :=
∑

i∈[m]:Xi3v

(|Xi| − 1) ∈ O(log |V |).

By property 2 of a tree decomposition, condition (I) implies that V + is a stable set of G. Again,
from property 2 of a tree decomposition it follows that for any tree decomposition (X , T ) of G, we
have:

sv(X ) ≥ deg(v), ∀v ∈ V.

Moreover, the authors of [18] leave open the question of whether a tree decomposition of G satisfying
conditions (I)-(III) can be constructed in polynomial time. Thanks to Theorem 6, we obtain a
stronger result on the SOC-representability of QP(G):

Corollary 2. Consider a graph G = (V,E, L). Suppose that the following conditions are satisfied:

(i) V + is a stable set of G.
(ii) The treewidth of G is bounded; i.e., tw(G) ∈ O(log |V |).

(iii) The degree of each node with a plus loop is bounded; i.e., deg(v) ∈ O(log |V |) for all v ∈ V +,
where V + is defined by (7).

Then QP(G) admits a polynomial-size SOC-representable formulation that can be constructed in
polynomial time.

Notice that, given a graph G = (V,E, L), one can check in polynomial time whether it satisfies
conditions (i)-(iii) of Corollary 2.

Recall that a graph is called series–parallel if and only if it does not contain a K4 minor, where
K4 denotes a complete graph with four nodes. Series-parallel graphs subsume several families of
graphs such as trees and forests, cycles and cactus graphs, among others. The treewidth of a series-
parallel graph is at most two. Thanks to Theorem 6, we obtain the following result for QP(G),
where G is a series-parallel graph.
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Corollary 3. Let G = (V,E, L) be a series-parallel graph. Suppose that G does not have any
connected-plus-triplets and deg(v) ∈ O(log |V |) for all v ∈ V +, where V + is defined by (7). Then
QP(G) admits a polynomial-size SDP-representable formulation that can be constructed in polyno-
mial time.

We conclude this section by discussing the significance of the assumptions in Theorem 6. As
noted above, assumption (i) is likely necessary. In contrast, assumptions (ii) and (iii) appear to
be artifacts of our proof techniques. Relaxing assumption (ii) would require extending Theorem 4
from the case of a complete hypergraph with two plus loops to a complete hypergraph with a larger
number of plus loops. Assumption (iii) is currently needed to control the size of extended formula-
tions for both PP(G′c), c ∈ C and PP(G′0). Removing this assumption would require new tools and
different proof techniques. We believe that the most natural direction to strengthen Theorem 6
is to relax assumption (ii); specifically, replacing condition |Vc| ≤ 2 for all c ∈ C by the weaker
requirement |Vc| ≤ k for some fixed k for all c ∈ C. Finally, performing an extensive computational
study with the proposed SDP relaxations for sparse box-constrained quadratic programs is a topic
of future research.

6 Connections with SDP hierarchies

The moment/Sums of Squares (SOS) hierarchy provides a sequence of SDP relaxations for poly-
nomial optimization problems, based on the duality between truncated moment sequences and
SOS-based positivity certificates [22, 28]. For polynomial optimization over a compact basic semial-
gebraic set satisfying an Archimedean condition, the sequence of SOS relaxations converges asymp-
totically to the global optimum [21]. In particular, when minimizing a polynomial over the unit
hypercube , the Archimedean property holds automatically, ensuring asymptotic convergence of
the hierarchy [21]. Finite convergence at some fixed relaxation level is not guaranteed in general,
but a result of Nie [26] shows that it holds under certain conditions at the global minimizers, and
therefore finite convergence is achieved generically (that is, finite convergence holds in the entire
space of input data except on a set of Lebesgue measure zero).

