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Abstract

We study a two-stage admission and assignment problem under uncertainty arising in
university admission systems. In the first stage, applicants are admitted to an initial two-
year program. In the second stage, admitted applicants are assigned to degree programs
through an articulation mechanism subject to capacity constraints. Uncertainty stems
from the academic performance of admitted applicants within the initial program, as this
exit ranking determines the sequence in which students are processed by the articulation
mechanism. Admission decisions must therefore be robust to all possible exit orders,
giving rise to a robust stable matching problem.

We introduce a notion of robust compatibility for sets of admitted applicants and es-
tablish some of its properties. Building on a standard integer programming formulation
of stable matching, we derive an adversarial formulation that determines whether a given
admission set remains compatible under worst-case realizations of the exit order. This ad-
versarial model underpins a sequential admission algorithm that incrementally constructs
a robustly compatible set of applicants. Computational experiments on real admission
data from three consecutive cohorts show that computational effort is highly unevenly
distributed across iterations. In particular, certifying acceptance decisions is substantially
more expensive than certifying rejections, with overall running time dominated by a small
number of late iterations in highly congested regimes. We also address how the algorithm
has been applied in practice and highlight the benefits in first-year retention rate driven
by the proposed mechanism.
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1 Introduction

The Pontificia Universidad Catélica de Chile (PUC) has more than 30,000 undergraduate
students and, according to various international rankings, is considered one of the leading
universities in Latin America and among the top 100 universities worldwide. The undergrad-
uate admissions process at PUC is carried out through a centralized system that includes
nearly 50 Chilean universities (Bordon and Fu (2015); Rios et al. (2021); DEMRE (2026)).

In line with its institutional mission, PUC has developed several programs over the past
15 years aimed at increasing the inclusion of students with educational gaps while maintain-
ing high academic standards. Since 2010, multiple alternative admission pathways have been
implemented to facilitate access to PUC’s academic programs for students from low socioe-
conomic backgrounds, graduates of public secondary schools, Indigenous peoples, migrants,
and individuals with disabilities. In addition, PUC has adhered to inclusion programs devel-
oped by the Chilean government, such as those coordinated by the Ministry of Education and
DEMRE, thereby contributing to the strengthening of equity-oriented policies in access to
higher education in Chile (Rios et al. (2021); MINEDUC (2026a)). These initiatives have led
to a sustained increase in the enrollment of students admitted through equity-based pathways
in recent years, consolidating the university’s institutional commitment to a more inclusive
and diverse higher education institution.

In 2024, PUC developed a new academic program, Bachillerato Inicia, aimed exclusively
at students from technical-professional secondary education. In Chile, as in many Latin
American and European countries, upper secondary students can choose, during their final
two years of schooling, between an academically oriented track designed to prepare them for
higher education and a technical-professional track that prepares students for the labor market
in specific technical occupations (Salas-Velasco (2024)). In Chile, the proportion of students
graduating from technical-professional secondary education in 2024 represented 27% of total
upper secondary graduates (MINEDUC (2026b)), and a growing share of these students aspire
to continue into higher education. After two years of academic preparation, students enrolled
in Bachillerato Inicia articulate their studies into the regular undergraduate degree programs
offered by PUC.

The Bachillerato Inicia program has a special admissions process that considers students’
secondary school grade point average as well as specialized assessments of intra- and interper-
sonal skills. This selective process is designed to identify students with high academic potential

from technical-professional backgrounds and to facilitate their transition into university-level



studies, thereby strengthening equity in access to higher education. The Bachillerato Inicia
program allocates a fixed number of articulation places for entry into PUC’s regular un-
dergraduate degree programs. Although the total number of available articulation places is
approximately 2.4 times the number of students selected into the program, some articula-
tion programs are in particularly high demand among applicants, substantially exceeding the
number of places available for those specific programs.

This phenomenon of excess demand for certain programs is common in Chile in two-year
academic preparation programs that subsequently allow students to articulate into regular
undergraduate degrees at the host university. These programs typically operate with limited
places or vacancies and experience significant excess demand in specific fields. As a result,
many students become dissatisfied with the exit programs to which they are assigned and
choose to restart their educational trajectories the following year, thereby losing time and
resources. For example, in the 2024 admissions cycle, the Chilean university system offered
39 two-year academic programs with characteristics similar to Bachillerato Inicia. First-year
student retention rates in these programs were the lowest in the system, at approximately
40%, compared to 84% for the Chilean university system as a whole (MINEDUC (2026c¢)).
The issue of excess demand for certain programs or majors could also extend to the U.S. higher
education system, in which students typically select a college and subsequently a major, and
where competitive access to high-demand majors similarly generates bottlenecks and student
dissatisfaction (Bordon and Fu (2015)).

At the time of application to Bachillerato Inicia, students submit a preliminary declaration
of three academic programs, ranked according to their preferences for subsequent articulation.
The purpose of this preference declaration is to support a selection process that balances
students’ preferences with the availability of articulation places. For the 2026 cohort, 248
applicants advanced to the final stage of the Bachillerato Inicia selection process, while the
program had 125 available places. This implies that, at the final selection stage, nearly one in
two applicants is selected. At the end of the first year, students in this cohort will be able to
choose among 51 different academic programs, with a total of 305 articulation places. If the
125 students were selected strictly according to the admission ranking, constructed based on
secondary school performance and specialized assessments of intra- and interpersonal skills,
the first preferences of selected students would be concentrated in 29 of the 51 available
academic programs.

The purpose of this study is to develop a selection model for admission to the Bachillerato



Inicia program that balances students’ preferences with the availability of places in the uni-
versity’s regular undergraduate degree programs. The objective is to ensure that all selected
students are assigned, at the end of the first year, to one of the three academic programs
declared in their initial preference list. Critically, academic performance ranking at the end of
the first year determines which of the three declared preferences each student can access. This
requirement adds complexity to admission planning, as considering all possible exit-ranking
scenarios is computationally and practically infeasible. Furthermore, the absence of historical
data or robust predictive models exacerbates this complexity, making it difficult to reliably
estimate future academic performance and outcomes for admitted students.

