Full Convergence of Regularized Methods for Unconstrained Optimization

Typically, the sequence of points generated by an optimization algorithm may have multiple limit points. Under convexity assumptions, however, (sub)gradient methods are known to generate a convergent sequence of points. In this paper, we extend the latter property to a broader class of algorithms. Specifically, we study unconstrained optimization methods that use local quadratic models … Read more

Gradient Methods with Online Scaling Part I. Theoretical Foundations

This paper establishes the theoretical foundations of the online scaled gradient methods (OSGM), a framework that utilizes online learning to adapt stepsizes and provably accelerate first-order methods. OSGM quantifies the effectiveness of a stepsize by a feedback function motivated from a convergence measure and uses the feedback to adjust the stepsize through an online learning … Read more

Solving a linear program via a single unconstrained minimization

This paper proposes a novel approach for solving linear programs. We reformulate a primal-dual linear program as an unconstrained minimization of a convex and twice continuously differentiable merit function. When the optimal set of the primal-dual pair is nonempty, its optimal set is equal to the optimal set of the proposed merit function. Minimizing this … Read more

A Fast Newton Method Under Local Lipschitz Smoothness

A new, fast second-order method is proposed that achieves the optimal \(\mathcal{O}\left(|\log(\epsilon)|\epsilon^{-3/2}\right) \) complexity to obtain first-order $\epsilon$-stationary points. Crucially, this is deduced without assuming the standard global Lipschitz Hessian continuity condition, but onlyusing an appropriate local smoothness requirement. The algorithm exploits Hessian information to compute a Newton step and a negative curvature step when … Read more

A characterization of positive spanning sets with ties to strongly edge-connected digraphs

Positive spanning sets (PSSs) are families of vectors that span a given linear space through non-negative linear combinations. Despite certain classes of PSSs being well understood, a complete characterization of PSSs remains elusive. In this paper, we explore a relatively understudied relationship between positive spanning sets and strongly edge-connected digraphs, in that the former can … Read more

Direct-search methods for decentralized blackbox optimization

Derivative-free optimization algorithms are particularly useful for tackling blackbox optimization problems where the objective function arises from complex and expensive procedures that preclude the use of classical gradient-based methods. In contemporary decentralized environments, such functions are defined locally on different computational nodes due to technical or privacy constraints, introducing additional challenges within the optimization process. … Read more

NonOpt: Nonconvex, Nonsmooth Optimizer

NonOpt, a C++ software package for minimizing locally Lipschitz objective functions, is presented. The software is intended primarily for minimizing objective functions that are nonconvex and/or nonsmooth. The package has implementations of two main algorithmic strategies: a gradient-sampling and a proximal-bundle method. Each algorithmic strategy can employ quasi-Newton techniques for accelerating convergence in practice. The … Read more

Convergence of Descent Optimization Algorithms under Polyak-Lojasiewicz-Kurdyka Conditions

This paper develops a comprehensive convergence analysis for generic classes of descent algorithms in nonsmooth and nonconvex optimization under several conditions of the Polyak-Lojasiewicz-Kurdyka (PLK) type. Along other results, we prove the finite termination of generic algorithms under the PLK conditions with lower exponents. Specifications are given to establish new convergence rates for inexact reduced … Read more

Fully Adaptive Zeroth-Order Method for Minimizing Functions with Compressible Gradients

We propose an adaptive zeroth-order method for minimizing differentiable functions with L-Lipschitz continuous gradients. The method is designed to take advantage of the eventual compressibility of the gradient of the objective function, but it does not require knowledge of the approximate sparsity level s or the Lipschitz constant L of the gradient. We show that … Read more

New Nonlinear Conjugate Gradient Methods with Guaranteed Descent for Multi-Objective Optimization

In this article, we present several examples of special nonlinear conjugate gradient directions for nonlinear (non-convex) multi-objective optimization. These directions provide a descent direction for the objectives, independent of the line-search. This way, we can provide an algorithm with simple, Armijo-like backtracking and prove convergence to first-order critical points. In contrast to other popular conjugate … Read more