Neur2BiLO: Neural Bilevel Optimization

Bilevel optimization deals with nested problems in which a leader takes the first decision to minimize their objective function while accounting for a follower best-response reaction. Constrained bilevel problems with integer variables are particularly notorious for their hardness.  While exact solvers have been proposed for mixed-integer~linear bilevel optimization, they tend to scale poorly with problem … Read more

Novel stepsize for some accelerated and stochastic optimization methods

New first-order methods now need to be improved to keep up with the constant developments in machine learning and mathematics. They are commonly used methods to solve optimization problems. Among them, the algorithm branch based on gradient descent has developed rapidly with good results achieved. Not out of that trend, in this article, we research … Read more

Optimal counterfactual explanations for k-Nearest Neighbors using Mathematical Optimization and Constraint Programming

\(\) Within the topic of explainable AI, counterfactual explanations to classifiers have received significant recent attention. We study counterfactual explanations that try to explain why a data point received an undesirable classification by providing the closest data point that would have received a desirable one. Within the context of one the simplest and most popular … Read more

It’s All in the Mix: Wasserstein Machine Learning with Mixed Features

Citation Belbasi R., Selvi A., Wiesemann W. (December 2023) It’s all in the mix: Wasserstein machine learning with mixed features. Preprint. Article Download View It's All in the Mix: Wasserstein Machine Learning with Mixed Features

Data-driven Stochastic Vehicle Routing Problems with Deadlines

Vehicle routing problems (VRPs) with deadlines have received significant attention around the world. Motivated by a real-world food delivery problem, we assume that the travel time depends on the routing decisions, and study a data-driven stochastic VRP with deadlines and endogenous uncertainty. We use the non-parametric approaches, including k-nearest neighbor (kNN) and kernel density estimation … Read more

Data-Driven Counterfactual Optimization For Personalized Clinical Decision-Making

Chronic diseases have a significant impact on global mortality rates and healthcare costs. Notably, machine learning-based clinical assessment tools are becoming increasingly popular for informing treatment targets for high-risk patients with chronic diseases. However, using these tools alone, it is challenging to identify personalized treatment targets that lower the risks of adverse outcomes to a … Read more

Finding Regions of Counterfactual Explanations via Robust Optimization

Counterfactual explanations play an important role in detecting bias and improving the explainability of data-driven classification models. A counterfactual explanation (CE) is a minimal perturbed data point for which the decision of the model changes. Most of the existing methods can only provide one CE, which may not be achievable for the user. In this … Read more

The Online Shortest Path Problem: Learning Travel Times Using A Multi-Armed Bandit Framework

In the age of e-commerce, many logistic companies must operate in large road networks without accurate knowledge of travel times for their specific fleet of vehicles. Moreover, millions of dollars are spent on routing services that do not accurately capture the specific characteristics of the companies’ drivers and the types of vehicles they must use. … Read more

Data-driven Prediction of Relevant Scenarios for Robust Combinatorial Optimization

We study iterative methods for (two-stage) robust combinatorial optimization problems with discrete uncertainty. We propose a machine-learning-based heuristic to determine starting scenarios that provide strong lower bounds. To this end, we design dimension-independent features and train a Random Forest Classifier on small-dimensional instances. Experiments show that our method improves the solution process for larger instances … Read more

Learning to Accelerate the Global Optimization of Quadratically-Constrained Quadratic Programs

We learn optimal instance-specific heuristics for the global minimization of nonconvex quadratically-constrained quadratic programs (QCQPs). Specifically, we consider partitioning-based mixed-integer programming relaxations for nonconvex QCQPs and propose the novel problem of strong partitioning to optimally partition variable domains without sacrificing global optimality. We design a local optimization method for solving this challenging max-min strong partitioning … Read more