By leveraging tools from stable matching (Gale and Shapley (1962)) and integer program-
ming (IP), we frame the admission problem faced by Bachillerato Inicia as a robust two-stage
stable matching problem under preference uncertainty, leading to the development of an algo-
rithm that has been successfully applied in the 2024, 2025, and 2026 admission cycles. More

precisely, our contributions are:

1. We introduce and formalize a class of robust two-stage college admission problems,

where programs share a common yet uncertain preference profile over students.

2. We introduce a notion of robust compatibility among students and study some of its

properties.

3. We develop an acceptance/rejection algorithm based on an adversarial IP formulation

of the stable matching problem.

4. We conduct numerical experiments on the 2024-2026 datasets and assess the actual

implementation of the algorithm by Bachillerato Inicia.

The remainder of the paper is organized as follows. In Section 2, we review the relevant
literature on stable matching under uncertainty. In Section 3, we formalize the robust ad-
mission problem and the concept of robust stability, with its properties studied in Section 4.
Then, in Section 5, we develop an IP-based algorithm to test robust compatibility of a given
set of students. Numerical results are presented in Section 6, while the implementation is

discussed in Section 7. Finally, conclusions are drawn in Section 8.



2 Literature review

The design of centralized admission mechanisms is grounded in the theory of stable matching,
initiated by the seminal work of Gale and Shapley (1962). They introduced the concept of sta-
bility, defined as the absence of blocking pairs, and the Deferred Acceptance (DA) algorithm,
which guarantees finding a stable matching. This framework was established as the canonical
theoretical foundation for two-sided matching markets by Roth and Sotomayor (1990) and
later adapted to school choice by Abdulkadiroglu and Sénmez (2003), who demonstrated that
student-optimal stable mechanisms eliminate justified envy and provide strategy-proofness
for students. While these classical models assume that agent preferences and institutional
priorities are fixed and known, recent literature has increasingly focused on environments
characterized by uncertainty and dynamic changes.

Early departures from the deterministic model focused on incomplete information regard-
ing agent preferences. Roth (1989) showed that stability and strategy-proofness are gener-
ally incompatible when preferences are private. This spurred a line of research investigating
stability concepts under various information structures, ranging from Bayesian settings to
informationally constrained environments (Chakraborty et al., 2010; Liu et al., 2014; Ehlers
and Massd, 2015; Bikhchandani, 2017). In these environments, the primary challenge is often
incentivizing truthfulness or defining stability when agents cannot perfectly identify blocking
pairs. Our setting differs as the uncertainty is not about hidden preferences, but about future
priorities (rankings) that simply do not exist at the time of the initial decision.

A critical distinction in modern matching literature is between robustness against strate-
gic manipulation and robustness against structural perturbations. Kojima (2011) formalized
robust stability as immunity to combined manipulation strategies (misreporting followed by
blocking) and showed that such robustness is achievable if and only if priority structures are
acyclic. Afacan (2012) extended this notion to group deviations and established an impossi-
bility result: no mechanism can satisfy group robust stability, even under acyclic priorities,
motivating weaker robustness notions. In contrast, Mai and Vazirani (2018) and more recently
Gangam et al. (2026) study robust stable matchings from a structural perspective, seeking
matchings that remain stable across multiple realized instances of preferences. Gangam et al.
(2026) demonstrate that while the set of robust matchings retains a lattice structure un-
der simple local changes, this structure collapses under general, multi-agent perturbations.
These results indicate that tractability can deteriorate under broad uncertainty, motivating

optimization-based approaches when seeking robust solutions. Other structural approaches



include the work of Genc et al. (2017) on supermatches that are resilient to breakups, and
Chen et al. (2021) on d-robustness against swap perturbations. Furthermore, Aziz et al. (2020)
showed that verifying stability guarantees can be NP-complete under uncertain preferences.

Our work is most closely related to the emerging field of two-stage stable matching, where
decisions are split temporally. Gajulapalli et al. (2020) and Bredereck et al. (2020) study how
to adapt stable matchings to evolving preferences or new arrivals without disrupting existing
assignments. Most notably, Faenza et al. (2024, 2025) have recently introduced a framework
for two-stage stochastic stable matching. Their model optimizes a first-stage matching to
minimize the expected cost of recourse (reassignment) after uncertainty is revealed, reducing
the problem to minimum cuts in rotation digraphs.

However, our problem differs fundamentally from these stochastic approaches. While
Faenza et al. (2024) focus on minimizing expected disutility under uncertainty, we address a
problem of robust feasibility. In the Bachillerato Inicia context, we cannot rely on recourse or
expectation; we must select a set of students in the first stage such that a stable assignment is
guaranteed in the second stage for every possible realization of the exit ranking (an adversarial
or worst-case approach). We do not seek a single matching that is stable across scenarios, but
rather a compatible admission set that allows for some stable matching to exist regardless
of how the priority order permutes. This constraint of zero-recourse feasibility under global
priority uncertainty defines a new class of robust two-stage stable matching problems that,

to our knowledge, has not been explicitly studied in the literature.

3 Problem description

Consider a set of applicants S seeking admission to an initial preparatory program, which
after a first stage of study allows students to articulate into a set of degree programs P. Each
applicant s € S has declared a strictly ordered subset of programs P; C P, representing
their preferences. Preferences are denoted by >s, where ¢ >s p means that applicant s
prefers program g over p. Conversely, each program p € P has a set of interested applicants
Sp ={s € S: pe P} and a predetermined number of available slots ¢,. We assume that
students prefer any program in their list to be left without a seat, denoted by (), and thus for
all s € S we extend >4 to Ps U {0} so that p >, () for all p € Ps. Similarly, we assume that
any program p € P prefers to fill its slots with any student in S, rather than leaving empty

seats.