In the case of binary polynomial optimization, it is well-known that each level of RLT is implied
by the same level of Lasserre relaxation [23]. This implication relies crucially on the identity x2

i = xi
for xi ∈ {0, 1}, which collapses higher-degree monomials and ensures that moment constraints
encode all RLT inequalities. In contrast, for polynomial optimization over the unit hypercube, a
given level of Lasserre hierarchy does not necessarily dominate the same level of RLT hierarchy.
Since our proposed SDP relaxation (17) with r := |P | + |M | implies level-r RLT, we deduce that
this relaxation is not implied by level-r Lasserre relaxation either. However, as we describe next,
our SDP relaxations can be obtained as a special case of a more general hierarchy, often referred
to as the Schmüdgen hierarchy [30] or the Lasserre hierarchy with preordering in the literature.

We start by introducing some notation and terminology. We write R[x] for the ring of real
polynomials in the x variables. A polynomial σ ∈ R[x] is called a SOS polynomial if it can be
written as

σ(x) =
m∑
j=1

qj(x)2

for some polynomials qj ∈ R[x]. We denote by Σ[x] the cone of all SOS polynomials in R[x]. The
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preordering with square-free factors associated with the unit hypercube is defined as:

T :=

{ ∑
J1,J2⊆[n]:
J1∩J2=∅

σJ1,J2(x)f(J1, J2) : σJ1,J2 ∈ Σ[x], ∀J1, J2 ⊆ [n] : J1 ∩ J2 = ∅

}
,

where f(J1, J2) is the polynomial factor as defined by (9). Since the unit hypercube is a compact
set, Schmüdgen’s Positivstellensatz [30] implies that every polynomial that is strictly positive on
this set belongs to T . For a polynomial p ∈ R[x], let deg(p) denote its degree. Fix an integer d ≥ 1.
The truncated preordering at level d is defined as

Td =

{ ∑
J1,J2⊆[n]:
J1∩J2=∅

σJ1,J2(x)f(J1, J2) : σJ1,J2 ∈ Σ[x], deg
(
σJ1,J2f(J1, J2)

)
≤ d

}
.

If each multiplier σJ1,J2 is restricted to be a nonnegative constant, then Td yields exactly all RLT
inequalities up to level-d. Now, consider the problem of minimizing a polynomial function g(x)
over the unit hypercube. The associated Schmüdgen-type lower bound is given by:

max{γ ∈ R : g(x)− γ ∈ Td}.

The moment/SOS duality framework introduced by Lasserre [22] shows that the above problem
can be equivalently expressed as an SDP in terms of truncated moment sequences. Because the
unit hypercube is compact, the bounds produced by this hierarchy converge monotonically to the
global minimum of g(x) over [0, 1]n as d→∞ [22].

We next show that for a quadratic objective function g(x), our proposed SDP relaxations can be
considered as a special case of Schmüdgen hierarchy. Of course, the significance of our relaxations
is that under certain assumptions they are tight (see Theorem 5), while no such a guarantee is
available for the existing SDP hierarchies. Let G = (V,E,L) be a graph with V + as defined by (7).
By Proposition 1, without loss of generality we assume that the subgraph GV + of G induced by V +

is connected and that every node in V \ V + is connected to some node in V +. For a polynomial
p ∈ R[x], let supp(p) ⊆ V denote the index set of variables on which p depends nontrivially. We
then consider the following restricted version of the Schmüdgen hierarchy:

� Bounded SOS degree: each multiplier σJ1,J2 ∈ Σ[x] is a sum of squares of affine polynomials;
i.e.,

deg(σJ1,J2) ≤ 2. (89)

The intuition behind this restrictive assumption is that the objective function g(x) is quadratic.
� Disjoint support: for each J1, J2 ⊆ V with J1 ∩ J2 = ∅, the variables on which σJ1,J2 depends

correspond to some nodes of G with plus loops and are disjoint from the variables in the product
factors; i.e.,

supp(σJ1,J2) ⊆ V + \ (J1 ∪ J2). (90)

This assumption in particular implies that if J1∪J2 ⊇ V +, then σJ1,J2 is a nonnegative constant.

