Fourth-order Marginal Moment Model: Reformulations and Applications

This paper investigates the bounds on the expectation of combinatorial optimization given moment information for each individual random variable. A popular approach to solving this problem, known as the marginal moment model (MMM), is to reformulate it as a semidefinite program (SDP). In this paper, we investigate the structure of MMM with up to fourth-order … Read more

The SCIP Optimization Suite 9.0

The SCIP Optimization Suite provides a collection of software packages for mathematical optimization, centered around the constraint integer programming (CIP) framework SCIP. This report discusses the enhancements and extensions included in the SCIP Optimization Suite 9.0. The updates in SCIP 9.0 include improved symmetry handling, additions and improvements of nonlinear handlers and primal heuristics, a … Read more

Distributed Task Assignment in a Swarm of UAVs

We consider the problem of distributed task assignment in a swarm of Unmanned Aerial Vehicles (UAVs), where heterogeneous agents that can have different capabilities need to work in teams to execute tasks. We consider the case where communication between UAVs is costly or dangerous and should be limited or avoided, while individual UAVs have uncertain … Read more

Binary Integer Program Reformulation: A Set System Approximation Approach

This paper presents a generic reformulation framework for binary integer programs (BIPs) without imposing additional specifications for the objective function or constraints. To facilitate such generality, we introduce a set system approximation theory designed to identify the tightest inner and outer approximations for any binary solution space using special types of set systems. This development … Read more

On Averaging and Extrapolation for Gradient Descent

\(\) This work considers the effect of averaging, and more generally extrapolation, of the iterates of gradient descent in smooth convex optimization. After running the method, rather than reporting the final iterate, one can report either a convex combination of the iterates (averaging) or a generic combination of the iterates (extrapolation). For several common stepsize … Read more

On Coupling Constraints in Linear Bilevel Optimization

It is well-known that coupling constraints in linear bilevel optimization can lead to disconnected feasible sets, which is not possible without coupling constraints. However, there is no difference between linear bilevel problems with and without coupling constraints w.r.t. their complexity-theoretical hardness. In this note, we prove that, although there is a clear difference between these … Read more

Problem-Parameter-Free Decentralized Nonconvex Stochastic Optimization

Existing decentralized algorithms usually require knowledge of problem parameters for updating local iterates. For example, the hyperparameters (such as learning rate) usually require the knowledge of Lipschitz constant of the global gradient or topological information of the communication networks, which are usually not accessible in practice. In this paper, we propose D-NASA, the first algorithm … Read more

A novel adaptive stepsize for proximal gradient method solving mixed variational inequality problems and applications

In this paper, we propose a new algorithm for solving monotone mixed variational inequality problems in real Hilbert spaces based on proximal gradient method. Our new algorithm use a novel adaptive stepsize which is proved to be increasing to a positive limitation. The weak convergence and strong convergence with R-linear rate of our new algorithm … Read more

Variance Reduction and Low Sample Complexity in Stochastic Optimization via Proximal Point Method

This paper proposes a stochastic proximal point method to solve a stochastic convex composite optimization problem. High probability results in stochastic optimization typically hinge on restrictive assumptions on the stochastic gradient noise, for example, sub-Gaussian distributions. Assuming only weak conditions such as bounded variance of the stochastic gradient, this paper establishes a low sample complexity … Read more