First-stage problem (ex-ante admission). The objective is to determine a set S* C S
of applicants to be admitted into the initial program, while guaranteeing that all admitted
applicants can articulate for any realization of the exit ranking in the ex-post problem. In
this particular case, the preparatory program is interested in admitting as many applicants
as possible, giving priority to those with higher entrance ranking.

Second-stage problem (ex-post articulation). Consider the set of admitted appli-
cants S* C S who have completed the first year of the initial program and must be assigned
(articulated) to one of their declared undergraduate programs. An articulation mechanism
proceeds as follows: first, students in S* are ranked according to their exit ranking, rep-
resented by a strict priority order ». Students are reviewed sequentially, starting from the
highest-ranked student. For each student s, programs in their preference list Ps are checked in
descending order of priority t>;. The student is assigned to the highest-priority program that
still has available slots. Once a program reaches its capacity, it no longer accepts additional

students.

Definition 1. For any S* C S, the set of all strict total orders » over S* is denoted by
R(S*).

We interpret any » € R(S*) as an exit ranking or common preferences over S* used by

all programs in the articulation mechanism.

Definition 2. We say that S* C S is compatible with exit ranking » € R(S*) if all students

are matched to a preferred program by the articulation mechanism.

Definition 3. We say that S* C S is robustly compatible if, for all exit ranking » € R(S™),

S* is compatible with ».

Example 1 (Robust vs. non-robust compatibility). Consider three programs P = {A, B,C'}

with capacities (ca,cp,cc) = (2,2,1), and an admitted cohort S* = {1,2,3,4,5}. FEach

student s € S* has submitted a strict preference ranking >¢ over Ps = P, shown in Table 1.
We examine how different realizations of the exit ranking affect the compatibility of the

same admitted set.

Exit ranking o : 2 » 4» 5» 1 » 3. Students 2 and 4 are processed first and occupy the
two available seats in program A. Student 5 is then assigned to program B. When student 1
1s considered, program A is already full, so she is assigned to her second choice, B, completing
its capacity. Finally, student 3 is assigned to the only remaining seat in program C. Thus,

under ranking o, all students in S* are successfully articulated, and S* is compatible with «.



S |>5

1 A>BpC
2 ApBp>C
3 C>Br A
4 A>Cp> B
5 B> A>C

Table 1: Applicants’ preference rankings.

Ezxit ranking S : 2 » 4 » 5 p» 3 » 1. The first three assignments coincide with those
under «: program A becomes full, and one seat in B is taken. However, student 3 mow
appears earlier and claims the only seat in program C. When student 1 is processed last, all
programs in her preference list are already at capacity. She therefore remains unmatched, and

the same cohort S* is incompatible with ranking B.

This example illustrates that compatibility of an admitted set may depend on the realized
exit ranking. Indeed, while S* is compatible with some rankings, it fails to be compatible with
others. By contrast, if the admitted set is reduced to S* = {1,2,3,4}, then all four students
can be matched for every one of the 4! possible exit rankings. Hence, {1,2,3,4} is robustly

compatible, whereas admitting student 5 violates robustness.

It can be observed that the articulation mechanism corresponds to a simple serial dictator-
ship, which yields a unique assignment given S* C S and exit ranking » € R(S*). Moreover,
such an assignment is a stable matching. This connection allows us to draw tools from the

rich literature on the subject. In the following section, we formalize the model.

4 Definitions and basic properties

Definition 4. A pair (s,p) € S x P is admissible if p € Ps, or equivalently in our case, if
s € Sp. The set of admissible pairs is denoted by A, and for S* C §, its restriction to S* x P
is denoted by A(S*).

Definition 5. For p C A, we write u(s) ={p € P: (s,p) € pu} for s € S and u(p) = {s €
S : (s,p) € p} for p € P. A matching is a set 1 C A such that |u(s)| < 1 for all s € S
and |u(p)| < ¢p for all p € P. If u(s) = {p}, we simply write pu(s) = p. For §* C S, an
S*-matching is a matching p C A(S¥).



Definition 6. Given an S*-matching u C A(S*) and » € R(S*), a pair (s,p) € A(S*) \ p
blocks g under » if (i) p(s) =0 or p > p(s) and (ii) |u(p)| < ¢p or [{t € p(p) : s» t} > 1.

If x has no blocking pair under », u is a »-stable matching.

In other words, a matching g is not »-stable if there exists an admissible pair (s,p),
unmatched to each other by u, such that s prefers to be matched to p (either because she
is unmatched or matched to a program she prefers less than p) and p is willing to accept s
(either because it has empty slots or one of them is occupied by another student it prefers
less than s under »).

In general, there can be multiple stable matchings when programs have different priorities
over students. However, the situation simplifies substantially when programs share a common

preference profile as in our case. Proposition 2 will be instrumental in our developments.

Proposition 2 (Irving et al. (2008)). For any S* C S and » € R(S*), the assignment given

by the articulation mechanism is the only possible »-stable matching.

Proposition 3 below shows that the collection of robustly compatible sets is down-monotone
or closed under inclusion. This property ensures that if an admitted student declines to enroll,
a situation that can occur in actual admission processes, the remaining admitted students still

form a robustly compatible set.

Proposition 3. Let S, S* C S be such that S’ C S* and S* is robustly compatible. Then, S’

1s robustly compatible.

Proof. Fix an arbitrary exit ranking »’ € R(S’) and consider any extension »* € R(S*)
such that s »* ¢ for all s € §" and ¢ € S* \ S’. Note that the execution of the articulation
mechanism over S’ under »’ is equivalent to halting its execution over S* under »* once all
students in S’ are processed. Since S* is robustly compatible, the latter matches all students

in S*, in particular, those in S’. Since »’ € R(S’) was arbitrary, S’ is robustly compatible. [

Propositions 5 and 4 below show that as students gain more flexibility in choosing and

articulating to programs, robust compatibility is not lost.

Proposition 4. Let §* C S be robustly compatible. If students extend their list of preferred

programs, S* remains robustly compatible.

Proof. Let » € R(S*). If all students in S* are matched by the articulation mechanism under

», none of them will be matched to a new preferred program added at the end of their lists.



