An Adaptive Stochastic Dual Progressive Hedging Algorithm for Stochastic Programming

The Progressive Hedging (PH) algorithm is one of the cornerstones in large-scale stochastic programming. However, its traditional development requires that all scenario subproblems are solved per iteration, and a probability distribution with finitely many outcomes. This paper introduces a stochastic dual PH algorithm (SDPH) to overcome these challenges. We introduce an adaptive sampling process and … Read more

A Survey on the Applications of Stochastic Dual Dynamic Programming and its Variants

Stochastic Dual Dynamic Programming (SDDP) is widely recognized as the predominant methodology for solving large-scale multistage stochastic linear programming (MSLP) problems. This paper aims to contribute to the extant literature by conducting a comprehensive survey of the literature on SDDP within the realm of practical applications. We systematically identify and analyze the various domains where … Read more

Climate-Resilient Nodal Power System Expansion Planning for a Realistic California Test Case

Climate change is increasingly impacting power system operations, not only through more frequent extreme weather events but also through shifts in routine weather patterns. Factors such as increased temperatures, droughts, changing wind patterns, and solar irradiance shifts can impact both power system production and transmission and electric load. The current power system was not designed … Read more

Risk-Averse Antibiotics Time Machine Problem

Antibiotic resistance, which is a serious healthcare issue, emerges due to uncontrolled and repeated antibiotic use that causes bacteria to mutate and develop resistance to antibiotics. The Antibiotics Time Machine Problem aims to come up with treatment plans that maximize the probability of reversing these mutations. Motivated by the severity of the problem, we develop … Read more

Guaranteed bounds for optimal stopping problems using kernel-based non-asymptotic uniform confidence bands

In this paper, we introduce an approach for obtaining probabilistically guaranteed upper and lower bounds on the true optimal value of stopping problems. Bounds of existing simulation-and-regression approaches, such as those based on least squares Monte Carlo and information relaxation, are stochastic in nature and therefore do not come with a finite sample guarantee. Our … Read more

Forecasting Outside the Box: Application-Driven Optimal Pointwise Forecasts for Stochastic Optimization

The exponential growth in data availability in recent years has led to new formulations of data-driven optimization problems. One such formulation is that of stochastic optimization problems with contextual information, where the goal is to optimize the expected value of a certain function given some contextual information (also called features) that accompany the main data … Read more

Single-Scenario Facet Preservation for Stochastic Mixed-Integer Programs

We consider improving the polyhedral representation of the extensive form of a stochastic mixed-integer program (SMIP). Given a facet for a single-scenario version of an SMIP, our main result provides necessary and sufficient conditions under which this inequality remains facet-defining for the extensive form. We then present several implications, which show that common recourse structures … Read more

Probing-Enhanced Stochastic Programming

We consider a two-stage stochastic decision problem where the decision-maker has the opportunity to obtain information about the distribution of the random variables $\xi$ that appear in the problem through a set of discrete actions that we refer to as probing. Probing components of a random vector $\eta$ that is jointly-distributed with $\xi$ allows the … Read more

Properties of Two-Stage Stochastic Multi-Objective Linear Programs

We consider a two-stage stochastic multi-objective linear program (TSSMOLP) which is a natural multi-objective generalization of the well-studied two-stage stochastic linear program. The second-stage recourse decision is governed by an uncertain multi-objective linear program whose solution maps to an uncertain second-stage nondominated set. The TSSMOLP then comprises the objective function, which is the Minkowsi sum … Read more

Contextual Stochastic Programs with Expected-Value Constraints

Expected-value-constrained programming (ECP) formulations are a broad class of stochastic programming problems including integrated chance constraints, risk models, and stochastic dominance formulations. Given the wide availability of data, it is common in applications to have independent contextual information associated with the target or dependent random variables of the problem. We show how to incorporate such … Read more