Using assumptions (89) and (90), for each d ∈ {1, · · · , |V |}, we define the cone:

T disj
d =

{ ∑
J1,J2⊆V
J1∩J2=∅

σJ1,J2(x)f(J1, J2) : σJ1,J2 ∈ Σ[x], deg(σJ1,J2) ≤ 2, supp(σJ1,J2) ⊆ V + \ (J1 ∪ J2),
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deg(σJ1,J2f(J1, J2)) ≤ d

}
. (91)

We then obtain the following lower bound on the minimum value of a quadratic function g(x)
over the unit hypercube:

max{γ ∈ R : g(x)− γ ∈ T disj
d }. (92)

We now obtain the dual of Problem (92) and relate it to our SDP relaxations. For notational
simplicity, define TJ1,J2 := supp(σJ1,J2). Let vTJ1,J2 (x) = (1, xi : i ∈ TJ1,J2)>. Let y = (yα)|α|≤d
be a truncated moment sequence of order d with y0 = 1. For any polynomial p with monomial
expansion p(x) =

∑
|α|≤d pαx

α, define the associated linear functional

Ly(p) :=
∑
|α|≤d

pαyα.

Since deg(σJ1,J2) ≤ 2, each multiplier admits a Gram representation:

σJ1,J2(x) = vTJ1,J2 (x)>QJ1,J2,TJ1,J2vTJ1,J2 (x),

where QJ1,J2,TJ1,J2 � 0 and is of size (1 + |TJ1,J2 |) × (1 + |TJ1,J2 |). Applying Ly to the constraint
set of Problem (92) yields

Ly(g)− γ =
∑
J1,J2

tr
(
QJ1,J2,TJ1,J2 Ly

(
f(J1, J2) vTJ1,J2v

>
TJ1,J2

))
.

In the following, we refer to any triple (J1, J2, TJ1,J2) satisfying J1, J2 ⊆ V , J1 ∩ J2 = ∅, TJ1,J2 ⊆
V +\(J1∪J2), and |J1|+|J2|+|TJ1,J2 | ≤ d, as an admissible triple. For any admissible (J1, J2, TJ1,J2),
define the localizing moment matrix as

MJ1,J2
TJ1,J2

(y) := Ly
(
f(J1, J2) vTJ1,J2v

>
TJ1,J2

)
.

From the definitions (11) and (16), it follows that:

`(J1, J2) = Ly(f(J1, J2)), ρ(i, J1, J2) = Ly(x
2
i f(J1, J2)).

Therefore, letting TJ1,J2 = {i1, · · · ip}, we deduce that the localizing moment matrix MJ1,J2
TJ1,J2

(y) can

be equivalently written as:

MJ1,J2
TJ1,J2

(y) =


`(J1, J2) `(J1 ∪ {i1}, J2) · · · `(J1 ∪ {ip}, J2)

`(J1 ∪ {i1}, J2) ρ(i1, J1, J2) · · · `(J1 ∪ {i1, ip}, J2)

...
...

. . .
...

`(J1 ∪ {ip}, J2) `(J1 ∪ {i1, ip}, J2) · · · ρ(ip, J1, J2)

 .

By self duality of the positive semidefinite cone, dualizing the constraints QJ1,J2,TJ1,J2 � 0 we obtain

MJ1,J2
TJ1,J2

(y) � 0 for all admissible (J1, J2, TJ1,J2). It then follows that the dual of Problem (92) is

the following SDP:

min
y=(yα)|α|≤d

Ly(g)

s.t. MJ1,J2
TJ1,J2

(y) � 0 for all admissible (J1, J2, TJ1,J2).
(93)
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Finally, letting R := TJ1,J2 , J = J1, and MR = J1 ∪ J2, and invoking Proposition 2, we deduce
the nonredundant LMIs defining the feasible set of Problem (93) coincide with the system of LMIs
defined by (17). From Theorem 4, it then follows that for a quadratic objective function g with
|V +| = 2, if we let d = |V |, then the lower bound given by Problem (93) is sharp. We leave it as
an open question whether a similar result can be obtained for |V +| > 2.
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