Temporal Bin Packing with Half-Capacity Jobs

Motivated by applications in cloud computing, we study a temporal bin packing problem with jobs that occupy half of a bin’s capacity. An instance is given by a set of jobs, each with a start and end time during which it must be processed, i.e., assigned to a bin. A bin can accommodate two jobs … Read more

Worst-Case Analysis of Heuristic Approaches for the Temporal Bin Packing Problem with Fire-Ups

We consider the temporal bin packing problem with fire-ups (TBPP-FU), a branch of operations research recently introduced in multi-objective cloud computing. In this scenario, any item is equipped with a resource demand and a lifespan meaning that it requires the bin capacity only during that time interval. We then aim at finding a schedule minimizing … Read more

Revisiting local branching with a machine learning lens

Finding high-quality solutions to mixed-integer linear programming problems (MILPs) is of great importance for many practical applications. In this respect, the refinement heuristic local branching (LB) has been proposed to produce improving solutions and has been highly influential for the development of local search methods in MILP. The algorithm iteratively explores a sequence of solution … Read more

Markov Chain-based Policies for Multi-stage Stochastic Integer Linear Programming with an Application to Disaster Relief Logistics

We introduce a novel aggregation framework to address multi-stage stochastic programs with mixed-integer state variables and continuous local variables (MSILPs). Our aggregation framework imposes additional structure to the integer state variables by leveraging the information of the underlying stochastic process, which is modeled as a Markov chain (MC). We present a novel branch-and-cut algorithm integrated … Read more

V-polyhedral disjunctive cuts

We introduce V-polyhedral disjunctive cuts (VPCs) for generating valid inequalities from general disjunctions. Cuts are critical to modern integer programming solvers, but their benefit is only realized when the cuts are applied recursively, causing numerical instability and “tailing off” of cut strength after several rounds. To mitigate these difficulties, the VPC framework offers a practical … Read more

Dendrograms, Minimum Spanning Trees and Feature Selection

Feature selection is a fundamental process to avoid overfitting and to reduce the size of databases without significant loss of information that applies to hierarchical clustering. Dendrograms are graphical representations of hierarchical clustering algorithms that for single linkage clustering can be interpreted as minimum spanning trees in the complete network defined by the database. In … Read more

Using Multiple Reference Vectors and Objective Scaling in the Feasibility Pump

The Feasibility Pump (FP) is one of the best-known primal heuristics for mixed-integer programming (MIP): more than 15 papers suggested various modifications of all of its steps. So far, no variant considered information across multiple iterations, but all instead maintained the principle to optimize towards a single reference integer point. In this paper, we evaluate … Read more

A Penalty Branch-and-Bound Method for Mixed-Integer Quadratic Bilevel Problems

We propose an algorithm for solving bilevel problems with mixed-integer convex-quadratic upper level as well as convex-quadratic and continuous lower level. The method is based on a classic branch-and-bound procedure, where branching is performed on the integer constraints and on the complementarity constraints resulting from the KKT reformulation of the lower-level problem. However, instead of … Read more

Routing and resource allocation in non-profit settings with equity and efficiency measures under demand uncertainty

Motivated by food distribution operations for non-profit organizations, we study a variant of the stochastic routing-allocation problem under demand uncertainty, in which one decides the assignment of trucks for demand nodes, the sequence of demand nodes to visit (i.e., truck route), and the allocation of food supply to each demand node. We propose three stochastic … Read more

A Stochastic Optimization Approach to Energy-Efficient Underground Timetabling under Uncertain Dwell and Running Times

We consider a problem from the context of energy-efficient underground railway timetabling, in which an existing timetable draft is improved by slightly changing departure and running times. In practice, synchronization between accelerating and braking trains to utilize regenerative braking plays a major role for the energy-efficiency of a timetable. Since deviations from a planned timetable … Read more