Therefore, the articulation mechanism yields the same matching and, in particular, S* remains

compatible with ». Since this holds for any » € R(S*), S* remains robustly compatible. [

Proposition 5. Let S* C S be robustly compatible. If the number of slots increases, S*

remains robustly compatible.

Proof. Let » € R(S*). It is known that the student-optimal stable matching cannot harm any
student when slots increase (Roth and Sotomayor (1990)). By Proposition 2, the uniqueness of
the stable matching implies it is student-optimal. Therefore, if all students in S* are matched
by the articulation mechanism under », they remain matched when slots increase, that is,
S* remains compatible with ». Since this holds for any » € R(S*), S* remains robustly

compatible. O

We close this section with Proposition 6, which will allow us to strengthen the IP formu-

lation to be presented in Section 5.

Proposition 6. Let S* C S be robustly compatible and let s € S\ S*. Then, for every
> € R(S* U{s}), the articulation mechanism over S* U {s} leaves at most one student

unmatched.

Proof. Fix an arbitrary exit ranking » € R(S*U{s}) and let 1 C A(S* U{s}) be the unique
S* U {s}-matching produced by the articulation mechanism under ». Let p C A(S*) be the
S*-matching produced by the articulation mechanism under the restriction of » to S*. By
robust compatibility of S*, p matches all students in S*. Let u be the number of unmatched
students produced by fi, i.e., u = [{t € S* U {s}: f(t) =0}

We compare the two executions of the mechanism (on S* and on S*U{s}) along the com-
mon order ». Consider the first student ¢; € S* in the order » having different assignments
between the two executions. If no such student exists, then all students in S* receive the
same program under p and (. Hence, i matches all students in S* and u < 1 trivially. If
t; exists, note that necessarily s » ¢;. Since t; is matched under pu, she has some assigned
program po = pu(t1) € P;, when only students in S* are considered. Because t¢; is the earliest
student whose assignment differs, ¢; must find py full in the execution on S* U {s} at the
moment she is processed, and moreover, her seat in pg must have been taken by s. Now,
in the execution on S* U {s}, student ¢; either becomes unmatched, or she is assigned to
some program p; € P such that pg >4 p1. If {1 becomes unmatched, after processing ¢,
all programs have the same number of remaining slots in both executions (because the only

change has been py accepting s instead of ¢1). Therefore, from that point on, both executions
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coincide and thus u = 1. Otherwise, t; is assigned to p; # pg, consuming one seat of p; that,
in the execution on S*, was either left empty or allocated later to some student of S*. If it
was left empty in the execution on S*, then this reassignment does not change the assignment
of remaining students, so © = 0 in this case. If it was allocated later to some student, then
there exists a set of students whose assignments are modified as a consequence, because the
displaced student must move to another acceptable program, and so on.

Formally, define a sequence of distinct students ¢1, t9, ... in S* as follows: for ¢ > 1, having
defined ¢; and its new assignment p; := [i(t;), let t;+1 be the earliest student (in the order
») whose assignment under p equals p; but who cannot be assigned to p; in the execution
on S* U {s} due to the seat taken by ¢;. If no such student exists, the sequence terminates.
By construction, the mechanism differs from p only along this single chain: each t; takes (in
the enlarged instance) a seat that was previously used (in the restricted instance) by t;41,
and all other students in S* keep their original assignment. Since the chain is triggered by
the insertion of a single student s, the chain can terminate in one of two ways: (i) some ¢;
is reassigned to a program that had an empty seat in the restricted instance and no student
becomes unmatched, or (ii) the last student in the chain has no acceptable program with
remaining capacity and becomes unmatched. In either case, at most one student can end up
unmatched and thus u < 1. Since » € R(S* U {s}) was arbitrary, the result holds for every

exit ranking. 0

5 An optimization problem for robust compatibility

Consider the second-stage problem over students S* C S and exit ranking » € R(S*). For
each admissible pair (s,p) € A(S*), let x4, be a binary decision variable indicating whether
student s is assigned to program p. Let X(S*) be the set of vectors = that represent an

S*-matching, that is, that satisfy

d ap<1 Vse s (1)
pEPs
Z:cspgcp Vpe P (2)
sESy

Tsp € {07 1} V(S,p) € A(S*)a (3)

where Sj = S, N S*. Constraints (1) and (2) ensure each student is assigned to at most
one program and program capacities are respected, respectively, while (3) impose binary con-

straints. Note that solutions in X (S*) may not necessarily respect the students’ preference
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order. To enforce this, it is enough to include the stability constraints from an IP formula-
tion of the many-to-one stable matching problem. Following Baiou and Balinski (2000), we

consider

CpTep + Cp Z Tsq + Z T > ¢p V(s,p) € A(SY). (4)

q€Ps:q>sp teSy:ths
Constraints (4) ensure, for each admissible pair (s,p), that either s is assigned to p or to a
more preferred program according to >, or p is full with higher-ranked students according to
». Since the ranking » is common to all programs in the current setting, by Proposition 2,
there is a unique =™ € X (S*) satisfying (4).

Remark. When ¢, = 1 for all p € P, we recover the classical one-to-one or marriage
problem. In that case, by relaxing constraints (3) to nonnegativity only, we obtain a polytope
whose vertices are binary vectors (Vate (1989); Rothblum (1992)). However, this is no longer
the case for general ¢, since the polytope might have fractional vertices (Baiou and Balinski
(2000)). Of course, as Rothblum (1992) suggests, we can split each program p into ¢, copies
with a unique available slot each, thus reducing the many-to-one to the one-to-one setting and
recovering integrality of extreme points. We are, however, increasing the number of variables
and constraints involved in the formulation, which can become rather expensive to solve if
the numbers are large.

