Shape-Changing Trust-Region Methods Using Multipoint Symmetric Secant Matrices

In this work, we consider methods for large-scale and nonconvex unconstrained optimization. We propose a new trust-region method whose subproblem is defined using a so-called “shape-changing” norm together with densely-initialized multipoint symmetric secant (MSS) matrices to approximate the Hessian. Shape-changing norms and dense initializations have been successfully used in the context of traditional quasi Newton … Read more

First- and Second-Order High Probability Complexity Bounds for Trust-Region Methods with Noisy Oracles

In this paper, we present convergence guarantees for a modified trust-region method designed for minimizing objective functions whose value is computed with noise and for which gradient and Hessian estimates are inexact and possibly random. In order to account for the noise, the method utilizes a relaxed step acceptance criterion and a cautious trust-region radius … Read more

Worst-Case Complexity of TRACE with Inexact Subproblem Solutions for Nonconvex Smooth Optimization

An algorithm for solving nonconvex smooth optimization problems is proposed, analyzed, and tested. The algorithm is an extension of the Trust Region Algorithm with Contractions and Expansions (TRACE) [Math. Prog. 162(1):132, 2017]. In particular, the extension allows the algorithm to use inexact solutions of the arising subproblems, which is an important feature for solving large-scale … Read more

Exploiting Prior Function Evaluations in Derivative-Free Optimization

A derivative-free optimization (DFO) algorithm is presented. The distinguishing feature of the algorithm is that it allows for the use of function values that have been made available through prior runs of a DFO algorithm for solving prior related optimization problems. Applications in which sequences of related optimization problems are solved such that the proposed … Read more

A weak tail-bound probabilistic condition for function estimation in stochastic derivative-free optimization

In this paper, we use tail bounds to define a tailored probabilistic condition for function estimation that eases the theoretical analysis of stochastic derivative-free optimization methods. In particular, we focus on the unconstrained minimization of a potentially non-smooth function, whose values can only be estimated via stochastic observations, and give a simplified convergence proof for … Read more

Trust-region algorithms: probabilistic complexity and intrinsic noise with applications to subsampling techniques

A trust-region algorithm is presented for finding approximate minimizers of smooth unconstrained functions whose values and derivatives are subject to random noise. It is shown that, under suitable probabilistic assumptions, the new method finds (in expectation) an epsilon-approximate minimizer of arbitrary order q > 0 in at most O(epsilon^{-(q+1)}) inexact evaluations of the function and … Read more

Model-Based Derivative-Free Methods for Convex-Constrained Optimization

We present a model-based derivative-free method for optimization subject to general convex constraints, which we assume are unrelaxable and accessed only through a projection operator that is cheap to evaluate. We prove global convergence and a worst-case complexity of $O(\epsilon^{-2})$ iterations and objective evaluations for nonconvex functions, matching results for the unconstrained case. We introduce … Read more

A stochastic first-order trust-region method with inexact restoration for finite-sum minimization

We propose a stochastic first-order trust-region method with inexact function and gradient evaluations for solving finite-sum minimization problems. At each iteration, the function and the gradient are approximated by sampling. The sample size in gradient approximations is smaller than the sample size in function approximations and the latter is determined using a deterministic rule inspired … Read more

The Impact of Noise on Evaluation Complexity: The Deterministic Trust-Region Case

Intrinsic noise in objective function and derivatives evaluations may cause premature termination of optimization algorithms. Evaluation complexity bounds taking this situation into account are presented in the framework of a deterministic trust-region method. The results show that the presence of intrinsic noise may dominate these bounds, in contrast with what is known for methods in … Read more

Scalable adaptive cubic regularization methods

Adaptive cubic regularization (ARC) methods for unconstrained optimization compute steps from linear systems involving a shifted Hessian in the spirit of the Levenberg-Marquardt and trust-region methods. The standard approach consists in performing an iterative search for the shift akin to solving the secular equation in trust-region methods. Such search requires computing the Cholesky factorization of … Read more