Dual constrained single machine sequencing to minimize total weighted completion time

We study a single-machine sequencing problem with both release dates and deadlines to minimize the total weighted completion time. We propose a branch-and-bound algorithm for this problem. The algorithm exploits an effective lower bound and a dynamic programming dominance technique. As a byproduct of the lower bound, we have developed a new algorithm for the generalized isotonic regression problem; the algorithm can also be used as an O(nlogn)-time timetabling routine in earliness-tardiness scheduling. Extensive computational experiments indicate that the proposed branch-and-bound algorithm competes favorably with a dynamic programming procedure.


IEEE Trans. on Automation Science and Engineering, Vol. 2, n. 4, pp. 344-357, 2005