We introduce a robust formulation by parameterizing the stability constraints. Define
a binary vector z¥, representing the exit ranking », with 2!, = 1 if and only if ¢ » s for

s,t € §*, s #t. Then, constraints (4) become
CpTsp + Cp Z Tsq + Z 2Ty > ¢y Y(s,p) € A(SY). (5)
qEPs:q>sp teS;: t#s

We now treat z* as an adversarial decision vector z rather than a fixed parameter. The
feasible set Z(S*) for exit rankings z corresponds to the set of linear orderings on S*, which

is described by

Zts +2q4 =1 Vs, t€S*: s#t (6)
st + 2 < zsu+1 Vs, t,bueS*: sEE tFu, uFts (7)
zst € {0,1} Vs, t € S*: s#t. (8)

Constraints (6) and (7) enforce antisymmetry and transitivity, respectively, while constraints

(8) define the variable domain.
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We seek a set S* C S that guarantees compatibility across all possible exit rankings

z € Z(5*). We verify (in)compatibility by solving the optimization problem

m(S*) =min Z Lsp

(s,p)EA(S*)
st sy + ¢ Z Toq + Z zsTp = ¢ V(s,p) € A(ST) (9)
qE€Psqsp 1S3 ts
xr € X(S%)
z € Z(S%).

The set S* is not robustly compatible if and only if m(S*) < |S*|, indicating that there exists

an exit ranking » € R(S™), represented by some z* € Z(S*), such that the unique matching

¥ = z*(2*) € X(S*) satisfying (9) leaves at least one student not assigned to a program.
To obtain a linear IP, we linearize the bilinear term z; sy, in (9) using auxiliary variables

wept along with the constraints

wspt < T V(s,p) € A(ST), t € S; s F£t (10)
wepr < 25 V(s,p) € A(ST), t€ S, s#L (11)
Wept > Tap + 25 — 1 V(s,p) € A(S™), t€ S, s#t (12)
wepr € {0,1}  V(s,p) € A(S™), t€ S, : s#H, (13)
transforming (9) into
CpTsp + Cp Z Toq + Z Wept > ¢p  V(s,p) € A(S™). (14)
qEPs:q>sp teSy: t#s

Defining W (S*) as the solution set of (10)—(14), we have that m(S*) is given by the optimal
value of (RobIP) defined by

(RobIP)  min Y Yz,

seS* pEPs

st. x € X(5%)
z € Z(S%)
(x,z,w) € W(S™).
We slightly modify the formulation of (RobIP) to improve computational performance.

First, note that constraints (13) can be relaxed to nonnegativity only and that constraints

(12) can be dropped altogether. Moreover, by writing (7) as
Zst + 2tu + 2us <2 Vs, t,u€ ST sEt, tFu, uFts (15)

13



and relaxing (6) to
2ts + 24 <1 Vs, te€S*: s#t, (16)

we obtain an equivalent formulation in the sense of having the same optimal value m(S*),
but having constraints of packing type which showed better computational performance.
Also, note that by Proposition 6, we have either m(S*) = [S*| or m(S*) = |S*| — 1.

Therefore, we include the constraint

SN a8 -1 (17)

SES* pGPs

to improve the lower bound given by the linear relaxation of (RobIP) and to stop solving
in case an integer feasible solution with objective value |S*| — 1 is found. We tried other
strategies, such as casting the optimization problem as a feasibility decision problem, but
ultimately adding constraint (17) reported the best computational performance.

Remark. The linear ordering polytope (Grotschel et al. (1985a)) is an intractable set
which is a face of the acyclic subgraph polytope (Grotschel et al. (1985b)), for which facets
and cutting planes methods have been studied (Leung and Lee (1994); Grotschel et al. (1984)).
Therefore, the sole inclusion of this set in the above formulation is likely to render the problem
intractable. This issue is worsened by the fact that to linearize the terms z;sxsy, we incur
in a cubic number of additional variables and constraints, thus exacerbating the difficulty of
solving the problem.

The acceptance/rejection algorithm (Algorithm 1) identifies a robust subset of students
from an initial set S = 1,...,n, ordered by their entrance ranking. The algorithm starts
with an empty set S* and sequentially considers each applicant s, computing m(S* U {s}).
If adding applicant s maintains robust compatibility, indicated by m(S* U {s}) = |S*| + 1,
the applicant is accepted into S*. Otherwise, she is rejected. This sequential process ensures
robustness against any possible exit ranking.

Remark. After each iteration where an applicant is admitted, the set S* increases and so
does the overall formulation size and solving time. Since the ground set changes over iterations,

the model is solved from scratch without retaining information from previous iterations.
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Algorithm 1 Acceptance/Rejection Algorithm for Robust Admission

Require: Applicants S = {1,...,n} ordered by entrance ranking; function m(-) returning
the number of students matched in the second-stage problem
Ensure: A robustly compatible subset S* C S
1: Initialize S* < ()
2: for each applicant s € S in entrance-ranking order do
3:  Compute m(S* U {s})
4: if m(S*U{s}) =|9*| + 1 then
5: S* +— S* U {s}

6: else

7 Reject applicant s
8 end if

9: end for

10: return S*

6 Numerical experiments

6.1 Data

We consider data from the 2024, 2025, and 2026 admission cycles of Bachillerato Inicia.
Table 2 reports the size of each instance in terms of the number of applicants, the number
of programs, and the total number of available articulation slots. We have that across the
three years, the instances exhibit a clear growth in scale. The number of applicants increases
substantially from 146 in 2024 to 248 in 2026, while the number of programs grows more
moderately, from 40 to 51. In contrast, the total number of slots remains relatively stable
across years, increasing only slightly from 273 to 305. This divergence between applicant
growth and relatively flat capacity levels anticipates increased congestion and competition in

later cohorts.

Year Applicants Programs Slots

2024 146 40 273
2025 206 50 303
2026 248 o1 305

Table 2: Instances size.

