A combinatorial approach to Ramana’s exact dual for semidefinite programming

Thirty years ago, in a seminal paper Ramana derived an exact dual for Semidefinite Programming (SDP). Ramana’s dual has the following remarkable features: i) it assumes feasibility of the primal, but it does not make any regularity assumptions, such as strict feasibility ii) its optimal value is the same as the optimal value of the … Read more

Binary Integer Program Reformulation: A Set System Approximation Approach

This paper presents a generic reformulation framework for binary integer programs (BIPs) that does not impose additional specifications on the objective function or constraints. To enable this generality, we introduce a set system approximation theory designed to identify the tightest inner and outer approximations for any binary solution space using special types of set systems. … Read more

Policy with guaranteed risk-adjusted performance for multistage stochastic linear problems

Risk-averse multi-stage problems and their applications are gaining interest in various fields of applications. Under convexity assumptions, the resolution of these problems can be done with trajectory following dynamic programming algorithms like Stochastic Dual Dynamic Programming (SDDP) to access a deterministic lower bound, and dual SDDP for deterministic upper bounds. In this paper, we leverage … Read more

Quadratic Optimization Through the Lens of Adjustable Robust Optimization

Quadratic optimization (QO) has been studied extensively in the literature due to its applicability in many practical problems. While practical, it is known that QO problems are generally NP-hard. So, researchers developed many approximation methods to find good solutions. In this paper, we go beyond the norm and analyze QO problems using robust optimization techniques. … Read more

Doubly stochastic primal dual splitting algorithm with variance reduction for saddle point problems

The (structured) saddle-point problem involving the infimal convolution in real Hilbert spaces finds applicability in many applied mathematics disciplines. For this purpose, we develop a stochastic primal-dual splitting (PDS) algorithm with loopless variance-reduction (VR) for solving this generic problem. A PDS algorithm aims to overcome the well-known shortcomings of common splitting methods by solving the … Read more

M-stationarity of Local Minimizers of MPCCs and Convergence of NCP-based Methods

This paper focuses on solving mathematical programs with complementarity constraints (MPCCs) without assuming MPCC-LICQ or lower level strict complementarity at a solution. We show that a local minimizer of an MPCC is “piecewise M-stationary” un- der MPCC-GCQ; furthermore, every weakly stationary point of an MPCC is B-stationary if MPCC-ACQ holds. For the Bounding Algorithm proposed … Read more

Dual solutions in convex stochastic optimization

This paper studies duality and optimality conditions for general convex stochastic optimization problems. The main result gives sufficient conditions for the absence of a duality gap and the existence of dual solutions in a locally convex space of random variables. It implies, in particular, the necessity of scenario-wise optimality conditions that are behind many fundamental … Read more

Distributionally Robust Modeling of Optimal Control

The aim of this paper is to formulate several questions related to distributionally robust Stochastic Optimal Control modeling. As an example, the distributionally robust counterpart of the classical inventory model is discussed in details. Finite and infinite horizon stationary settings are considered. Article Download View Distributionally Robust Modeling of Optimal Control

Strong duality of a conic optimization problem with a single hyperplane and two cone constraints

Strong (Lagrangian) duality of general conic optimization problems (COPs) has long been studied and its profound and complicated results appear in different forms in a wide range of literatures. As a result, characterizing the known and unknown results can sometimes be difficult. The aim of this article is to provide a unified and geometric view … Read more

Linearizing Bilinear Products of Shadow Prices and Dispatch Variables in Bilevel Problems for Optimal Power System Planning

This work presents a general method for linearizing bilinear terms in the upper level of bilevel optimization problems when the bilinear terms are products of the primal and dual variables of the lower level. Bilinear terms of this form often appear in energy market optimization models where the dual variable represents the market price of … Read more