Strong Duality and Dual Pricing Properties in Semi-infinite Linear Programming–A Non-Fourier-Motzkin Elimination Approach

The Fourier-Motzkin elimination method has been recently extended to linear inequality systems that have infinitely many inequalities. It has been used in the study of linear semi-infinite programming by Basu, Martin, and Ryan. Following the idea of the conjecture for semi-infinite programming in a paper by Kortanek and Zhang recently published in Optimization, which states … Read more