Figure 1 displays, for the 2026 instance, the distribution of applicants’ declared preferences
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across programs, disaggregated by first, second, and third choices, together with the avail-
able number of slots per program. Programs are sorted in decreasing order of total demand,
revealing a highly skewed demand profile: a small subset of programs attracts a dispropor-
tionately large number of applicants, while the majority of programs receive relatively low
demand. Moreover, the most demanded programs accumulate substantial mass not only from
first choices but also from second and third choices, suggesting that these programs play a
central role as both top preferences and fallback options. Conversely, programs in the lower-
demand tail tend to receive very few first-choice applications and are mostly supported by
lower-ranked preferences, if at all. The red line representing slots shows that capacities are
relatively homogeneous compared to demand, and do not scale proportionally with popular-
ity. As a result, several highly demanded programs face demand that substantially exceeds
their capacity, while many low-demand programs operate with slack capacity. Years 2024
and 2025 share almost identical patterns (skewed demand profile, mismatch between demand

concentration, and relatively flat capacities), and we thus omit their figures.
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Figure 1: Student preferences and available program slots.

Figure 2 depicts, for the 2026 year, the program co-occurrence graph induced by applicants’
preference lists. Nodes represent programs, and an undirected edge connects two programs
whenever there exists at least one applicant who listed both programs among their preferences.
Moreover, edge width is proportional to the frequency with which the connected programs
jointly appear in applicants’ lists. We observe that the graph exhibits a highly connected
structure. Apart from a small number of isolated nodes corresponding to programs that do

not appear in applicants’ lists, the graph contains a single giant connected component en-
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compassing almost all programs. In particular, there are no nontrivial connected components
that would allow the instance to be decomposed into smaller, independent subproblems. This
connectivity reflects substantial overlap in applicants’ preference sets, indicating that pro-
grams compete for applicants not only directly but also indirectly through chains of shared
preferences. As a consequence, allocation decisions at one program can propagate through
the entire system, affecting the stability of assignments elsewhere. From a computational
perspective, this structural property implies that the overall admission problem cannot be
simplified via graph-based decomposition techniques in an obvious way and must be solved
as a series of increasingly large instances. As with demand, for 2024 and 2025, the overall
topology of the co-occurrence graphs remains stable: they also exhibit dense cores with a few

peripheral or isolated programs. We thus omit the corresponding figures.
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Figure 2: Co-occurrence graph induced by applicants’ preference.

6.2 Results

Algorithm 1 was implemented in Python 3.12, using COPT 8.0.3 as IP solver (Ge et al.
(2022)). The computational experiments were run under Linux on a desktop computer with

an AMD Ryzen 9 9950X processor and 64 GB of RAM. Table 3 summarizes the main outcomes
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and computational characteristics of the algorithm for each instance.

Year Applicants Total accepted First rejected  90-th accepted Total time (minutes)

2024 146 97 69 129 6
2025 206 127 47 120 802
2026 248 135 61 115 217

Table 3: Summary of results per year.

The column Total accepted reports the final size of the robustly compatible set S*. Despite
the growth in the applicant pool, the number of accepted applicants increases at a slower
rate, from 97 in 2024 to 135 in 2026, reflecting tighter compatibility constraints as demand
intensifies.

The column First rejected indicates the iteration at which the first applicant is rejected.
In all instances, this occurs relatively early, well before the end of the process, signaling
that incompatibilities arise even when the admitted set is still small. The column 90-th
accepted reports the iteration at which the 90th applicant is accepted, providing a proxy for
the transition from the initial low-congestion regime to a more saturated phase. Notably,
this threshold is reached earlier in the larger instances, indicating that the system enters the
high-congestion regime sooner as the market grows.

Finally, Total time reports the overall running time of the algorithm in minutes. Com-
putational effort increases dramatically with instance size and congestion. While the 2024
instance is solved in a few minutes, the 2025 and 2026 instances require several orders of
magnitude more time. The non-monotonic relationship between instance size and total time
further highlights the sensitivity of the algorithm to structural properties of the data, rather

than scale alone.

6.3 Detailed results for 2026

We focus our analysis on the 2026 instance since most trends also appear in the 2024 and
2025 instances.

Figure 3 shows the cumulative number of accepted applicants as a function of the iteration.
The dashed line represents the identity function, which would correspond to the hypotheti-
cal case in which every tested applicant is accepted. We observe that the acceptance curve
initially follows the identity line, indicating that during the early iterations every applicant
tested can be feasibly admitted. This regime corresponds to a low-congestion phase in which

capacity and robustness constraints are largely nonbinding. As iterations progress, the accep-
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tance curve gradually bends away from the identity line, reflecting an increasing frequency
of rejections. This slowdown marks the onset of congestion: as the set of accepted appli-
cants grows, additional applicants are more likely to violate robustness conditions, leading to

rejections and a sublinear growth of the number of accepted applicants.

250 = Accepted

Identity y=s
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Number of accepted applicants
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Figure 3: Cumulative number of accepted applicants.

Regarding computational performance, Figure 4 reports the running time (in seconds) of
the first 230 iterations, out of 248, of Algorithm 1. Each iteration corresponds to testing the
inclusion of a single applicant, and bars are color-coded according to whether the applicant is
ultimately accepted (blue) or rejected (orange). Somewhat expected, running times exhibit
a clear increasing trend as the algorithm progresses. Early iterations are computationally
inexpensive, while later iterations become significantly more costly. This pattern reflects the
cumulative nature of the procedure: as more applicants are admitted, the size of (RobIP)
grows and verifying that an additional applicant can be included requires solving increasingly
complex problems. A salient feature of the results is that accepted applicants systematically
require more computational effort than rejected ones, especially in the later stages of the
algorithm. Intuitively, acceptance requires certifying that the applicant is compatible with
all currently admitted applicants, which involves verifying that all feasible solutions to the
IP match all students. In contrast, rejection can often be concluded earlier, once a feasible
solution that leaves a student unmatched is identified.

