Branch-and-Bound versus Lift-and-Project Relaxations in Combinatorial Optimization

In this paper, we consider a theoretical framework for comparing branch-and-bound with classical lift-and-project hierarchies. We simplify our analysis of streamlining the definition of branch-and-bound. We introduce “skewed $k$-trees” which give a hierarchy of relaxations that is incomparable to that of Sherali-Adams, and we show that it is much better for some instances. We also … Read more

A hybrid branch-and-bound and interior-point algorithm for stochastic mixed-integer nonlinear second-order cone programming

One of the chief attractions of stochastic mixed-integer second-order cone programming is its diverse applications, especially in engineering (Alzalg and Alioui, {\em IEEE Access}, 10:3522-3547, 2022). The linear and nonlinear versions of this class of optimization problems are still unsolved yet. In this paper, we develop a hybrid optimization algorithm coupling branch-and-bound and primal-dual interior-point … Read more

A novel algorithm for a broad class of nonconvex optimization problems

In this paper, we propose a new global optimization approach for solving nonconvex optimization problems in which the nonconvex components are sums of products of convex functions. A broad class of nonconvex problems can be written in this way, such as concave minimization problems, difference of convex problems, and fractional optimization problems. Our approach exploits … Read more

Compressed Sensing: A Discrete Optimization Approach

We study the Compressed Sensing (CS) problem, which is the problem of finding the most sparse vector that satisfies a set of linear measurements up to some numerical tolerance. CS is a central problem in Statistics, Operations Research and Machine Learning which arises in applications such as signal processing, data compression and image reconstruction. We … Read more

Handling Symmetries in Mixed-Integer Semidefinite Programs

Symmetry handling is a key technique for reducing the running time of branch-and-bound methods for solving mixed-integer linear programs. In this paper, we generalize the notion of (permutation) symmetries to mixed-integer semidefinite programs (MISDPs). We first discuss how symmetries of MISDPs can be automatically detected by finding automorphisms of a suitably colored auxiliary graph. Then … Read more

A Unified Framework for Symmetry Handling

Handling symmetries in optimization problems is essential for devising efficient solution methods. In this article, we present a general framework that captures many of the already existing symmetry handling methods. While these methods are mostly discussed independently from each other, our framework allows to apply different methods simultaneously and thus outperforming their individual effect. Moreover, … Read more

A Fast Combinatorial Algorithm for the Bilevel Knapsack Problem with Interdiction Constraints

\(\) We consider the bilevel knapsack problem with interdiction constraints, a fundamental bilevel integer programming problem which generalizes the 0-1 knapsack problem. In this problem, there are two knapsacks and \(n\) items. The objective is to select some items to pack into the first knapsack such that the maximum profit attainable from packing some of … Read more

V-polyhedral disjunctive cuts

We introduce V-polyhedral disjunctive cuts (VPCs) for generating valid inequalities from general disjunctions. Cuts are critical to integer programming solvers, but the benefit from many families is only realized when the cuts are applied recursively, causing numerical instability and “tailing off” of cut strength after several rounds. To mitigate these difficulties, the VPC framework offers … Read more

A Penalty Branch-and-Bound Method for Mixed-Integer Quadratic Bilevel Problems

We propose an algorithm for solving bilevel problems with mixed-integer convex-quadratic upper level as well as convex-quadratic and continuous lower level. The method is based on a classic branch-and-bound procedure, where branching is performed on the integer constraints and on the complementarity constraints resulting from the KKT reformulation of the lower-level problem. However, instead of … Read more

A combined model for chain expansion including the possibility of locating a new facility and modification and/or closing of existing facilities

The problem of an expanding chain (it already has some facilities) in a given area is considered. It may locate a new facility, or vary (up or down) the quality of its existing facilities, or close some of them, or a combination of all those possibilities, whatever it is the best to maximize its profit, … Read more