The quadratic assignment problem (QAP) is among the hardest combinatorial optimization problems. Some instances of size n >= 30 have remained unsolved for decades. The solution of these problems requires both improvements in mathematical programming algorithms and the utilization of powerful computational platforms. In this article we describe a novel approach to solve QAPs using a state-of-the-art branch-and-bound algorithm running on a federation of geographically distributed resources known as a computational grid. Solutions of QAPs of unprecedented complexity, including the nug30, kra30b, and tho30 problems, is reported.
Citation
submitted to Mathematical Programming.