Table 4 reports detailed results for iterations 231-248, corresponding to the final appli-

cants processed. For each applicant, the table shows the acceptance decision, the total running
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Figure 4: Time spent testing the inclusion of each applicant.

time of the iteration (in seconds), and the number of branch-and-bound nodes explored by
the solver. Here, the contrast between accepted and rejected applicants is stark. Rejected
applicants are resolved almost immediately, with running times on the order of a few seconds
and negligible search effort, often requiring the exploration of only a handful of nodes. In
contrast, accepted applicants trigger extremely large search trees and dominate the computa-
tional cost of the algorithm, requiring between several hundred and several thousand seconds,
and involving the exploration of hundreds of thousands to several million branch-and-bound
nodes. These iterations correspond precisely to cases in which the algorithm must certify that
all feasible solutions of the underlying IP match all currently admitted applicants, a task that
is inherently more demanding than exhibiting a single violating solution.

Finally, Figure 5 compares the optimal value of the LP relaxation of (RobIP) without the
lower-bounding constraint (17) with the optimal IP value at each iteration. The blue bars
represent the LP optimum, while the orange bars show the remaining integrality gap. We
observe that, without additional constraints, the LP relaxation becomes increasingly loose as
the algorithm progresses, leading to a growing gap in later iterations. However, by Proposi-
tion 6, when the lower bound (17) is enforced, the LP objective differs from the IP optimum
by at most one unit at every iteration. In the absence of this lower bound, the IP solver would
need to generate additional cutting planes and explore substantially larger branch-and-bound
trees to close the gap, significantly increasing computational effort in iterations that lead to

rejection.
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Applicant ~ Status  Time (seconds) Nodes

231 Accepted 738 523196
232 Rejected 12 383
233 Rejected 13 381
234 Rejected 12 191
235 Rejected 13 31
236 Accepted 731 523196
237 Accepted 317 201714
238 Rejected 13 1
239 Rejected 13 1
240 Rejected 13 1
241 Rejected 13 1
242 Rejected 13 57
243 Rejected 13 1
244 Accepted 2861 1559627
245 Rejected 12 1
246 Rejected 14 289
247 Accepted 1630 899569
248 Accepted 5118 2869837

Table 4: Detailed results of iterations 231-248.
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Figure 5: Comparison of LP relaxation and IP optimal value.

6.4 Augmenting preference lists and capacity

We consider two auxiliary procedures used to generate instances that reflect sensible actions

that Bachillerato Inicia might take to increase the number and input ranking of admitted ap-
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Algorithm 2 Correlation-based preference augmentation

Require: Preference lists (Ps)ses, weighted graph G = (P, E, w)
Ensure: Augmented preference lists (P;)ses

1: for each applicant s € .S do

2:  for each p € P\ P; do

3: compute scores(p) = > cp,.(p.g1e B W

4: end for

5. select py € arg max, scores(p)

6: set Py = (Ps,p4)

7. end for

plicants. The first procedure (Algorithm 2) augments applicants’ preference lists by adding a
fourth option based on empirical correlation patterns across programs. The second procedure
(Algorithm 3) constructs alternative capacity vectors through a saturation-based allocation

rule that concentrates additional slots on the most constrained programs.

Correlation-based fourth preference In order to construct augmented preference pro-
files, we assign a fourth program to each applicant using aggregate information on the sim-
ilarity between programs. This information is summarized by a weighted, undirected graph
on the set of programs, denoted by G = (P, E, w), which is constructed from application data
and illustrated in Figure 2. The graph captures empirical patterns of joint demand across
programs and is interpreted as a measure of proximity or relatedness between academic op-
tions. Using this graph as input, the fourth program assigned to an applicant is chosen so
as to be most closely related, in aggregate, to her originally declared choices, while excluding

the programs already listed in her preference set.

Saturation-based capacity increments To construct alternative capacity scenarios, we
consider a rule that allocates additional slots to programs as a function of their overall demand
pressure. For each program p € P, let d, denote its total demand, defined as the number of
applicants who list p anywhere in their preference profile. Let ¢, be the original capacity of
program p, and let k € Z denote a fixed budget of additional slots to be distributed. Starting
from the original capacity vector, additional slots are assigned sequentially to programs that
exhibit the highest level of saturation, measured as a ratio between demand and current
capacity. At each step, one unit of capacity is allocated to the program with the largest

demand-to-capacity ratio, and the capacity vector is updated accordingly before proceeding
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Algorithm 3 Saturation-based capacity expansion

Require: Capacities (¢p)pep, demand (dp),ep, budget k
Ensure: Capacity increments (Ap),cp

1: 0 ¢

2: fort=1to k do

3:  choose p* € arg max,cp (;—fl)

PR D

5: end for

6: Ap%c,(jk)—cp Vpe P

to the next allocation.

We built the additional instances based on the 2026 dataset, restricting executions of
Algorithm 1 to the first 230 applicants for computational tractability. Table 5 reports sum-
mary statistics analogous to those in Table 3, considering the baseline instance, a variant in
which applicants are allowed to declare a fourth program, and scenarios in which articulation
capacities are increased by k = 10,20, 30 slots in saturated programs. Figure 6 visualizes
the acceptance outcomes across these scenarios. Each row corresponds to one execution, and
each applicant is marked as accepted or rejected, allowing a direct comparison of acceptance

patterns across instances.

Instance Applicants  Total accepted First rejected 90-th accepted Total time (minutes)
Baseline 230 129 61 115 24
Fourth program 230 129 61 115 1270
k=10 230 128 72 113 22
k=20 230 136 82 103 325
k=30 230 142 86 94 641

Table 5: Summary of results per instance.

The results show that allowing a fourth declared program has no effect on admission out-
comes. However, this modification substantially increases total running time, indicating that,
under correlated preferences, additional declared options increase computational complexity
without improving admission performance. In contrast, increasing articulation capacity has
a clear and systematic effect. As k grows, the first rejection is delayed, and the algorithm
reaches the 90th accepted applicant earlier, reflecting reduced congestion in the articulation

stage. At the same time, the total number of accepted applicants increases from 129 in the
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Figure 6: Accepted applicants per instance.

baseline to 142 for k = 30. This improvement comes at a significant computational cost, as
total running time grows rapidly with k, exceeding several hundred minutes for larger capacity
increases.

