Distributed Projections onto a Simplex

Projecting a vector onto a simplex is a well-studied problem that arises in a wide range of optimization problems. Numerous algorithms have been proposed for determining the projection; however, all but one of these algorithms are serial. We address this gap by developing a method that preprocesses the input vector by decomposing and distributing it … Read more

Parallel Dual Dynamic Integer Programming for Large-Scale Hydrothermal Unit-Commitment

Unit commitment has been at the center of power system operation for well over 50 years. Yet, this problem cannot be considered solved due to its size and complexity. Today, operators rely on off-the-shelf optimization solvers to tackle this challenging problem, and often resort to simplifications to make the problem more tractable and solvable in … Read more

Scalable Parallel Nonlinear Optimization with PyNumero and Parapint

We describe PyNumero, an open-source, object-oriented programming framework in Python that supports rapid development of performant parallel algorithms for structured nonlinear programming problems (NLP’s) using the Message Passing Interface (MPI). PyNumero provides three fundamental building blocks for developing NLP algorithms: a fast interface for calculating first and second derivatives with the AMPL Solver Library (ASL), … Read more

Parallel Strategies for Direct Multisearch

Direct Multisearch (DMS) is a Derivative-free Optimization class of algorithms suited for computing approximations to the complete Pareto front of a given Multiobjective Optimization problem. It has a well-supported convergence analysis and simple implementations present a good numerical performance, both in academic test sets and in real applications. Recently, this numerical performance was improved with … Read more

String-Averaging Methods for Best Approximation to Common Fixed Point Sets of Operators: The Finite and Infinite Cases

Abstract String-averaging is an algorithmic structure used when handling a family of operators in situations where the algorithm at hand requires to employ the operators in a specific order. Sequential orderings are well-known and a simultaneous order means that all operators are used simultaneously (in parallel). String-averaging allows to use strings of indices, constructed by … Read more

Improving Column-Generation for Vehicle Routing Problems via Random Coloring and Parallelization

We consider a variant of the Vehicle Routing Problem (VRP) where each customer has a unit demand and the goal is to minimize the total cost of routing a fleet of capacitated vehicles from one or multiple depots to visit all customers. We propose two parallel algorithms to efficiently solve the column-generation based linear-programming relaxation … Read more

A Novel Cooperative Multi-search Benders Decomposition for Solving the Hydrothermal Unit-Commitment Problem

Renewable energy and modernization of power operation demand Independent System Operators (ISOs) to solve ever more complex and larger programming problems to securely and economically schedule power resources. A key step in the scheduling process is the unit commitment (UC). In a hydro-dominated system, this process also involves managing reservoirs and is called hydrothermal UC … Read more

A Distributed and Secure Algorithm for Computing Dominant SVD Based on Projection Splitting

In this paper, we propose and study a distributed and secure algorithm for computing dominant (or truncated) singular value decompositions (SVD) of large and distributed data matrices. We consider the scenario where each node privately holds a subset of columns and only exchanges “safe” information with other nodes in a collaborative effort to calculate a … Read more

Limited-memory Common-directions Method for Large-scale Optimization: Convergence, Parallelization, and Distributed Optimization

In this paper, we present a limited-memory common-directions method for smooth optimization that interpolates between first- and second- order methods. At each iteration, a subspace of a limited dimension size is constructed using first-order information from previous iterations, and an ef- ficient Newton method is deployed to find an approximate minimizer within this subspace. With … Read more

A Two-level ADMM Algorithm for AC OPF with Convergence Guarantees

This paper proposes a two-level distributed algorithmic framework for solving the AC optimal power flow (OPF) problem with convergence guarantees. The presence of highly nonconvex constraints in OPF poses significant challenges to distributed algorithms based on the alternating direction method of multipliers (ADMM). In particular, convergence is not provably guaranteed for nonconvex network optimization problems … Read more