The if-then Polytope: Conditional Relations over Multiple Sets of Binary Variables

Inspired by its occurrence as a substructure in a stochastic railway timetabling model, we study in this work a special case of the bipartite boolean quadric polytope. It models conditional relations across three sets of binary variables, where selections within two “if” sets imply a choice in a corresponding “then” set. We call this polytope … Read more

A diving heuristic for mixed-integer problems with unbounded semi-continuous variables

Semi-continuous decision variables arise naturally in many real-world applications. They are defined to take either value zero or any value within a specified range, and occur mainly to prevent small nonzero values in the solution. One particular challenge that can come with semi-continuous variables in practical models is that their upper bound may be large … Read more

Representing Integer Program Value Function with Neural Networks

We study the value function of an integer program (IP) by characterizing how its optimal value changes as the right-hand side varies. We show that the IP value function can be approximated to any desired degree of accuracy using machine learning (ML) techniques. Since an IP value function is a Chvátal-Gomory (CG) function, we first … Read more

Distributionally Fair Stochastic Optimization using Wasserstein Distance

A traditional stochastic program under a finite population typically seeks to optimize efficiency by maximizing the expected profits or minimizing the expected costs, subject to a set of constraints. However, implementing such optimization-based decisions can have varying impacts on individuals, and when assessed using the individuals’ utility functions, these impacts may differ substantially across demographic … Read more

Refined TSSOS

The moment-sum of squares hierarchy by Lasserre has become an established technique for solving polynomial optimization problems. It provides a monotonically increasing series of tight bounds, but has well-known scalability limitations. For structured optimization problems, the term-sparsity SOS (TSSOS) approach scales much better due to block-diagonal matrices, obtained by completing the connected components of adjacency … Read more

A widespread belief about county splits in political districting plans is wrong

Consider the task of dividing a state into k contiguous political districts whose populations must not differ by more than one person, following current practice for congressional districting in the USA. A widely held belief among districting experts is that this task requires at least k-1 county splits. This statement has appeared in expert testimony, … Read more

Facets of the knapsack polytope from non-minimal covers

We propose two new classes of valid inequalities (VIs) for the binary knapsack polytope, based on non-minimal covers. We also show that these VIs can be obtained through neither sequential nor simultaneous lifting of well-known cover inequalities. We further provide conditions under which they are facet-defining. The usefulness of these VIs is demonstrated using computational … Read more

Branch-and-Bound versus Lift-and-Project Relaxations in Combinatorial Optimization

In this paper, we consider a theoretical framework for comparing branch-and-bound with classical lift-and-project hierarchies. We simplify our analysis of streamlining the definition of branch-and-bound. We introduce “skewed $k$-trees” which give a hierarchy of relaxations that is incomparable to that of Sherali-Adams, and we show that it is much better for some instances. We also … Read more

An Integer Programming Approach To Subspace Clustering With Missing Data

In the Subspace Clustering with Missing Data (SCMD) problem, we are given a collection of n partially observed d-dimensional vectors. The data points are assumed to be concentrated near a union of low-dimensional subspaces. The goal of SCMD is to cluster the vectors according to their subspace membership and recover the underlying basis, which can … Read more