## Efficient parameter-free restarted accelerated gradient methods for convex and strongly convex optimization

This paper develops a new parameter-free restarted method, namely RPF-SFISTA, and a new parameter-free aggressive regularization method, namely A-REG, for solving strongly convex and convex composite optimization problems, respectively. RPF-SFISTA has the major advantage that it requires no knowledge of both the strong convexity parameter of the entire composite objective and the Lipschitz constant of … Read more