A closer inspection of Figure 6 also reveals that acceptance sets are not nested across
scenarios. In particular, focusing on applicants in the range 90-100, we observe that the sets of
accepted applicants differ in a non-monotone way: some applicants accepted in one execution
may be rejected in another, and vice versa. This behavior reflects the path-dependent nature
of Algorithm 1. Once two executions diverge at a given applicant, subsequent compatibility
tests are performed against different admitted sets, which may trigger further divergences
downstream. Importantly, this observation is not in conflict with Propositions 4 and 5. Both
results are comparative statics statements that apply to a fixed robustly compatible set S*:
extending preference lists or increasing capacity cannot invalidate robustness of an already
robust set. In contrast, the algorithm constructs S* sequentially, and different parameter
choices may lead the algorithm to select different robustly compatible sets, none of which
need to be nested. Thus, non-containment across executions is an algorithmic phenomenon
rather than a violation of robustness monotonicity.

Taken together, Table 5 and Figure 6 suggest that while expanding preference lists offers
no practical benefit, moderate increases in articulation capacity at saturated programs can
meaningfully improve admission outcomes. From a practical perspective, these results indicate
that targeted capacity expansions may allow Bachillerato Inicia to admit more and higher-

ranked students, albeit at the expense of increased computational effort.
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7 Implementation experience

The enrollment process for inclusion and special access programs at Chilean universities is
conducted within a highly constrained time window, typically lasting between two and three
days after the official publication of the data reflecting students’ performance in secondary ed-
ucation and national examinations. Bachillerato Inicia extends enrollment offers concurrently
with other inclusion programs at PUC and with academic programs at other universities. Con-
sequently, students may be preselected and receive enrollment offers from multiple programs.
Most academic programs in Chile do not employ algorithmic optimization in the final stage of
selection. Instead, enrollment offers are issued strictly in accordance with the input ranking.

A nontrivial fraction of students accepted by the algorithm into Bachillerato Inicia decline
the enrollment offer. These rejections create vacancies, allowing admission of students who
were not selected in the initial round. Prior to extending offers to students lower in the input
ranking, it is preferable to update the candidate list by removing students who have declined
enrollment. This adjustment allows higher-ranked students to be reconsidered and potentially
selected in subsequent rounds. In practice, the algorithm is therefore executed multiple times.
The short enrollment window, combined with the need for repeated re-optimization, imposes
significant constraints on the computational performance of the algorithm and emphasizes
minimizing execution time.

In the 2026 admission cycle, the algorithm was executed in three rounds. In the first
round, the algorithm considered the top 150 students in the input ranking, of whom 101
were selected. In the second round, students who declined enrollment in the first round were
removed, and candidates ranked 151-248 were included. In this round, the algorithm accepted
37 additional students, including two students who had not been selected in the first round. In
the third round, after additional removals due to enrollment rejections, the algorithm selected
nine students who had not been previously selected. The enrollment rejection rate remained
approximately constant across rounds, at approximately 23%. The final enrolled cohort for
the program in the 2026 admission consisted of 113 students. Note that by Proposition 3,
admitted students who accept the offer remain robustly compatible, and they provide the
initialization of S* in Algorithm 1 for subsequent rounds.

The model developed in this study can be implemented in two different ways. In the first
case, a strict implementation guarantees that all selected students are assigned to one of the
three preferences declared at the time of application, based on their performance ranking at

the end of the first year. Under this strict implementation, students who wish to access a
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program different from their initially declared preferences lose priority in the ranking and may
only access their preferred program if places remain available after all other assignments have
been completed. Again, by Proposition 3, the students who do not change their lists remain
robustly compatible.

A second implementation of the model allows students to engage in vocational exploration
during the first year and to change their program preferences without losing their position in
the exit ranking. In this case, the role of the model is to guarantee an initial balance between
preferences and available places. If preference changes are relatively limited and there are
unused places, the number of students who fail to access their preferred programs at exit may
be relatively small.

In Bachillerato Inicia, the model was applied in an almost strict manner for the 2024
cohort and with preference changes allowed for the 2025 cohort. In the 2024 cohort, 3% of
students changed their first preference, and 92% were assigned to their first preference at the
end of the first year. In the 2025 cohort, 19% of students changed their first preference, and
95% were assigned to their first preference at the end of the first year. For the Bachillerato
Inicia program, the implementation of the model that allows changes in preferences introduces
greater flexibility in students’ options, without a significant loss in first-preference assignment
outcomes.

We also highlight that the first-year retention rate of Bachillerato Inicia was 93% in years
2024 and 2025. This sharply contrasts with the situation of similar programs in Chile as
outlined in the Introduction. For the 2026 cohort, if the first 125 applicants were admitted,
by using (RobIP), we find that up to 28 students could be left unmatched in the worst case.

By avoiding such situations, Bachillerato Inicia is likely to keep high retention rates.

8 Conclusions

This paper studies a two-stage admission and assignment problem under uncertainty, where
admission decisions must remain feasible for all possible exit orders of admitted applicants. We
formalize this requirement through a notion of robust compatibility and derive an adversarial
formulation, based on an integer programming model of stable matching, to test robustness
under worst-case exit rankings. This formulation leads to a sequential admission algorithm
that incrementally constructs a robustly compatible set of applicants. Computational re-
sults on real admission data show that robustness could come at a significant computational

cost, with total running time driven by a small number of late acceptance decisions in con-
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gested regimes. The implementation of the mechanism has led to high first-year retention in
Bachillerato Inicia.

There are several avenues for future research. From the stable matching theory perspective,
it would be interesting to extend the problem to the general many-to-one case by allowing
programs to have different preference profiles over students, or to specialize the results to the
classical stable marriage problem. In either case, properties of robustly compatible sets should
be revisited. From the algorithmic point of view, the large computing times exhibited by some
iterations call for improving the IP formulation, for instance, by carrying out a polyhedral
study to obtain facets of the convex hull of feasible solutions of (RobIP). It would also be
interesting to allow some degree of risk and limit the set of exit rankings against which the

model protects, similar to d-robustness of Chen et al. (2021).
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