A Riemannian rank-adaptive method for low-rank optimization

This paper presents an algorithm that solves optimization problems on a matrix manifold $\mathcal{M} \subseteq \mathbb{R}^{m \times n}$ with an additional rank inequality constraint. The algorithm resorts to well-known Riemannian optimization schemes on fixed-rank manifolds, combined with new mechanisms to increase or decrease the rank. The convergence of the algorithm is analyzed and a weighted low-rank approximation problem is used to illustrate the efficiency and effectiveness of the algorithm.

Citation

Technical report UCL-INMA-2015.05

Article

Download

View A Riemannian rank-adaptive method for low-rank optimization