AN-SPS: Adaptive Sample Size Nonmonotone Line Search Spectral Projected Subgradient Method for Convex Constrained Optimization Problems

Article Download View AN-SPS: Adaptive Sample Size Nonmonotone Line Search Spectral Projected Subgradient Method for Convex Constrained Optimization Problems

An Improved Unconstrained Approach for Bilevel Optimization

In this paper, we focus on the nonconvex-strongly-convex bilevel optimization problem (BLO). In this BLO, the objective function of the upper-level problem is nonconvex and possibly nonsmooth, and the lower-level problem is smooth and strongly convex with respect to the underlying variable $y$. We show that the feasible region of BLO is a Riemannian manifold. … Read more

Blessing of Nonconvexity in Deep Linear Models: Depth Flattens the Optimization Landscape Around the True Solution

This work characterizes the effect of depth on the optimization landscape of linear regression, showing that, despite their nonconvexity, deeper models have more desirable optimization landscape. We consider a robust and over-parameterized setting, where a subset of measurements are grossly corrupted with noise and the true linear model is captured via an $N$-layer linear neural … Read more

Convergence to a second-order critical point of composite nonsmooth problems by a trust region method

An algorithm for finding a first-order and second-order critical point of composite nonsmooth problems is proposed in this paper. For smooth problems, algorithms for searching such a point usually utilize the so called negative-curvature directions. In this paper, the method recently proposed for nonlinear semidefinite problems by the current author is extended for solving general … Read more

Multi-fidelity robust controller design with gradient sampling

Robust controllers that stabilize dynamical systems even under disturbances and noise are often formulated as solutions of nonsmooth, nonconvex optimization problems. While methods such as gradient sampling can handle the nonconvexity and nonsmoothness, the costs of evaluating the objective function may be substantial, making robust control challenging for dynamical systems with high-dimensional state spaces. In … Read more

A Constraint Dissolving Approach for Nonsmooth Optimization over the Stiefel Manifold

This paper focus on the minimization of a possibly nonsmooth objective function over the Stiefel manifold. The existing approaches either lack efficiency or can only tackle prox-friendly objective functions. We propose a constraint dissolving function named NCDF and show that it has the same first-order stationary points and local minimizers as the original problem in … Read more

Spectral Projected Subgradient Method for Nonsmooth Convex Optimization Problems

We consider constrained optimization problems with a nonsmooth objective function in the form of mathematical expectation. The Sample Average Approximation (SAA) is used to estimate the objective function and variable sample size strategy is employed. The proposed algorithm combines an SAA subgradient with the spectral coefficient in order to provide a suitable direction which improves … Read more

A weak tail-bound probabilistic condition for function estimation in stochastic derivative-free optimization

In this paper, we use tail bounds to define a tailored probabilistic condition for function estimation that eases the theoretical analysis of stochastic derivative-free optimization methods. In particular, we focus on the unconstrained minimization of a potentially non-smooth function, whose values can only be estimated via stochastic observations, and give a simplified convergence proof for … Read more

Survey Descent: A Multipoint Generalization of Gradient Descent for Nonsmooth Optimization

For strongly convex objectives that are smooth, the classical theory of gradient descent ensures linear convergence relative to the number of gradient evaluations. An analogous nonsmooth theory is challenging. Even when the objective is smooth at every iterate, the corresponding local models are unstable and the number of cutting planes invoked by traditional remedies is … Read more

Global Complexity Bound of a Proximal ADMM for Linearly-Constrained Nonseperable Nonconvex Composite Programming

This paper proposes and analyzes a dampened proximal alternating direction method of multipliers (DP.ADMM) for solving linearly-constrained nonconvex optimization problems where the smooth part of the objective function is nonseparable. Each iteration of DP.ADMM consists of: (ii) a sequence of partial proximal augmented Lagrangian (AL) updates, (ii) an under-relaxed Lagrange multiplier update, and (iii) a … Read more