An inexact and nonmonotone proximal method for smooth unconstrained minimization

An implementable proximal point algorithm is established for the smooth nonconvex unconstrained minimization problem. At each iteration, the algorithm minimizes approximately a general quadratic by a truncated strategy with step length control. The main contributions are: (i) a framework for updating the proximal parameter; (ii) inexact criteria for approximately solving the subproblems; (iii) a nonmonotone criterion for accepting the iterate. The global convergence analysis is presented, together with numerical results that validate and put into perspective the proposed approach.

Article

Download

View PDF