A Max-Min-Max Algorithm for Large-Scale Robust Optimization

Robust optimization (RO) is a powerful paradigm for decision making under uncertainty. Existing algorithms for solving RO, including the reformulation approach and the cutting-plane method, do not scale well, hindering the application of RO to large-scale decision problems. In this paper, we devise a first-order algorithm for solving RO based on a novel max-min-max perspective. … Read more

Computational Guarantees for Restarted PDHG for LP based on “Limiting Error Ratios” and LP Sharpness

In recent years, there has been growing interest in solving linear optimization problems – or more simply “LP” – using first-order methods in order to avoid the costly matrix factorizations of traditional methods for huge-scale LP instances. The restarted primal-dual hybrid gradient method (PDHG) – together with some heuristic techniques – has emerged as a … Read more

On the Relation Between LP Sharpness and Limiting Error Ratio and Complexity Implications for Restarted PDHG

There has been a recent surge in development of first-order methods (FOMs) for solving huge-scale linear programming (LP) problems. The attractiveness of FOMs for LP stems in part from the fact that they avoid costly matrix factorization computation. However, the efficiency of FOMs is significantly influenced – both in theory and in practice – by … Read more

First-order penalty methods for bilevel optimization

\(\) In this paper we study a class of unconstrained and constrained bilevel optimization problems in which the lower-level part is a convex optimization problem, while the upper-level part is possibly a nonconvex optimization problem. In particular, we propose penalty methods for solving them, whose subproblems turn out to be a structured minimax problem and … Read more

Fixed-Point Automatic Differentiation of Forward–Backward Splitting Algorithms for Partly Smooth Functions

A large class of non-smooth practical optimization problems can be written as minimization of a sum of smooth and partly smooth functions. We consider such structured problems which also depend on a parameter vector and study the problem of differentiating its solution mapping with respect to the parameter which has far reaching applications in sensitivity … Read more

Parametric complexity analysis for a class of first-order Adagrad-like algorithms

A class of algorithms for optimization in the presence of noise is presented, that does not require the evaluation of the objective function. This class generalizes the well-known Adagrad method. The complexity of this class is then analyzed as a function of its parameters, and it is shown that some methods of the class enjoy … Read more

First-Order Objective-Function-Free Optimization Algorithms and Their Complexity

A class of algorithms for unconstrained nonconvex optimization is considered where the value of the objective function is never computed. The class contains a deterministic version of the first-order Adagrad method typically used for minimization of noisy function, but also allows the use of second-order information when available. The rate of convergence of methods in … Read more

Global Complexity Bound of a Proximal ADMM for Linearly-Constrained Nonseperable Nonconvex Composite Programming

This paper proposes and analyzes a dampened proximal alternating direction method of multipliers (DP.ADMM) for solving linearly-constrained nonconvex optimization problems where the smooth part of the objective function is nonseparable. Each iteration of DP.ADMM consists of: (ii) a sequence of partial proximal augmented Lagrangian (AL) updates, (ii) an under-relaxed Lagrange multiplier update, and (iii) a … Read more

Frank-Wolfe and friends: a journey into projection-free first-order optimization methods

Invented some 65 years ago in a seminal paper by Marguerite Straus-Frank and Philip Wolfe, the Frank-Wolfe method recently enjoys a remarkable revival, fuelled by the need of fast and reliable first-order optimization methods in Data Science and other relevant application areas. This review tries to explain the success of this approach by illustrating versatility … Read more

Practical Large-Scale Linear Programming using Primal-Dual Hybrid Gradient

We present PDLP, a practical first-order method for linear programming (LP) that can solve to the high levels of accuracy that are expected in traditional LP applications. In addition, it can scale to very large problems because its core operation is matrix-vector multiplications. PDLP is derived by applying the primal-dual hybrid gradient (PDHG) method, popularized … Read more